
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Dynamic production system identification for smart manufacturing systems

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1016/j.jmsy.2018.04.006

PUBLISHER

Elsevier © The Society of Manufacturing Engineers

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Denno, Peter, Charles E. Dickerson, and Jennifer A. Harding. 2019. “Dynamic Production System
Identification for Smart Manufacturing Systems”. figshare. https://hdl.handle.net/2134/33111.

https://lboro.figshare.com/
https://doi.org/10.1016/j.jmsy.2018.04.006


Dynamic Production System Identification for
Smart Manufacturing Systems

Peter Dennoa,∗, Charles Dickersonb, Jennifer Anne Hardingb

aNational Institute of Standards and Technology,
Gaithersburg, Maryland, USA

bLoughborough University, Loughborough, UK

Abstract

This paper presents a methodology, called production system identification, to

produce a model of a manufacturing system from logs of the system’s operation.

The model produced is intended to aid in making production scheduling deci-

sions. Production system identification is similar to machine-learning methods

of process mining in that they both use logs of operations. However, process

mining falls short of addressing important requirements; process mining does

not (1) account for infrequent exceptional events that may provide insight into

system capabilities and reliability, (2) offer means to validate the model relative

to an understanding of causes, and (3) updated the model as the situation on

the production floor changes. The paper describes a genetic programming (GP)

methodology that uses Petri nets, probabilistic neural nets, and a causal model

of production system dynamics to address these shortcomings. A coloured Petri

net formalism appropriate to GP is developed and used to interpret the log.

Interpreted logs provide a relation between Petri net states and exceptional sys-

tem states that can be learned by means of novel formulation of probabilistic

neural nets (PNNs). A generalized stochastic Petri net and the PNNs are used

to validate the GP-generated solutions. The methodology is evaluated with an

example based on an automotive assembly system.

Keywords: system identification, production systems, genetic programming

∗Corresponding author

Preprint submitted to Journal of Manufacturing Systems April 19, 2018



1. Introduction

Knowledge of process requirements, system capacities, and system reliability

are the premises on which control policies are formulated. In dynamic manufac-

turing environments, engineering change to the product, the process, and the

production equipment can cause these premises to be violated and thereby make5

control policies less effective. An accurate, up-to-date model of the production

system is essential to production control, but a challenge to maintain.

Both the need for a production system model and the challenge of maintain-

ing it are more intense in smart manufacturing settings. The need is more

intense because a key goal of smart manufacturing is to automate decision10

making.[1] Decisions concerning sequencing [2], line balancing [3], [4], and pro-

duction system engineering [5] are sensitive to change in process requirements,

system structure, capacities, and reliability expressed in production system

models. The challenge is more intense because smart manufacturing can make

manufacturing more agile,[1] and the change brought on by increased agility15

must be reflected in the production system model. Change in process require-

ments is commonplace in manufacturing environments where products are evolv-

ing rapidly. Change in system structure, capacities, and reliability are less com-

mon; but control policies are affected as much by change in these dimensions as

they are by change in product and process.20

Dynamic production system identification is a methodology that develops

and updates a production system model that can provide information essential

to performance analysis and control. The methodology (1) identifies a model

that, like traditional statistical system identification [6], responds to stimulus

accurately, (2) identifies system components, their properties, and interconnec-25

tion, (3) identifies normative process for multiple job types, and (4) continually

updates the model.

The production system model is a process model. Machine-learning methods

of process mining typically develop such models using an analysis of frequently

occurring events described in system logs. These methods fall short of address-30

2



ing the challenge of dynamic production system identication in three important

respects: (1) Rather than frequently occurring events, it is the infrequent, excep-

tional events that typically provide insight into system capacities and reliability.

(2) Production system behaviour, especially machine blocking and starvation,

are well-understood phenomena; an analysis of cause and effects could be used35

to guide search to an accurate system model. (3) Process mining lacks inherent

means to update the model as the modelled system changes.

The production system model describes processes associated with Interna-

tional Society of Automation (ISA) Level 3 control problems[7]. Our methodol-

ogy infers the production-system structure and capacities specifically for use in40

line scheduling and balancing processes. (See Figure 1.) In the methodology, ge-

netic programming, default causal knowledge, and probabilistic classification of

exceptional conditions are used to evolve a population of individuals each repre-

senting a candidate model. The fitness of an individual is assessed with respect

to its ability to (1) reproduce the content of logs describing typical Supervisory45

Control And Data Acquisition (SCADA) events, (2) respond to perturbations

in workstation capacity with plausible differences in buffer occupancy and state

sojourn times, and (3) detect critical job-type distinctions (e.g. that one job

type requires significantly more processing time at some workstation than does

another job type).50

The main contribution of this paper is a robust methodology for dynamic

production system identification. The paper investigates the value of genetic

programming (GP) of Petri nets (PNs) in meeting its goals. GP on PNs is

intended to facilitate adaptation of the methodology to diverse production sys-

tem architectures and logging scenarios. The paper provides novel methods to55

interpret logs, validate the model, and learn from exceptional events.

Section 2 of the paper describes related work. Section 3 presents a Petri net

model, the Augmented Queueing Petri Net (AQPN) which provides the model

of process used in GP evolution. Section 4 describes how exceptional condi-

tions, causal validation, and model updating are handled. Section 5 describes60

a case study that uses the methodology. Section 6 concludes the paper with an

3



Figure 1: Production system identification in context

assessment of the methodology’s limitations and a discussion of future work.

2. Related Work

Process mining [8], [9], and advanced system identification methods [10], [11]

provide semi-automated means to produce process and system models for var-65

ious purposes including process conformance (i.e., determining whether or not

the actual process being practised conforms to the normative process). Typi-

cally, these methods have the goal of capturing the most frequent process pat-

terns and exhibiting robustness to noise. [12]

van der Aalst et al.[13] describe a process mining algorithm known as the70

α-miner. The algorithm produces structured workflow nets (SWF-nets) from

process logs. SWF-nets are untimed safe Petri nets constrained to avoid two

forms of so-called “confusion” in the composed use of choice and synchronization

in Petri nets.

4



Alves de Medieros [12] describes a genetic algorithm approach using SWF-75

nets to address some of the limitations of the α-miner. Specifically, it solves the

choice/synchronisation confusion problem and addresses invisible and duplicate

tasks. It is robust to noise by ignoring infrequent events.

Rozinat et al. [8] describe a methodology for constructing simulation models

that involves four perspectives on process: control-flow, data, performance, and80

resource. The work uses coloured Petri nets. The simulation models produced

do not make a distinction between normative and exceptional events.

Some relevant work associates more closely with system identification than

process mining. Several of these, including [11], [10] and [14] use integer linear

programming (ILP). Ould El Mehdi[11] et al. uses ILP to produce deterministic85

and stochastic Petri net (DSPN) models of systems. The work is targeted to

reliability analysis of repairable systems. DSPNs are of limited use in modelling

production systems because an analytical solution of steady-state can only be

had with DSPNs if no more than one deterministic transition is enabled in any

marking.[15]90

Basile et al. [10] describes a mixed integer linear programming method

of system identification that produces timed PNs. The underlying algorthm

assumes a bijective relationship between event-log entries and PN transitions.

