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Abstract.   Mobile, self-organising robots are seen to be a possible solution to over-

come the current limitations of fixed, dedicated automation systems particularly in 

the area of large structure assembly. Two of the key challenges for traditional ded-

icated automation systems in large structure assembly are considered to be the trans-

portation of products and the adaptation of manufacturing processes to changes in 

requirements. In order to make dynamic, self-organising systems a reality, several 

challenges in the process dynamics and logistical control need to be solved. In this 

paper, we propose a Multi-Agent System (MAS) approach to self-organise mobile 

robots in large structure assembly. The model is based on fixed-priority pre-emptive 

scheduling and uses a blackboard agent as a central information source and to facil-

itate more common goal directed distributed negotiation and decision making be-

tween agents representing the different needs of products and available mobile re-

sources (robots).  

Keywords: Multi-agent systems, fixed-priority pre-emptive scheduling, large 

structure assembly 

1 Introduction 

The modern manufacturing industry is facing a number of challenges due to the 

global market’s frequently fluctuating demands [1]. Traditional manufacturing sys-

tems are required to shift from mass production to mass customization [2]. The most 

common method of transporting products between manufacturing resources is by 

using conveyor belts [3]. This approach is not practical when the products are too 
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large, heavy or awkward to handle. In large structure assembly, products are com-

monly transported between manufacturing resources via cranes. This approach is 

very slow and expensive [4]. Moreover, fixed automation systems like the Elec-

troImpact E6000 [5] and HAWDE [6] have a fixed infrastructure which makes it 

difficult to change and adapt manufacturing processes.  In our previous work [7], 

we showed that a mobile system is able to control product delivery times and adapt 

to fluctuations in demand better than a fixed automation system. By making manu-

facturing resources move to products as opposed to products to resources, the need 

to transport products is greatly reduced. Also, if the products are large enough, then 

the production rate may be scaled up by placing several mobile robots around one 

product. To our knowledge, no control model has been developed to facilitate scal-

able processes with the objective to minimise the Total Weighted Tardiness (TWT) 

of such a system.  

Multi-Agent System (MAS) technology [8] is seen as a great tool for controlling 

various systems in real-time and dynamic environments. Because of the local prob-

lem solving, these systems should be able to deal with a high level of complexity, 

require less information exchange and respond quickly to unexpected events [9].  

In this paper, we present a model to control the product flow in large structure 

assembly. This model can be considered somewhat centralised due to using a central 

blackboard agent as an information source. The blackboard agent does not control 

other agents. Instead, it helps them to exchange information. In comparison to a 

more decentralised system, on one hand such an agent increases the load on infor-

mation exchange, but on the other it increases each agent’s knowledge of the envi-

ronment. As a result of that, the agents are able to make more informed decisions at 

the cost of requiring more communication between its entities [10].  

The paper is organised as follows: in section 2, the fundamental structure of the 

mobile robot factory model underpinning this work is described. The development 

of a priority aging policy for our model is described in section 3. The architecture 

of the proposed MAS approach is described in section 4. A simulation model and 

some initial results are shown in section 5. Finally, section 6 draws conclusions 

from the initial testing of this approach and points out some directions for our fur-

ther work.  

2 Problem Description 

The principle layout of the shop floor model underpinning this work is illustrated 

in Fig. 1. The fundamental assumption is that a number of products are fixed on 

static workstations and the mobile robots can freely travel on the floor between 

them. Each product therefore has a fixed location, capacity required work load, a 

due time and an associated tardiness cost. In the event of failing to meet the due 

time, the system is penalised with the tardiness cost of the tardy product multiplied 

by the tardiness time. The objective for our problem, minimising TWT, is shown in 

equation (1), where 𝑤𝑗  is the tardiness cost, 𝑇𝐶  is the completion time and 𝑇𝑑 is the 

due time. 𝑤𝑗 = 0, if the respective job j is completed on time.  
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Min ∑ 𝑤𝑗(𝑇𝑐𝑗∈𝐽 -Td)                                                                                           (1) 

 

Many resources are allowed to work on the same product in order to achieve the 

required work rate. This is permitted, because the products are assumed to be large 

enough to enable a number of mobile robots to work simultaneously on them. The 

tasks are pre-emptive, meaning that mobile robots may temporarily pause one job 

in order to work on another one. Hence, the central challenge this shop floor model 

is to find best schedule for both products and mobile robots that minimise TWT for 

a given work load. 

