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Fetal Electrocardiogram Extraction by Sequential
Source Separation in the Wavelet Domain

Maria G. Jafari*, Member, IEEE, and Jonathon A. Chambers, Senior Member, IEEE

Abstract—This paper addresses the problem of fetal electro-
cardiogram extraction using blind source separation (BSS) in the
wavelet domain. A new approach is proposed, which is partic-
ularly advantageous when the mixing environment is noisy and
time-varying, and that is shown, analytically and in simulation, to
improve the convergence rate of the natural gradient algorithm.
The distribution of the wavelet coefficients of the source signals
is then modeled by a generalized Gaussian probability density,
whereby in the time-scale domain the problem of selecting appro-
priate nonlinearities when separating mixtures of both sub- and
super-Gaussian signals is mitigated, as shown by experimental
results.

Index Terms—Blind source separation, fetal electrocardiogram
extraction, independent component analysis, wavelet transform.

I. INTRODUCTION

THE fetal electrocardiogram (FECG) provides informa-
tion about fetal maturity, position of the fetus, multiple

pregnancies, as well as being a diagnostic tool which can
monitor conditions such as arrhythmia, and assess the fetal
acidosis, and may be of vital importance to both mother and
child when risk factors are present during pregnancy [1], [2].
FECGs can be between 5 and 1000 times smaller in intensity
than in the adult [3], because of the layers of tissue between
the electrodes and the fetal heart and, therefore, it is generally
obscured by noise [4], [5]. In addition, the amplitude of FECG
signals changes during pregnancy: it increases during the first
25 weeks, experiences a marked minimum toward the 32nd
week, and increases again afterwards [6]. The best and most
accurate FECG is obtained when the electrodes are attached
directly to the fetal scalp, but this is only achievable during
delivery, and clearly cannot be used to monitor the state of the
fetus throughout pregnancy, or for an early diagnosis [7]. Thus,
the attractiveness of noninvasive techniques for the extraction
of FECG signals is obvious. The fetal electrocardiogram ex-
traction problem involves the elimination of maternal ECG
(MECG) components, and other interfering signals, from ECG
measurements obtained during pregnancy. The application of
blind source separation (BSS) methods to FECG extraction
is justified in [7]–[10], where the validity of the BSS model
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for biomedical applications in general is also discussed. The
block-based JADE algorithm, which performs independent
component analysis (ICA), is applied to the FECG extraction
problem in [3], and its performance is compared with that
of the least mean square (LMS) and recursive least squares
(RLS) algorithms, which are used to implement an adaptive
MECG canceller. The authors show that the JADE algorithm
performs better than LMS and RLS when the mixing channel
satisfies the linear instantaneous mixture assumption, while
its performance breaks down when the characteristics of the
mixing channel deviate from the ideal. The time-frequency
information present in ECG signals is exploited in [11], where
the batch algorithm is based on the joint diagonalization of
whitened spatial time-frequency distribution matrices, while
the performance of higher-order ICA methods, and principal
component analysis is compared in [7], [8], [10], and [12].
Results indicate that sources recovered using ICA approaches
are clearer and less noisy than those obtained with PCA. Also,
the performance of a block based, two-stage, BSS algorithm,
consisting of a prewhitening step followed by higher-order
processing, has been shown to be superior to Widrow’s mul-
tireference adaptive noise cancelling method, although the
computational complexity increases [9], [13].