The work does not use a coloured Petri net (CPN) model. Colours in CPNs

can be used to represent differing job types, which is necessary in models of95

production lines.

Turner et al. [16] is the only work the authors are aware of that uses ge-

netic programming for process mining. This short paper asserts that genetic

programming provides greater flexibility in problem formulation and the possi-

bility of mining complex and problematic event logs. The systems described do100

not use buffers nor does the methodology address exceptional conditions.

Compared to the work cited, our methodology emphasizes a means to es-

tablish a relationship between the information generated in production and the

system’s components. The identified model is not designed for use as a simula-

tion directly but as a means to infer, organize, and update information needed105

5



when building simulations and decision support tools that need to be responsive

to change.

3. Dynamic Production System Identification

The goal of any process modelling effort is to produce models fit for purpose.

[17] Knowledge of system capacities is essential to the purpose of production110

scheduling. For complex system engineering generally, and production system

engineering particularly, capturing the most frequent process patterns will not

be sufficient to create such a model. There are three interrelated reasons for

this. First, the behaviour of complex systems under unforeseen circumstances

cannot be predicted from the study of its response to seen circumstances. Hence115

models based only on frequent events (seen circumstances) are not in themselves

very good simulations of the actual system. Second, a system response (e.g.

blocking) can be a consequence of earlier interactions between the system and

it environment. That environment might reflect exceptional circumstances. For

example, while a machine is inoperative, work builds up at its input buffer. A120

model useful to scheduling must be capable of carrying this information forward

to reflect a new state. The new state reflects exceptional circumstances and a

capacity. Conversely, a model fit to data from only frequent and normative

events would have no basis for doing this. Third, many analytical methods in

production control require a specification that separates system description (e.g.125

capabilities, capacities, and system topology) from problem specification (e.g.

demand, product mix). Unfortunately, state-of-the-art process-mining methods

do not address these issues.

A sketch of the methodology is provided in Figure 2. To test the methodol-

ogy, a discrete event simulation system for mixed-model production, MJPdes,[18]130

was developed to produce log data and performance parameters consistent with

the behaviour of actual production lines. The log data is intended to resemble

what can easily be provided by SCADA reporting. SCADA reporting represents

activities at Level 2 of the ISA-95 hierarchy. In MJPdes, message types emitted

6



include job-enters-system, job-exits-system, job-starts-on-machine,135

job-moves-off-machine, machine-blocked, machine-unblocked,

machine-starved, and machine-unstarved. Associated with each of these is

the time at which the event occurred. Associated with the job-* events are job

identifier. Associated with machine-* events are equipment identifiers.

The remainder of Figure 2 concerns the GP algorithm. A population of140

initial individuals (PN models) is created where each individual traces one job

through the production system as indicated by the appearance of the job in

the SCADA log. The PN representing an initial individual has one transition

for each message in the log emitted about the subject job. PN’s are directed

bipartite graphs, so between each such transition is a place. In an initial indi-145

vidual, a single arc connects the places and transitions in sequence. The last

place is connected to the first transition. Initial individuals thus have a simple

ring topology. Similar to Nobile et al.[19], a distinction is made between visible

transitions, which correspond to log messages, and invisible transitions, which

do not. Initial individuals have no invisible transitions. As a consequence of150

their simple structure, initial individuals are not capable of expressing buffering

constraints.

Successful use of GP requires that genetic operators exhibit locality. [20]

Locality [21] is the property that small modifications to the individual’s rep-

resenting structure (i.e. genotype, the individual’s PN in our case) result in155

proportionally small differences in the expression of behaviour (i.e. phenotype,

production of log message in our case). Without locality, successive refinement

is not possible and search degrades to a random generate-and-test process. Ge-

netic operators for PNs must be carefully designed to ensure locality. Our earlier

work [22] led to the conclusions that genetic operators on PNs (1) should only160

operate on structure within small neighborhoods, that is, places and transitions

that are only a few edge hops from each other and (2) should not be allowed to

disturb the precedence order of the operations of jobs.

7



Figure 2: System identification methodology

3.1. Augmented Queueing Petri Nets

Petri nets is a family of graphical formalisms to represent process causa-165

tion, concurrency, choice, and synchronisation. [23] For many applications, PNs

have been superseded by domain-specific simulation languages [24] and process

ontologies [25]. These other representations lack characteristics important to

performing the GP-based automated design tasks that are key to this work.

For example, simulation languages typically do not define process formally (i.e.170

such that deductive reasoning can be used to ascertain the truth of statements).

In simulation languages, distinctions such as those between block-before-service

(BBS) and block-after-service (BAS) behaviour typically must be encoded in

software. Consequently, it is not easy to access and reason about behaviors in a

simulation language. (See Figure 3 for how BBS and BAS behavior is expressed175

in PNs.) Axiomatic process ontologies do not suffer this weakness; however,

typically, theorem provers are needed to infer the effects of an action. Theorem

8



provers are inefficient for the purposes of this work. In contrast, the immediate

effect of an event in a PN is limited to changes in the token counts in places di-

rectly connected to the transition representing the event. Such locality of effect180

is important to the log interpretation process described in Section 3.2. Finally,

category theory-based modelling of PNs [26], [27] may make possible functo-

rial mappings of PNs into other forms such as analytical codes for production

scheduling.

A new Petri net formalism called Augmented Queueing Petri Nets (AQPN)185

was developed for this work. In order to model the details of each individual

job’s movement through the production system, the formalism combines capabil-

ities of generalised stochastic Petri nets (GSPNs), coloured Petri nets (CPNs),

and Queueing Petri nets (QPNs). GSPNs [28] provide timed and immediate

transitions and inhibitor arcs used in this work to bound buffer size. k-bounded190

GSPNs can be reduced to PNs that are isomorphic to continuous-time Markov

chains (CTMCs) for calculation of steady-state properties. CPNs [29] provide

the ability, in this work, to distinguish job types and route differing job types

differently. QPNs [30] provide a queueing discipline on the release of tokens on

arc outbound from places. In this work, only first-in-first-out (FIFO) queues195

are supported.

To represent jobs entering and exiting the system, and to direct jobs along

certain pathways when transitions have multiple outbound arcs, AQPNs use a

simple priority scheme to allocate tokens to outbound arcs. A unique number in

the set {1...n} called a priority is associated with each of the n outbound arcs200

from a transition. Tokens have identifiers in the set {1...m} representing the

m jobs that have been introduced into the system during its operation. When

a transition fires, tokens are removed from each incoming place according to

the multiplicity of the incoming arcs and FIFO queueing. When the number of

tokens entering a transition is equal to the number exiting the transition, no new205

tokens are created and none are destroyed. Tokens are assigned to arcs such

that the token requirements (multiplicity) of the highest priority arc (lowest

priority number) are satisfied first using the newest tokens (tokens with lowest

9



job identifier). This process is repeated for each arc in priority order.

