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Abstract  

In this study, micro-machining of f.c.c single-crystal materials was investigated based on a hybrid 

modelling approach combining smoothed particle hydrodynamics and continuum finite element 

analysis. The numerical modelling was implemented in a commercial software ABAQUS/Explicit 

by employing a user-defined subroutine VUMAT for a crystal-plasticity formulation to gain 

insight into the underlying mechanisms that drive a plastic response of materials in high-

deformation processes. The numerical studies demonstrate that cutting-force variations in different 

cutting directions are similar for different f.c.c. crystals even though the magnitudes of the cutting 

forces are different.  
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Introduction 

In recent years mechanical micro-machining has received much attention in the 

manufacture of industrial small-size components with complex geometries, 

especially for applications in aerospace, biomedical and automotive industries and 

microelectronics [1-2]. A growing demand from various applications to reduce 

levels of defects in ultra-precision metal cutting requires a fundamental 

understanding of machining mechanisms at the micro scale. These applications 

basically involve the machining of single-crystal metals or an aggregate of single 

crystals (polycrystalline material) where each crystal may be oriented in a 

different crystallographic direction in comparison to its neighbours. Apparently, 

machining of polycrystalline materials in the micro-scale is inherently different 

from machining single crystals. From a fundamental point of view, it is of interest 

to investigate the response of machining single crystal materials in different 

crystallographic orientations and directions of cutting. This will ultimately 
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indicate the consequence for machining polycrystalline aggregates, albeit ignoring 

the effect of grain boundaries [3-4].  

Analysis of any machining technique by means of extensive experimentation is an 

expensive and time-consuming process. In addition, complexity of the underlying 

physics of single-crystal deformation severely affects the outcomes of machining. 

As a result, there has been a significant thrust in the development of analytical and 

numerical computation methods for characterisation of micro-machining 

processes. For instance, Sato et al. [5] used the Schmid factor to predict active slip 

systems during the machining process in their model. They assumed one slip 

system active continuously in each orientation setups. Micro-plasticity modelling 

of machining proposed by Lee et al. [6-7] is another limited research available in 

the literature analysing a mechanism of single-crystal machining. Shirakashi et al. 

[8] and Kota and Ozdoganlar [9] used the Bishop and Hill’s crystal plasticity 

model to predict shear angles and specific energies for f.c.c. single crystals.  

The above techniques used to assess forces and stresses in machining process of 

single crystals are usually limited to one active slip system at each incremental 

deformation. Deformation processes in real-life machining are more complex and 

require the use of a comprehensive modelling framework in analysing the cutting 

forces and stresses involved. Some researchers used molecular dynamic (MD) 

simulation to study the chip-removal mechanism [10-12] but his approach 

requires significant computational power in order to model a cutting process in 

physically meaningful volumes. Therefore, many MD simulations were applied in 

two-dimensional formulations for a small workpiece with unrealistically high 

cutting speeds.  

Selecting materials for single-crystal machining studies, mainly copper and 

aluminium have been preferred in the literature [3-12]. In this paper a well-

developed computational FE/SPH model was applied for these two mono-

crystalline materials to fully understanding the variation of cutting forces. 

Copper and aluminium have both f.c.c. structures. The plastic deformation was a 

result of resolved shear stress on 12 possible slip systems, with the Schmid 

factor determining the slip-system activation. The crystal-plasticity formulation 

presented in the next section was implemented as a VUMAT subroutine for 

employment in ABAQUS/Explicit together with the SPH (smoothed particle 
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hydrodynamics) technique to predict the deformations, stresses, plastic strain 

distribution in the f.c.c. crystalline structure of the workpiece materials. This 

allows the effects of crystallinity parameters on cutting-force variations to be 

investigated thoroughly. 