Nonetheless, the noisy and nonstationary nature of this type
of signal presents a challenge to conventional instantaneous
BSS algorithms, which are often derived on the assumption
that statistically time-invariant sources are mixed in the ab-
sence of noise [14]. In practice, source nonstationarity is a
characteristic of speech and audio signals, as well as biomed-
ical measurements where, for instance, the heart rate varies
over time, depending on factors such as the comfort of the
patient, and additive noise, Gaussian or otherwise due, for
example, to the recording equipment. The separation of non-
stationary sources is often addressed by methods based only
on second-order statistics, which make the crucial assumption
of nonstationarity of the source signals, i.e., the variances of
the sources are assumed to change with time [15]–[18]. The
presence of additive noise within the mixing model complicates
significantly the estimation of the separating matrix. When
additive noise is not assumed to be zero, it is often regarded as
an additional set of sources, leading to an even more difficult
problem, which is under-determined even when the number of
sensors equals the number of sources. In some applications, it
may be desirable to reduce the noise level by applying some
form of preprocessing, while in others it may be possible to
measure the environmental noise, for instance by appropriately
placing additional electrodes during the recording of ECG
signals [19]. An adaptive approach to noise cancellation and
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source separation is developed in [20], where it is assumed that
the environmental noise is known, and that noise is additive
and convolutional. Then, in order to recover the sources, the
mixtures are separated and the additive noise is estimated and
subtracted. When the noise is Gaussian, it is possible to exploit
the fact that Gaussian random variables have zero higher-order
cumulants. This is the approach taken in [21], where the explicit
use of fourth-order cross cumulants ensures that theoretically
the algorithm is robust with respect to Gaussian noise. Alter-
natively, the noise level can be reduced by means of wavelet
de-noising. An experimental study of its use as a preprocessing
stage for BSS is presented in [22], where it is concluded that
wavelet de-noising is a very efficient preprocessing technique,
which improves the performance of certain BSS methods.
In [23], the wavelet transform is used to decompose an ob-
served signal into subband signals, and the natural gradient
algorithm (NGA) is only applied to those bands having the
strongest power. In this paper, we propose a wavelet domain
approach, which addresses the BSS problem in general, and the
FECG extraction problem in particular, when the sources are
nonstationary and contaminated by additive noise. The use of
frequency and time-frequency methods for BSS has also been
motivated by the observation that when mapping certain signals
from the time domain to the frequency domain, the statistics
of the sources become less Gaussian [24]. To show that this
property is also true in the wavelet domain, we make use of
an image processing result1 to obtain a model for the sample
distribution of the wavelet coefficients of the sources, thus
extending it to one-dimensional (1-D) signals. The technique
improves the speed of convergence of the NGA, and can over-
come the problem of having to select the nonlinearities required
to separate mixed sub- and super-Gaussian signals. Addressing
the fetal ECG extraction problem within a sequential learning
framework is particularly advantageous when motion occurs
during the data acquisition process. This may be due, for
instance, to changes in position by the expectant mother or the
fetus. In such cases, it is useful for the separating algorithm to
have the property of quickly reconverging.

The BSS problem is described in Section II, while it is shown
in Section III that FECG extraction can indeed be formulated
as a BSS problem, and the wavelet transform is introduced
in Section IV. The time-scale domain approach is explained
in Section V, and the performance of the proposed method
is shown by simulation in Section VI, while conclusions are
drawn in Section VII.

II. PROBLEM STATEMENT

When source signals are instantaneously mixed by a sta-
tionary channel, and additive noise is present, the observed
signals are given by [25], [26]

(1)

where is the vector of observed signals,
is the vector of source signals, assumed to be zero mean and
mutually statistically independent, is the vector of

1The authors wish to express their gratitude to Dr. A. Evans, at the University
of Bath, for bringing this result to their attention.

noise signals, whose elements are assumed to have zero mean,
and be mutually statistically independent, and independent of
the source signals [27], and denotes the discrete time index.

is the matrix of the source-steering vectors, containing infor-
mation about the sensors and direction of arrival of the source
signals. In general, , typically referred to as the mixing ma-
trix, is an unknown full column rank matrix and .
The aim of BSS is that of recovering the unobserved original
source signals from the available measurements. The sources
are recovered using the following linear separating system:

(2)

where is an estimate of , to within the ambi-
guities of BSS as explained later, and is the
separating matrix (or unmixing) matrix, whose pseudoinverse
is an estimate of the mixing matrix. The NGA algorithm is a
BSS technique which updates the separating matrix according
to

(3)

where is an odd nonlinear function of the output ,
called the activation function, is a positive learning param-
eter, and denotes vector transpose. Nonetheless, it is only
possible to recover the sources up to a multiplicative constant,
and their order cannot be predetermined. These ambiguities, in-
herent to the BSS problem, imply that the exact inverse of the
mixing matrix cannot be obtained, so that perfect separation is
achieved when the global mixing-separating matrix, defined as