The number of tokens entering a transition may be different than the number210

exiting it. When the number of tokens entering a transition is less than the

number exiting it, new tokens, representing new jobs, are created with new

identifiers in serial order. As described above, the newest tokens are assigned to

the highest priority arcs. New tokens are not assigned a colour in this process.

Tokens are given a colour in log interpretation. The colour assigned is one215

consistent with the log message introducing the job. When the number of

tokens entering the transition is more than the number exiting it, the oldest

tokens are destroyed.

The assignment of priorities to arcs can be permutated with a GP mutation

operator.220

AQPNs are not necessarily k-bounded [28]. Synchronisation and choice can

be combined in arbitrary ways, i.e. non-free-choice nets are permitted.

3.2. Interpretation of Log Content

Messages in the log can be classified as either ordinary or exceptional. Or-

dinary messages correspond to firings of PN’s transitions, and in individuals225

that correctly model the log, a legal sequence of states of the individual’s PN

is consistent with the ordering of messages in log. Individuals may classify the

message types differently. An individual’s exceptional messages are those that

are not represented by transitions. Exceptional messages may nevertheless re-

late to states of the PN, and where this is the case, knowledge of the relationship230

between the PN state and the message can sometimes reveal important infor-

mation about the structure of the system. For example, knowledge of the PN

state (the PN’s marking) at the occurrence of an (exceptional) machine block-

ing message suggests the size of machine’s downstream buffer. The method by

which this is analysed is described in Section 4.1.235

The fitness of an individual is expressed as a score based on its ability to

model the log, and it validity relative to a causal model. Causal validity is

discussed in Section 4.2. Regarding modelling the log, an individual’s ability is

10



a combination of the deterministic behaviour of its PN with respect to ordinary

messages and the probabilistic behaviour of an associated probabilistic neural240

net with respect to exceptional messages.

The individual’s deterministic behaviour is interpreted in terms of an abbre-

viated (k-bounded) version of its reachability graph. The state of a PN having

n places, {P1, . . . , Pi, . . . , Pn}, is completely specified by a vector M (called

a marking), M = [m1, . . . ,mi, . . . ,mn] where mi is the quantity of tokens in245

the ith place. The set of markings reachable from some initial marking M0 is

called the PN’s reachability set.[28] The PN’s reachability graph is a directed

graph where nodes are elements of its reachability set and edges are firings of

transitions relating a state to other states reachable from that state. A PN’s

reachability set may be unbounded. In the methodology, the interpretation250

of the log is the discovery of a relationship between ordinary messages and

nodes and edges of the reachability graph. Where an interpretation is found,

it provides constraints on the graph. For example, on places in the PN that

are interpreted as buffers, interpretation provides lower bounds on the buffer’s

size. Buffer size can be expressed as inhibitor arcs in nets enhanced with GSPN255

modelling features. Inhibitor arcs on buffers may express a block after service

or block before service discipline depending on the target transition chosen. (See

Figure 3).

The interpretation process is described in Algorithm 1. In the algorithm,

setStateOfMachines defines an initial marking where machines have some260

state. kBoundGraph defines a reachability graph where places believed to be

buffers are limited to kBound tokens. syncToLog is a tree search that identifies

the set of marking that are potentially consistent with the first line of the log.

fireable? returns true if a transition is fireable from pnState to produce the

message at logLine of the log. fired returns the state corresponding to firing265

that transition.

11



Figure 3: 2-machine system with a buffer of size of 3: (a) block-before-service (b) block-after-

service

12



Algorithm 1 Interpret Log

logSize← sizeofLog(log)

interp← ∅

kBound← 2

initialMarking ← setStateOfMachines(PN)

while kBound < kBoundMax AND interp = ∅ do

rgraph← kBoundGraph(PN, initialMarking, kBound)

startingLinks← syncToLog(rgraph, initialMarking, log)

while startingLinks 6= ∅ do

pnState← takeFrom!(startingLinks)

logLine← 1

progress?← true

while logLine < logSize AND progress? = true do

if fireable?(rgraph, pnState, log[logLine]) then

pnState← fired(rgraph, pnState, log[logLine])

interp← interp+ pnState

logLine+ +

else

progress?← false

interp← ∅

end if

end while

pnState← takeFrom!(startingLinks)

end while

kBound+ +

end while

return interp

13



4. Addressing the 3 Limitations

This section discusses the three limitations of process mining mentioned

earlier: handling of exceptional messages, causal validation, and dynamic model

updating.270

4.1. Exceptional Messages

A probabilistic neural net (PNN) [31] is computed for each individual to dis-

tinguish exceptional messages (messages not modelled through execution of the

individual’s PN as described in the interpretation process above) from ordinary

messages. The fidelity and certainty with which the PNN classifies exceptional275

messages provides the component of fitness associated with the individual’s

probabilistic behaviour.

A PNN is composed of three layers. (See Figure 4.) The input layer has one

node for each feature (e.g. each component of a marking). The hidden layer

contains a node for each labelled training instance. The hidden layer nodes can280

be viewed as being grouped by the k classes of the training instances. Each

node in the hidden layer is a Gaussian probability density function centred on

a training instance, mi, as shown in Eqn 1

g(m,mi, σi) =
1√

2πσ2
exp(

−D(m,mi)

2σ2
i

) (1)

where

• m is the input value, a marking,285

• mi is the ith training instance, a marking,

• σi is a smoothing factor, and

• D(m,mi) is a function determining the distance between the input value

and the training instance.

The hidden layer serves to estimate the probability density function (PDF) of290

each class using the Parzen window technique.[31] (See Eqn 2.) In this technique,

14



the sum of PDFs from the training instances defines a PDF for each class. The

value of σ determines the width of the window.

fclass(m) =
1√

2πσ2

1

j

∑
i=1,j

exp(
−D(m,mi)

2σ2
) (2)

Figure 4: Probabilistic Neural Net

In many applications, the square of the Euclidean distance is used as the

distance function D.[32] However, in application to PN states, this is not an295

effective measure because the Euclidean distance between markings has an im-

precise relation to transitions of system state represented by the markings. The

reachability set of a PN does not form a metric space. Effective measures on

which to base the distance function account for the probability between tran-

sitions. One such distance function, based on path probability, is described by300

Eqn 3

D(m1,m2) =
√

(m̂1 − m̂2)2
∑

i∈MinPath

1/pi (3)

where

15



• MinPath is the set of directed links from the minimum cost path con-

necting m1 to m2 in the PN’s reachability graph,

• i references a link in this path,305

• pi is the probability of traversing that link, and,

• m̂1 and m̂1 are, respectively m1 and m1 component-wise normalized.

