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Abstract—We consider the problem of decentralized power power control in wireless networks have been investigated i
allocation for competitive rate-maximization in a frequency- [4], [5] and surveyed in [6]-[8]. In this paper, we are intstesl
selective Gaussian interference channel under bounded chael , the other scenario where the users are competing agaiest o
uncertainty. We formulate a distribution-free robust fram e- - L . . .
work for the rate-maximization game. We present the robust- a”‘?ther and.a_|m|ng to ma_xu_ng their own information rates.
optimization equilibrium for this game and derive sufficient This competitive rate-maximization problem can be modklle
conditions for its existence and uniqueness. We show that an as a strategic noncooperative game. The Nash equilibriym [9
iterative waterfilling algorithm converges to this equilibrium un-  of this game can be achieved via a distributed waterfilling
der certain sufficient conditions. We analyse the social piperties 5 14qrithm where each user performs waterfilling by consider
of the equilibrium under varying channel uncertainty bounds for . . . " .
the two-user case. We also observe an interesting phenomeno ing the multi-user interference as an additive colour_ed_;eno_l
that the equilibrium moves towards a frequency-division mutiple ~ However, most of the current results on rate-maximization
access solution for any set of channel coefficients under irmasing  and waterfilling algorithms assume the availability of petf

channel uncertainty bounds. We further prove that increasng information which is a strong requirement and cannot be met
channel uncertainty can lead to a more efficient equilibrium by practical systems

and hence, a better sum rate in certain two-user communicabin Thi dd the followina fund tal tions:
systems. Finally, we confirm, through simulations, this impove- IS paper addresses the Ioflowing fundamental questions:

ment in equilibrium efficiency is also observed in systems wh 1) How can the users independently allocate power if the
a higher number of users. channel state information (CSI) they have is imperfect? How
Index Terms—Game theory, rate-maximization, Nash equilib- can we formulate a rate maximization game under channel
rium, waterfilling, CSI uncertainty, robust games. uncertainty and what is the nature of the equilibrium of this
game? ii) What are the existence and unigueness propefties o

such an equilibrium? How can such a solution be computed

|. INTRODUCTION by a distributed algorithm and what are the conditions for

Rate-maximization is an important signal processing proBsymptotic convergence of such an algorithm? iii) How are
lem for power-constrained multi-user wireless systems. tiese conditions affected by the channel uncertainty? iV
involves solving a power control problem for mutually inis the effect of uncertainty on the sum-rate and the price
terfering users operating across multiple frequencies in0h anarchy of such a system? In answering these questions,
Gaussian interference channel. In modern wireless systef¥fs can gain further insight into the behaviour of waterfglin
where users may enter or leave the system freely and maigorithms and methods to improve sum-rate in general.
decisions independently, decentralized control appreseind
distri.buted algorithms are necessary. Game—theoretihmﬂet A. Summary of Main Results
provide an appropriate set of tools for the design of such
algorithms and have been increasingly used for the analysisl "€ main contributions of this paper are three-fold. Firs,
and study of communications problems [3]. provide a game_—thgore_tic solution for the problem of coriqp_et

In multi-user systems, the users can either cooperate witff rate-maximization in the presence of channel unaeai
each other to achieve a socially optimal solution or compe®econdly, we analyse the efficiency of the equilibrium as
against one another to optimize their own selfish objective® function of the channel uncertainty bound and prove that

Cooperative game-theoretic approaches to the problem the robust waterfilling solution proposed achieves a higher
sum-rate with increasing uncertainty under certain coot

A.J.G. Anandkumar, S. Lambotharan and J.A. Chambers are tniz Finally, we verify these results via simulations. We showatth
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on Signals, Systems and Computers [2]. for this game. At the equilibrium, the users perform a modifie



waterfilling operation where frequency-overlap among sisesiuthors present a numerically computed algorithm unlile th
is penalized. We derive sufficient conditions for the exisee closed form results presented here. Such a numerical soluti
and uniqueness of the equilibrium and for the convergenpeevents further mathematical analysis of the equilibraumd
of an asynchronous iterative waterfilling algorithm to théds behaviour under different uncertainty bounds. Alsas th
equilibrium of this game. uncertainty model is different from ours, where we assume
In our work, we investigate the effect of channel uncertainthe availability of CSI of the interfering channels and that
on the sum-rate of the system for the two-user case under tthese quantities have a bounded uncertainty.
scenarios, viz., a two-frequency system and a system with
large number of frequencies. For the two-frequency system,A similar problem of rate-maximization in the presence
the equilibrium sum-rate improves and the price of anarclyy uncertainty in the estimate of noise-plus-interferetae
decreases as the channel uncertainty increases under leighdue to quantization in the feedback channel has been
interference. On the other hand, the behavior is reversedcansidered in [25]. This problem has been solved using a
low interference. Another important contribution of ournko probabilistically constrained optimization approach a@din
is to show that increasing channel uncertainty always driveur work, also results in the waterfilling solution movingsér
the equilibrium closer to a frequency division multiple @ss to an FDMA solution, with corresponding improvement in
(FDMA) solution for any set of channel coefficients for thesum-rate. However, the effect of quantization on the cooratt
system with asymptotic number of frequencies. This is beeaudor existence and uniqueness of the equilibrium and conver-
the users become more conservative about causing intecieregence of the algorithm have not been considered. The results
under increased uncertainty and this leads to betterjpaitig presented in [25] are for a sequentially updated algorithm
of the frequencies among the users. Under certain chanwdlereas our results allow asynchronous (and thus seglientia
conditions, this also translates to an improvement in tie-suor simultaneous) updates to the algorithm. Also, the power
rate and a decrease in the price of anarchy of the system, Ttallcations computed by such a probabilistic optimizafionr
we show an interesting phenomenon where increased chammalation do not guarantee that the information rates exglect
uncertainty can lead to a more efficient equilibrium, anddegn will be achieved for all channel realizations, unlike ourrate
a better sum-rate in certain multi-user communicationesyist case optimization formulation. Furthermore, the relatveor
(and not just the absolute error due to quantization) in the
B. Related Work interference estimate as defined in [25] is assumed to be
An iterative waterfilling algorithm for maximizing infor- bounded and drawn from a uniform distribution, which is
mation rates in digital subscriber line systems [10] is amaccurate. In addition, this bound on the relative erran ca
early application of a game-theoretic approach to desigain only be computed if the noise variance at the receivers is
decentralized algorithm for multi-user dynamic power coht assumed to be known (which is not the case). The bounds
This framework has been further analyzed and extendeddpmputed in such a fashion are very loose and will degrade
[11]-[15]. The inefficiency of the Nash equilibrium (whichsystem performance. The other assumption that this relativ
need not be Pareto optimal) has been addressed in [16] @&nbr bound is in the rang@,1) means that the absolute
[17] and methods to improve the sum-rate of the system lkqyantization error has to be less than the noise variand¢eat t
using various pricing schemes and modified utility funcsiorreceivers, which restricts the applicability of the apmtmaOur
have been presented in [15], [18], [19]. A centralized coliegr  problem formulation has no such limitation on the uncetsain
maximizing the sum-rate of the system leads to a non-convesund based on the noise variances in the system.
optimization problem and has been shown to be strongly NP—
hard in [20]. The Pareto-optimality of the FDMA solution Robust rate-maximization for a cognitive radio scenario
for this sum-rate maximization problem under certain clenrwith uncertainty in the channel to the primary user has
conditions has been proved in [21]. been presented in [26]. This leads to a noncooperative game
Uncertainty in game theory and distributed optimizatioformulation without any uncertainties in the payoff fucts
problems has only recently been investigated. The issue adfthe game (unlike in our case) with robust interferencétim
bounded uncertainty in specific distributed optimizatisalp acting as a constraint on the admissible set of strateglds. T
lems in communication networks has been investigated ih [2@ame is then solved by numerical optimization as there is no
wherein techniques to define the uncertainty set such tbgt tttlosed form solution.
can be solved distributively by robust optimization techuds
are presented. In [23], incomplete-information finite game Initial results of our work, involving the problem formu-
have been modelled as a distribution-frebust gamevhere lation of the robust rate-maximization game and the results
the players use a robust optimization approach to counfer sufficient conditions for existence and uniqueness ef th
bounded payoff uncertainty. This robust game model alsguilibrium, along with the conditions for asymptotic cenv
introduced a distribution-free equilibrium concept cdlithe gence of the waterfilling algorithm to the equilibrium, have
robust-optimization equilibriumon which our approach is been presented in [1]. Initial results on the analysis of the
based. efficiency of the equilibrium was presented in [2]. We now
A brief look at a robust optimization approach for theextend this work to include detailed proofs and further gsial
rate-maximization game with uncertainty in the noise-plusf the efficiency of the equilibrium as a function of the chahn
interference estimate has been presented in [24], where timeertainty bound.