(4)

tends toward a matrix with only one nonzero term in each row
and column [25]. Conventional BSS assumes that at most one
source has Gaussian distribution because, for Gaussian random
variables, uncorrelatedness corresponds to independence. A
measure of non-Gaussianity of a zero mean, unit variance signal

is given by its kurtosis , or normalized fourth-order cu-
mulant, which is defined as [28]

(5)

where denotes the statistical expectation. For a Gaussian
signal, kurtosis is zero. Signals with negative kurtosis are called
sub-Gaussian, while those with positive kurtosis are referred to
as super-Gaussian. Additionally, the BSS problem is typically
simplified further by assuming that there are at least as many
sensors as sources, and, by convention, the source sig-
nals have unit variance. The performance of BSS methods can
be assessed by plotting the following performance index (PI)
[29]:

(6)

where , and is the number of source signals. It
is a nonnegative measure of the closeness between and
the pseudoinverse of the mixing matrix, taking into account the
scaling and ordering ambiguities, and generally, a lower PI in-
dicates better performance.
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Fig. 1. An 8-channel cutaneous potential recording from a pregnant woman.
The signals denoted Abd1–5 were recorded from the abdominal area, while the
lower-most recordings Thr1–3 were obtained from the thoracic area.

III. FORMULATION OF FECG EXTRACTION AS A BSS PROBLEM

Fig. 1 shows the 8-channel cutaneous potential recording of
a pregnant woman, obtained when eight electrodes are placed at
different positions on the body of the expectant mother. In par-
ticular, five electrodes are located in the abdominal area, and
three in the thoracic region. The electrocardiogram measure-
ments were recorded over 5 s, and sampled at 500 Hz,2 and
represent mixtures of FECG and MECG contributions, as well
as noise. The fetal heartbeat component, noise and respiratory
motion artefacts are noticeable in the abdominal recordings, de-
noted in Fig. 1 as Abd1—Abd5, whereas FECG contributions
are not visible in the thoracic measurements, which are domi-
nated by the maternal heartbeat because of the distance between
the fetus and the chest leads. The specific locations of the elec-
trodes are justified by the fact that the maternal ECG compo-
nents represent the largest signals interfering with the fetal elec-
trocardiogram [13].

The separation of MECG and FECG components can be for-
mulated as a BSS problem due to the following factors [7]–[10].

• MECG and FECG components are generated from phys-
ically independent bioelectric sources and, therefore, the
sources may be considered statistically independent [9].

• The relationship between the bioelectric current sources
and the surface of the body can be considered linear, and
propagation delays can be considered negligible, so that
the measurements may be assumed to be instantaneous
linear mixtures [8], [10], [30].

• The mixing matrix is determined by the geometry of the
body, positions of the sources and electrodes, and conduc-
tivity of the tissues of the body [10].

2Contributed to ICA Central http://sig.enst.fr/~cardoso/icacentral/index.html
by L. De Lathauwer, K. U. Leuven, Belgium.

In addition, it is reported in [8]–[10] that the bioelec-
tric activity of the maternal heart can be represented by a
three-dimensional (3-D) dipole current. Then, MECG signals
may be expressed as the linear combination of three statisti-
cally independent vectors. These form the MECG-subspace.
The FECG-subspace, on the other hand, is not necessarily
3-D, but changes during pregnancy [8], [10]. Therefore, when
ECG sources are separated with BSS algorithms, the resulting
independent components should contain the MECG and FECG
subspaces.

IV. THE WAVELET TRANSFORM AND BSS

The wavelet transform maps a signal from the time domain
to the time-scale domain. A basic wavelet function is defined,
called the mother wavelet, which is translated and dilated, re-
sulting in a set of orthonormal wavelet basis functions [31].
Then, the wavelet transform of a signal is given by the inner
product of the signal with each of the basis functions, so that
the transformed signal is a function of the translation and scale
parameters, where the term translation refers to the location of
the window, while scale, defined as the inverse of frequency,
refers to its width. Discrete wavelets are defined as

(7)

where , and denotes the field of integers, and the
wavelet transform of a signal is given by

(8)

where denotes the transform coefficients, and rep-
resents the inner product. In general, source separation in the
wavelet domain introduces the permutation problem, which
however is a well-known limitation of transform domain BSS,
particularly for convolutive mixtures, for which the separation
matrix will be different in each subband, while in the case of
instantaneous mixtures the mixing is in effect identical in each
subband. In our implementation, the outputs from the wavelet
transform are concatenated, so as to form a single vector for
source separation. The greatest disadvantage of performing
source separation on the concatenated coefficients is the in-
troduction of discontinuities, which result in fluctuations and
absence of excitation in places, hence causing the adaptive
process to slow down or even terminate at times.