Component-wise normalisation entails that, for all i ∈ {1, . . . , n} of a PN

having n places, if, xi, the ith component of a marking x = [x1, x2, . . . , xi, . . . , xn]

has a maximum value of k in the PN’s reachability graph, then x̂i = 1
kxi where310

x̂ = [x̂1, x̂2, . . . , x̂i, . . . , x̂n].

MinPath is found using Dijkstras algorithm [33], a search that finds the

minimum cost path among paths between given nodes in a directed graph. In

the algorithm, cost is calculated as the sum of the cost of the edges traversed. In

the path-probability algorithm, the cost of traversing an edge is calculated from315

an interpretation of log content as 1/p where p is the probability of traversing

the referenced states.

The relative performance of the Euclidean, path probability, and a third

strategy similar to path probability but only counting edge hops (See Eqn 4.),

is illustrated in an example. In the example, message types from a log of 3000320

messages produced from the operation of a simple 2-machine system depicted

in Figure 5 are distributed as defined in Table 3. The column system state

represents token quantities in places. The ordering of these features shown is

wait-2, place-1, wait-1, place-4, place-3 where these symbols refer to the places

shown of Figure 5. The log reflects sparse occurrences of blocking and starvation,325

hence individuals are unlikely to model these messages with transitions. The

table values are generated by the interpretation process described in Section 3.2.

Markings associated with messages modeled as transitions (e.g. “Workcenter 1

finishes job x”) are labelled ordinary. Exceptional messages (i.e., wc1-blocked,

wc1-unblocked, wc2-starved, and wc2-unstarved) are labelled with the specific330

16



message type and are associated with the system state at the time the message

occurred, according to the interpretation.

D(m1,m2) =
√

(m̂1 − m̂2)2
∑

i∈MinPath

1 (4)

Figure 5: An individual modelling a 2-machine system. Note that the buffer represented by

place-3 is not constrained in size. An inhibitor transition with multiplicity k from place-3 to

wc1-start-job would constraint the buffer size to k. The size can be inferred from analysis of

exceptional messages.

17



Table 1: Message occurrences in the example problem.

Message Type System State Number of Occurrences

m2-starved
[1 1 0 0 0] 10

[1 1 0 0 1] 4

m2-unstarved
[0 1 0 1 0] 10

[0 1 0 1 1] 4

ordinary

[0 0 1 1 1] 243

[0 1 0 1 0] 155

[1 1 0 0 2] 247

[0 1 0 1 3] 326

[1 1 0 0 3] 325

[0 1 0 1 1] 393

[1 1 0 0 0] 10

[1 0 1 0 1] 4

[0 0 1 1 0] 145

[0 0 1 1 2] 326

[1 1 0 0 1] 160

[0 1 0 1 2] 568

[1 0 1 0 0] 10

m1-blocked [0 1 0 1 3] 30

m1-unblocked [0 0 1 1 2] 30

18



Table 2: Relative performance of the Euclidean, network hop, and path probability strategies
E

u
cl

id
ea

n
D

is
ta

n
ce

N
et

w
or

k
H

o
p

A
lg

o
ri

th
m

P
a
th

P
ro

b
a
b

il
it

y
A

lg
o
ri

th
m

S
ta

te
In

fe
rr

ed
C

or
?

C
er

ta
in

.
In

fe
rr

ed
C

o
r?

C
er

ta
in

.

[0
0

1
1

1]
or

d
in

ar
y

ye
s

0.
99

9
or

d
in

ar
y

ye
s

0
.9

9
9

o
rd

in
a
ry

ye
s

0
.9

9
9

[0
1

0
1

0]
or

d
in

ar
y

ye
s

0.
19

3
or

d
in

ar
y

ye
s

0
.9

9
9

o
rd

in
a
ry

ye
s

0
.9

6
9

[1
1

0
0

2]
m

2-
u

n
st

ar
ve

n
o

0.
70

8
m

2-
u

n
st

ar
ve

n
o

0
.5

5
1

o
rd

in
a
ry

ye
s

0
.9

9
9

[0
1

0
1

3]
m

1-
b

lo
ck

ye
s

0.
36

5
m

1-
b

lo
ck

ye
s

0
.7

4
3

m
1
-b

lo
ck

ye
s

0
.8

9
8

[1
1

0
0

3]
m

2-
u

n
st

ar
ve

n
o

0.
05

0
or

d
in

ar
y

ye
s

0
.9

9
8

o
rd

in
a
ry

ye
s

0
.9

6
9

[0
1

0
1

1]
m

1-
u

n
b

lo
ck

n
o

0.
50

3
m

1-
u

n
b

lo
ck

n
o

0
.1

9
9

o
rd

in
a
ry

ye
s

0
.9

3
5

[1
1

0
0

0]
m

2-
st

ar
ve

ye
s

0.
36

5
m

2-
st

ar
ve

ye
s

0
.7

3
4

m
2
-s

ta
rv

e
ye

s
0
.9

8
8

[0
0

1
1

0]
or

d
in

ar
y

ye
s

0.
99

9
or

d
in

ar
y

ye
s

0
.9

9
9

o
rd

in
a
ry

ye
s

0
.9

9
9

[0
0

1
1

2]
or

d
in

ar
y

ye
s

0.
99

8
or

d
in

ar
y

ye
s

0
.9

9
9

o
rd

in
a
ry

ye
s

0
.9

9
9

[1
1

0
0

1]
m

2-
u

n
st

ar
ve

ye
s

0.
36

5
m

2-
u

n
st

ar
ve

ye
s

0
.7

4
3

m
2
-u

n
st

a
rv

e
ye

s
0
.9

1
5

[0
1

0
1

2]
m

1-
u

n
b

lo
ck

ye
s

0.
36

5
m

1-
u

n
b

lo
ck

ye
s

0
.7

4
3

m
1
-u

n
b

lo
ck

ye
s

0
.8

2
3

[1
0

1
0

0]
or

d
in

ar
y

ye
s

0.
97

5
or

d
in

ar
y

ye
s

0
.9

9
9

o
rd

in
a
ry

ye
s

0
.7

2
7

19



As Table 2 suggests, a PNN where the distance function is purely Euclidean

performs poorly on the example problem, producing incorrect results (column

Cor? ) in three states. Certainty (column Certain.) is calculated as a measure335

of the best score relative to the second best score, where score is the value of

fclass(m) for each class. If class1 scores highest among all classes and class2

second highest, then certainty is defined:

certainty(class1,m) =
fclass1(m)− fclass2(m)

fclass1(m)
(5)

Certainty is zero at the decision boundary between two class.

The network hop algorithm of Eqn 4 performs slightly better on the example340

than the purely Euclidean algorithm and is less certain in cases where it classifies

incorrectly. The path probability algorithm of Eqn 3 classifies each marking

correctly. Its worst certainty is 0.727. A value of 0.35 is used for σ for all

calculations in the example.

