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a b s t r a c t 

One possible manufacturing method for bone scaffolds used in regenerative medicine involves the acous- 

tic irradiation of a reacting polymer foam to generate a graded porosity. This paper derives a mathemat- 

ical model of a non-reacting process in order to develop theoretical confirmation of the influence of the 

acoustic signal on the polymer foam. The model describes single bubble growth in a free rising, non- 

reacting polymer foam irradiated by an acoustic standing wave and incorporates the effects of inertia. 

Leading and first order asymptotic inner solutions in the temporal domain (early growth) are presented 

for the case of instantaneous diffusion when the fluid volume surrounding the bubble is large compared 

to the bubble volume. The leading order asymptotic outer solution (late growth), for the case of instan- 

taneous diffusion, is described analytically using the Picard iteration method. Initial conditions for this 

outer solution are identified through matching with the asymptotic inner solution. A numerical solution 

for the leading order outer equation is also presented. Investigations are carried out to explore the influ- 

ence of inertia on the bubble volume, fluid pressure and the stress tensors of the foam, and to explore 

the effect of fluid viscosity and acoustic pressure amplitude on the final bubble volume, and the curing 

time. A key result is that increasing the applied acoustic pressure is shown to result in a reduced steady 

state bubble volume, indicating that ultrasonic irradiation has the potential to produce tailored porosity 

profiles in bioengineering scaffolds. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1

1

 

e  

(  

B  

v  

b  

m  

c  

b  

f  

b  

p  

T  

w  

b  

n  

e

 

m  

t  

t  

l  

o  

p  

n  

f  

h

0

. Introduction 

.1. Motivation 

A polymeric foam is a particular example of a viscoelastic, het-

rogeneous material which is composed of at least two phases

one solid plus voids whose size distribution can be varied [43] ).

one scaffolds [43] are the biocompatible materials which pro-

ide the support structure for the growth of tissue engineered

one precursors [8,20] . The physical properties of polymeric foams

ake these particularly suitable for bone scaffold applications, in-

luding their low density, chemical inertness, high wear resistance,

iodegradability and thermal and acoustic insulation. One of the

actors contributing to the strength and functionality of natural

one is its functionally graded porosity, with higher density on the
∗ Corresponding author: 

E-mail address: euan.barlow@strath.ac.uk (E. Barlow). 

o  

w  

A  

s  

ttp://dx.doi.org/10.1016/j.jnnfm.2017.03.008 

377-0257/© 2017 The Authors. Published by Elsevier B.V. This is an open access article u
eriphery of the structure and higher porosity at the centre [6] .

he best grafts and bone substitutes are considered to be those

ith biomechanical and biological properties most closely resem-

ling the non-uniform graded porosity distribution observed in

atural bone [6] , and it is therefore desirable to mimic this prop-

rty. 

A number of different approaches to the tailored design and

anufacture of bone scaffolds have been reported, including con-

rol of the processing conditions and of the chemical composi-

ion of the polymer material [9,40,48] . Ultrasonic irradiation of

iquids has been shown experimentally to result in a number

f unusual phenomena including rectified diffusion and increased

olymerisation reaction rate [19,22,32,42] . Torres-Sanchez and Cor-

ey [43] developed an empirical method for designing bone scaf-

olds, which uses an acoustic standing wave to irradiate a sample

f polymerising polyurethane foam to tailor the porosity profile

ithin the final cured sample to a particular porosity specification.

 relationship between the pressure amplitude of the irradiating

ound wave and the porosity value at a given position in the sam-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ple was demonstrated experimentally. Ultrasound was observed to

have an impact at particular stages during the reaction, and the

authors hypothesized that this was due to the fact that diffusion

and convection were predominant effects during these stages. 

This paper presents the first attempt at mathematically mod-

elling the experiment presented by Torres Sanchez and Corney

[43] and the key mechanisms involved in this complex reac-

tion, to develop an understanding of this process and provide the

first steps towards supporting the production of strictly defined

and controlled porosity profiles. Polymerisation is a complex pro-

cess involving factors such as bubble dynamics, evolving rheol-

ogy [16,28] , a two-phase fluid, rectified diffusion [10–13,25] , Bjerk-

nes forces [3,23] and Ostwald ripening [27,35] . Of additional rel-

evance in this study is the effect of the ultrasonic irradiation. To

make headway with modelling this complex process, concentra-

tion is focused on the post nucleation evolution of a bubble in

a viscoelastic fluid and the effects of rectified diffusion, Bjerknes

forces and Ostwald ripening are ignored. The effect of the ultra-

sound pressure amplitude on the long term growth of the bubble

is, however, considered. The effects of inertia are incorporated into

the model as it plays a significant role in the early stages of the

bubble’s evolution. 

1.2. Bubble dynamics 

Much work has been done to study and model the nu-

cleation [18,36,38] and subsequent single bubble growth [5,14–

18,30,37–39,41,45] in viscoelastic materials including polymer

foams, both reacting [16] and non-reacting [14–17,49] . The ef-

fects of ultrasound on nucleation [50] and subsequent growth

of a single bubble via rectified diffusion in an aqueous

fluid [24,26,29,33,34] have been studied extensively. 

