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Abstract: This paper will review the evolution of wearable textile antennas over the last 

couple of decades. Particular emphasis will be given to the process of embroidery. This 

technique is advantageous for the following reasons: (i) bespoke or mass produced designs 

can be manufactured using digitized embroidery machines; (ii) glue is not required and  

(iii) the designs are aesthetic and are integrated into clothing rather than being attached to 

it. The embroidery technique will be compared to alternative manufacturing processes. The 

challenges facing the industrial and public acceptance of this technology will be assessed. 

Hence, the key opportunities will be highlighted. 

Keywords: wearable antennas; embroidered antennas; wearable technology; inkjet 

printing; textiles 

 

1. Introduction 

Wearable antennas technology has rapidly grown over the last couple of decades. It could be said 

and assumed that this technology is the future of smart garments and furthermore the future of our 

daily life. A wearable antenna is meant by definition to be part of the garments worn by humans or 
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animals. Therefore, the antenna should be flexible or miniaturized so as to not inhibit the movement of 

the human body. Consumers will demand smaller and more intelligent communications systems which 

will enhance their quality of life. Smart garments due to the evolution of wearable antennas technology 

may find their place in our everyday lifestyle. Smart clothes will emerge in various applications 

including: sports, emergency workers, military, medical and space applications or even in casual daily 

clothes or in fashion [1]. 

This paper will be structured as follows. Section 2 will review the dielectric properties of textile 

substrates. Section 3 will compare different manufacturing techniques with particular emphasis on 

embroidery. Section 4 will consider particular examples and applications of wearable rigid miniaturized 

and textile antennas. Section 5 will address the challenges both from a technical point of view and also 

from the market acceptance point of view. Section 6 will consider some of the opportunities that exist 

in this area. An extensive (but not complete) list of references will be given at the end of this paper.  

2. Substrate Materials for Wearable Antennas 

The substrate material selection for a wearable antenna design is of crucial importance. The 

substrate selection requires a low loss material so as to have better chances of increased antenna 

efficiency when placed on the body. The work in [2] where a Planar Inverted F-Antenna (PIFA) was 

fabricated out of a foam sheet spacer as the substrate and copper plated nylon for conductive sections 

states that a low loss conductive fabric is critical to the performance of a textile antenna. For wearable 

textile antennas the substrate material is required to be flexible. Textile substrate dielectric properties 

vary with the choice of material and the frequency. The accurate characterization of the properties of a 

textile substrate is fundamental before designing a textile antenna. A summary of the properties that 

various researchers use for antenna design are outlined in Table 1. 

Table 1. Substrates’ dielectric properties. 

Material Permittivity (εr) Loss Tangent (tanδ) Frequency (GHz) Reference 

Denim 1.40  2.4 & 5.2 [3] 
Denim 1.40  0.9 & 1.8 

[4] 
Leather 2.95 0.16 0.9 & 1.8 
Denim 1.70  3–12 [5] 
Denim 1.80 0.07 2.4 & 5 

[6] 
Velcro 1.34 0.006 2.4 & 5 
Denim 1.8–2.0 0.014 14–40 [7] 

Denim (black) 1.8 0.07 3.3 & 5 [8] 
Velcro 1.37  2.4 & 5 [9] 

Felt 1.38 0.023 

2.6–3.95 [10] 

Fleece 1.17 0.0035 
Moleskin 1.45 0.05 
Panama 2.12 0.018 

Silk 1.75 0.012 
Tween 1.69 0.0084 
Perspex 2.57 0.008 
PTFE 2.05 0.0017 
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Table 1. Cont. 

Material Permittivity (εr) Loss Tangent (tanδ) Frequency (GHz) Reference 

Polystyrene foam 1.02 0.00009 

2.4 [11] 

Felt 1.36 0.016 
Fleece 1.2 0.004 

Neoprene rubber 5.2 0.025 
Silk 1.2 0.054 

Cotton 1.54 0.058 
Leather—different 

types 
1.8–2.4 0.049–0.071 

From the above table it is clear that textiles typically have a low relative permittivity. The work  

in [12] studied the effect of different textile materials on wearable antenna performance. A patch 

antenna for Global Positioning System (GPS) operation was designed and five antennas were 

fabricated [12]; all of them used copper tape for the conductive sections. The different textile materials 

used for the substrate were: fleece (thickness, t = 4 mm), upholstery fabric (t = 1.1 mm), vellux  

(t = 5 mm), synthetic felt (t = 4 mm) and cordura (t = 0.5 mm). Non-conductive textile materials have 

low relative permittivity which reduces the surface waves (for patch antennas) and improves antenna 

impedance bandwidth. The measured dielectric constant of these textile materials at 1.575 GHz was 

between 1.1 and 1.7. Therefore, fabric substrate antennas are somewhat larger in physical dimensions 

than rigid antennas due to the low value of permittivity. Cordura is made by Delcotex, Germany. The 

name of the fabric is Delinova 200, which is woven from Cordura fibers. Cordura is a polyamide fiber 

with a nylon and Gore-Tex membrane. Delinova 200 is a textile impregnated with fluorocarbon and 

coated with polyurethane. Delinova 200—Cordura fabric proved to be an interesting fabric for textile 

antennas because of its strength, constant thickness and high water resistance properties [1,12].  