4.2. Causal Analysis345

The role of causal analysis in the methodology is to validate models. As

Ljung points out, validation in system identification is “the process of ensuring

that the model is useful not only for the estimation data, but also for other data

sets of interest.”[6] The methodology, as described so far, does not necessarily

produce models that meet this requirement. For example, in a system where350

a particular workstation is chronically blocking, the GP algorithm is likely to

promote individuals that use a PN transition to model the blocking message.1

Such a model is not robust under circumstances where the cause of the blockage

in the real system is removed (e.g. when the line is re-balanced). The GP

algorithm scores such models (individuals) less fit than individuals that behave355

1This is analogous to designing an automobile to get a flat tire every 100km because that is

what has happened to the automobiles that you observed. Intention cannot easily be separated

from adventitious association in system identification.

20



consistent with expert understanding of the domain. Figure 6 depicts a model

of causes and effects in asynchronous serial lines with buffering.

Figure 6: Causal model of asynchronous serial lines with buffering. + on an arrow denotes

that an increase in the value at the tail of the arrow causes a increase in the value at the head

of the arrow.

Models can be tested through two pathways: (1) Steady-state properties of

an individual’s PN can be computed at various workstation production rates

and evaluated for responses consistent with the qualitative causal model, and360

(2) using the same computational model as (1), the steady-state results can be

applied to the individual’s PNN and evaluated with respect to expectations for

blocking and starvation messages.

Steady-state properties are calculated using the infinitesimal generator ma-

trix of the Markov chain isomorphic to the PN.[28] The steady-state values365

provided by this method are adequate for the qualitative causal analysis per-

formed but are not an accurate measure of actual buffer occupancies and state

21



probabilities because the model assumes exponentially distributed transition

rates whereas the actual production system is likely to exhibit deterministic

processing times and unreliable machines.370

The infinitesimal generator matrix Q is derived from the PN reachability

graph and the rates between transitions. Detailed discussion of the infinitesimal

generator can be found in textbooks on Markov chains or GSPNs[28]. The value

of the element of matrix at row i and column j, qij is given by:

qij =


∑

Tk∈Ej(Mi)
rk i 6= j

−qi, i = j

(6)

where375

qi =
∑

Tk∈Ej(Mi)

rk (7)

In Equation 6, Tk is a transition with firing rate rk. Ej(Mi) is the set of

transitions enabled in marking Mi that, when fired, place the PN in marking

j. Using similar notation in Equation 7, each diagonal element of the matrix is

the negative of the sum of the off-diagonal terms of that row.

Q is used in the system provided by Equations 8 and 9. Solving this system380

for η provides the steady-state token quantities at each state, from which the

token quantities at each place can be calculated.

ηQ = 0 (8)

η1T = 1 (9)

To perform these calculations efficiently, the software producing the infinites-

imal generator was designed to accept a table of transition rates and paramet-

rically produce the corresponding matrix.385

Figure 7 depicts a simple 3-machine system used in an example causal anal-

ysis. Table 3 provides steady-state values for occupancy of states and buffers

22



for two versions of the system: a baseline, and a system where the efficiency of

machine M2 is increased by 20 percent. As the table shows, states wc1-blocked

and wc1-busy, in the example exhaustively cover the possible states for machine390

M1. (They sum to 1.0.) Consistent with the causal model, buffer-1 is less

occupied when M2 is more efficient. Several other observations consistent with

the causal model are described in the Comments column.

Figure 7: 3-machine system used for the example causal validation

Table 3: Steady-state baseline and 20% increase in production rate at Machine M2

Baseline Occupancy

Place Occupancy 20% + at M2 Comments

buffer-1 0.855 0.796 wc2 draws from buffer faster.

buffer-2 0.261 0.328 wc2 buffers faster.

wc1-blocked 0.692 0.624 Blockage at wc1 reduced...

wc1-busy 0.309 0.376 ...thus wc2 busier.

wc2-blocked 0.143 0.188 Blocks more often.

wc2-busy 0.793 0.719 Blocked more, busy less.

wc2-starved 0.207 0.281 Line less balanced.

wc3-busy 0.473 0.548 wc2 supplies parts...

wc3-starved 0.527 0.452 ...so wc3 starved less

23



4.3. Model Updating

As the production environment changes, so should the model of it. Model395

updating can be viewed as a dynamic optimization problem. In GA and GP

algorithms, solution updating can be achieved by increasing diversity as the

environment changes. Many variations on three principal schemes have been

used in the literature: Hypermutation schemes[34] increase the mutation rate as

changes in the environment cause the population’s fitness as a whole to degrade.400

Infusion schemes [35] allow new individuals into the population. Immigration

schemes[36], [37] evolve a separate, parallel and diverse population and, after

some number of generations, move its best members into the main population.

In this work, an immigration scheme was used. A parallel population for

immigrant individuals is updated periodically with new initial individuals, each405

representing a log trace from new log content. These new individuals replace

poorly performing individuals of the immigration population from the last gen-

eration. The immigrant population is subjected to the same genetic operators as

the main population. (See Table 4.) By scoring the “parallel” immigrant pop-

ulation separate from the main population, its individuals are protected from410

removal while they develop accurate model structure. The process is describe

in Algorithm 2.

Table 4: Mutation and crossover operators

Operator Type Action

add-arc mutation Add an arc in a small neighborhood.

remove-arc mutation Remove an arc.

add-trans mutation Add an invisible transition.

swap-priority mutation Swap two routing priority values.

add-machine-restart semantic Add place and arc to pause workcenter.

crossover-parallel crossover Combine individuals with differing workcenters.

crossover-colour crossover Split paths by colour.

24



Algorithm 2 Evolution of parallel populations with immigration

pmute ← mutation probability

pcross ← crossover probability

Popm ← makePNs(RandomJobTraces)

Popi ← makePNs(RandomJobTraces)

gen← 0

while true do

gen← gen+ 1

Scoresi ← evaluateF itness(Popi)

Scoresm ← evaluateF itness(Popm)

if immigrate?(gen) then

Popm ← Popm − worst(Popm, Scoresm) + best(Popi, Scoresi)

Popi ← Popi − best(Popi, Scoresi)

end if

if updateImmigrants?(gen) then

Popi ← Popi − worst(Popi, Scoresi) +makePNs(RandomJobTraces)

end if

Popm ← geneticOperatorsSelect(Popm, pmute, pcross)

Popi ← geneticOperatorsSelect(Popi, pmute, pcross)

end while

In the algorithm, immigrate? is a Boolean function that returns true pe-

riodically to move the best immigrants into the main population. Similarly,

updateImmigrants is a Boolean function that returns true periodically to re-415

place some poorly performing individuals in the immigrant population with

individuals created from new log content. makePNs makes PNs from ran-

dom job traces, evaluateF itness measures fitness as described earlier, and

geneticOperatorsSelect performs tournament selection on individuals and ap-

plies the genetic operators.420

25



5. Evaluation

This section illustrates use of the methodology under conditions typical of

automotive underbody assembly. [38] Underbody assembly systems are asyn-

chronous assembly lines comprised of many workcenters. Each workcenter may

be comprised of several automated units (e.g. robots) that work in concert to425

perform a sequence of operations. The controllers of the individual robots are

capable of issuing messages. Given the appropriate genetic operators, it may

be possible to apply the methodology to analyze these messages and thereby

identify the workcenter-level process and its critical path. This, however, is not

the objective of the work. Rather, because the methodology is intended to aid430

in making scheduling decisions, the focus of discussion is on effects that are ab-

stracted from these details. In this abstracted view, one is focused on whether

or not the workcenter as a whole is delayed – whether the detailed exceptional

conditions reported by the robot controllers affect the execution time of the

critical path. Where this is the case, the workcenter is considered “down” for a435

period that is the difference between its actual execution time and the normative

execution time for the processes executing at the workcenter. Down periods are

easily calculated from detailed execution messages, knowledge of the workcenter

process ordering, and normative process execution times.