C. Paper Outline fork=1,...,N andq = 1,...,Q, wherep;***(k) is
This paper is organized as follows: Section Il describes the maximum power that is allowed to be allocated by

the system model and provides the necessary preliminaries. userg for the frequency birk.

Section Il formulates the robust game model for the rate- Each receiver estimates the channel between itself and all
maximization game for the single-input single-output (S)S the transmitters, which is private information. The powko-a
frequency-selective Gaussian interference channelic®elst cation vectors are public information, i.e. known to all ngse
presents the robust-optimization equilibrium for this gamEach receiver computes the optimal power allocation across
and conditions for its existence and uniqueness, along witf frequency bins for its own link and transmits it back te th
the conditions for asymptotic convergence of the watargjlli corresponding transmitter in a low bit-rate error-freedtesck
algorithm to the equilibrium. Section V presents the an-a|yschannel. Note that this Igad_s to sharing of more information
on the effect of uncertainty on the sum-rate of the system fépmpared to other works in literature such as [14]. The caknn
the two-user scenario. Section VI presents simulationltesistate information estimated by each receiver is assumed to

and Section VII presents the conclusions from this work aftRve & bounded uncertainty of unknown distribution. Edigs
possible future research directions. is often used to approximate unknown and potentially com-

plicated uncertainty sets [27]. The ellipsoidal approxioa

has the advantage of parametrically modelling complicated
Il. SYSTEM MODEL AND PRELIMINARIES data sets and thus provides a convenient input parameter
fo algorithms. Further, in certain cases, there are statist
reasons leading to ellipsoidal uncertainty sets and alsoltse
in optimization problems with convenient analytical stures

Notations usedMectors and matrices are denoted by lowe
case and uppercase boldface letters respectively. Thatoper
()T, ()"T,E{-} and| - || are respectively transpose, trans
pose of matrix inverse, statistical expectation and Eeelid [28], [29]- ) ) )
norm operators. The diagonal matrix with the arguments as/Ve consider that at each frequency, the uncertainty in the
diagonal elements is denoted Byag(-). The quantity[A];; channel state mformgtlon_ of each user is deterministicall
refers to the(i, j)-th element of A. R™*" is the set of modelled under an ellipsoidal approximatton
m X n_matrices with real non-negative elements. The spectral
radius (largest absolute eigenvalue) of mattixis denoted 7= {F"‘q(k) +AFgn Z AP kl* <€
by p(A). The operationz)? is defined adz]® = a if v < 74 (3)
a; xifa < z < b; bif z > b and (2)* £ max(0, ). Vk—l,...,N},

The matrix projection onto the convex sét is denoted by

[x]2 £ argminge o ||z — x||2. The termw > 0 indicates that wheree, > 0V q € Q is the uncertainty bound and

all elements ofw are positive andX - 0 indicates that the )

matrix X is positive definite. Fog(k) 2 | Hrg(K)] , 4)

We consider a system similar to the one in [14], which is a [Hoq(K)|?

SISO frequency-59|ective Gaussian interference chanitiel Wyith F,q(k) being the nominal value. We can consider un-
N frequencies, composed ¢f SISO links.2 £ {1,...,Q} IS certainty in F,,(k) instead of H,,(k) because a bounded

the set of the) players (i.e. SISO links). The quantify,, (k) uncertainty in F,,(k) and H,,(k) are equivalent, but with
denotes the frequency response of thth frequency bin of different bound<.

the channel between sourceand destinatioy. The variance  The information rate of usey can be written as [30]
of the zero-mean circularly symmetric complex Gaussian

noise at receivey; in the frequency bink is denoted by R — ilog <1Jr pq(k) > )
a2(k). The channel is assumed to be quasi-stationary for the = Pt o2(k) + 3,2 Fra(k)pr (k) )

duration of the transmission. Let’(k) £ &2 (k)/|Hgq(k)|? R

and the total transmit power of usgrbe P,. Let the vector Whereo(k) = o7(k)/|Hyq(K)[*. The two popular measures
sq 2 [54(1) 54(2) ... s4(IN)] be theN symbols transmitted by of “inefficiency” of the eqwhbnq .of a game are the price of
userq on the N frequency bins ang, (k) £ E{|s,(k)|>} be @narchy and the price of stability. The price of anarchy is
the power allocated to the-th frequency bin by useg and defined as the ratio between the objective function value at
Py 2 [pa(1) py(2) ... py(N)] be the power allocation vector.the socially optimal solution and theorst objective function

The power allocation of each usgthas two constraints: ~ Value at any equilibrium of the game [31]. The price of
. . stability is defined as the ratio between the objective fionct
o Maximum total transmit power for each user

value at the socially optimal solution and thestobjective

) N function value at any equilibrium of the game [31]. We
E{llsqll3} = pq(k) < Py, (1) consider the sum-rate of the system as the social objective
k=1
forg=1,...,Q, Wherqu is power in units of energy IMore specifically, we have a spherical approximation in (3).