The effect of using different textile materials as the substrate of a patch antenna was studied in [13]. 

Four antennas were designed and fabricated. The different textiles that were used for antenna 

fabrication are: wash cotton, curtain cotton, polyester and polycot. The polyester patch antenna yielded 

the best antenna performance in terms of gain and efficiency (polyester patch antenna yielded 

measured gain equal to 9.6 dBi compared to 7.2–7.5 dBi with the other antennas) [13]. The polyester 

had the lowest loss tangent compared to the other three textiles that were used for antenna fabrication. 

Additionally, as shown in [14,15] fleece fabric provides sufficient thickness for an adequate 

bandwidth. The low permittivity of fleece allows design of textile wearable antennas with large gain 

and high efficiency which claims fleece fabric as a very good candidate for textile substrate material. 

The firmness of a textile material substrate can affect the performance of the textile antenna. An 

embroidered textile antenna (Sierpinski Carpet Antenna) was designed in [16] using fractal antenna 

technology. Two antennas were fabricated. One antenna was embroidered on denim and the other on 

felt. The first one showed the best performance—denim fabric has a firm surface compared to felt 

fabric that has a soft fluffy surface which gives disadvantages to felt—fluffy surfaces are easily 

compressed and the variable thickness affects the antenna properties. Both fabricated antennas are very 

good candidates for wearable applications. For good antenna performance homogeneity of the textiles 

is a requirement [10]. The accurate characterization of the textile properties is also a requirement for 
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good agreement between the antenna design and manufacture [10]. In [17] a novel method to measure 

the relative permittivity of textile substrates and eventually to design and manufacture a textile patch 

antenna is described and proposed. Once a patch has been designed by using an estimated value for the 

dielectric constant and then when the antenna is manufactured, a different resonant frequency occurs 

which means that the initial estimation was wrong. Then there is a need of tuning the permittivity and 

using the right value for the design. One method of characterizing the dielectric properties is by  

using split post dielectric resonators at the respective frequencies as seen in Figure 1. The dielectric 

properties can be measured for example using a split post dielectric resonator [18]. However, in 

practice an effective permittivity can be found by comparison with measurements. 

Figure 1. (a) Q-meter measurement setup measuring a piece of felt by using the 1.9 GHz 

split post resonator; (b) Resonator-Vector Network Analyzer (VNA) setup measuring a 

piece of felt by using the 1.1 GHz split post resonator. 

(a) (b) 

A novel polymer substrate was developed, produced and used as an RF substrate [19]; it is known 

as Polydimethylxiloxane (PDMS) (εr = 3, tan δ < 0.02 from 0–1 GHz). PDMS has a good mechanical 

flexibility and low loss performance. By adding ceramic powder to the PDMS, the polymer composite 

is capable of providing tunable permittivity.  

3. Manufacturing Techniques for Wearable Antennas 

The design and moreover the manufacture process of a wearable antenna is of crucial importance in 

terms of antenna performance and manufacturing time. The manufacture process of wearable antennas 

should guarantee good agreement with the design and simulation results and should lead to robustness 

and repeatability of the wearable antenna. This arises from the fact that the wearable antenna is 

supposed to be embedded on the garments and it will operate under different conditions (movement of 

the wearer, weather conditions, temperature, bending and crumpling conditions). In addition, 

washability is a requirement in the case of embroidered textile antennas where the goal is that these 

antennas should be part of the clothes. Embroidered antennas are a great opportunity to connect wearable 

antenna technology with the industry of textiles. In this section, the manufacturing techniques used so 
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far on wearable antennas are described and there are two categories: (1) rigid and (2) flexible  

(often textile) antennas.  

3.1. Rigid Wearable Antennas 

The manufacture process of rigid wearable antennas follows the conventional techniques of printing 

or constructing antennas for example by using etching. Rigid antennas worn on the body can be 

miniaturized so as to minimize the inconvenience to the user as conventional antennas are not 

practical, see Figure 2. These rigid antennas sometimes need to be manufactured in a curved contoured 

shape so as to meet the wearable requirement [20]. Another difficulty is the small size of these 

antennas and their complex structure [21]. 

Figure 2. (a) 2.5 GHz patch antenna positioned at the left side of the thorax under the 

chest; (b) 2.5 GHz patch antenna positioned on the trunk. 