2. Crystal plasticity 

A crystal-plasticity framework has been widely used in predicting the mechanical 

behaviour of, and texture evolution in, f.c.c. materials. In the crystal-plasticity 

formulation the stress rate 𝝈̇ is related to the elastic strain rate 𝑳e as   

𝝈̇ = 𝑪 𝑳e  = 𝑪(𝑳 − 𝑳𝑷), (1) 

where C is the fourth-order elasticity tensor and 𝑳 and 𝑳𝑷 are the total strain rate 

and plastic strain rate, respectively. The f.c.c. metals have cubic symmetry; the 

elastic moduli for such crystals are particularly simple, and can be parameterized 

by only 3 material constants: 𝑪11 , 𝑪12 and 𝑪44. The following matrix expresses 

the elastic moduli of such materials: 

𝑪 =

[
 
 
 
 
 
𝑪11

𝑪12

𝑪12

0
0
0

 

𝑪12

𝑪11

𝑪12

0
0
0

𝑪12

𝑪12

𝑪11

0
0
0

0
0
0

𝑪44

0
0

0
0
0
0

𝑪44

0

0
0
0
0
0

𝑪44]
 
 
 
 
 

 . 
(2) 

 

The plastic deformation 𝑭p represents material’s plastic shear and corresponds to 

the amount of deformation that remains in the crystal after the load removal. 

According to the flow rule:  

𝑭̇p = 𝑳P𝑭P. (3) 

The plastic strain rate is assumed to be the sum of the shear strain rates 𝛾̇𝛼 over 

the number of considered slip systems. Therefore,  

𝑳P = ∑ 𝜇ij
α𝛾̇α

N

α=1

, (4) 

with 𝜇ij
α is the Schmid tensor that is equal to a dyadic product of the slip direction 

𝑠i
α and the slip plane normal 𝑛j

α:  
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𝜇ij
α = 𝑠i

α  × 𝑛j
α . (5) 

In Eqs. 4 and 5 the superscript 𝛼 specifies the slip system and N is the total 

number of available slip systems. 

The shear strain rate 𝛾̇α of the 𝛼 th slip system in a rate­dependent crystalline solid 

is determined by a visco-plastic flow rule as  

𝛾̇α = 𝛾̇0 𝑓(
τα

𝑔α
) (6) 

where the constant 𝛾̇0 is the reference strain rate on the slip system 𝛼, 𝑔α is the 

variable, which describes the current strength of that slip system at the current 

time, τα is the shear stress on slip system 𝛼, and the non-dimensional function 𝑓 

describes the dependence of strain rate on stress. The simplest flow rule is a visco-

plastic power-law expression proposed by Hutchinson [13] to describe 𝛾̇α in the 

following form:    

𝛾α̇ = 𝛾̇0 sgn (𝜏α) |
𝜏α

𝑔α
|
n

, (7) 

where n is the material’s rate sensitivity and sgn(∗) is the signum function of ∗. It 

is worth mentioning that the reference strain-rate 𝛾̇0 in this equation is assumed to 

be 10
-4

 1/s. The strength of material 𝑔α  is equal to a sum of the critical resolved 

shear stress (CRSS) and the evolved slip-resistance due to strain hardening:  

𝑔𝛼 = 𝑔𝛼|𝑡=0 + ∆𝑔𝛼 , (8) 

where 

∆𝑔𝛼 = ∑ ℎ𝛼𝛽∆𝛾𝛽

𝑁

𝛽=1

, CRSS = 𝑔𝛼|𝑡=0. (9) 

The hardening moduli ℎ𝛼𝛽 in Eq. (9) are evaluated using the hardening model 

proposed by Peirce et al. [14] as follows: 

ℎ𝛼𝛼 = ℎ(𝛾) = ℎ0 sech
2  |

ℎ0𝛾

𝑔T
𝛼|sat − 𝑔T

𝛼|𝑡=0
|,  

(10) 

ℎ𝛼𝛽 = 𝑞ℎ𝛼𝛼(𝛼 ≠ 𝛽)  
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where ℎ0  is the initial hardening parameter, 𝑞 is the latent hardening ratio and 

assumed to be 1, 𝛾 is the Taylor cumulative shear strain on all slip systems and 

𝑔T
𝛼|𝑡=0 and 𝑔T

𝛼|sat are the shear stresses at the onset of yield and the saturation of 

hardening, respectively. Therefore, the shear strain is equal to  

𝛾 = ∑ ∫ |𝛾̇𝛼|𝑑𝑡
𝑡

0𝛼 . (11) 

The user-defined material subroutine VUMAT, initially developed by Huang [15], 

modified by Kysar [16] and Zahedi [17-18] further developed by Demiral [19] 

was used to implement this single-crystal plasticity formulation. The eight 

parameters - 𝜏𝑠, 𝜏0, ℎ0, 𝐶11, 𝐶22, 𝐶44, γ̇0, 𝑛 - were considered as input material 

data. Table 1 lists the material parameters used in present simulations for copper 

and aluminium. 