. 2The model considered here has some redundancy in the tinterfiar
per transmitted symbo_l. the case whetFq (k) = 0 which leads to including?rq (k) + AF,., 5 < 0
« Spectral mask constraints in the model which can never happen in practice. Howeves tlies not
affect the solution in our method due to the nature of the max-problem

E{|sq(k)|*} = pq(k) < Py (k), (2) formulation in (11) which leads to selection of positive e of AF,., .



function. The sum-rate of the system is given by robust optimization problem can be written ag,q € (2,

Q N
: pq(k)
S = R,. (6) max min log (1 + — )
q; ' Pi Fra€7y ; o; (k) +§qFrq(k)pr(k)

In our case, the price of stability and anarchy are the same ¢ Py € Py

as we prove the sufficient conditions for the existence of a (10)
unique equilibrium in Theorem 1. Thus, the price of anarchyhere F, is the uncertainty set which is modelled under
PoA, is the ratio of the sum-rate of the system at the sociellipsoid approximation as shown in (3). This optimization
optimal solution,S*, and the sum-rate of the system at thgroblem using uncertainty sets can be equivalently written

robust-optimization equilibriums™®, i.e., a form represented by protection functions [22] &g € €,
S* N
PoA = ——. ©) : ( Pq(k) )
Grob max min log | 1+
. .y e ggin ) log 2(R)+ 3 (Fogk)+AFypq 1)py (k)
Note that a lower price of anarchy indicates that the equilib k=1 r£q
rium is more efficient. ot Z IAF, o4l < 63’ Py € Py (11)
r#q
[Il. ROBUST RATE-MAXIMIZATION GAME FORMULATION  From the Cauchy-Schwarz inequality [32], we get
. . 1
A. Nominal Game - No Channel Uncertainty ZAFr‘q,kp'r(k) < [Z |AF,q 52 Z |p,,A(k:)|2:|
The problem of power allocation across the frequency bins 7#¢ T#q T#4q (12)
is cast as a strategic noncooperative game with the SIS® link < eqy /Y2 p2(k)
— T+q T

as players and their information rates as pay-off funct{@ds
Mathematically, the nominal gam&"™ can be written as, Using (12), we get the robust garg&°® as, Vq € Q,

Vg € Q, N k
N pa(k) maleog (1+ Po(k) )
x> o (14 : ) = 02K+ Frg(k)pe(k)+ g[S P2(H)

Pq r T

part o2(k) + > Frglk)pe(k) (8 7 7
r£q s.t. pg € Py (13)

s.t. Pg € Py, Now that we have defined the problem for robust rate-
whereQ 2 {1,....Q} is the set of theQ players (i.e. the maximization under bounded channel uncertainty, we ptesen
SISO links) andP, is the set of admissible strategies of uséf solution to the optimization problem in (13) for a single
¢, which is defined as user in the following section.

P, 2 {pqERN: 0 < pq(k) < pi**(k), N _
C. Robust Waterfilling Solution
N 9)
qu(k) =P, k=1,..., N}. The closed-form solution to the robust optimization praile
k=1 in (13) for any particular usey is given by the following

The inequality constraint in (1) is replaced with the ecyali theorem:

constraint in (9) as, at the optimum of each problem in (8)emma 1. Given the set of power allocations of other users
the constraint must be satisfied with equality [14]. To avoig

A .
vi i e g =11P1s---,Pg-1,P sy P , the solution to
the trivial solutionp, (k) = pi**(k) Vk, it is assumed that ¢« = {p1 a—1> Pg+1 Q)

ZkN:ﬂ?_ZMI_ > P, Furthgr, the play(_ars can be Iimit_ed to puremaxiv:log <1+ pq(k) >
strategies instead of mixed strategies, as shown in [17]. P 02 (k) + 3 Frq(k)pr (k) + €[S p2(k)
r#q r#q
s.t. DPq € Py (14)

B. Robust Game - With Channel Uncertainty

] is given by the waterfilling solution
According to the robust game model [23], each player

formulates a best response as the solution of a robust @worst p; = RWFq(p—¢), (15)
case) optimization problem for the uncertainty in the p{ayo\hoere the waterfiling operatorRWF,(-) is defined as
function (information rate), given the other players’ stes. RWF, (p )} N 4
If all the players know that everyone else is using the robuLt BTk

optimization approach to the payoff uncertainty, they wioul Py " ()
then be able to mutually predict each other’s behaviour. Th{uqoi(k)z Frq(K)pr (k) —e¢, Zp%(k)] (16)
robust games*°® where each player formulates a worst-case r#q r#q 0



for k = 1,..., N, where, is chosen to satisfy the power Algorithm 1 — Robust Iterative Waterfilling Algorithm
constrainty",_, p;(k) = P,. Input:

Q. Set of users in the system

P,: Set of admissible strategies of user

T, Set of time instants: when the power vectopf,") of
userq is updated

Proof: This can be shown using the Karush-Kuhn-Tucker
optimality conditions [27] of this problem. ]
The robust waterfilling operation for each user is a dis-
mbUt?d worst-case optlmlzat|on _under boqn_ded chanrjel un T Number of iterations for which the algorithm is run
certainty. Compared with the original waterfilling opeoatiin afoe Ti ;
S o 74(n): Time of the most recent power allocation of uger
[14] under perfect CSI (i.es, = 0), we see that an additional available to usey at timen
term has appeared in (16) fey > 0. This additional term can RWF,,(-): Robust waterfilling operation in (16)
be interpreted as a penalty for allocating power to freqigsnc L 0)
having a large product of uncertainty bound and norm of the INitidlization: n =0 andpg” < anyp € P, Vg € {
powers of the other players currently transmitting in those fof 7= 0to 7' do (r9(n)) _
frequencies. This is because the users assume the woest-cas ,(r+1) _ RWF, (p,q )v if ne 7T,
interference from other users and are thus conservativetabo pgn), otherwise,
allocating power to such channels where there is a strongend for
presence of other users.
Having derived the robust waterfilling solution for a single
user in the presence of channel uncertainty, we considg{d
whether a stable equilibrium for the system exists and if so,
what its properties are and how it can be computed in the
multi-user scenario in the following section.