 
(a) (b) 

3.2. Flexible Textile Wearable Antennas 

Textile antenna manufacturing techniques can be divided into the following categories: (1) Thin and 

uniform metallization layers (i.e., copper or silver tape, foil) attached to the non-conductive textile 

fabric [22]; (2) the use of conductive textile yarns to weave or knit the conductive patterns of the 

antenna and then attach or stitch them onto the non-conductive textile substrate [22]; (3) the use of 

conductive textile yarns to embroider the conductive patterns of the antenna on the non-conductive 

textile substrate [22]; (4) Inkjet and screen printed printing on non-conductive textile materials.  

Before moving into the details of each technique it is important to note that different conductive 

textile materials (i.e., copper tape, knitted copper, etc.) can result in different antenna performance. 

The effect of different conductive materials on wearable antenna performance is presented in [23]. Six 

different antennas were fabricated. For all the antennas, the substrate that was used was fleece fabric 

(thickness = 3.5mm, εr = 1.1). The different conductive sections of the antennas were: solid copper 

tape; knitted copper tape; vertically cut pieces of copper tape; horizontally cut pieces of copper tape; 

horizontally cut and soldered copper tape; aracon fabric. Conductive tapes and fabrics are both 

acceptable solutions for the conductive sections [23]. Though, not all copper tape and fabric configurations 
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are appropriate for textile antennas. The conductive fabric is required to have a good conductivity and 

needs to have a high density of conducting fibers. A principle derived from this study [23] is that  

there can be discontinuities in the conducting shape from cutting the copper tape as long as these 

discontinuities are parallel to the surface current (vertically cut copper tape). When discontinuities are 

perpendicular to the current flow direction there will be reflections of the electromagnetic fields at the 

interfaces [23]. Additionally the use of different conductive materials (conducting nylon, embroidered 

conducting thread, conducting paint) as conductive sections and different constructing methods of a 

textile spiral antenna were presented in [24].  

3.2.1. Thin and Uniform Metallization Conductive Sections  

This technique is the fastest when it comes to the manufacture of one or a small number of antennas 

but when it comes to the mass production of textile antennas it is probably a slower than other 

techniques due to the manual work which is required. Generally, this technique is reasonable for 

experimental antenna prototyping but may not be ideal for longer term solutions. It is very easy to 

attach copper tape or foil on a textile substrate but it is also possible that the copper tape might be 

detached while bending or even due to environmental conditions (i.e., humidity, heat) (Figure 3).  

One solution to avoid having the textile antenna permanently integrated on the garment is to use 

Velcro connectors [25]. In [25] a wideband wearable textile antenna is presented where the fabricated 

antenna is integrated on a jacket at the inside side of it by using Velcro. This means that the antenna 

can be easily physically attached and detached to and from the jacket by using Velcro strips. 

Figure 3. Textile patch antenna (substrate: felt, conducting sections: copper tape) with 

partially detached copper tape due to environmental conditions. 

 

3.2.2. Woven or Knitted Conductive Sheets 

This technique requires more time to construct a single antenna but may allow an element of 

automation for mass production. This can result in a more tolerant and flexible antenna structure 

compared to using copper tape. We will include woven metallic cloths, in this section. An example of 

this is Nora Dell which is a textile coated with nickel and silver to from a highly conducting flexible 

sheet (Figure 4). 
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Figure 4. Nora Dell conductive cloth. 

 

Many papers considering textile antennas using woven or knitted conductive sheets have been 

published and will be reviewed in this section. The first compact fabric antenna design for commercial 

smart clothing was presented in [26]. This compact antenna is a patch antenna using fleece fabric as 

substrate and knitted copper for the conductive sections. In [27] a nickel plated woven textile, which 

has a high tolerance against oxidation and corrosion, is stable and has a very good conductivity,  

was attached on a spacer by using ammonia-based textile glue. The textile glue showed negligible 

influence on the sheet resistance since the plated textile is densely woven [27]. In [15] two antennas 

manufactured by using two different methods of attaching conductive Flectron onto Fleece fabric were 

considered. The layers in the first antenna were attached to each other by using a glue stick and the 

layers have been additionally stitched together using non-conducting threads to enhance the robustness 

of the antenna. For the second prototype an adhesive sheet which melts when ironing was used to 

attach the layers together. The first antenna showed better performance in terms of return loss and 

bandwidth. It can be assumed that the adhesive sheet melting inserts more losses into the antenna 

compared to the glue stick.  