There have been a number of studies of the nucleation and sub-

sequent growth of a single spherical gas bubble in a surrounding

fluid due to diffusion of gas through the fluid and into the bub-

ble. Amon and Denson [4] proposed a cell model for the anal-

ysis of bubble growth in an expanding polymer foam with each

cell containing a spherical gas bubble surrounded by a concentric

liquid envelope containing a limited supply of gas. Their model

takes account of heat transfer and inertia and couples bubble

growth to the changing foam density. Street et al. [39] and Ting

[41] both used the Oldroyd B fluid model to describe the vis-

coelasticity of the surrounding fluid layer which they assumed to

be infinite. This resembles the case of early time foaming where

bubble size is small and bubbles are spaced at large distances

from each other, remaining spherical and not interfering with each

other. They demonstrated that the viscoelasticity of the melt as

well as the diffusivity of the gas determined the initial growth

rate. Arefmanesh and Advani [5] considered the case of a spher-

ical gas bubble surrounded by a finite shell of viscoelastic fluid

which they modelled using the upper convected Maxwell model.

They introduced a Lagrangian transformation to describe the mov-

ing bubble/liquid interface and substituted a concentration poten-

tial to aid numerical solution. Their model serves to describe the

case where a large number of bubbles exist in close proximity to

each other, which can be expected in an expanding polymer foam.

Shafi and co-workers [36,37] looked at bubble growth in polymer

foams in conjunction with nucleation and concluded that the most

sensitive parameters to final bubble size distribution are those as-

sociated with nucleation. They found that while growth dynamics

can alter the distribution this is only a secondary effect. Feng and

Bertelo [18] also looked at the effect of nucleation but proposed

a model for heterogeneous nucleation and its effect on the final

bubble size distribution. Venerus et al. [45] formulate a model of

diffusion induced bubble growth in viscoelastic liquids of infinite

extent, demonstrating that under various approximations, several
reviously published models can be derived from their model, and

roviding comparison between models. In Venerus [44] , transport

odels of diffusion induced bubble growth in viscous liquids of

oth finite and infinite extent are developed and evaluated, and

esults compared with Amon and Denson [4] and Arefmanesh and

dvani [5] . Both models agree at early stages of the growth pro-

ess and differ at later stages when the equilibrium bubble radius

s approached for the finite liquid model. 

Building on the above work, Everitt et al. [16] proposed two

odels for individual bubble expansion in curing polymer foams.

he first model was for bubble growth in a non-reacting polymer

oam; the second models the gas production due to the reaction

nd the evolving rheology of the viscoelastic material in the re-

cting polymer foam. In each case the evolving fluid is treated as

 multimode Oldroyd B system, and the Lagrangian transforma-

ion is used to describe the moving bubble boundary. Everitt et al.

16] neglected the effects of inertia since nondimensionalisation of

heir system results in a very small Reynolds number, and their

odel does not include an acoustic forcing term. 

.3. Overview 

This paper examines the effect of ultrasonic irradiation on the

ynamics of a single bubble in an expanding polymer foam. The

on-reacting model proposed by Everitt et al. [16] is extended to

nclude the effects of inertia and the effects of a standing acous-

ic wave sonicating the polymerising sample. The model equations

re derived by consideration of an Oldroyd B polymeric fluid [46] .

nce the governing equations, initial and boundary conditions are

btained, an instantaneous diffusion assumption is made in order

o partially decouple the system. This is then probed in an effort

o derive an approximate analytic solution using asymptotic expan-

ions for the case where the bubble volume is much smaller than

he surrounding fluid volume. This regime may describe the situa-

ion at early time in the polymerising sample when bubbles have

ust nucleated and are at large distances from each other so that

hey are effectively surrounded by an infinite fluid volume. An in-

er and outer asymptotic solution are proposed; the former to first

rder and the latter to leading order. The accuracy of the first or-

er asymptotic inner solution is discussed before a leading order

nalytic solution for the outer temporal variable is derived, where

he initial conditions for this outer solution are generated through

atching with the asymptotic expansion of the inner solution. A

umerical scheme is produced to test the accuracy of the analytic

uter solution and the limitations of the analytic solution are dis-

ussed before using the numerical scheme to predict the effects of

hanging viscosity and acoustic pressure amplitude on the outer

olution. 

Section 2 presents the derivation of the model of bubble growth

n a free rising, non-reacting polymer foam irradiated by an acous-

ic standing wave and incorporating the effects of inertia. The

symptotic derivation of the inner and outer solutions are given

n Sections 3 and 4 , respectively. Concluding remarks and areas of

uture work are discussed in Section 5 . 

. Mathematical model of a non-reacting foam 

In the non-reacting case a polymeric liquid containing a foam-

ng agent is subjected to a sudden reduction in pressure and

oaming commences as the foaming agent comes out of solu-

ion [16] . This is a two phase system with the foam considered

o be a system of identical, spherical bubbles of gas, each sur-

ounded by a layer of viscoelastic fluid containing a quantity of

issolved gas. The model concerns a single bubble with initial vol-

me, 4 πu (0) / 3 = 4 πR 3 / 3 , with bubble radius R and initial gas

ressure p g 0 . The fluid surrounding the bubble is assumed to be
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ncompressible, viscoelastic and containing a limited supply of dis-

olved ideal gas. The initial bubble volume is the volume when

he bubble gas pressure is p g 0 and is larger than the nucleation

olume. It is further assumed that the bubble undergoes spheri-

ally symmetric expansion driven by the pressure difference across

he bubble-fluid interface, ( p g0 − p a ), where p a is the ambient gas

ressure (the atmospheric pressure combined with the hydrostatic

ressure). The conditions are isothermal and the bubble-fluid in-

erface is in thermodynamic equilibrium [16] . First, the dynamics

f the fluid layer are considered; the system is modelled using the

ldroyd B system of equations for a viscoelastic medium [46] . Sub-

equently, the gaseous phase, its concentration in, and diffusion

hrough, the fluid, and its transport across the bubble-fluid inter-

ace are modelled. 