Table 1 Material parameters of single-crystal copper [20] and aluminum [21] 

 
Copper Aluminium 

𝑪𝟏𝟏 = 𝟏𝟔𝟖 GPa 𝑪𝟏𝟏 = 𝟏𝟎𝟖.2 GPa 

𝑪𝟏𝟐 = 𝟏𝟐𝟏. 𝟒 GPa 𝑪𝟏𝟐 = 𝟔𝟏. 𝟑 GPa 

𝑪𝟒𝟒 = 𝟕𝟓. 𝟒 GPa 𝑪𝟒𝟒 = 𝟐𝟖. 𝟓 GPa 

𝛄̇𝟎 = 𝟎. 𝟎𝟎𝟏 𝐬−𝟏 𝛄̇𝟎 = 𝟎. 𝟎𝟎𝟏 s−1 

𝒏 = 𝟐𝟎 𝒏 = 𝟐𝟎 

𝒉𝟎 = 𝟏𝟖𝟎 MPa 𝒉𝟎 = 𝟑. 𝟒 MPa 

𝝉𝒔 = 𝟏𝟒𝟖 MPa 𝝉𝒔 = 𝟒𝟖 MPa 

𝝉𝟎 = 𝟏𝟔 MPa 𝝉𝟎 = 𝟐𝟗 MPa 

 

The data for mono-crystalline materials in Table 1 show that apart form 𝛾̇0 and 𝑛, 

which are the reference strain rate and material’s rate sensitivity, respectively, the 

elastic parameters 𝐶11, 𝐶22, 𝐶44 and the plastic parameters 𝜏𝑠, 𝜏0, ℎ0 are different 

for copper and aluminium. In the following section the machining model is 

presented followed by discussion of deformation mechanisms. 

3. Machining model  

The basic mechanism of chip formation can be understood with the use of a 

simple process of orthogonal cutting. Thus, a 3D workpiece with dimensions of 

500 µm × 500 µm × 50 µm  was selected as an appropriate representation of a 
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crystalline continuum in simulations. The workpiece was divided into two 

regions; one representing the SPH domain (200 µm × 200 µm × 50 µm) and the 

remaining part being a continuum FE domain (Figure 1). By coupling the SPH 

with FEM a large fraction of the model not in the immediate vicinity of the 

process zone is assumed to be the continuum FE domain. As a result, the 

computational time reduced significantly. Note that the accuracy of the FE/SPH 

model was deliberated in our previous research study [3]. 

 

 

Figure 1:  Orthogonal machining model (dimension in µm) 

 

In our simulations, the appropriate crystal orientations - [010], [101] and [111] - 

were selected as the normal for the cuttings plane, and the cutting process was 

carried out in four cutting directions: 0°, 30°, 60° and 90°. The corresponding 

cutting directions and orientations are shown in Figure 1 (together with the 

notation used), and four orthonormal directions in each case calculated and listed 

in Table 2.  

Table 2 Cutting orientation set (see Figure 1) 

0° 30° 60° 90° 

[uvw] [abc] [hkl] [abc] [hkl] [abc] [hkl] [abc] [hkl] 

[010] [100] [001] [√3 0 1̅] [1 0 √3] [1 0 √3 ̅̅̅̅̅
] [√3 0 1] [001̅] [100] 
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[101] [1̅01] [010] [3̅ √6 3] [1 √6 1̅] [√2 ̅̅̅̅̅
 2√3 √2] [√6 2 √6 ̅̅̅̅̅

] [010] [101̅] 

[111] [1̅ 01] [1̅ 2 1̅] [1̅ 1̅ 2] [1̅ 1 0] [0 1̅ 1] [1̅ 2 1̅] [1̅ 2 1̅] [10 1̅] 