Nonetheless, the wavelet transform is particularly useful for
the analysis of nonstationary signals since it provides the time
localization of frequency components, and it has the property of
rendering many noiseless signals sparse when transformed in
the wavelet domain. This means that the coefficients resulting
from the signal are relatively large compared to those arising
from noise, and the low-amplitude noise coefficients can be re-
moved by setting them to zero. The process of truncation of
the wavelet transform is performed usually by applying either a
hard- or a soft-thresholding method [32]. Hard-thresholding in-
volves setting the coefficients whose values are below a certain
threshold to zero, and leaving the others unchanged. Soft-thresh-
olding entails modifying the coefficients above the threshold
as well. The thresholding method has a major drawback when
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adaptive filtering is implemented in the wavelet domain: it may
result in most of the coefficients being set to zero, thus causing
a persistence of excitation problem. Although, it was found that
generally de-noising of real measurements does not lead to a
large number of zero coefficients, certain regions could be iden-
tified in which the wavelet coefficients are predominantly zero
or very small, and they were found to correspond to poor per-
formance of the adaptive filter.

While the wavelet decomposition provides an exact repre-
sentation of a given signal, de-noising in wavelet bases leads
to an approximation which uses a finite number of transform
coefficients. In general, when a function is approximated
using only the first terms of its projection in an orthonormal
basis, the approximation is said to be linear, whereas it is
nonlinear when the largest terms are kept [33]. Since there
exists many possible -term approximations of a function,
which may result in different rates of approximation, the crucial
issue is how fast they converge. In [33], Vetterli compares the
squared error (defined as the difference between the function

and the approximation ) for linear and nonlinear approx-
imation, when the Fourier and wavelet series coefficients of a
piecewise constant function with a discontinuity are truncated,
and shows that the nonlinear wavelet approximation has an ex-
ponential rate of convergence, while its linear counterpart, and
linear and nonlinear Fourier approximations have convergence
speed which is inversely proportional to . This effectively
implies that the nonlinear wavelet approximation requires a
much smaller number of coefficients to represent a function
accurately than its linear counterpart, and linear and nonlinear
Fourier approximation. Thus, since the wavelet de-noising
scheme is a nonlinear method, it is particularly advantageous
because of the outstanding properties of nonlinear wavelet
approximation.

V. TIME-SCALE APPROACH TO BLIND SOURCE SEPARATION

A. Modeling the Sample pdf in the Wavelet Domain

The statistics of the wavelet coefficients of natural images
can be highly non-Gaussian, and can be modeled using a gen-
eralized Gaussian probability density function (pdf) of the form
[34], [35]

(9)

where , and is
the Gamma function. Expressions for the variance , and kur-
tosis of the distribution are defined in [34] and [35], and an
analytical derivation of (9) can be found in [34]. To demon-
strate the validity of the model in the 1-D case, we use the least
squares curve fitting method from MATLAB (lsqcurvefit.m) to
fit the generalized Gaussian distribution in (9) to the sample dis-
tribution of the wavelet domain representation of the signals
depicted in Fig. 2, where the maternal and fetal ECG record-
ings, and are selected from the components ex-
tracted with the JADE algorithm, and de-noised with the wavelet
transform. Their length is 2500 samples, while the length of the
speech signals and , is 10 000 samples.

Fig. 2. Four original source signals: maternal ECG (s ), fetal ECG (s ), and
two speech signals (s and s ).

Fig. 3. Sample distributions (solid lines) and fitted Generalized Gaussian
sample pdfs (dotted lines) for the wavelet coefficients of the sources in Fig. 2.