A solution of polymer molecules in a Newtonian liquid exhibits

oth viscous and elastic behaviour [47] and can be modelled as

n Oldroyd B fluid [46] . The derivation below follows closely that

n [16] but here inertia is included, and so only the key equations

re presented. The general governing equations of this fluid are 

 · q = 0 , (2.1) 

p I + μ
(∇ q + ( ∇ q ) T 

)
+ G ( A − I ) = σ, (2.2) 

(
∂ q 

∂t 
+ q · ∇ q 

)
= ∇ · σ, (2.3) 

∂ A 

∂t 
+ ( q · ∇ ) A − A · ∇ q − ( ∇ q ) T · A = − 1 

τ
( A − I ) , (2.4) 

here q is the velocity vector, σ is the stress tensor, μ is the sol-

ent viscosity, ρ is the fluid density, G is the relaxation modulus

ssociated with the polymer stress, A the orientation tensor, I the

dentity matrix and τ represents the relaxation time of a polymer

olecule. 

The bubble expansion is assumed to be spherically symmetric

o that only the radial component of the velocity vector is non-

ero, and is dependent on the radial co-ordinate, r (with origin at

he bubble centre), and time t . The continuity Eq. (2.1) then solves

o give 

 = 

˙ R R 

2 

r 2 
e r . (2.5) 

he gradient of this first order Cartesian tensor [21] is evaluated as

 q = 

˙ R R 

2 

r 3 

( −2 0 0 

0 1 0 

0 0 1 

) 

. (2.6) 

or spherically symmetric expansion all the off-diagonal compo-

ents of the orientation tensor A are equal to zero and A θθ = A φφ .

herefore, the only non-zero components of the stress tensor σ
re, by Eq. (2.2) , 

rr = −p − 4 μ
˙ R R 

2 

r 3 
+ GA rr , (2.7) 

θθ = −p + 2 μ
˙ R R 

2 

r 3 
+ GA θθ , (2.8) 

nd 

φφ = σθθ . 

n spherical polar co-ordinates and with spherically symmetric ex-

ansion, only the radial component of the divergence of the sec-

nd order Cartesian tensor σ [21] is non-zero. Substituting Eqs.

2.7) and (2.8) into the right hand side of the momentum Eq. (2.3) ,
nd using Eqs. (2.5) and (2.6) to expand the inertia term on the

eft hand side, Eq. (2.3) can then be stated as (
R̈ R 

2 + 2 R ̇

 R 

2 

r 2 
− 2 ̇

 R 

2 R 

4 

r 5 

)
= −∂ p 

∂r 
+ G 

∂A rr 

∂r 
+ 

2 G 

r 
(A rr − A θθ ) . 

(2.9) 

he boundary conditions require continuity of stress to be applied

t the inner and outer fluid boundaries. In the current co-ordinate

ystem the bubble-fluid interface and the outer fluid layer are each

oving with time, and the respective boundary conditions would

herefore require updating through time. With conservation of the

uid volume, the system can be transformed to the Lagrangian vol-

me co-ordinate system to simplify the analyses, where the frame

f reference moves with the bubble-fluid interface [16] . Due to

he spherically symmetric expansion only the radial co-ordinate re-

uires consideration in the analysis. 

Letting the conserved fluid volume equal 4 πX /3, the govern-

ng equations and variables can then be restated using the gen-

ral fluid volume variable x , which ranges from x = 0 at the bub-

le surface to x = X at the outer fluid volume limit. By defining

he general bubble volume, u ( t ), as 4 πu (t) / 3 = 4 πR (t) 3 / 3 , then

t a generic volume co-ordinate 4 πu/ 3 + 4 πx/ 3 the associated ra-

ial position in the fluid relative to the origin at the centre of the

ubble is given as r = (u + x ) 
1 
3 , and the radial variables R and r

an therefore be replaced with the volumetric variables u and x .

q. (2.9) can then be transformed to the Lagrangian volume co-

rdinate, x , which leads to [
− ü 

3(x + u ) 
1 
3 

+ 

˙ u 

2 

18(x + u ) 
4 
3 

]
= −p(x ) + GA rr + 

2 

3 

G 

∫ x (A rr − A θθ ) 

(x ′ + u ) 
dx ′ + C 1 , (2.10) 

here C 1 is an arbitrary constant of integration to be deter-

ined by application of the boundary conditions, which are de-

ived by considering the stresses acting on each boundary. The

tresses within the fluid at each boundary are a combination of

he isotropic pressure, Newtonian stress and polymer stress. At the

ubble/fluid interface these fluid stresses are balanced by the bub-

le pressure and surface tension, whereas at the outer fluid surface

he fluid stresses are balanced by the ambient pressure and the ul-

rasound pressure excitation. 