Yq € Q.

keDy,ND, (20)

max_ F.,(k), if r#£q,
[Smaz] A 4
0, otherwise

whereD, is any subset of1,..., N} such that\" — Dy C
IV. ROBUST-OPTIMIZATION EQUILIBRIUM D, C{l,...,N}.
The sufficient condition for existence and uniqueness of
the RE of gameZ™ and for the guaranteed convergence of
Algorithm 1 is given by the following theorem:

The solution to the gam&™" is the robust-optimization
equilibrium (RE). At any robust-optimization equilibriuf
this game, the optimum action profile of the playérs; },co
must satisfy the following set of simultaneous waterfillingheorem 1. Game %™ has at least one equilibrium for
equations¥q € , any set of channel values and transmit powers of the users.

* * * * * * Furthermore, the equilibrium is unique and the asynchraou

p; = RWFq(p1,..., P31, Pg11,- -, PQ) = RWFQ(p*(ql)'?) iterative Waterfillingqalgorithm desccr]ibed in Algoritﬁlm bue-

H ob
It can easily be verified that the RE reduces to the Na%ﬁrges to the unique RE of gam€® as the number of

equilibrium of the system [14] when there is no uncertainty i erations f_or W.h'.c.h the a_lgonth_m Is run” — oo for any
: - s?t of feasible initial conditions if

the system. In Section V, we analyse the global efficiency o

the RE and show that the RE has a higher efficiency than the p(8™M) <1 — p(E), (21)
Nash equilibrium due to a penalty for interference which en- i _ )
courages better partitioning of the frequency space arriomg Y/hereE and S are as defined i19) and (20) respectively.

users. The robust asynchronous iterative waterfilling rithgym Proof: See Appendix C. u
for Computing the RE of gam@mb in a distributed fashion In the absence of uncertainty' i.e. Whe(p: 0 Vq c Q,
is described in Algorithm 1. we can see that this condition reduces to condition) (i

[14] as expected. Sincg(E) > 0, the condition onS™*

. o becomes more stringent as the uncertainty bound increases,

A. Analysis of the RE of Gante™" i.e. the set of channel coefficients for which the existenice o
Let V' = {1,..., N} be the set of frequency bins. L& a unique equilibrium and the convergence of the algorithm is

denote the set of frequency bins that ugexould never use guaranteed shrinks as the uncertainty bound increases, Als

as the best response to any set of strategies adopted byfthm Lemma 3, we can see that the modulus of the waterfilling

other users, contraction increases as uncertainty increases. Thisdtet

that the convergence of the iterative waterfilling algarith

becomes slower as the uncertainty increases, as shown in

simulation results.

D 2 {ke {1,...,N} :
(18)
[RWFq(p )], =0 ¥p &P},
n Corollary 1. When the uncertainties of all th€ users
whereP_g = Py x -+ X Pq—} x P +X1Q>< +-+ X Pq. The non- are equal (saye), the RE of the game&™ is unique and
negative matrice® andS™** € R are defined as Algorithm 1 converges to the unique RE of ga#ig® as
i T — oo for any set of feasible initial condition if
[E] N {Eqa if r#q,
qr

0, otherwise (19) p(S™) <1 —€(Q—1) (22)



Proof: When the uncertainties of af) users ise, we get Tx 1 .

P(E) = €(Q - 1). n
The above corollary explicitly shows how the uncertainty

bound and the number of users in the system affect the
existence of the equilibrium and the convergence to the
equilibrium using an iterative waterfilling algorithm. Far
fixed uncertainty bound, as the number of users in the system
increases, there is a larger amount of uncertain informatiox 2 . Rx 2
in the system. Hence, the probability that a given system for [1.1]

a fixed uncertainty bound will converge will decrease as tffdg- 1: Anti-symmetric system witl) =2, N =2, &1 =2 =
number of users in the system increases. Alsg(@—1) > 1, ¢ and the noise variances for both users in both frequencies

we will not have a guaranteed unique equilibrium and algerit'S - T2he channel 29"’“”5 arqH11(12)|2 = |H11(§)|2 =
mic convergence for non-zero uncertainty bounds regasdies [Hoo(1)] :2|H22(2)| = 125|H12(2)| = [Ho(D)* = «a
the channel coefficients. This will help designers plan far t @nd [Hi2(1)]* = [H21(2)]° = ma with m > 1 and

appropriate uncertainty bounds based on the planned number @ < 1. The power allocations for this system at the
of users in the system. robust-optimization equilibrium are presented in (23).

V. EFFICIENCY AT THE EQUILIBRIUM — TWO-USERCASE « High interference: Whem? < a(1 — p), the sum-rate

In this section, we analyse the effect of uncertainty on the increases and the price of anarchy decreases as the
social output of the system. For the two user case, the worst- channel uncertainty bound increases.
case interference in each frequency reduces(ﬂbq(k) + « Low interference: Whew? > map, the sum-rate de-
eq)p,,A(k) with ¢,» = 1,2 and ¢ # r. This means that the creases and the price of anarchy increases as the channel
robust waterfilling operation for the two user cagg=£ 2) is uncertainty bound increases.
simply the standard waterfilling solution with the worssea
channel coefficients. We restrict the analysis to the twarus

case with identical noise varianeg (k) = o® Vk,q across S TE '

all frequencies and identical uncertainty bourgs= e; — ¢ ways when t.here is high |nterference and when there is low
and total power constraingff,lpl(k) _ Zgﬂm(’f) — Py mterfergnce in the. system. This suggests that there mlght. b
for both users. These results can be extended to the n8ncertain level of interference where the sum-rate and price
identical case along similar lines. In order to develop acle®l @narchy do not change with change in uncertainty. This is
understanding of the behaviour of the equilibrium, the surfiven by the following proposition:

rate of the system is first analyzed for a system with two Proposition 1. At the level of interferencex = av,

frequencies ¥ = 2) and then extended to systems with largehere

(N — oo) number of frequencies. 2 Am 1
ao——<((m+1)2+ ) —m—l)7 (24)

Proof: See Appendix D. ]
We can see from this result that the RE behaves in opposite

2m o2

A. Two Frequency Case\( = 2
g y N=2 the sum-rate and the price of anarchy are independent of the

_ Consider a two-frequency anti-symmetric system as shoyWye| of uncertainty or the power allocation used. Furthenen

in Figure 1 where the channel gains af#fi,(1)]> = 4t this value of interference, the price of anarchy is eqaal t
[Hiu(2)]? = [Hn(1)]? = [Hn(2)]? = LHe@)? = iy

|H21(1)|2 =« and|H12(1)|2 = |H21(2)|2 =ma withm > 1
and0 < « < 1. From (16) the power allocations at the robust-
optimization equilibrium of this system are,

Proof: See Appendix E [ |
We can see that even for such a simple system, the global
behaviour of the robust-optimization equilibrium appetos

pi(1) = [ — 0% = (a + e)p2(1)] 7, be quite complex. This indicates that the global properties
p1(2) = [p1 — 0 — (ma+ €)p2(2)] T, of the robust-optimization equilibrium for larger systefss
2 (23)  quite strongly dependent on the level of interference in the
p2(1) = [p2 — 0% — (ma + e)py (1)]F a gy fepende . . -
9 I system, which is seen in the following results with asymiptot
p2(2) = [p2 — 0" = (a+ e)p1(2)]7, number of frequencies. However, the underlying nature ef th
and the total power constraint for each usewiiél)+p;(2) = algorithm for the two-frequency case is that the RE moves
p2(1) + pa(2) = 1. Let pi(1) = p, hence, by symmetry, towards the FDMA solution as the uncertainty bound increase
p1(2) = p2(1) =1 —p, p2(2) = p and = pz = . (from (63)).