The sample pdfs and fitted sample distributions of the wavelet
coefficients of the sources are illustrated in Fig. 3. The plots
show that, for the selected sources, the generalized Gaussian
distribution models the statistics of the wavelet coefficients very
closely. It is not surprising that the poorest results are obtained
when the sample pdf of the wavelet coefficient of is mod-
eled, since the two speech signals used here as sources, are in
fact the output of the combined time-delayed decorrelation and
ICA algorithm, and are estimated from two sensors recorded in
a normal office room [36]. Consequently, each source is likely
to be contaminated by noise, reverberation in the room and, to
a certain extent, by the other source. Thus, the Gaussian pdf is
fitted to the sample distributions of the wavelet representation of
sources and , as shown in Fig. 4. A comparison with
the plots in Fig. 3, indicates that the generalized Gaussian dis-
tribution is a better fit than the Gaussian pdf. Figs. 5 and 6 show
the sample distributions of the sources in the time domain and
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Fig. 4. Sample distributions (solid lines) and fitted Gaussian sample pdfs
(dotted lines) for the wavelet coefficients of the sources s (k) and s (k).

Fig. 5. Sample pdfs of the sources s and s in Fig. 2, and of their
corresponding wavelet coefficients.

Fig. 6. Sample pdfs of the sources s and s in Fig. 2, and of their wavelet
coefficients.

in the wavelet domain, while the kurtoses of the signals in both
domains, evaluated according to (5), are recorded in Table I.
The kurtoses of the sources increase quite dramatically in some
cases. Kurtosis is a measure of non-Gaussianity of a random
variable: the further away the pdf of a random variable is from
the Gaussian distribution, the further away is its kurtosis from
zero. In this case, it is clear from Figs. 5 and 6 that the sample

TABLE I
KURTOSES OF THE SOURCES IN FIG. 2, �(s ), AND

OF THEIR WAVELET COEFFICIENTS, �(s )

pdfs of the sources in the time domain are closer to the Gaussian
distribution than their respective sample density functions in the
time-scale domain. Thus, the statistics of the source signals are
less Gaussian in the wavelet domain than they are in the time
domain. These results will be useful in examining the conver-
gence behavior of the time-scale approach.

B. Performance Index

Before introducing the new BSS approach in the wavelet do-
main, some measure is needed to assess its performance, and to
compare it to time domain methods. As mentioned in Section IV,
the wavelet coefficients of a signal are given by the
inner product of the signal with each wavelet

(10)

This expression, together with the linearity property of the inner
product

(11)

(12)

leads to the following result, useful for performance evalua-
tion purposes, provided the mixing matrix is known. When the
mixing matrix is real and time-invariant, the wavelet trans-
form of the th observed signal in (1) is given by

(13)

Taking the wavelet transform of the vector of observed signals,
we obtain, in matrix form

(14)

where and
are, respectively, vec-

tors of wavelet transformed sensors and sources. It follows then
that the sources estimated in the wavelet domain are
given by

(15)

Therefore, the PI remains a meaningful performance measure
for BSS algorithms operating in the time-scale domain.
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C. Time-Scale Approach

To perform separation in the time-scale domain, the mixed
signals are divided into blocks of length , so that the indepen-
dent components can be extracted as each new block of data
becomes available. When the length of the measurements is

samples, the first block comprises samples ,
the second block is made up by , and
so on, and in general the th block includes samples

, where . The wavelet
transform of each block of data is then evaluated, and hard-
thresholding is applied. Reducing the noise level is expected
to improve the performance of NGA because, invariably, true
measurements are noisy, while the algorithm is derived on the
assumption that the sources are mixed in the absence of noise.
Although not satisfying this hypothesis fully, the mixtures ob-
tained after de-noising are better suited for processing by NGA
than prior to noise removal. Finally, NGA is used to separate
sequentially the transformed signals according to

(16)

Since the algorithm operates on a single block of data, this gives
a vector of estimated signals, whose inverse wavelet transform
represents the corresponding block of recovered sources. Thus,
the NGA in the time-scale domain approach can be summarized
as shown in Fig. 7. It should be noted that the block-by-block
application of NGA has the potential drawback of introducing
the permutation problem, due to the concatenation of the out-
puts, prior to the evaluation of the inverse wavelet transform.
Nonetheless, as mentioned in Section IV, this problem is typi-
cally not experienced in the case of instantaneous mixtures, and
it was not encountered by the authors.

To ease the problem of absent filter excitation associated with
discontinuities described in Section IV, the approach above can
be modified such that it includes a scheme to switch to conven-
tional NGA once convergence is achieved, and switch back to
the time-scale method if reconvergence is necessary.