This results in the following two boundary conditions, at x = 0

nd x = X, in the Lagrangian frame, 

p(0) − 4 μ ˙ u 

3 u 

+ GA rr (0) = −p g + 

2 S 

u 

1 
3 

, at x = 0 , (2.11) 

p(X ) − 4 μ ˙ u 

3(X + u ) 
+ GA rr (X ) = −p a − p u , at x = X, (2.12) 

here S is the surface tension, p g is the bubble gas pressure, X

s the Lagrangian volume co-ordinate for the outer fluid boundary

nd p u is the pressure amplitude of the applied ultrasound signal.

he wavelength of the applied ultrasound signal is assumed to be

ubstantially longer than the bubble size, so that the pressure field

oes not impose a spatial gradient on the bubble and the assump-

ion of spherically symmetric bubble expansion remains valid. 

Evaluating (2.10) at x = 0 and x = X, and substituting from

oundary conditions (2.11) and (2.12) , the momentum equation can

e written as 

4 

3 

μ ˙ u 

(
1 

u 

− 1 

X + u 

)
+ ρ

[
ü 

3 

(
1 

u 

1 
3 

− 1 

(X + u ) 
1 
3 

)
− ˙ u 

2 

18 

(
1 

u 

4 
3 

− 1 

(X + u ) 
4 
3 

)]
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P  
= p g − p a − p u + 

2 

3 

G 

∫ X 

0 

(A rr − A θθ ) 

(x ′ + u ) 
dx ′ − 2 S 

u 

1 
3 

. (2.13)

The only remaining unknown in the Oldroyd B system (2.1) –

(2.4) is the orientation tensor A which is described by (2.4) . In

the Lagrangian frame the convection term ( q · ∇ ) A is zero, and

(2.4) reduces to 

∂ A 

∂t 
= A · ∇ q + ( ∇ q ) T · A − 1 

τ
( A − I ) . 

Substitution for ∇ q from (2.6) gives the evolution equations for A rr 

and A θθ as [16] 

∂A rr 

∂t 
= − 4 ̇

 u 

3(u + x ) 
A rr − 1 

τ
(A rr − 1) , (2.14)

and 

∂A θθ

∂t 
= 

2 ̇

 u 

3(u + x ) 
A θθ − 1 

τ
(A θθ − 1) . (2.15)

Subtracting (2.14) from (2.15) gives the first normal difference

rate equation 

∂(A rr − A θθ ) 

∂t 
= 

2 ̇

 u 

3(u + x ) 
[(A rr − A θθ ) − 3 A rr ] 

− 1 

τ
(A rr − A θθ ) , (2.16)

where the initial conditions are given by A rr = A θθ = 1 everywhere

at t = 0 . 

The dissolved gas concentration contained in the fluid, c ( x, t ),

is governed by the convection-diffusion equation [49] , which is

derived from the assumption of mass conservation in the liquid.

Everitt et al. [16] utilise a concentration potential φ( x, t ), where

∂ φ/∂ x = c − c 0 for initial gas concentration c 0 , in order to over-

come numerical issues resulting from the steep concentration gra-

dient at early time. The diffusion of this concentration potential is

given as [16] 

∂φ

∂t 
= 9 D (x + u ) 

4 
3 
∂ 2 φ

∂x 2 
, (2.17)

where D is the diffusion coefficient. Applying the principle of mass

conservation and the ideal gas law [2] , then Eq. (2.17) can be ma-

nipulated to yield [16] 

p g u = p g 0 u (0) + R g T φ(0 , t) , (2.18)

where p g 0 is the initial bubble gas pressure, p g = p g (t) is the bub-

ble gas pressure at subsequent t > 0, R g is the universal gas con-

stant and T is the temperature. The system is now fully described

by (2.13), (2.14), (2.16), (2.17) and (2.18) . Note that the system

model presented here reduces to the model presented in [16] by

setting ρ = 0 and p u = 0 in the momentum Eq. (2.13) . 

The governing equations and boundary conditions are

non-dimensionalised by substituting for the following non-

dimensional variables: ˆ t = t/τ, ˆ u = u/u (0) , ˆ x = x/u (0) ,
ˆ X = X/u (0) , ˆ φ = φR g T / (p g0 u (0)) , P g = (p g − p a ) / (p g 0 − p a ) ,

and P u = p u / (p g 0 − p a ) . For convenience, the following non-

dimensional grouped parameters are then introduced [16] : the

time-scale ratio, N = 9 Dτ/u (0) 2 / 3 , giving the ratio of the poly-

mer relaxation time to gas diffusion time; the Deborah number,

De = (p g 0 − p a ) τ/μ, giving the ratio of bubble growth in the

solvent to the relaxation rate of the polymer; the viscosity ratio,

γ = Gτ/μ, giving the ratio of polymer contributions to the steady

shear viscosity to those contributions from the solvent; the cap-

illary number, 
 = μu (0) 1 / 3 / 2 Sτ, giving the ratio of viscous force

to surface tension, and the Reynolds number, R = ρu (0) 2 / 3 / 3 μτ,

giving the ratio of inertial forces to viscous forces. This definition

of the Reynolds number utilises the initial bubble radius, u (0) 1/3 ,

as the characteristic length-scale and the polymer relaxation time,
, as the time-scale; this gives the characteristic fluid velocity,