The following theorem presents the effect of uncertainty on
the sum-rate and price of anarchy of the system for the high .
interference and low interference cases. % Large Number of Frequencies/(— oo)
. . We considerJ(k), defined as
Theorem 2. For the two-user two-frequency anti-symmetric (k)

A

system described above, we have the following results: J(k) = —p1(k)p2(k), (25)



as a measure of the extent of partitioning of the frequéncy and thus sum-rate and price of anarchy are not affected by
It is minimum (J(k) = —1) when both the users allocate alluncertainty.
their total power to the same frequenkyand is maximum Remark2. The results of this section are not just limited to the

(J(k) = 0) when at most one user is occupying the frequengypst-optimization equilibrium for the system presertiece.
k. Note thatJ(k) = 0 Vk € {1,..., N} when the users adopt\yhen the uncertainty = 0, the framework presented here can

an FDMA scheme. _ _ be used to analyse the behaviour of the Nash equilibriumeof th
The following lemma describes the effect of the uncertainfierative waterfilling algorithm as a function of the interénce
bound on the extent of partitioning of the system: coefficients.

Lemma 2. When the number of frequencie¥, — oo, the Remark3. The modified waterfilling operation in (16) can also
extent of partitioning in every frequency is non-decregsis be used as a pricing mechanism to achieve improved sum-rate
the uncertainty bound of the system increases for any setpefformance in a system with no uncertainty wherés a
channel values, i.e., design parameter, with all the analytical results preskhéze
b still being valid.
&J(k) >0 Vke{l,...,N} when N =00, (26)
with equality for frequencies wheté(k) = 0, whereJ(k) is VI. SIMULATION RESULTS
defined in(25) In this section, we present some simulation results to study
) the impact of channel uncertainty on the RE by comparing
Proof: See Appendix F. ~ ® it with the ideal scenario of NE under perfect CSI. Figure 2
The above lemma suggests that the robust-optimizatighyys the simulation results for the two user and two fre-
equilibrium moves towards greater frequency-space it ,ency scenario and Figures 3—10 show the results for a more
ing as the uncertalnty _bound increases when there is a 'aﬁb%eral system under different settings.
num.ber of frequencies in the systlem. In oth_er words, the REIs|, Figure 2a, we can see the sum-rate at high interference
moving closer to an FDMA solution under increased channgl 5 fynction of interference and uncertainty in the system
uncertainty. When the FDMA solution is globally optimalghown in Figure 1. The flat region corresponds to the sum-
this will lead to an improvement in the performance of thgyie at pareto optimal solution (FDMA) and the edge of
equilibrium. This is stated in the following theorem: the surface corresponds to the sufficient condition in (&1).
Theorem 3. As the number of frequenciel, — oo, the sum- can be seen that the Nash equilibrium (uncertaiaty; 0)
rate (price of anarchy) at the robust-optimization equilisn Moves closer to the Pareto optimal solution as the intenfere
of the system is non-decreasing (non-increasing) as therundncreases. It is also evident that the sum-rate increasea fo

tainty bound increases it/ k € {1,..., N}, fixed interference as uncertainty increases, as expeated fr
1 Theorem 2. In Figure 2b, we can see the sum-rate at low
(Fo1(k) — €)(Fia(k) —€) > 1 (27) interference as a function of interference and uncertainty

As expected from Theorem 2, the sum-rate decreases as the
Proof: Using [21, Corollary 3.1], we find that the sum ofyncertainty increases.

the rates of the two users in the frequericis quasi-convex |n Figures 3-10, the behaviour of the equilibrium under

only if F51(k)Fi2(k) > 1/4. Let C be the minimum number yarying uncertainty bounds is investigated through nucari

of frequencies occupied by any user. When there are oRjynylations. The simulations are computed for a system with

two users and a large number of frequenci@s> 1. If the () ysers andN frequencies averaged over 5000 channel

condition 1 (k) Fi2 (k) > (1 + #15)? is satisfied for some regjizations. The channel gains a., (k) ~ Nc(0,1) for

C = 2 for all frequenciest € {1,..., N} (thus satisfying ;. - 4 and H,,(k) ~ N¢(0,2.25). The channel uncertainty

Fy1(k)Fi2(k) > 1/4), then the Pareto optimal solution ismodel has nominal valug,., (k) = F.(k)(1 + e,4(k)) with
FDMA [21, Theorem 3.3]. This needs to be satisfied for th@,.q(k;) ~ U(_g, g), § < 1. The specific parameter values
worst-case channel coefficients which leads to (27). TH, fysed for the simulations are provided above each figure. Note
solution moving closer to FDMA will improve the sum-ratepat the zero uncertainty solution corresponds to the Nash
of the system. From Lemma 2, the robust equilibrium movegilibrium and the nominal solution is the solution reisigt
closer to FDMA as uncertainty increases and thus will resyfom ysing the erroneous channel values in the traditicatatr
In an improvement in sum-rate. maximization gamé* without accounting for its uncertainty.
The Pareto optimal solution under this condition (WhiCknhe effect of uncertainty, number of users and number of
is FDMA) is constant under varying uncertainty bounds &gequencies on the average sum-rate of the system, thegavera
such an uncertainty in the interference coefficieffits(k) and  number of frequencies occupied by each user and the average
F51(k) does not affect the FDMA solution where there is nfymper of iterations for convergence are examined. In these
interference. Thus, an increase in sum-rate will resultrin digures, the Nash equilibrium point is when the uncertaisty i
decrease in price of anarchy. B o0
Remarkl. For the special case of frequency-flat systems, atln Figure 3, it can be observed that the sum-rate at the
the equilibrium, all users have equal power allocation fo d\ash equilibrium under perfect CSl is less than the sum-rate
frequencies and this is not dependent on the uncertaintyaththe robust-optimization equilibrium under imperfectICS
the CSI. This leads to no change in the extent of partitionirend that the gap in performance increases as the uncerdainty
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each user occupies at the robust-optimization equilibrigm
lesser than at the nominal solution, regardless of the numbe
of users, as can be seen in Figure 7. This implies that the
users are employing a smaller number of frequencies, which
demonstrates the improved partitioning of the frequenagcep

Average number of iterations

% among the users in order to reduce interference. Hence, this
leads to the higher sum-rates as observed in Figure 3.
3, In Figures 8 and 9, it can be observed that the average
2 3 2 5 6 7 number of iterations for convergence increases as the uncer
Number of users tainty 4, and the number of user increase respectively.