In [28] four different methods were used to attach the conductive woven textile on the non-conductive 

textile were examined: (i) liquid textile adhesive (golden fix); (ii) point wise application of conductive 

adhesives; (iii) sewing and (iv) adhesive sheets which melt when ironed. The 4th attachment method 

yielded the best results out of the four methods; it barely affected the substrate (felt) thickness which 

helped the antenna to maintain the geometrical designed dimensions [28], also described the design of 

woven and knitted conductive textiles, the material selection criteria and the characterization of the 

material properties (sheet resistance of the conductive textiles and the permittivity, tangent loss of the 

non-conductive textile). The effect of various weave patterns of conductive cloths in combination with 

the non-conductive dielectric substrate is presented in [29,30]. This was studied because not all fabric 

patterns are symmetric. There are some fabrics with asymmetrical patterns on each side. This means 

that some conductive fabric patterns have the majority of the conductive threads on one side of the 

fabric. In these works ([29,30]), the cases where the side of the fabric (conductive) with the majority of 

the conductive threads was directly attached onto the dielectric non-conductive substrate yielded  

less dielectric loss and better conductivity compared to the cases where the side of the fabric 

(conductive) with the minority of the conductive threads was directly attached on the dielectric  

non-conductive substrate.  
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In [31] an aperture coupled patch antenna using two different textiles (fleece and felt) for the 

substrates was proposed, designed and manufactured. Additionally, two different conductive textiles 

were used for the patch, ground and the microstrip line. For the patch, Shieldit was selected because it 

has an additional adhesive layer which made it easier to attach the patch to the substrate. For the 

ground and the microstrip line Flectron was used because of its smoothness and low surface resistivity. 

The two layer antenna allowed an independent selection of the antenna substrate. Fleece fabric was 

selected for the antenna substrate because it has permittivity close to 1 and a low loss tangent which is 

optimal for the radiation efficiency. Felt was selected for the microstrip feed line substrate. Felt has a 

higher permittivity and by selecting a thinner material the radiation losses are restricted.  

A new design of a woven textile antenna covered with a protective cloth (e.g., waterproof, 

insulation) was presented in [32]. Finally a novel grid microstrip woven antenna design and fabrication 

method is presented in [33]. The substrate of the antenna was a 3D woven glass fiber fabric and the 

conductive yarn that used was copper yarn. The conductive yarns were orthogonally woven to produce 

a grid structure. 

3.2.3. Embroidery 

The traditional embroidery process creates aesthetic shapes using colored threads on a base textile 

material. By using specialist conducting threads, antennas can be embroidered onto the base textile. 

Although the basic principles are the same, the technology has advanced to enable a digital image to be 

directly embroidered using a computer aided embroidery machine (Figure 5). The conducting threads 

must exhibit suitable flexibility and strength so as not to be broken by the high tensions required in the 

embroidery machine. 

Figure 5. Computer aided embroidery machine at Loughborough University. 

 

Of great importance before designing and embroidering the antenna is knowledge of the properties 

(i.e., DC resistance, conductivity) of the conductive yarns to be used [34]. Once the conductive yarns 

are characterized then it is easier to find techniques to improve the performance of the antenna; for 
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example using a higher density of stitching. Conductive threads with high resistance yield poor S21 

results in transmission line measurements [34]. After the characterization of the conductive yarns and 

of the textile substrate, the design of the embroidered textile antenna (Figure 6) comes next. The 

design and simulation method to model wearable antennas composed of embroidered conductive 

threads is presented in [35]. A detailed simulation method is required to model the directional and 

discrete nature of the threads [35] (Figure 7). 

Figure 6. Embroidered patch antenna. 

 

Figure 7. Embroidered patch antenna magnified to observe the air gap between the conductive threads. 

 

The challenges of fabricating embroidered antennas are outlined in [36]. Such challenges include: 

selecting the most suitable conductive thread in terms of conductivity; strength; flexibility and the 

assessment of the behavior of the conductive threads when they are stitched to form an approximately 

continuous object so as to improve the efficiency of the patch antenna [36]. The effect of the stitch 

direction and stitch density on the performance of the antenna has been extensively studied and 

described in [37]. The understanding of the current flow on a designed patch antenna is a fundamental 

requirement to choose the stitch direction (Figure 8). Higher antenna efficiencies can be obtained by 

ensuring the principle current flow is parallel to the stitch direction. This can lead to further challenges 

when the design is required to also work at higher modes where the current is in the perpendicular 

direction and for more complicated designs where the current flows in different directions.  

1mm 
scale 
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Figure 8. Simulated surface current of two different stitch direction patch antennas. 

 

The effect on antenna performance caused from different stitching geometries is studied and 

presented in [38]. The effect of the stitch spacing on the gain and directivity was examined. Generally, 

the closer the stitching spacing, the higher the antenna efficiency will be. However, this comes  

at the expense of reduced flexibility and increased length of thread which directly leads to higher 

manufacturing costs.  