NGA requires a priori knowledge about the statistics of the
sources, because different nonlinearities in (3) are se-
lected for the separation of sub- and super-Gaussian sources.
Moreover, the algorithm may fail to separate the sources when
mixtures of both sub- and super-Gaussian signals are observed.
To address these difficulties, Douglas et al. propose in [37] to
employ time-varying nonlinearities, appropriately selected for
each channel according to the statistics of the corresponding es-
timated source. In the wavelet domain, however, the problem
of switching between activation functions can be mitigated, be-
cause the wavelet coefficients of all the sources can generally
be modeled by a generalized Gaussian density and, therefore,
the activation function need not change when the sources are
sub-Gaussian.

1) Convergence of Algorithm: It has been established previ-
ously that the statistics of the wavelet representation of certain
signals are less Gaussian than the statistics of the signal itself,
and more precisely, they are more super-Gaussian. In particular,
the kurtosis was found to increase in the time-scale domain.
Mathematically, let and be, respectively, the kurtosis of

Fig. 7. Diagram of the NGA in the wavelet domain approach. The mixtures
are divided into blocks of length N , so that the ith block is formed by samples
x(iN + 1); . . . ;x((i + 1)N), where i = 0; . . . ; (M=N) � 1. The wavelet
transform of each block of data is then evaluated, and hard-thresholding
is applied to the concatenated wavelet coefficients. NGA separates the
transformed signals sequentially, giving a vector of estimated signals, whose
inverse wavelet transform represents the corresponding block of recovered
sources.

the th signal and of its wavelet coefficients; it was observed
from simulations that in general

(17)

An expression for the global mixing-separating system in terms
of the kurtoses of the sources can be derived. In the time domain,
the global system is given by

(18)

Characterization of the transient behavior of the above system
is typically a very challenging task, due to the cross-coupling of
the elements of the global mixing-separating matrix [38]. The
convergence speed of the algorithm depends on the second term
on the right-hand side of the above expression, i.e., the product

. Let . To a
first approximation, an increase in results effectively
in the algorithm taking a larger step in the descent direction,
which is desirable during initial convergence, when the filter
parameters are away from their optimal values. Convergence of
the mean of the algorithm, on the other hand, is ensured when

(19)

Thus, some growth in the diagonal elements of will
generally increase the convergence speed of the algorithm, as
will a more rapid decay of the off-diagonal elements. It will
be shown later that these reasons represent a first step toward
justifying the improved performance of NGA operating in the
wavelet domain.

When the sources are super-Gaussian, the activation function
can be chosen to be . In [39], Amari et
al. approximate with Maclaurin’s series up to de-
gree 5. In this paper, since we seek to express the system in (18)
in terms of the kurtoses of the sources, we truncate Maclaurin’s
approximation to degree 3. Thus, ignoring the time index for
convenience, this gives

(20)

and the elements of in (18) can be written as

(21)
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Substituting the following expression into (21)

(22)

and applying the statistical expectation operator, the entries in
can be written in terms of the elements of the global

mixing-separating system , giving

(23)

where the expectation is with respect to the elements of the sep-
arating matrix , and the source signals. Moreover, as in
[38] and [40], it has been assumed that the elements of the sep-
arating matrix are independent of the sources, implying that the
elements of the global matrix are also independent of the
sources; the sources are zero mean and unit variance, and the
definition of kurtosis has been used. Considering
only the diagonal terms of , namely

, and reintroducing the time index, at time we
have

(24)

When the sources are separated in the time-scale domain, (18)
becomes

(25)

Equation (25) indicates that generally, at any time , the global
matrix , because typically the algorithms (18)
and (25) will have different dynamical characteristics. At time

, however, and assuming that the initialization of the sep-
arating matrix in the wavelet domain is the same as in the
time domain, (24) becomes

(26)

Since and from (17), the inequality
holds. It follows that

(27)

Fig. 8. Magnitude plots of the evolution of the elements of �(k)(I�F (k)).
The diagonal elements (solid lines) are fitted with exponential envelopes (dotted
lines), and the number of iterations required for the amplitude of the exponential
fits to decay to 1=e of its initial value is evaluated.