Fig. 9: Average number of iterations vs. number of usérs, This is as expected from Lemma 3 and Corollary 1, as the
modulus of the block-contraction in (39) increases as the

uncertainty increases. This indicates that the step size of

increases. Under imperfect CSI, the power allocation usieg each iteration reduces as uncertair_1ty increases, leading t
robust-optimization equilibriufnin (16) and (17) has higher Slower convergence. In Figure 10, it can be observed that
sum-rate as uncertainty increases, because the users gze (g average number of iterations increases with the number
cautious about using frequencies with significant inteniee, ©f frequencies. This is due to the fact that when there are
thus reducing the total amount of interference in the systefjore frequencies, and as such there is a greater probability
The Pareto optimal solution in this scenario is some form §f @ channel realization being drawn from the tail of the
FDMA (where the specific channels allocated to a particul§2ussian distribution used to generate them, which resuits
user will depend on the actual channel gains), and does figt&/ler modulus of the block-contraction in (39) on average
depend on the channel uncertainty bound for a given syst@fgater number of iterations are required in order to caever
realization. Thus, when the sum-rate of the system inceead@ the equilibrium. Thus, the trade-off for robust solugamith

with rise in uncertainty, we can expect that the price of einar higher sum-rates is in a higher number of iterations before

will decrease. convergence.
In Figure 4, it can be observed that the sum-rate of the
system under the robust solution reduces when the number of VIlI. CONCLUSIONS

users increases. This is because having a greater number
users results in higher interference for all users and fifieste

is strong enough to counter user diversity which would have
resulted in higher sum-rates if the users were on an FD
scheme. In Figure 5, it can be observed that the sum-rateof
system improves with increase in number of frequencies
also that the robust solution continues to perform bettan th
the nominal solution even when the number of frequenci

?;1 this paper, we have presented a novel approach for rate-
aximization games under bounded channel state informatio
certainty. We have introduced a distribution-free rolios
mulation for the rate-maximization game. The solution ts th
me has been shown to be a modified waterfilling operation.
e robust-optimization equilibrium (RE) for this game has
ggen presented and sufficient conditions for its existence,
increases. unigueness and asymptotic convergence of the algorithm to
In Figure 6, it can be seen that the robust solution resuH]?e RE haye been denve(_j. For the two-user case, the effect
uncertainty on the social output of the system has been

in a lower average number of channels per user as the :
g P nalyzed. We analytically prove that the RE moves towards

uncertainty,d increases. Also, the total number of channe% . . .
Y an FDMA solution as the uncertainty bound increases, when
3(16) and (17) are in terms of absolute uncertaiatyhile the simulations the number of frequenCIeS in the system becomes asymptot-

use relative uncertainty. They are equivalent to one another. ically large. Thus, an interesting effect of improvement in
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sum-rate as the uncertainty bound increases is observed. IThe mappingRWF () is said to be a block-contractitn

summary, for systems with significant interference, boandevith modulusa with respect to the norrﬁ . if there

channel uncertainty leads to an improved sum-rate but at {@@sts« < [0,1) such thatyp®, p® e P,

cost of greater number of iterations. This framework can be ) N

extended to MIMO rate-maximization games, cognitive radio RWE(P") —=RWE(®)[[7, .\ < o|lp

with various interference constraints and other noncaatjuer , ,

games. wherep® = (p{" ... p{?) fori=1,2.
The contraction property of the waterfilling mapping is

given by the following lemma:

w
H2,block

) —p® | ‘Zblock’

APPENDIX ) N )
Lemma 3. Givenw £ [wy,...,wg]? > 0, the mapping

A. Robust Waterfilling as a Projection Operation RWEF(-) defined in(34) satisfies

Let ®,(k) represent the denominator terms in (14), which || RWF (p) — RWF (p®) ||, <

is the worst-case noise+interference (39)

187 + Bl mat < [P = P[] e

A2 2
q(k) 2 03(k) + Y Frg(k)pr (k) + ewgp'r(k)' (28) ypW p® ¢ P, whereE and S as defined in(19) and (20)
r#q

T4 respectively. Furthermore, if
It has been shown in [33] that the waterfiling operation ma w
can be interpreted as the Euclidean projection of a vector 1S + % mar <1, (40)
onto a simplex. Using this framework, the robust waterfjlinfor somew > 0, then the mappindRWF(-) is a block
operator in (16) can be expressed as the Euclidean prajecti@ntraction with modulug: = ||[S™er 4 B|W

of the vector®, £ [®,(1),...,®,(N)]” onto the simplex?, _ _ oomat:
defined in (9): Proof: This proof is structured similar to that of [33,
Proposition 2]. However the additional termyf, in (30)

RWFq(p—q) = [ — @] (29) necessitates a separate treatment here.

Py’

c i (@ _
which can be conveniently written as For_each ¢ : € @ andi - _1’T2’ given 1, _ Z
[V PO, 5,4, RNO] et pg (R0 2
RWF4(p—q) = [ —0q— Z Frqpr — quq] 5 (30) p1(R) D, pg1(B) D pgs1(B)D ... po(k)@)] and
r#4 P Af, 2 (g — £57]|,. Then,
where _
T
o, £ [02(1),....00(N)]", (31)

Af, = (41)

SRR — [ p(k)e

F,, 2 Diag (Frq(l), . Frq(N)), (32) p—yl e

VE D) [T i) - @9 _ (“p_q(k)<1>|‘2_Hp_q(w”gﬂ )

1
2

[p=a(0)® = p—y()®| w (43)

E
Il
—

Q"h
(1>
1T
= M=
= N
(&I

T

b
Il
ey

B. Contraction Property of the Waterfilling Projection

IN

M= [[]=

Given the waterfilling mappin®RWF(-) defined as
RWF(p) = (RWFq(p—¢))qen : PP, (34) =

(P20) ™ + p2 (1)

where P £ Py x --- x Pg, with P, and RWF,(p_,) Skt ;
respectively defined in (9) and (30), the block-maximum norm ) @) 2
is defined as [34] —2pr (k)" pr (k) ) (44)
w RWF,(p )|| 1
F A H a\bFg/|12 35 272
|| RW (p>||2,block Py W, ;o (39) = Z ‘ pM) — pﬁ?)H2 ) (45)
. o . r#
wherew £ [w1, ..., wg]T > 0 is any positive weight vector. ! ,
The vector weighted maximum norm is given by [32] where (43) follows from [32, Lemma 5.1.2]. Now, define for
] eachq € Q,
w A & Q
||X||oo,vec - I;leaé( wq ’ w > 0’ X< R (36) eRWFq é HRWFQ (p(_lg) - RWFQ (p(—Q;) ‘2 46
The matrix weighted maximum norm is given by [32] 2|51 5@ (46)
€q pq pq 2.