The effect of the type of stitching on the dipole antenna performance is described and demonstrated 

in [39]; where dipole tag-antennas embroidered with different thread densities and two different stitch 

patterns were considered. The embroidering aspects of Ultra High Frequency (UHF) Radio-Frequency 

Identification (RFID) antenna were presented in [40]. Professor Volakis and his colleagues have 

contributed to the field of embroidered antennas and RF electronics [41–48]. Throughout these 

publications novel conformal embroidered antennas and novel embroidered sensors for medical 

applications are presented. Novel embroidered microstrip lines were developed and the fabrication 

procedure of e-fiber transmission lines was proposed. An ultra-wideband embroidered textile antenna 

is presented in [49]. Due to the usage of conducting thread, the antenna is flexible; can facilitate 

washing and can be an attractive solution for a wearable device. 

3.2.4. Inkjet and Screen Printed Antennas  

Inkjet and screen printing [50] can also be used to create conducting sections of wearable antennas. 

However, the substrates are generally paper or Kapton while textiles are not ideal printing substrates. 

As the name suggests screen printing requires a mask to be made for each design and therefore is less 

practical for different individual designs [51,52]. RF transmission lines have been previously screen 

printed onto a cotton substrate [53].  



Electronics 2014, 2 324 

 

 

Inkjet printing does not require a mask and designs can be created within minutes of receiving the 

computer file containing the geometry and hence enables great manufacturing flexibility. Typically, 

silver nanoparticles in solution are used to make thin conducting lines which are approximately 1 µm 

thick. Therefore, printing on rough surfaces such as textiles is very challenging. In addition textiles are 

porous materials which make it more challenging to create continuous conducting lines [54]. Other 

challenges of inkjet printing on textiles include achieving a continuous conducting track with a high 

conductivity; robustness to stretching and inherent movement and resilience to high temperatures 

required to remove the non-conducting solvent from the ink. 

These challenges can be overcome by first screen printing an interface layer onto fabrics. This 

process is outlined in [55]. The inherent surface roughness of the cotton fabric is reduced by using 

screen printed interface layer and enables the printing of antennas with reasonable efficiencies with 

only one or two layers of ink. This process has been applied to dipoles [55] and patch antennas [56].  

Antenna performance can be improved by printing multiple layers but this increases material costs 

and manufacturing time and reduces the resolution of the lines. As the ink layer is thin, skin depth 

issues must be considered. This is likely to limit the applicability of inkjet printing on fabrics to  

higher frequencies.  

3.3. Comparison of Embroidery with Other Techniques 

Embroidery is advantageous compared to the others because embroidery machines already exist in 

industry; so it is easier to apply this technique for mass production of garments with integrated 

embroidered textile antennas. As the currents in embroidered antennas prefer to flow along threads 

rather than from thread to thread, embroidery may naturally lend itself to linear antennas such as 

dipoles or spirals. These types of structures can be very hard to fabricate using copper tape or Nora 

Dell cloths. The design of spirals or dipoles as opposed to patch antennas will also reduce the length of 

thread required and hence the cost of the antennas. Embroidery uses specialized thread which contains 

silver which is expensive. Note, the same is true for inkjet printing and Nora Dell. Therefore, the level 

of wastage of using manufacturing techniques will strongly affect the manufacturing costs.  

Embroidery allows repeatable geometries to be made via the computerized embroidery machines. 

As no mask is required, embroidery can also make one-off bespoke items. Repeatable structures as a 

Frequency Selective Surface (FSS) structure (Figure 9) can be embroidered by copying the original 

shape [57]. Fractal antenna technology [16] to design wearable textile antennas could result in 

attractive and compact designs, however, the accuracy of embroidery is limited to approximately one 

millimeter. This can be partially overcome by the use of computer aided embroidery. Additionally with 

embroidery the use of glue is not always a requirement to attach the textile layers together [58]. This 

can enhance the washability of the garment with the integrated antenna.  
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Figure 9. Embroidery machine creating FSS structure. 

 

4. Specific Examples and Applications of Wearable Antenna Designs  

A large number of wearable antennas have already been proposed for many different applications 

including miniaturized rigid and flexible textile antennas. Examples of rigid miniaturized antennas are 

outlined in the first half of this section. A shorted spiral-like patch antenna operating at 430 MHz 

suitable for military Radio Frequency (RF) Communications was presented in [21]. This antenna was 

etched on FR4. The use of an electromagnetic bandgap (EBG) structure makes this antenna suitable for 

wearable applications by reducing the power radiated towards the wearer. The overall size of this 

antenna is 11.4 cm × 7.6 cm, which is small compared to the wavelength at the resonant frequency.  

In [20] a dipole and a spiral antenna for military wearable applications (100–500 MHz) were proposed. 