 (0) 1/3 / τ , as the relaxation velocity for the initial bubble. For

otational simplicity the ( ̂ ) symbol on the non-dimensionalised

ariables is now dropped. The resulting non-dimensionalised

ystem is then given as 

4 

3 

˙ u 

(
1 

u 

− 1 

(X + u ) 

)
+ R 

[
ü 

(
1 

u 

1 
3 

− 1 

(X + u ) 
1 
3 

)
− ˙ u 

2 

6 

(
1 

u 

4 
3 

− 1 

(X + u ) 
4 
3 

)]
= De (P g − P u ) + 

2 

3 

γ

∫ X 

0 

(A rr − A θθ ) 

(x + u ) 
dx − 1 


u 

1 
3 

, (2.19)

∂A rr 

∂t 
= − 4 ̇

 u 

3(x + u ) 
A rr − (A rr − 1) , (2.20)

∂A θθ

∂t 
= 

2 ̇

 u 

3(x + u ) 
A θθ − (A θθ − 1) , (2.21)

(p a + (p g 0 − p a ) P g ) 

p g 0 
u = (1 + φ(0 , t)) , (2.22)

∂φ

∂t 
= N(x + u ) 

4 
3 
∂ 2 φ

∂x 2 
, (2.23)

here the boundary conditions on φ( x, t ) are, 

∂φ

∂x 

∣∣∣∣
x =0 

= �
(p g0 − p a ) 

p g 0 
(P g − 1) , 

∂ 2 φ

∂x 2 

∣∣∣∣
x = X 

= 0 , 

here � = R g T H and H is the Henry’s law constant. The non-

imensional initial conditions are, 

 (0) = 1 , P g (0) = 1 , A rr (x, 0) = 1 , A θθ (x, 0) = 1 , 

and φ(0 , 0) = 0 . 

Everitt et al. [16] state that diffusion is approximately in-

tantaneous in the limit N � DeX 

2/3 . By definition of the non-

imensional parameters this condition is equivalent to the require-

ent that 9 D/u (0) 2 / 3 � X 2 / 3 (p g 0 − p a ) /μ, which states that the

ate of gas diffusion is much larger than a grouped term depen-

ent on the rate of bubble growth in the solvent and the fluid

olume. The rate of gas diffusion is large in cases where the dif-

usivity is substantially larger than the surface area of the bubble;

onsider a fixed flow-rate of gas molecules into the bubble, then

educing the surface area will increase the speed at which individ-

al particles flow into the bubble and so increase the rate of gas

iffusion. A smaller bubble growth rate occurs when the pressure

ifference between the gas inside the bubble and the surround-

ng fluid is smaller, and the viscosity of the surrounding fluid is

arger. A smaller pressure difference will reduce the outward ten-

ency of the bubble to expand, and a larger viscosity will increase

he inward tendency of the fluid to resist the bubble expansion.

s the bubble growth rate decreases, the change in bubble volume

ecreases, and so for a fixed diffusivity the concentration of gas

nside the bubble will increase more rapidly. A smaller fluid vol-

me indicates that the gas in the fluid is in closer proximity to the

ubble, and so for a fixed flow velocity the gas will diffuse into

he bubble faster. Applying the instantaneous diffusion assumption

ere enables the analysis to be simplified by decoupling the equa-

ion in φ( x, t ). Consideration of mass conservation of the gas then

eads to 

 g = 

A + Bu + �X 

u + �X 

, (2.24)
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(  
here A = p g 0 / (p g 0 − p a ) and B = −p a / (p g 0 − p a ) . Note that set-

ing P g = 0 in Eq. (2.24) recovers precisely the expression given in

16] for the equilibrium bubble size, u ∞ 

. In the following section

ultiscale analysis and asymptotic expansions are employed to in-

estigate the effect of the inertia related term R on the early time

nd large time solutions. Asymptotic expansions are used to derive

n inner solution (small time) for times t = O (η) and then to con-

truct an outer solution (large time) where η is a factor used to

tretch the inner time variable. 

. Asymptotic analysis: inner solution 

There is a brief time, which is assumed to be O ( η), in which the

ubble volume rapidly increases from its initial value to a value

hat is commensurate with the outer solution derived in Section 4 .

n this phase of the bubble growth the inertia term dominates. To

llow this behaviour to be studied, time is stretched by introducing

he inner variable, 

 = 

t 

η
, 

here η is a scaling constant such that 0 < η � 1. For

larity the following notation is introduced for the inner so-

ution U(ϑ, η) = u (t, η) , AR (x, ϑ, η) = A rr (x, t, η) , AQ(x, ϑ, η) =
 θθ (x, t, η) , P (ϑ, η) = P g (t, η) and φ(x, ϑ, η) = φ(x, t, η) . As before

nstantaneous diffusion is assumed and expansions of the form, 

(ϑ, η) = U 0 (ϑ) + ηU 1 (ϑ) + O (η2 ) , (3.1) 

R (x, ϑ, η) = AR 0 (x, ϑ) + ηAR 1 (x, ϑ) + O (η2 ) , (3.2) 

Q(x, ϑ, η) = AQ 0 (x, ϑ) + ηAQ 1 (x, ϑ) + O (η2 ) , (3.3) 

nd 

 (ϑ, η) = P 0 (ϑ) + ηP 1 (ϑ) + O (η2 ) , (3.4) 

re substituted. By making the appropriate Taylor series expan-

ions the momentum Eq. (3.1) is 

 