 

Fig. 1: Illustration of the principle shop floor organisation for mobile robot based assembly 

In this paper, a MAS-based approach for the self-organisation of mobile robots 

in large structure assembly is proposed. The motivation behind this approach is to 

help mobile robots better cope with the complexity of deciding how to distribute 

themselves among products in fixed locations. Finding the optimal schedule is a NP 

hard problem even for relatively static environments as is the case in large structure 

assembly situations [11]. Following well-established architectural patterns for MAS 

in manufacturing [12], the objectives of each product instance have been repre-

sented through Product Agents (PA) and the capabilities of each mobile agent as 

Resource Agents (RA).   

In order to achieve effective self-organisation between the agents, the decision 

making policies for the agent types as well as their communication protocols need 

to be defined. The scheduling policy that most closely matches the presented prob-

lem is fixed-priority pre-emptive scheduling that is commonly used in task sched-

uling for operating systems [13]. There, tasks are allocated to resources based on 

their priorities. A common issue with this is the starvation of low priority products 

when high priority products are constantly launched. In order to not starve low pri-

ority products, priority aging has been introduced. In our problem, the products must 

also meet set due times and therefore an appropriate priority aging policy is of high 

importance. The most commonly used priority aging policies are very basic and do 
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not consider any due times or tardiness costs. Therefore, a more sophisticated pri-

ority aging policy was required for this model.  

The objective of this paper was, therefore, to modify the fixed-priority pre-emp-

tive scheduling model to incorporate scalability and minimise TWT. 

3 Development of the Priority Aging Policy 

The integration of the priority aging policy into the task scheduling approach is 

the first key component of this paper. It is required to ensure that no low-priority 

products are starved. This is a common problem in fixed-priority pre-emptive 

scheduling where low priority tasks never get processed due to constantly arriving 

higher priority tasks. The challenge in this problem is not simply to avoid starving 

a product, but also to meet its due time. On some occasions, the arriving product 

work load requirements can be greater than the manufacturing capacity of the mo-

bile system and it is therefore inevitable that some products will be tardy. To our 

knowledge, no suitable priority aging policy for our model exists, therefore we pro-

pose and analyse our own ones.  

The first analysed priority aging policy was the linear policy (2) and the second 

one was the exponential one (3). In the two shown equations, P(t) is priority in time, 

Ct is tardiness cost, t is the current time and dt is the due time. If the due time has 

passed, the priority equals to the tardiness cost.  

𝑃(𝑡) =  𝐶𝑡 ∗ (
𝑡

𝑑𝑡
)                                                                                               (2) 

𝑃(𝑡) =  𝐶𝑡 
𝑡 

𝑑𝑡                                                                                                     (3) 

4  Model Structure 

The model uses three types of agents: product (PA), resource (RA) and black-

board (BA).  

The BA is the first agent to be launched in the simulations. It is followed shortly 

by the PAs and RAs. The RAs send a message to the BA that includes their loca-

tions. The PAs send a message to the BA that includes their due times, location, 

tardiness costs and capacity. From this information, the BA is able to compile an 

initial schedule based on the priority aging of each product. The main purpose of 

the BA is to identify conflicts in schedules and notify the potentially tardy PAs 

about it.  It is recognised that without the BA, it would be difficult, if not impossible, 

for the PAs to have sufficient knowledge to solve scheduling conflicts efficiently.  

After the notifications are sent to the PAs, the BA listens to further messages 

from PAs. The further messages can be from newly launched PAs or changes to the 

schedule from existing ones.  
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The PAs send their location, due time, tardiness cost and capacity to the BA as 

soon as they are launched. They then listen for messages from the BA or other PAs. 

A message from the BA means that this particular product will be tardy unless the 

schedule is altered. This triggers the PA to negotiate a better schedule with other 

PAs. The PAs have a master-slave relationship with RAs. This means that the PAs 

do not need to negotiate with the resources. The negotiation only occurs among PAs 

once the initial schedule has been completed and tardy products identified.  

Based on the priority ranking at any moment in time, the highest ranking prod-

ucts have the right to order just enough resources as is necessary to meet the due 

time. As a result of this, the lowest ranked products will always be starved if there 

are insufficient resources.  

The RAs have a straightforward behaviour. Firstly, they notify the BA of their 

location and secondly they listen for orders from PAs. As the slave in the master-

slave relationship with PAs, the RAs follow orders from products.  