Q

1

AW e = max — E [[A]gr W, A € RY*Q (37) 4The mappingT is called a block-contraction with modulus € [0, 1) if
' 7 Wq T it is a contraction in the block-maximum norm with modulug34].
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Then, using (30) in (46)rwr, Can be written as vp?, p® ¢ P, with E and S as defined in (19) and (20)
respectively. It is clear thaRWF(-) is a block contraction

enver, = [~ o0~ T Epl — i) when|[S"% + B, <1 .
r#q !
{ a— Y Frp —e féﬂ C. Proof of Theorem 1
Py -
74 2 From [35], every concave gamdas at least one equilib-
H rob.
ZFrqp$~1) + equ) rium. For the gameg™®:
r#q 1) The set of feasible strategy profileB, of each player

q is compact and convex.
(48) 2) The payoff function of each playerin (13) is contin-
uous inp € P and concave ip, € P,.

=3 F, (pﬁ” _ pg)) teg (fél) _ féQ))H (49) Thus, the game&/™" has at least one robust equilibrium.
2

DI RS
r#q

2

r£q From Lemma 3, the waterfilling mappinBWF(:) is a
block-contraction if (40) is satisfied for some > 0. Thus,
< ZFrq (Ps-l) - PS-Q))‘ f(l 2)H (50)  the RE of gameZ P is unique (using [36, Theorem 1]). Since
r#q 2 S™a* + F is a nonnegative matrix, there exists a positive vector
<[> Fry (pV — p ‘ w such that )
r#q ( ) 2 ||Smaz + EHZVo,mat <1 (58)
Using [34, Corollary 6.1] and the triangle inequality [3#]is
1) _
e {; PP 2] ®L) s satisfied when
TFq
< : 1 _ <2>H IS™ 1% mat + B[S mar <1 = p(8™) <1 —p(E).
< ;} (mkax F,q(k;)) ‘ p, p; , (59)
1 From Lemma 3 and (58) the waterfilling mappiREVF(-)
+ e { p(?)HQ] ’ (52) s a block-contraction. From [36, Theorem 2], the robussite
! : " olle tive waterfilling algorithm described in Algorithm 1 conges

to the unique RE of gam@™P for any set of feasible initial
:Z ( max F,q(k;)) er + eq[z ef} (53) conditions and any update schedule.
#

keDy,ND,
r#q

<> ([Smw]'rq + Gq)er (54) D. Proof of Theorem 2
r#q

N

Consider the interior operating points of the robust wdterfi
v pgl),pq € P, andV ¢ € Q, where: (48) follows from ing operatorRWF,(-) where it is linear. Eliminating: from
the nonexpansive property of the waterfilling projectioB,[3 (23), we get
Lemma 3]; (50) follows from the triangle inequality [32];1p l—o—e
follows from (45); (52) and (53) follow from the definition$ o P S (m+ Dajz—0) > 0.5. (60)
F,, ande, respectively from (31) and (46); and (54) follows
from the definition ofS™* in (20) and Jensen’s inequality The signal-to-interference-plus-noise ratio (SINR) foet

[27]. two users in the two frequency bins is given by
The set of inequalities in (54) can be written in vector form SINR; (1) = SINR»(2) = %1)
o a(l—p
as (61)
ma. 1 -
0 < epwr < (8™*" + E)e (55) SINR, (2) = SINR (1) = ——— .
. ) . o< + map
where E is defined |nA (19) and the vectorc%RWF and e and the sum-rate of the system at the RE is
are defined asgrwr = [eRWF1; .. eRWFQ} , and e
[e1....,eq]". Using the vector and matrix weighted maX|mumS o 2 210g (1 + p ) 4 2log (1 + 1-p )
norms from (36) and (37) respectively, (55) can be written as o +a(l —p) o? + mo(%) )
|lerwr [, vee < /(™% + E)el| . .. (56) The gradient ofp with respect toe is
< ||Smaz+EHoo ,mat || Hoo Vec7 ap — (mil)a > 0 (63)

de 41— (m+1)a/2—€)?

Thus, the RE moves towards the FDMA solution as the
oo, vec uncertainty bound increases.

V¥ w > 0. Using the block-maximum norm (35), we get

|| RWE (p) = RWF (p@) ||, 1001, = [[enwer ][

<[|s™e + B[ (1) _

o0 " o | |
r 2,block 5A game is said to be concave if the payoff functions are camead the

(57) sets of admissible strategies are compact and convex.

oo, mat
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Case 1: High interference scenaritn the high interference The sum-rate of the system at low interference can be approx-
scenario,c? < «a(l — p). Let ¢ = p/a(l — p). Then, the imated as

SINR for the two users in the two frequency bins can be P 1—p
approximated as S 2log ((1+ 2+ 7)) 1)
p 1 p — p?
1-p 1 ©9) " Now

mOé_p -ma2€ @_ . i p—p2\—1 (1—2p)dp

The sum-rate of the system at high interference can be 3, — ( T et T3 ) = g, <0 (72
approximated as At low interference, the system behaves similar to a pdralle
1 >) Gaussian channel system. The social optimal solution & thi

ma?¢ (65) scenario is thg classical waterfilling solution and leadsqoal

— 2log (1 + 1 iy 1 ) power allocation, i.e.pi(1) = _p1(2) _:pg(l) =p2(2)=p=
ma? ma2¢’’ 0.5. The sum-rate at the social optimal solution for the given

system at low interference*, is given by

S~2log ((1+&)1+

Our aim is to analyse the behaviour of the sum-rfitas $* = 4log (1 + %) (73)
the uncertaintye increases. To this end, we show that the 20
gradient of the sum-rate with respecttis positive. Aslog(x) The price of anarchy at low interferendeoA, is