Multiplying (27) by and adding
to both sides gives

(28)

Finally, considering , and , (28) becomes

(29)

Thus, in an element-by-element sense

(30)

In general, assuming that at time , the global matrix has
the same value in both the time and wavelet domains, (30) be-
comes

(31)

In the described analysis, the off-diagonal terms of
and have been ignored because during initial con-
vergence the diagonal elements are large and dominate the per-
formance of the algorithm. This is illustrated in Figs. 8 and
9 which show the evolution of the elements of the matrices

and , for the case of two ran-
domly generated Laplacian sources, with zero mean and unit
variance, and , averaged over 30 independent trials,
where the contributions of the step-size parameters have been
taken into account because, due to their self-adaptive nature,
they play a role in the behavior of the algorithm. Evidently, in the
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Fig. 9. Magnitude plots of the evolution of the elements of �(k)(I� f (k)).
The diagonal elements (solid lines) are fitted with exponential envelopes (dotted
lines), and the number of iterations required for the amplitude of the exponential
fits to decay to 1=e of its initial value is evaluated.

time as well as in the wavelet domain, the diagonal elements are
initially greater in magnitude than the off-diagonal elements. In
addition, exponential envelopes are fitted to the diagonal terms,
so that the rate of convergence of the two algorithms can be
compared by evaluating the number of iterations required for
the amplitude of each exponential fit to decay to of its initial
value (see Figs. 8 and 9). The results indicate that the diagonal
elements of decay more rapidly than those of

. Thus, the convergence speed of NGA becomes
faster when the algorithm separates the signals in the wavelet
domain.

VI. EXPERIMENTAL RESULTS

In order to study the behavior of the wavelet domain ap-
proach, the signals in Fig. 2 are taken in pairs and mixed by a
stationary instantaneous mixing matrix , randomly generated,
and given by

(32)

Also, zero mean Gaussian noise at 10 dB and 5-dB
signal-to-noise ratio (SNR) is added. Since the sources are
super-Gaussian, the activation function in (3) is chosen as

[25]; also the separating matrix is
initialized to . The mixtures are separated, in 30 indepen-
dent trials, with the NGA, and with the NGA in the wavelet
domain method, using the wavelet transform; the Daubechies
filters of length 8 are selected. The performance indices for
the two methods, and for the two sets of original source sig-
nals, are compared in Fig. 10, when the noise level is 10-dB
and 5-dB SNR. Plots of PIs for ordinary NGA are depicted
in the figure as solid lines, while the dotted lines represent
the performance indices obtained when NGA operates in the
time-scale domain. Separation with the NGA in the wavelet
domain results generally in faster convergence speed than

Fig. 10. Performance index obtained with NGA and NGA and wavelet
transform, for the fetal and maternal ECG sources in Fig. 2, when zero mean
Gaussian noise is present. The upper plots depict the PI when the SNR is 10 dB,
while the lower plots correspond to a SNR of 5 dB.

Fig. 11. Sources recovered with conventional NGA and the NGA in the
wavelet domain method, when the SNR is 10 dB. The waveforms s and s
correspond to the original maternal and fetal ECGs; y and y represent the
components extracted with NGA, and y and y those obtained with the
time scale approach.

when it separates in the time domain. Figs. 11 and 12 show the
original maternal and fetal ECGs ( and ), and the sources
recovered with conventional ( and ) and wavelet domain
NGA ( and ), when the noise level is 10 dB and 5 dB
SNR, respectively. Both figures illustrate that each estimated
signal is contaminated by noise and by the other source to a
higher degree when separation is performed with time domain
NGA rather than the wavelet domain method. In particular,
the FECG component is more prominent in the output ,
representing an estimate of the maternal ECG recording by
conventional NGA, than in . Similarly, the contribution of
the MECG source to is significantly reduced after about
800 samples, while it has generally larger amplitude, and is still
visible in up to about 1400 iterations. Improved algorithm
performance, observed when the sources are estimated in the
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Fig. 12. Original MECG and FECG sources (s and s ), and signals recovered
by time domain NGA (y and y ), and the wavelet domain method (y and
y ), when the SNR is 5 dB.