In this example, a portion of an assembly line consisting of six workcenters440

was modelled using the MJPdes simulation engine. Two of the six workcenters,

wc3-1 and wc3-2 run identical operations; the system is free to randomly assign

work to either of these workcenters as work becomes available.

The process of evolution is as follows. A portion of the message log consisting

of 3000 messages is used to evolve a population of 50 individuals. At some later445

time, a second immigration population of 50 individuals is established from fresh

log input. Initial individuals model single job traces as depicted in Figure 8.

26



Figure 8: An individual created directly from a job trace

In general terms, the evolution process acts to embed in individuals proper-

ties that are inherent to a systemic view of the production process and thereby

removes properties that are idiosyncratic to an individual’s original job trace.450

For example, individuals representing a job trace such as depicted in Fig-

ure 8 do not match logs where work can start on a downstream workcen-

ter before other work finishes on an upstream workcenter. A genetic mu-

tation operator add-machine-restart can introduce this systemic property.

add-machine-restart modifies a segment of an individual’s PN between where455

work is reported to start on a machine and where it ends on that machine. This

operator adds a place after the work completed transition, and connects it to

work starting transition. The connection prevents multiple jobs from starting.

(See Figure 9.)

27



Figure 9: The effect of genetic operator add-machine-restart. On the left is a segment of

an individual before application of the operator. On the right is the result of applying the

operator.

Introducing parallel workcenters requires a crossover operation. (Mutation460

involve one individual; crossover, two.) To model parallel workcenters, two

individuals can be joined through crossover such that the new individual splits

paths at a workcenter shared by the two original individuals and rejoins at

another shared workcenter at least two workcenters downstream. The crossover

operation crossover-parallel makes this modification to individuals.465

The log can be analysed independent of individuals for evidence of BBS

and BAS operation. The two mutation operators bas-to-bbs and bbs-to-bas

switch PN structure between these two forms. These operators only have an ef-

fect where patterns of structure such as that provided by add-machine-restart

have established a buffer place.470

Priority, as described in Section 3.1, is used to specify which tokens are

directed to which outbound arcs. The choice is based on token identifiers and

the arc’s priority number. The mutation operator swap-arcs randomly mutates

the priority assignment of arcs outbound from a transition.

An individual that roughly models the target production system, having475

been adapted through use of the operators just described is depicted in Figure

28



10.

Figure 10: An individual that exhibits asynchronous operation (and thus may interpret the

log)

With each generation, the fitness function is applied to each individual to

evaluate its fitness. The next generation of individuals is selected from these

individuals using the tournament selection method with selection pressure of 4480

(based on 50 individuals).

The evolution algorithm is a hybrid genetic programming method in the

sense that individuals are updated not only through use of genetic operators,

but also through inferences made in interpretation. Specifically, as described

in Section 3.2, buffer sizes can be inferred from an interpretation in workcen-485

ters where blocking occurs. This is expressed with inhibitor arcs from places

representing buffers. Also, transitions that express logical constraints, rather

than processes, can be expressed with immediate transitions, replacing timed

transitions. An individual based on the individual depicted in Figure 10, but

reflecting inferences from interpretation is shown in Figure 11.490

29



Figure 11: The individual from Figure 10, interpreted

The example can be used to illustrate how the production system model is

dynamically updated. The principal source of dynamic adaptation is the influx

of high-scoring individuals from the immigrant population. Suppose that, cur-

rently, the best individual is one similiar to that depicted in Figure 11. If the

parallel workcenter wc3-2 were to become interoperative, log output would no495

longer report activity at the corresponding workcenter. Individuals are penal-

ized for possessing transitions that are not exercised. None of the genetic oper-

ators can evolve individuals to eliminate multi-element substructure of the PN.

However, since immigrant populations are occassionally restarted as job-trace

individuals based on fresh log input, immigrants will not possess transitions in-500

volving wc3-2. With time, one of these individuals will immigrate to the main

population.

5.1. Mixed-model Production and Coloured PNs

A similar production line to the one used in the example above, but em-

phasizing mixed-model production, is describe briefly. Suppose that instead505

of the two parallel workcenters, wc3-1 and wc3-2, in the original problem, a

single workcenter wc3 is present. Suppose further that work consists of two

job types, distinguished as blue and red that have significantly different work

30



requirements at this workcenter. The best individuals modeling this system,

depicted in Figure 12, would be similar to that depicted in Figure 11 however,510

(1) different meaning is attached to the transitions in wc3 since these transitions

refer to a single machine, (2) the two arcs from place-5 have a colour binding,

red or blue, directing tokens to either execute for the red duration or the blue

duration, and (3) inhibitor arcs are necessary to prevent concurrent operation

of the red and blue sub-networks.515

Figure 12: The individual modeling mixed-model production

A crossover operator crossover-colour similar to crossover-parallel

implements this modification of PN structure.

Table 5 summarizes fitness metrics used in the methodology. Proficiency at

metric “Interprets sequences” entails the ability of the PN to match the sequence

of messages in the log pertaining to each job individually. Intervening messages520

concerning other jobs are ignored. Job-trace individuals such as depicted in

Figure 8 can do this except where just one of n−1 parallel workcenter is visited.

Proficiency at “Interprets interleaved” entails the ability of the PN to match

messages that are interleaved from all workstations. This metric uses the inter-

pretation algorithm of Section 3.2,525

Proficiency at “Uses all transitions” entails a bijective relation between tran-

31



sitions and ordinary message types.

Proficiency at “Variance” entails a small variance in the time period between

job-starts-on-machine and job-ends-on-machine messages, once worksta-

tion downtime is taken into account. A lack of proficiency in this metric suggests530

that the individual might score better had the job path been split along job-

type (colour) distinctions, as happens when the crossover-colour operator is

applied.

The “Causal” metric refers to causal analysis as described in Section 4.2. The

metric “Constrains buffer” uses information from the interpretation to identify535

places representing buffers. A small penalty is applied to buffer places that do

not have inhibitor arcs constraining the buffer size.