increases monotonically with, we consider oA 4log (1 T #)
d 1 1 1—p)? o8 = 0
526 ) =0~ g = (1= ) og(1+ 52 + 15F) (74)
) () _ Jog (142 + 73)
. - _ 2 .
and (1 — %) > 0 sincep > 0.5 andm > 1. Now, log (1+ & + 2=£8-)
o¢ 1 ap Note that, at low interferencenap < 1. From (60), we
3. = T e, (67) getp ~ 0.5. Thus thePoA is close to unity. Sinc&s < 0,
de «a(l—p)?2de havedPoA < ¢ De n
we have5—=£ > 0.
From (63), (66) and (67), we gei2 > 0. Thus, we see o
thgt the sum—rat_e of the system increases as the u.nc.erta}@_typroof of Proposition 1
e increases. This also shows that the robust-optimization i _ )
equilibrium achieves a higher sum-rate in the presence of! "€ gradient of the sum-ratg,, with respect tce is
channel uncertaintye > 0) than the Nash equilibrium at zero 9 Srop _ 9 Swob Op (75)
uncertainty(e = 0). de  Op Oe€
. . . , o From (63), we havesE > 0. Now,
The social optimal solution for this system at high interfer (63) e%f
ence is frequency division multiplexing [21]. In other werd 5, s rai=p + CETTEEE
the frequency space is fully partitioned at the social optim =2 P
. . . . p 1+ o2 Fa(l—p)
solution. The sum-rate at the social optimal solution fax th P (1—pyma (76)
given system at high interferencg?, is given by ) az+1map + (024:”&,,)2
1 14+ 2
S* = 2log (1 + —2) (68) + oZ+map
g ing &Sron _ i
The price of anarchy at high interferendA, is Setting o =0, we solve fora to get the following roots,
log (1+ &% 0,
PoA — gl( =) — (69) . 1
log (1 + 75 + & + 72g) a=1352 (m+ 1+ (4m/o® + (m+1)?) ) . @7)
Since22 > 0, we have4EeA < 0. o?(2p—1)

(m—1)p2+2p—1"
The positive root that is independent ofand p (which is a
Case 2: Low interference scenarioln the low inter- function of the uncertainty, from (60)) is the required solu-
ference scenario, i.e. whemap < o2, the signal-to- tion where the sum-rate is constant regardless of uncgytain
interference+noise ratio SINR for the two users in the twbhus, the required interference value is given by

frequency bins can be approximately written as o2 L
ao=— ((dm/c® + (m+1)*)? —=m—1). 78
SINR (1) = SINRy (2) ~ =, 2m (( fom ") ) (78)
g
1—p (70)  since the rooty, of §5:== is independent of, different power

SINR1(2) = SINR»(1) ~ —5=. allocation schemes (resulting in different values pf will
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result in the same sum-rate at = «,. Thus, the price of where

anarchy atv = o, is unity. |

F. Proof of Lemma 2

Y Z| |C D (89)

Using [37, Fact 10.12.9] and differentiating (88) with resp

NN

From (16), the power allocations for the two users at thg . e get

robust-optimization equilibrium in thé-th frequency are
9 +

pi(k) = (= 0% = (For + )pa(k))

9 +

pa(k) = (12 = 0* = (Fra + (k)

with S0 pa(k) = S0, pa(k) = Pr.

(79)

-1rg -1
e ol [%O[e o) [b)e
B [W(% A)Xpt}
Y(E A)Xpt '
Due to the nature of the waterfilling functiom,; and no

3 )

(91)

Let D, D, andD,; be the sets of frequencies exclusivelyre non-decreasing piecewise-constant functions:.oThe

used by user 1, user 2 and by both respectively:ané |D; |

andns £ |D;| be the number of frequencies exclusively used, are constant. From [37, Proposition 2.8.7] and using
by user 1 and user 2 respectively at the equilibrium. Thep,~! = Diag(A,;l,.

from (79), we havep; (k) = 1 —o? andpa(k) = 0V k €
Dy andpy(k) = 0 and pa(k) = p2 — 0 V k € Do. The
power remaining for allocation to the frequenciesTiy, =
{ki,... ko } by user1anduser2i{d—niu)and(1—naus)
respectively.

This separation of the frequency-space into exclusive-us& = [A;'Z
and overlapped-use frequencies allows us to analyse the syg — _ [ZA,;l .

tem without the nonlinear operatigqn) ™. Thus, we can write

the power allocations at the fixed point in the overlappes-us

frequency-space as a system of linear equations,

pl(k) + (FQl(k) + E)pg(k) — M1 — o2 0, k €Dy (80)
(F12(k) + 6)[)1([17) +p2(k) — Mo — o = 0, k €Dy (81)
ZkeDol Y41 (k> + nl(ul - 02) = Pr, (82)
Yokep,, P2(k) +n2(pz —0?) = Pr. (83)
Writing these in matrix form we get,
Ay, 0 L [p(k) 02
5 AN (84)
0 Ay, L |p(ka) 0,
12 12 D 1Y Pt
where
N 1 Fgl(k') +e€ a |M1 0
A= [F12(k)+€ 1 » D= 0 nao|’ (85)
p() 2 1) - pya [Prl o a fim = o)
p(k)|” ¢ | Pr po — o
Let
Ay, 0 -1
A2 B2 | :
0 Ag,, I (86)
C2 [l ... I,] andP £ [p(ky)...p(kot)]"
so that we can write (84) as
A B||P 0
o ol [-1a) @)
We can solve this system to get
G -fe o] Bl AR -] e
pl |C D pe] |Y Z||pe| |Zpe]’

above derivative exists only in the regions whete and

ALY, we get

Al - AL ZAT ~AZA;
W = : : ,(92)
~AZA] Ap — AL ZAL,
_ T
A'z)" (93)
zAl). (04)
1 Fy1 (1) + ¢
ng + Z A, Z —21(A)-
z_ 1 ?ED(US ' kEDy ’ . (95)
A Fia(i) + € Ly
Z N Lt Z
k€D, keDy;
whereA; £ det(A;) =1 — (F21(i) + €) (Fi2(i) + €),
B2 (m+ Yien, £) (12 + Dien, ) (96)
Foq(i)+e€ Fio(i)+e€
_ (ZkE’Dol 21&3+ ) (ZkE’Dol 12&3+ )7
and .
. AL _ Fglgt?+e
Ai = B F12€'L.)+5 Ll . (97)
A, Ay
Thus, from (88) and (91), we get
_ _ T
P =Xp; = [Ak1lzpt Akoll Zpt} , (98)
and
oP 0A
= _W(E)X 99
Oe ( Oe )X, (99)
[ ko i
ZAlzllZAl_lGA;lZpt 7A;11GAlzllzpt
i:kl
_ (100)
kol
> AL'ZA'GA Zp, — A GA Zp,
_/i:kl -
where 9A 01
G:W:[l 0:|V’L=1,...,N. (101)
Therefore, fork = k1, ..., ko,
T _
p(k) = [p1(k) p2(k)] = A} 'Zps, (102)
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0

p'(k) = 5 p(k) = [p'l(k:) pg(k)f (103) Bhavani Sha}nkar, Uniyersity of Luxembourg for pointing out
€ . a typographical error in an early version of the proofs, glon
ol . .
a1 1 _1 with Prof. Bjorn Ottersten, KTH Royal Institute of Technol
= Ay Z;Ai GA; Zpe ogy for valuable discussions. We also thank the anonymous
B . 1 reviewers for their valuable feedback.
—A,"GA, Zp: (104)
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