Fig. 13. Two periodic sub-Gaussian source signals.

time-scale domain, is partly explained by the de-noising action
of the wavelet transform. However, a more important factor is
that the sample pdfs of the original source signals are closer
to a Gaussian distribution than the pdfs of the corresponding
wavelet coefficients. It should also be noted that the issue of
wavelet selection has not been addressed in this study. Some of
the difficulties encountered when dealing with natural signals
might be alleviated by choosing an alternative wavelet family
whose characteristics are more closely matched to the particular
signal, but this is outside of the scope of this work.

The most remarkable advantage of the NGA in the time-scale
domain approach is that it can allow the separation of
sub-Gaussian, and mixtures of both sub- and super-Gaussian
signals without the need to switch between distinct nonlinear-
ities. Fig. 14 shows the average performance of the NGA and
NGA in the wavelet domain methods, over 30 independent
trials, when the two synthetic sub-Gaussian sources in Fig. 13
are mixed by a time-invariant mixing matrix shown in (32), and
the separating matrix is initialized to the identity matrix . We

Fig. 14. Performance indices obtained for NGA (solid line), and wavelet
domain NGA (dotted line), when the two original sources are sub-Gaussian
and the nonlinearity is super-Gaussian.

Fig. 15. Performance indices obtained for NGA (solid line), and NGA and
WT (dotted line), when two of the original sources are sub-Gaussian and one is
super-Gaussian, and the nonlinearity is super-Gaussian.

select a super-Gaussian nonlinearity
to separate the sources with both techniques. The results clearly
show that when operating in the time domain NGA diverges,
thus failing to separate the sources, because the activation
function does not match the statistics of the sources. When
separation is carried out in the time-scale domain, on the other
hand, the algorithm converges quite quickly and the PI remains
low thereafter: since the wavelet coefficients of the sources
have a super-Gaussian distribution, the nonlinearity matches
their statistics.

Next, the maternal ECG in Fig. 2 and the two
sub-Gaussian sources in Fig. 13 are mixed as above. In prac-
tice, such a situation arises when, for instance, ECG recordings
are corrupted by periodic power line noise, which arises due
to the power supply. The separation results shown in Fig. 15
indicate that the wavelet approach successfully estimates the
sources using a single, super-Gaussian nonlinearity, while
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Fig. 16. Original speech signals (s and s ), and sources recovered with
conventional NGA (y and y ) and wavelet domain NGA (y and y ).

Fig. 17. Original signals (s and s ), and sources recovered with
conventional NGA (y and y ) and wavelet domain NGA (y and
y ).

ordinary NGA diverges. The selection of appropriate nonlin-
earities, matching each output signal is a crucial issue in BSS,
and becomes even more important as the number of sources
increases. In the time domain, separating mixtures of sub-
and super-Gaussian sources requires sub- and super-Gaussian
activation functions, operating on the relative outputs. In
the wavelet domain, on the other hand, the transform coeffi-
cients of the sources become super-Gaussian and, therefore, a
single super-Gaussian nonlinearity leads to successful source
separation.

The sources recovered when only two sub-Gaussian sources
are mixed, are depicted in Fig. 16. The third and fourth plots (
and ) show how ordinary NGA fails to converge, while in
the time-scale domain the algorithm converges within less than

300 iterations, and the sources are separated successfully (
and ). When the original sources are the two sub-Gaussian
signals and the maternal ECG, the recovered sources are as il-
lustrated in Fig. 17. The only sub-Gaussian output plotted is ,
for the sake of clarity, and because, as it can be seen from Fig. 16,
it is the hardest to recover. In general, the signals recovered ap-
pear to be more accurate when NGA operates in the time-scale
domain.

VII. CONCLUSION

The problem of noisy, instantaneous mixtures is addressed in
this paper by separating the sources in the time-scale domain,
and using wavelet de-noising. It has been shown that the sample
pdf of the wavelet coefficients of certain 1-D source signals fits
a generalized Gaussian distribution, and that the global mixing-
separating system depends on the kurtoses of the sources, which
are higher in the wavelet domain. As a consequence, the NGA
generally has higher convergence speed when operating in the
time-scale domain, than in the time domain. Finally, the time-
scale approach has been shown to have the ability to separate
sub-Gaussian sources, and mixtures of both sub- and super-
Gaussian signals using a single, super-Gaussian nonlinearity.
Thus, performing BSS in the wavelet domain can mitigate the
problem of switching between different activation functions.
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