These antennas are unobtrusive and low profile. In [59] three antennas: (a) λg/4 antenna with ground 

shield; (b) a dipole V antenna and (c) a square dipole antenna were made out of copper with a  

glass—epoxy substrate (εr = 4.8) and proposed for operation 868 MHz, for medical tele-monitoring 

applications. These antennas would be more suitable for a patient to wear if they were textile which 

will make them more flexible and comfortable. In [60] Salonen presented a dual band (900 MHz &  

2.4 GHz) Planar Inverted F-Antenna (PIFA) antenna for wearable applications suitable for the Global 

System for Mobile Communications (GSM) and for short range Bluetooth bands. The antenna was 

designed as a PIFA so as to radiate away from the human body. A dual mode antenna for on/off-body 

communications (10 MHz/2.45 GHz) was proposed in [61]. This antenna consists of an L-shaped slit 

loaded for the 2.45 GHz band (off-body link) connected with an electrode which is mounted on the 

body and is suitable for the 10 MHz (on-body) link. In [62] a four arm spiral slot patch antenna for 

radio telemetry capsules was proposed for operation at 915 MHz. In terms of miniaturization a reduced 

ground plane shorted patch antenna for on-body communications at 2.45 GHz was proposed by 

Scanlon et al. [63] with a miniaturized (~λ/5) ground plane. A monopole antenna mounted  

vertically on the body radiates the same way (parallel radiation towards body surface) as this shorted  

patch [63]. However, this shorted patch proved to be more suitable for the on-body link because it is 

compact. In [64] a miniaturized diversity antenna dedicated to wireless body area network was 

proposed. The antenna was printed on FR4. The combination of a PIFA and a top-loaded monopole 
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yielded distinct patterns. The strong isolation observed between the broadside and the end-fire 

radiation of the antenna is a significant feature which limits the correlation between the received 

signals. Other miniaturized wearable antenna designs are detailed in [65–67]. 

Smart clothes evolution will eventually result in the establishment of textile antennas in widespread 

use. This may mean that clothes and wearable textile antennas or electronics will be designed as one 

piece. Examples of wearable textile antennas are outlined in the second half of this section. A textile 

antenna suitable for fire fighters jackets was presented in [68]. The substrate shell of jacket is made of 

aramid fabric which is fireproof. In [69,70] a flexible dual band PIFA was proposed for commercial 

smart clothing. An inexpensive textile patch antenna for off-body wireless sensor communications for 

monitoring patients at the 915 MHz Industrial, Scientific and Medical (ISM) radio band is presented  

in [71]. Zelt was used for the conducting parts and felt for the substrate of this antenna. The cost per 

square meter of Zelt and Felt is equal to $20 [71]. With 1 square meter of these two materials we can 

fabricate about 5–6 such antennas. A dual band E-shaped patch textile antenna made from felt and 

copper tape is presented by Salonen in [72]. This antenna operates at 1850 MHz (BW = 100 MHz)  

and 2450 MHz (BW = 110 MHz). The wearer with this antenna can access GSM1900 and Wi-Fi 

communication links. Additionally a dual-band wearable textile antenna for the same communication 

links was proposed in [73]. A novel circularly polarized textile antenna for personal satellite 

communications is proposed in [74]. Two textile antennas using Nora Dell for conducting sections and 

Nomex for the substrate are designed in [75]. The two antennas are proposed to be integrated in an 

extravehicular suit (astronaut suit) for space network applications. A complementary-8 shape e-textile 

antenna element can be used as part of a body worn communication and navigation antenna system 

that supports many different bands, including those used by both 802.11 and 802.16 bands. A system 

of six complementary-8 shape e-textile antennas shifted by 90 degrees can be used for polarization 

diversity and omnidirectional coverage most of the observable sphere surrounding the astronaut. This 

is an important requirement for the astronaut communication and navigation. In [76] a fabric equiangular 

spiral antenna using Nora Dell for the conductive sections is fabricated and presented. The earliest 

wearable active textile receiving antenna in the 2.45 GHz ISM band was proposed in [77,78]. A low 

noise amplifier (LNA) is fabricated on a hybrid textile fabric and positioned directly underneath a 

wearable patch antenna. In [79] a dual band coplanar waveguide feed patch antenna was designed.  