Table 5: Fitness metrics

Metric Type Penalty for Failure

Interprets sequence Interpretation Large

Interprets interleaved Interpretation Medium

Uses all transitions Interpretation Medium

Variance Log analysis Medium

Causal Causal analysis Medium

Constrains buffers Post-Interpretation Small

6. Conclusion

An accurate, up-to-date model of the production system is essential to pro-

duction system control. Our proposed methodology addresses the three chal-540

lenges to identifying and updating this model: (1) developing a method for

inferring system structure from exceptional messages, (2) demonstrating that

causal knowledge can be used to guide search to an accurate system model,

and (3) showing that GP provides inherent means to update the model as the

modelled system changes.545

32



Using an expressive Petri net model and probabilistic and causal reason-

ing, we show that it is possible to use log content to produce a model useful

to production control tasks such as line balancing and job sequencing. Our

methodology substantially addresses the needs of these analyses. One limita-

tion, however, is that the methodology cannot determine the size of buffers550

unless that size is at some point too small to handle prevailing production con-

ditions and exceptional (blocking) messages are generated. For many analytical

purposes, however, such buffers can be treated as infinite. Incidentally, an ad-

vantage of GP over GA and numerical optimisation techniques is realised in

such situations in that a GP individual can be edited by hand to reflect the555

buffer constraint and reinserted into the population.

Experience with the methodology demonstrates that it is generally robust.

The methodology was implemented in a 5,000 line Clojure program which in-

cludes a web-based interface and PN drawing functions. The software is being

made available open-source. Typical of genetic algorithms, the fitness function560

of several individuals can be evaluated in parallel. Problems such as the exam-

ple described in Section 5 find a good solution within 2 minutes on 8 threads of

a 4-core laptop. The speed-up from parallel execution with 8 threads is a factor

of about 6.

We plan future work in three areas to extend the methodology and gain565

further insight. First, we intend to use the models in real-time production-

control decision making. Second, we intend to explore how to more tightly

integrated our methodology into smart manufacturing operational technology.

Third, we plan to develop strategies to determine when model updating is best

undertaken.570

References

[1] R. Burke, A. Mussomelli, S. Laaper, M. Hartigan, B. Sniderman, The smart

factory: Responsive adaptive, connected manufacturing, Tech. rep., Deloite

University Press (2017).

33



[2] A. Scholl, Balancing and Sequencing of Assembly Lines, 2nd Edition, Phys-575

ica, 1999.

[3] S. Jayaswal, P. Agarwal, Balancing U-shaped assembly lines with resource

dependent task times: A Simulated Annealing approach, Journal of Manu-

facturing Systems 33 (2014) 522–534. doi:10.1016/j.jmsy.2014.05.002.

[4] S. Akpinar, A. Baykasoglu, Modeling and solving mixed-model assembly580

line balancing problem with setups. Part II: A multiple colony hybrid bees

algorithm, Journal of Manufacturing Systems 33 (2014) 445–461. doi:

10.1016/j.jmsy.2014.04.001.

[5] J. Li, S. M. Meerkov, Production System Engineering, Springer Sci-

ence+Business Media, 2009.585

[6] Ljung, Perspectives on System Identification, Annual Reviews in Control

34 (1) (2010) 1–12.

[7] IEC, IEC 62264-1 International Standard, Enterprise-control system inte-

gration – Part 1: Models and Terminology (2003).

[8] A. Rozinat, R. S. Mans, M. Song, W. M. P. van der Aalst, Discovering590

simulation models, Information Systems 34 (3) (2009) 305–327. doi:10.

1016/j.is.2008.09.002.

[9] J. Carmona, J. Cortadella, Process Discovery Algorithms using Numerical

Abstract Domains, IEEE Transactions on Knowledge and Data Engineering

26 (12) (2014) 3064–3076.595

[10] F. Basile, P. Chiacchio, J. Coppola, Identification of Time Petri Net Models,

IEEE Transaction on Systems, Man and Cybernetic Systems (2016) 1–15.

[11] S. Ould El Mehdi, R. Bekrar, N. Messai, E. Leclercq, D. Lefebvre, B. Riera,

Design and Identification of Stochastic and Deterministic Stochastic Petri

Nets, IEEE Transactions on Systems, Man, and Cybernetics - Part A:600

34

http://dx.doi.org/10.1016/j.jmsy.2014.05.002
http://dx.doi.org/10.1016/j.jmsy.2014.04.001
http://dx.doi.org/10.1016/j.jmsy.2014.04.001
http://dx.doi.org/10.1016/j.jmsy.2014.04.001
http://dx.doi.org/10.1016/j.is.2008.09.002
http://dx.doi.org/10.1016/j.is.2008.09.002
http://dx.doi.org/10.1016/j.is.2008.09.002


Systems and Humans 42 (4) (2012) 931–946. doi:10.1109/TSMCA.2011.

2173798.

[12] A. K. Alves de Medeiros, Genetic Process Mining, Ph.D. thesis, Technische

Universiteit Eindhoven, (2006).

[13] W. Van Der Aalst, T. Weijters, L. Maruster, Workflow mining: Discovering605

process models from event logs, IEEE Transactions on Knowledge and Data

Engineering 16 (9) (2004) 1128–1142. doi:10.1109/TKDE.2004.47.

[14] M. Dotoli, M. P. Fanti, A. M. Mangini, Real Time Identification of Discrete

Event Systems by Petri Nets, in: IFAC 2007, 2007.

[15] A. Horváth, Usability of Deterministic and Stochastic Petri Nets in the610

Wood Industry: A Case Study, in: T. van Do, H. A. L. Thi, N. T. Nguyen

(Eds.), Advanced Computational Methods for Knowledge Engineering,

Springer Nature, 2014, pp. 119–127. doi:10.1007/978-3-319-06569-4_9.

[16] C. Turner, A. Tiwari, J. Mehnen, A Genetic Programming Approach to

Business Process Mining, in: The Genetic and Evolutionary Computation615

Conference, 1314, 2008, p. 1307.

[17] B. N. Yahya, The Development of Manufacturing Process Analysis : Lesson

Learned from Process Mining, Junal Teknik Industri 16 (2) (2014) 97–107.

doi:10.9744/jti.16.2.97-108.

[18] P. Denno, MJPdes: A program for discrete event simulation of mixed-model620

production lines (2017).

URL https://github.com/usnistgov/MJPdes

[19] M. S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri, The foundation of Evo-

lutionary Petri nets, CEUR Workshop Proceedings 988 (2013) 60–74.

[20] P. A. Whigham, G. Dick, J. Maclaurin, On the mapping of geno-625

type to phenotype in evolutionary algorithms (2017). doi:10.1007/

s10710-017-9288-x.