4. Shear strain distribution  

The deceptively simple orthogonal single-crystal machining process actually 

involves complex phenomena crossing the fields of elasticity and plasticity. When 

the cutting tool advanced towards the workpiece, the latter started to deform. In 

particular, when the primary shear stress generated due to tool penetration is 

larger than the critical shear stress of single crystal material, plastic slip is initiated 

in the lattices to release the strain energy. In the presented crystal-plasticity theory 

the material flow rate on a slip system was represented in a continuum sense as a 

plastic shear strain 𝛾 (Eq. 11). A change in a shear-strain direction and magnitude 

after cutting-tool penetration was calculated and updated in the model based on 

the VUMAT subroutine. In general, the active slip systems for the f.c.c. single-

crystal structure consist of {111} slip planes and <110> slip directions. There are 

12 slip systems in total for f.c.c. structure which can be active or not at the same 

time. The activation of each slip system is determined by the value of Schmid 

factor. From the Schmid's law, it is apparent that the primary slip system will be 

the system with the greatest Schmid factor in terms of its magnitude. Figure 2 

shows the distribution of shear strain over three slip systems after the cutting 

length reached 50 µm. These three slip systems were the most active ones, 

whereas the contributions of other systems were comparatively small. It is to be 

noted that the Schmidt factors for these three slip systems were equal to -0.4082, 0 

and 0 initially. This analysis was set at (010)[100] orientation setup with 10 μm 

cutting depth, cutting tool speed equal to 1.3 m/s and friction coefficient equal to 

0.12.  
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(1̅11) [101] (11̅1)[011] (111̅)[101]  

Figure 2: Plastic shear strain γ: distribution over three slip systems 

 

5. Effect of material property 

To study the sensitivity of cutting force to variation in material properties, the 

developed three-dimensional FE/SPH model was used to analyse cutting of single 

crystals of aluminium and copper. Figure 3 shows the cutting force variation for 

chosen cutting configurations (see Table 2) in aluminium and copper. It 

demonstrates a noticeable difference in the cutting-force magnitude with a similar 

trend in cutting-force variation across different slip planes and cutting directions 

for the two materials. This emanates from the underlying difference in dislocation 

activity in the two materials reflected in their elastic and plastic material 

properties; however, the similarity in the trend indicates that kinematics of 

deformation, which depend on the arrangement of the slip systems (identical for 

all f.c.c. metals) plays a major role in determining the nature of the cutting force. 

 

 
 

(a) (b) 

Figure 3 Typical variation of cutting force for various cutting directions in single crystals of 
aluminum (a) and copper (b)  

 

Figure 4 also demonstrates that the total slip that occurs in all active slip 

systems for a given state of deformation is nearly the same for any f.c.c. 

structure. For example, when the aluminium or copper crystal were oriented 

in the (100) plane and cut in the [100] direction, the chip formation appears 
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to be affected predominantly by shear and compression ahead of the tool 

along the cutting direction (Figures 4(a) and (b)). In the case of the (101) 

orientation with the [101̅] direction, the chip separates from the contact 

region on the rake face rapidly (Figures 4 (c) and (d)). A comparison of chip 

morphologies after machining shows similarity in the type of chip formed for 

copper and aluminium. It can be seen that the nature of the deformation ahead of 

the tool, the motion of the dislocations, the subsurface deformation, and side flow 

of the work piece material depend strongly on the orientation and direction of 

cutting.  

 

  

(a) aluminium machining at (100)[100] (b) copper machining at (100)[100] 

  

(c) aluminium machining at (101) [101̅] (d) copper machining (101) [101̅] 

Figure 4: Chip formation pattern and distribution of von Mises stresses (in MPa) in machined 

single crystals  

 

The magnitude of cutting forces, on the other hand, has a stronger dependence on 

the material parameters. The level of von Mises stresses in machining of copper 

presented in Figure 4 is around 5 times higher than that for aluminium.  
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6. Concluding remarks  

The mechanism of deformation in single-crystal machining is complex. The 

importance to account for grain orientation and direction of machining in 

assessment of the overall cutting forces was demonstrated together with 

propensity of the workpiece material to generate slips when its grains undergo 

rotations. Comparing the cutting force in aluminium and copper showed that 

though the magnitude of the cutting force is different in two materials cut under 

the same conditions the character of variation of the cutting force for different 

orientation for both materials was similar.  
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