Zelt is used for the conductive parts of the antenna and felt for the substrate. The use of an EBG 

substrate under the patch antenna improves the gain and reduces the back radiation by at least 13dB 

making the antenna suitable for wearable applications and more tolerant to the effects of the lossy 

human body in terms of antenna efficiency. Additionally, the improvement on antenna performance by 

the use of an EBG is presented in [80] where the effect of bending the textile patch antenna is fully 

examined. It is hypothesized that the EBG structure which inevitably adds an extra height to the patch 

antenna could be hidden into clothing. Another triangular textile patch antenna over an EBG structure 

is presented in [81]. In [82] the on-body improvement performance of a dual-band wearable textile by 

using an EBG structure was presented. Two novel Ultra Wide Band (UWB) textile antenna designs 

were proposed in [83]. The conducting parts of the antennas were made with Shieldit and the substrate 

is a thick felt. These antennas are fed by a coplanar waveguide. Because of the lack of a ground plane 

between the antenna and the human body the placement of the antennas on the body degraded the S11 

at most locations. The dielectric coupling between the antennas and the body introduced a down shift 
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of the resonant frequencies. The coupling with the lossy body is expected to degrade the efficiency and 

the gain of these antennas. Therefore, the use of an EBG structure as previously referred will improve 

the performance of the coplanar waveguide feed textile antennas. The process of designing a printed 

textile monopole antenna is presented in [84] which is lightweight and has a very simple structure to 

fabricate. One disadvantage of a printed monopole is that due to its short partial ground plane its 

performance is highly affected and degraded by the presence of the human body. This last point 

renders the printed textile monopole a moderate candidate for wearable applications. A broadband 

waveguide slot antenna is proposed where denim was used as the substrate filling the waveguide—this 

proposed waveguide slot antenna is cheap to manufacture [8]. A novel wearable substrate integrated 

waveguide (SIW) antenna fabricated entirely from textile materials is presented in [85]. The  

SIW-on-textile integration results in an antenna exhibiting high robustness against bending, low 

influence of the human body and high front-to-back ratio. In addition this antenna is light weight, 

flexible and low cost, thus making this antenna well suited for on-body use. Additionally a new 

wearable textile antenna based on a half-mode substrate integrated cavity was proposed in [86]. 

Various embroidered textile antennas have been proposed for different applications. A low frequency 

(COSPAS/SARSAT satellite beacon—406 MHz) embroidered spiral antenna is proposed in [87]. An 

embroidered wearable multi-resonant folded dipole antenna for FM reception was fabricated in [88]. 

Also a UWB embroidered antenna design where stainless steel thread was used for the conductive 

thread is presented in [89]. GSM and Wi-Fi embroidered textile antennas were fabricated onto regular 

fabrics using an automated embroidery procedure with high density stitching [90]. The proposed 

antennas offer user-comfort and flexibility.  

A distributed body-worn transceiver system for mobile communications with the use of  

electro-textile antennas was proposed in [91]. Two major features causing the popularity increase for 

the distributed body-worn system are: (1) the high efficiency of the electro-textile antennas that can be 

seamlessly embedded into human clothing and (2) significant system diversity gain due to spacing 

among antennas distributed on the body.  

5. Challenges of Wearable Textile Antennas 

Once the wearable textile antenna is manufactured then the step of characterizing it is the next in 

line. Characterize how the wearable textile antenna operates in Free Space and when mounted on a 

human body. This section addresses some of the challenges of measuring wearable antennas. Initially 

it is useful to measure the antenna performance (gain, impedance matching (S11), directivity, 

efficiency, etc.) in free space [92–94]. Then the wearable textile antenna will generally operate under 

the movement of human body, some specific deformations on the antenna such as bending (on cylinder 

or on a human arm) [13,95–98] and crumpling [99,100] must be considered. The antenna should be 

measured under different environmental conditions such as high humidity to represent perspiration or 

exposure to water [101,102]. Additionally, the embroidered textile antennas are supposed to be part  

of the garment. So testing the durability of the antenna in terms of performance after washing is 

required [103]. Also the repeatability in terms of performance of a specific textile antenna should 

always be examined [104].  
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Measurements on a real human body [105,106] or with a human phantom [107–109] should  

take place. The antenna on-body or on-phantom should be measured in terms of S11, near-field,  

far-field [110–112]. The antenna-body interactions need to be fully characterized. Measurements can 

take place in an anechoic chamber or in a real environment (outdoors [113] and indoors). 

Measurements are the final and the most important step to characterize an antenna system. All 

practical applications rely on measurements results rather than purely simulations.  

Measurements of wearable antennas are particularly challenging. The conductivity of the flexible 

materials is often lower than copper. Dielectric properties of the substrate are generally not well known 

and can vary from different suppliers or even different batches of the same supplier. As the 

permittivity is related to the density of fibers it can even change within the same substrate. The 

thickness of the substrate may changes depending on the method of attaching the different elements 

which is often an arbitrary non-repeatable process such as adding the same amount of glue across the 

substrate. The point where the connector meets the antennas is critical in all antenna designs. However, 

in wearable antennas, this sensitive point depends on the position and orientation of the antenna.  

These parameters increase the difficulty of wearable textile antenna measurements and make it a real 

research challenge.  