35

http://dx.doi.org/10.1109/TSMCA.2011.2173798
http://dx.doi.org/10.1109/TSMCA.2011.2173798
http://dx.doi.org/10.1109/TSMCA.2011.2173798
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1007/978-3-319-06569-4_9
http://dx.doi.org/10.9744/jti.16.2.97-108
https://github.com/usnistgov/MJPdes
https://github.com/usnistgov/MJPdes
https://github.com/usnistgov/MJPdes
https://github.com/usnistgov/MJPdes
http://dx.doi.org/10.1007/s10710-017-9288-x
http://dx.doi.org/10.1007/s10710-017-9288-x
http://dx.doi.org/10.1007/s10710-017-9288-x


[21] F. Rothlauf, M. Oetzel, On the Locality of Grammatical Evolution, in:

LNCS 3905, 2006, pp. 320–330.

[22] P. Denno, C. Dickerson, J. Harding, Production System Identification with630

Genetic Programming, in: International Conference on Manufacturing Re-

search, London, 2017.

[23] M. Diaz, Petri Nets: Fundamental Models, Verification and Applications,

Wiley, 2009.

[24] Y.-T. Tina Lee, F. H. Riddick, B. Johan Ingemar Johansson, Core635

Manufacturing Simulation Data a manufacturing simulation inte-

gration standard: overview and case studies, International Jour-

nal of Computer Integrated Manufacturing 24 (8) (2011) 689–709.

doi:10.1080/0951192X.2011.574154.

URL https://www.tandfonline.com/doi/pdf/10.1080/0951192X.640

2011.574154?needAccess=true

[25] International Organization for Standards, ISO 18629-1:2004 Industrial au-

tomation systems and integration – Process specification language – Part

1: Overview and basic principles (2004).

URL https://www.iso.org/standard/35431.html645

[26] R. Bruni, J. Meseguer, U. Montanari, V. Sassone, Functorial Models for

Petri Nets, Information and Computation 170 (2) (2001) 207–236. doi:

10.1006/inco.2001.3050.

URL http://eprints.ecs.soton.ac.uk/14742/

[27] P. Degano, J. Meseguer, U. Montanari, Axiomatizing the algebra of net650

computations and processes*, Acta Informatica 33 (1996) 641–667.

URL https://link.springer.com/content/pdf/10.

1007{%}2FBF03036469.pdf

[28] M. A. Marsan, G. Balbo, G. Conte, G. Franceschinis, Modelling with gen-

eralised stochastic petri nets, System (1994) 299.655

36

https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2011.574154?needAccess=true
https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2011.574154?needAccess=true
https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2011.574154?needAccess=true
https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2011.574154?needAccess=true
https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2011.574154?needAccess=true
http://dx.doi.org/10.1080/0951192X.2011.574154
https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2011.574154?needAccess=true
https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2011.574154?needAccess=true
https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2011.574154?needAccess=true
https://www.iso.org/standard/35431.html
https://www.iso.org/standard/35431.html
https://www.iso.org/standard/35431.html
https://www.iso.org/standard/35431.html
https://www.iso.org/standard/35431.html
https://www.iso.org/standard/35431.html
http://eprints.ecs.soton.ac.uk/14742/
http://eprints.ecs.soton.ac.uk/14742/
http://eprints.ecs.soton.ac.uk/14742/
http://dx.doi.org/10.1006/inco.2001.3050
http://dx.doi.org/10.1006/inco.2001.3050
http://dx.doi.org/10.1006/inco.2001.3050
http://eprints.ecs.soton.ac.uk/14742/
https://link.springer.com/content/pdf/10.1007{%}2FBF03036469.pdf
https://link.springer.com/content/pdf/10.1007{%}2FBF03036469.pdf
https://link.springer.com/content/pdf/10.1007{%}2FBF03036469.pdf
https://link.springer.com/content/pdf/10.1007{%}2FBF03036469.pdf
https://link.springer.com/content/pdf/10.1007{%}2FBF03036469.pdf
https://link.springer.com/content/pdf/10.1007{%}2FBF03036469.pdf


[29] K. Jensen, A. Salomaa, G. Rozenberg, W. Brauer, Coloured Petri Nets:

Basic Concepts, Analysis Methods and Practical Use, Springer, Berlin,

1997.

[30] S. Kounev, S. Spinner, P. Meier, Introduction to Queueing Petri Nets:

Modeling Formalism, Tool Support and Case Studies, in: D. Kaeli, J. Rolia660

(Eds.), Proceedings of the 3rd ACM/SPEC International Conference on

Performance Engineering, Boston, 2012, pp. 9–18.

[31] D. F. Specht, Probabilistic Neural Networks, Neural Networks 3 (109).

[32] S. Ramakrishnan, I. M. M. E. Emary, On the Application of Various Prob-

abilistic Neural Networks in Solving Different Pattern Classification Prob-665

lems, World Applied Sciences Journal 4 (6) (2008) 772–780.

[33] E. W. Dijkstra, A note on two problems in connexion with graphs, Nu-

merische Mathematik 1 (1959) 269–271.

[34] H. Cobb, J. Grefenstette, Genetic Algorithms for Changing Environments,

Parallel Problem Solving from Nature 2 (1992) (1992) 137–144. doi:10.670

1.1.48.6501.

[35] J. Grefenstette, John, Genetic Algorithms for changing environments,

North Holland, Amsterdam, 1992.

[36] O. Matei, P. C. Pop, J. L. Sas, C. Chira, An improved immigration memetic

algorithm for solving the heterogeneous fixed fleet vehicle routing problem,675

Neurocomputing 150 (2015) 58–66. doi:10.1016/j.neucom.2014.02.074.

[37] X. Yu, K. Tang, X. Yao, An immigrants scheme based on environmental

information for genetic algorithms in changing environments, 2008 IEEE

Congress on Evolutionary Computation (IEEE World Congress on Com-

putational Intelligence) (3) (2008) 1141–1147. doi:10.1109/CEC.2008.680

4630940.

37

http://dx.doi.org/10.1.1.48.6501
http://dx.doi.org/10.1.1.48.6501
http://dx.doi.org/10.1.1.48.6501
http://dx.doi.org/10.1016/j.neucom.2014.02.074
http://dx.doi.org/10.1109/CEC.2008.4630940
http://dx.doi.org/10.1109/CEC.2008.4630940
http://dx.doi.org/10.1109/CEC.2008.4630940


[38] P. Alavian, P. Denno, S. Meerkov, Multi-job production systems: defi-

nition, problems, analysis, and product-mix performance portrait of se-

rial lines, International Journal of Production Research 00 (4) (2017) 1–8.

doi:https://doi.org/10.1080/00207543.2017.1338779.685

38

http://dx.doi.org/https://doi.org/10.1080/00207543.2017.1338779

	Introduction
	Related Work
	Dynamic Production System Identification
	Augmented Queueing Petri Nets
	Interpretation of Log Content

	Addressing the 3 Limitations
	Exceptional Messages
	Causal Analysis
	Model Updating

	Evaluation
	Mixed-model Production and Coloured PNs

	Conclusion