( 

Ü 0 

( 

1 

U 

1 
3 

0 

− 1 

(X + U 0 ) 
1 
3 

) 

−
˙ U 

2 
0 

6 

( 

1 

U 

4 
3 

0 

− 1 

(X + U 0 ) 
4 
3 

) ) 

+ η

[ 

4 

3 

˙ U 0 

(
1 

U 0 

− 1 

X + U 0 

)
+ R 

( 

Ü 1 

( 

1 

U 

1 
3 

0 

− 1 

(X + U 0 ) 
1 
3 

) 

−Ü 0 U 1 

3 

( 

1 

U 

4 
3 

0 

− 1 

(X + U 0 ) 
4 
3 

) 

+ 

2 

˙ U 

2 
0 U 1 

9 

( 

1 

U 

7 
3 

0 

− 1 

(X + U 0 ) 
7 
3 

) 

−
˙ U 0 

˙ U 1 

3 

( 

1 

U 

4 
3 

0 

− 1 

(X + U 0 ) 
4 
3 

) ) ] 

+ O (η2 ) = 0 . (3.5) 

Note that following these expansions, the ultrasound pressure

mplitude term, P u , appearing in Eq. (2.19) is found to be of O ( η2 )

nd is therefore omitted from Eq. (3.5) . This indicates that the ul-

rasound pressure field has little effect on the early stages of bub-

le growth. The rate equations for AR and AQ can be treated in a

imilar manner; the non-dimensionalised rate equation in AR ( x , ϑ)
s then 

∂AR 0 

∂ϑ 

+ η
∂AR 1 

∂ϑ 

= 

(
− 4 

˙ U 0 AR 0 

3(x + U 0 ) 

)
+ η

[ 
− 4 

3(x + U 0 ) 

(
˙ U 0 AR 1 

−
˙ U 0 AR 0 U 1 

(x + U 0 ) 
+ 

˙ U 1 AR 0 

)
− (AR 0 − 1) 

]
+ O (η2 ) , 

(3.6) 

i  
nd 

∂AQ 0 

∂ϑ 

+ η
∂AQ 1 

∂ϑ 

= 

(
2 

˙ U 0 AQ 0 

3(x + U 0 ) 

)
+ η

[ 
2 

3(x + U 0 ) 

(
˙ U 0 AQ 1 

−
˙ U 0 AQ 0 U 1 

(x + U 0 ) 
+ 

˙ U 1 AQ 0 

)
− (AQ 0 − 1) 

]
+ O (η2 ) . 

(3.7) 

he pressure and diffusion equations are given by 

 0 + ηP 1 = 

A + BU 0 + �X 

U 0 + �X 

+ η

(
BU 1 

U 0 + �X 

− (A + BU 0 + �X ) U 1 

(U 0 + �X ) 2 

)
+ O (η2 ) (3.8) 

nd 

0 + ηφ1 = �
p g 0 − p a 

p g 0 
(P 0 − 1) X + η

(
�

p g 0 − p a 

p g 0 
P 1 X 

)
+ O (η2 ) . 

(3.9) 

.1. Leading order solution 

Assuming that R � η then the leading order system is 

¨
 0 U 0 (X + U 0 ) 

(
(X + U 0 ) 

1 
3 − U 

1 
3 

0 

)
−

˙ U 

2 
0 

6 

(
(X + U 0 ) 

4 
3 − U 

4 
3 

0 

)
= 0 , 

(3.10) 

∂AR 0 

∂ϑ 

= −4 

3 

˙ U 0 

(x + U 0 ) 
AR 0 , (3.11) 

∂AQ 0 

∂ϑ 

= 

2 

3 

˙ U 0 

(x + U 0 ) 
AQ 0 , (3.12) 

 0 = 

A + BU 0 + �X 

U 0 + �X 

, (3.13) 

nd 

0 = �
p g 0 − p a 

p g 0 
P 0 X, (3.14) 

ith initial conditions U 0 (0) = 1 , AR 0 (x, 0) = 1 , AQ 0 (x, 0) = 1 ,

0 (0) = 0 , P 0 (0) = 1 , and 

˙ U 0 (0) = c v , where c v > 0 is the initial

ate of change of the volume. Since the early time evolution of the

ubble is of interest, it is assumed that U 0 � X and Eq. (3.10) re-

uces to 

¨
 0 U 0 −

˙ U 

2 
0 

6 

= 0 . (3.15) 

his can be transformed using U 0 (ϑ) = e az(ϑ) to give 

¨
 + 

5 a 

6 

˙ z 2 = 0 . 

hoosing a = 6 / 5 results in the second order, non-linear, ODE in

, 

¨
 + 

˙ z 2 = 0 . 

aking another substitution, y = ˙ z , reduces this to a first order

quation which can be integrated. Applying the initial conditions

 0 (0) = 1 and 

˙ U 0 (0) = c v (where c v > 0) leads to 

 0 = 

(
1 + 

5 c v 

6 

ϑ 

) 6 
5 

. (3.16) 

Turning to the orientation tensor, the zero order rate Eqs.