Additionally, when antennas are placed in close proximity to the human body, the specific 

absorption rate (SAR) must comply with International Commission on Non-Ionizing Radiation 

Protection (ICNIRP) and IEEE limits [114]. This means that the body can only be exposed to limited 

levels of electromagnetic fields. There is still public concern about possible health issues and EM 

radiation. Hence, while the majority of people are happy using mobile phones a new type of antenna 

embedded in clothing is likely to cause some level of public debate. Wearable antennas are clearly 

close to the body and the SAR must be considered via simulations and measurements. The emitted 

power of a device is related to the communication distance. Therefore, Bluetooth wearable devices that 

connect to a mobile phone will use low power levels and hence have very low SAR values. Whereas 

devices communicating with mobile phone base stations or even satellites will transmit more power 

and hence have higher SAR values. 

The connection between the wearable antenna and the electronics is arguably the greater weakness 

in wearable electronics. The majorities of published papers do not consider this and use an SMA 

connector and a coaxial cable. Having a rigid connector negates some of the advantages of having a 

textile antenna. Recently, RF measurements have demonstrated the feasibility of using Hook and Loop 

as an RF connection mechanism at the low GHz frequency range [115]. This has the advantage that  

the antenna can be disconnected from the electronics and/or clothing to allow washing or for the 

electronics to be placed in a different item of clothing. However, considerable work is needed to find 

the optimal solution to this challenge. 

Finally, manufacturing costs are still a challenge for wearable antennas. The specialized threads for 

embroidery typically cost $1.50 per meter and although prices will decrease, the silver content means 

that costs may not decrease until other alternative materials can be found. As a rough guidelines 

embroidered antennas operating at 2.4 GHz (~6 cm × 4.5 cm) can contain 5 m of thread. The cost of 

Nora Dell and inkjet inks are also dependent on the cost of the silver raw materials.  
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6. Future Opportunities 

Futurists and antenna designers have been discussing the idea of wearable technology for nearly 

two decades. Generally, the integration of wearable technology into main stream society has been 

slower than expected. This was due to a combination of the technology not being ready and insufficient 

market pull.  

Current technology is driven by the need for data and connectivity. There were one billion smart 

phones sold in 2013 [116]. This is evidence that people not only want technology, but they will spend 

money if it enhances their quality of life. Sensors that communicate voice, video, physiological 

environmental and location data will become increasingly ubiquitous. It is predicted that there will  

be 50 billion devices connected to the internet by 2020 [117]. 

The feeling that wearable technology is on the cusp of going mainstream was exemplified by the 

level of interest at the Consumer Electronics Show in Las Vegas in 2013 where wearable technology 

was one of the main talking points [118]. There are now many devices on the market integrated into 

wrist bands that monitor the calories a person burns per day. The market for wearable technology is 

estimated to be worth more than $5 Billion by 2016 [119] and this market includes medical, fashion, 

sports, military and emergency services [32]. Other estimates have this value as high as $19B by  

2018 [120]. 400 million smart watches are expected to be sold by 2020 [121]. Intelligent glasses with a 

small screen in front of the eye [122] are now available. Major industrial companies are moving into 

the wearable technology area [123].  

Currently, two thirds of hospital beds in the UK are occupied by people over 65. Furthermore, it is 

predicted that 10 million people alive in the UK today will live to the age of one hundred [124]. These 

numbers indicate that the current medical care of the ageing population is not financially sustainable 

without technological assistance. Telemedicine and remote monitoring can allow patients to be 

monitored in their own homes or with less medical supervision which will give more comfort to the 

patients. An example of this is electrocardiography (ECG) systems which monitor heart rate of patients 

by using antennas integrated into plasters [125]. There are also big opportunities for both recreational 

and professional athletes.  

The requirement for wireless connectivity means that every device may have at least one antenna. 

Currently the electronics and battery are rigid items and therefore a rigid antenna can also be included 

without inconvenience, especially at 2.4 GHz where PIFAs are small. Many observers believe that the 

next step will be for this technology to become truly wearable and be integrated directly into clothing 

where textile antennas will be required. Electronics is continuing to shrink in size and emerging 

technologies may allow the textiles themselves to harvest energy [126]. RFID tags in clothing are a 

current suitable candidate for fabric antennas as no battery is required and the RFID chip is very small 

so the use of flexible antennas will improve user comfort. Ongoing research into flexible batteries and 

flexible electronics will further drive the desirability for flexible antennas. 

Textile wearable antennas have the advantage that they can be integrated directly into clothing; are 

aesthetic and do not need to be handheld which allows the technology to exist without the user 

consciously being involved. By making antennas out of textiles, the size limitations become the torso 

size and not just the size of the device. This relaxation of the size constraints can increase the gain and 

bandwidth. This has particular relevance to lower frequencies where the wavelengths are larger.  
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