So far, the structure of the model and each agent’s purpose has been described. 

Below, we describe all the interaction protocols that are used in the model.  

Product – Blackboard 

Product agents have two reasons to communicate with the blackboard agent. 

Firstly, all product agents send their locations, due times, tardiness costs and capac-

ities to the blackboard.  

Secondly, when the blackboard agent identifies that a product agent is tardy; it 

sends it a notification about it.   

Product – Resource  

This interaction is straightforward because product agents have a master-slave 

relationship with resource agents. Once product agents have agreed which resource 

agents each one will be occupying, they send an order to their resource agents to 

move to products and start working.  

Product – Product 

This interaction is the second key component in this model. As no priority aging 

policy can be expected to achieve an optimal result (due to the vast range of possible 

scenarios), this interaction serves as a corrective measure. This interaction is trig-

gered by a notification from the BA. The intention of the protocol is to change the 

schedule in a way that reduces total weighted tardiness in the whole system.  

When a product agent is notified about expected tardiness, is sends a message to 

all product agents that have due times after it. The message contains the product’s 

due time, location, ID, expected tardiness cost and resource shortage. The shortage 

is the capacity that is not met by the due time in the initial schedule. The responding 

product agent compares the tardiness cost of the requesting agent to its own if the 

transaction is to be accepted. If the total weighted tardiness is lower as a result of 

accepting, then the responding agent sends an accepting message with the numerical 

value of how much the interaction will reduce the total weighted tardiness.  

When several responses are received by the requesting agent, it means there is 

more than one favourable transaction available. In such a situation, the requesting 

agent accepts the first most beneficial response.  
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The reason why the request is not sent to product agents with earlier due times 

is because they only request as much as is required and any loss of resources would 

cause the whole product to be tardy for a much greater time than is reasonable.  

5  Simulation and Initial Results 

In order to analyse how various priority aging policies respond in different cir-

cumstances, a shop floor was modelled in NetLogo (version 5.2.1 [14]). As inputs 

to this model, there were four products with due times, capacities and tardiness 

costs. The simulations then followed the flowchart shown in Fig. 4 and compared 

the results with different priority aging policies. Before launch, a product’s priority 

was set to zero. The priority remained equal to the tardiness cost of a product if it 

was not completed by its due time.  

The linear priority aging policy was found to produce poor results, as shown in 

Fig. 2. The basic nature of this aging policy resulted in frequent conflicts even dur-

ing solving of some relatively simple problems. Products with low tardiness costs 

were often denied sufficient resources near their due times by products with higher 

tardiness costs and later due times. This problem occurred much more rarely with 

the exponential priority aging policy. In this policy, the priority of each product is 

increasing exponentially until its due time. This gives an advantage to products with 

low tardiness costs and earlier due times.  

 

Fig. 2: The priority in time plot for the exponential priority aging policy 

The exponential priority aging policy meets the intention of prioritizing products 

closer to their due times. The sharp increase in priority close to the due time caused 

products with low tardiness costs to reach high priority rankings and therefore in-

crease the chances of receiving the necessary resources as seen in Fig. 3a. Further 

priority aging policies were considered, but they produced either poor or incon-

sistent results. The only difficulties arise when multiple products have close due 

times, as seen in Fig. 3b. In such cases, the product with the higher tardiness cost 

and later due time may cause the earlier product to starve. Alternatively, occasion-

ally products with earlier due times and lower tardiness costs caused products with 

later due times and higher tardiness costs to be tardy.  
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Fig. 3: The priority in time plot for the exponential policy in a) easy and b) difficult environments 

 

Fig. 4: The flowchart for the priority aging simulation 
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6  Conclusions and Further Work 

In this paper a novel heterarchical scheduling approach using MAS was pro-

posed. The model is intended for mobile robots to minimize TWT in large structure 

assembly. The novel contribution of the proposed approach is the scheduling for 

products that may have several resources processing them. The mobile robots are 

treated as resources that can be dynamically allocated to any of the existing products 

in order to complete them on time. Where completion is not possible, the lowest 

possible TWT is achieved. Although MAS were used, the proposed agent organisa-

tion is only partially distributed due to the use of a central blackboard agent (BA). 

The response of this model to disruptions and increasing the number of entities will 

be assessed after further testing. In our further work, we will compare this model to 

other MAS models.  
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