3.11) and (3.12) can each be solved by separating variables. Look-

ng first at AR , application of the initial conditions AR (x, 0) = 1
0 0 
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and U 0 (0) = 1 gives 

AR 0 (x, ϑ) = 

(
x + 1 

x + ( 1 + 5 c v ϑ/ 6 ) 
6 
5 

) 4 
3 

. (3.17)

In the same way AQ 0 is 

AQ 0 (x, ϑ) = 

( 

x + ( 1 + 5 c v ϑ/ 6 ) 
6 
5 

x + 1 

) 

2 
3 

. (3.18)

Eqs. (3.16) and (3.13) then give the leading order pressure solution,

P 0 , as 

P 0 = 

A + B ( 1 + 5 c v ϑ/ 6 ) 
6 
5 + �X 

( 1 + 5 c v ϑ/ 6 ) 
6 
5 + �X 

, (3.19)

and the diffusion equation to leading order, φ0 , follows directly

from Eq. (3.14) . 

3.2. First order solution 

Having constructed the leading order solution, derivations are

sought for the first order term U 1 . Taking terms of order η in (3.5),

(3.6), (3.7), (3.8) and (3.9) results in the first order system, 

Ü 1 

( 

1 

U 

1 
3 

0 

− 1 

(X + U 0 ) 
1 
3 

) 

− ˙ U 1 

˙ U 0 

3 

( 

1 

U 

4 
3 

0 

− 1 

(X + U 0 ) 
4 
3 

) 

+ U 1 

( 

2 

˙ U 

2 
0 

9 

( 

1 

U 

7 
3 

0 

− 1 

(X + U 0 ) 
7 
3 

) 

− Ü 0 

3 

( 

1 

U 

4 
3 

0 

− 1 

(X + U 0 ) 
4 
3 

) ) 

+ 

4 

˙ U 0 

3 R 

(
1 

U 0 

− 1 

(X + U 0 ) 

)
= 0 , 

(3.20)

∂AR 1 

∂ϑ 

= − 4 

3(x + U 0 ) 

(
˙ U 1 AR 0 − U 1 

˙ U 0 AR 0 

(x + U 0 ) 
+ 

˙ U 0 AR 1 

)
−(AR 0 − 1) , (3.21)

∂AQ 1 

∂ϑ 

= 

2 

3(x + U 0 ) 

(
˙ U 1 AQ 0 − U 1 

˙ U 0 AQ 0 

(x + U 0 ) 
+ 

˙ U 0 AQ 1 

)
−(AQ 0 − 1) , (3.22)

P 1 = 

U 1 

U 0 + �X 

(
B − A + BU 0 + �X 

U 0 + �X 

)
, (3.23)

and 

φ1 = �
p g 0 − p a 

p g 0 
P 1 X. (3.24)

Eq. (3.20) can be expressed as 

¨
 1 + 

N 2 

N 1 

˙ U 1 + 

N 3 

N 1 

U 1 + 

N 4 

N 1 

= 0 , (3.25)

where, 

N 1 = 

1 

U 

1 
3 

0 

− 1 

(X + U 0 ) 
1 
3 

, 

N 2 = −
˙ U 0 

3 

( 

1 

U 

4 
3 

0 

− 1 

(X + U 0 ) 
4 
3 

) 

, 
 3 = 

2 

˙ U 

2 
0 

9 

( 

1 

U 

7 
3 

0 

− 1 

(X + U 0 ) 
7 
3 

) 

− Ü 0 

3 

( 

1 

U 

4 
3 

0 

− 1 

(X + U 0 ) 
4 
3 

) 

, 

nd 

 4 = 

4 

˙ U 0 

3 R 

(
1 

U 0 

− 1 

X + U 0 

)
. 

he expressions for N i , i = 1 , · · · , 4 can be expanded in 1/ X giving

he leading order terms, 

N 2 

N 1 

= −
˙ U 0 

3 U 0 

= − 2 c v 

(6 + 5 c v ϑ) 
, 

N 3 

N 1 

= 

2 

˙ U 

2 
0 

9 U 

2 
0 

− Ü 0 

3 U 0 

= 

6 c 2 v 
(6 + 5 c v ϑ) 2 

, 

nd 

N 4 

N 1 

= 

4 

˙ U 0 

3 R U 

2 
3 

0 

= 

4 c v 6 

3 
5 

3 R (6 + 5 c v ϑ) 
3 
5 

. 

ubstituting these coefficients into Eq. (3.25) , transforming to the

ariable z = (6 + 5 c v ϑ) and multiplying by z 2 yields 

 

2 Ü 1 − 2 

5 

z ˙ U 1 + 

6 

25 

U 1 = − 4 z 
7 
5 6 

3 
5 

75 R c v 
. (3.26)

his is essentially the Euler differential equation [31] , which solves

o give the general solution as 

 1 (z) = E 1 z 
6 
5 + E 2 z 

1 
5 − 2(6 

3 
5 ) 

9 R c v 
z 

7 
5 , 

or constants E 1 and E 2 . The initial conditions for the first order

erm U 1 ( ϑ) are U 1 (0) = 

˙ U 1 (0) = 0 and in the transformed system

 U 1 ( z )) these become U 1 (6) = 

˙ U 1 (6) = 0 , giving the particular so-

ution 

 1 (z) = 

2 

R c v 

(
4 

5(6 

1 
5 ) 

(
z 

6 
5 − z 

1 
5 

)
− 6 

3 
5 

9 

z 
7 
5 

)
. (3.27)

ewriting in the original inner variable ϑ, and combining it with

he leading order solution gives 

(ϑ) = 

2 η

R c v 

(
4 

5(6 

1 
5 ) 

(
(6 + 5 c v ϑ) 

6 
5 − (6 + 5 c v ϑ) 

1 
5 

)
− 6 

3 
5 

9 

(6 + 5 c v ϑ) 
7 
5 

)
+ 

(
1 + 

5 c v 

6 

ϑ 

) 6 
5 

. (3.28)

The effect of inertia can be examined by considering Eq.

3.5) for R = 0 : 

4 

3 

˙ U 

(
1 

U 

− 1 

X + U 

)
= 0 . (3.29)

his has solution U = c v ϑ + 1 where the initial conditions are

iven by ˙ U (0) = c v and U(0) = 1 . Fig. 1 shows the effects of inertia

n the bubble volume, U , in terms of the leading- and first-order

olutions, and for comparison includes the system with no inertia,

s given by Eq. (3.29) . Note that the system with no inertia is es-

entially the system considered in [16] , as the effects of the acous-

ic amplitude are also negligible in this early time analysis. It is

lso worth noting that the system considered in [45] incorporates

he effects of inertia, although no results on these effects were

resented. The timescale shown in Fig. 1 represents a range of 0–

.1 s, and the non-dimensional bubble volume is scaled with re-

pect to the initial bubble volume (equal to 10 −18 m 

3 ). This Figure

hows that as inertia increases (through increasing R ), the bub-

le volume, U , increases more rapidly and converges to the leading

rder solution U 0 = (1 + 5 c v ϑ/ 6) 6 / 5 . For lower inertia ( R = 0 . 05 ),

he bubble volume increases approximately 65-fold over this early
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Fig. 1. Plots illustrating the following analytic solutions: the leading order solution given by Eq. (3.16) (dotted curve), the first order solution (dashed curve) given by Eq. 

(3.28) and the leading order solution in the case of negligible inertia, Eq. (3.29) (solid curve). In all cases η = 10 −4 , c v = 0 . 05 and R � η. The parameter R is given by 

(a) R = 0 . 05 , (b) R = 0 . 1 , (c) R = 0 . 3 and (d) R = 1 . 0 . These figures demonstrate that as R increases within this regime, the bubble volume increases more rapidly and 

converges to the leading order solution. 
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s  
ime period, whereas for higher inertia ( R = 1 . 0 ) the bubble vol-

me increases approximately 90-fold over the same period. 

Equipped with solutions (3.16) and (3.27) , the first order pres-

ure and diffusion equations ( Eqs. (3.23) and (3.24) , respectively)

re now fully defined, and the first order rate equations for the

rientation tensor ( Eqs. (3.21) and (3.22) ) can now be solved using

he integrating factor method. Using Eqs. (3.16) , (3.17), (3.27) and

pplying the initial condition AR 1 (x, 0) = 0 , the solution of Eq.

3.21) is found to be 

R 1 (x, ϑ) = (x + U 0 ) 
− 4 

3 

(̂ AR 1 (x, ϑ) − ̂ AR 1 (x, 0) 
)
, (3.30)

here 

̂ R 1 ( x, ϑ ) = 

8 ( 1 + x ) 
4 
3 

3 R c v 

(
4 

U 0 + x 

(
U 

1 
6 

0 

(
U 0 + 

1 

5 

)
+ 

6 x 

5 

))
+ 

U 

5 
6 

0 

455 c v 

(
−546 ( 1 + x ) 

4 
3 + 30 ( x + U 0 ) 

1 
3 ( 15 x + 7 U 0 ) 

)
+ 

96 x 
4 
3 U 

5 
6 

0 

455 c v 2 

F 1 

(
2 

3 

, 
5 

6 

, 
11 

6 

, −U 0 

x 

)
nd 2 F 1 ( a, b, c, z ) denotes the ordinary (Gaussian) hypergeometric

unction [1] . Applying Eqs. (3.16) , (3.18), (3.27) and the initial con-

ition AQ 1 (x, 0) = 0 in a similar fashion, solving Eq. (3.22) leads to

Q 1 (x, ϑ) = (x + U 0 ) 
2 
3 

(̂ AQ 1 (x, ϑ) − ̂ AQ 1 (x, 0) 
)
, (3.31)

here 

̂ Q 1 (x, ϑ) = 

6 U 

5 
6 

0 

5 c x 
2 
3 

2 F 1 

(
2 

3 

, 
5 

6 

, 
11 

6 

, −U 0 

x 

)

v 
− 4 

3 R c v (x + 1) 
2 
3 

[ 

4 U 

1 
6 

0 
+ 

9 R U 

5 
6 

0 

10 

+ 

12 

U 0 + x 

(
2 x 

5 

+ 

(
1 

15 

− x 

3 

)
U 

1 
6 

0 

)] 
. 

Solutions to first order can now be produced for the pressure

nd diffusion equations, and for the rate equations for the orien-

ation tensor. Fig. 2 displays the time-varying pressure as the ef-

ect of inertia on the system is increased by increasing the value

f R . The non-dimensional pressure is the pressure difference be-

ween the gas and surrounding fluid scaled with respect to the ini-

ial pressure difference (where an initial difference of 900 kNm 

−2 

s used), and the timescale shown in each plot is the range 0–1 s.

ig. 2 (a) and (b) show that for smaller values of R , the pressure

nitially decreases, before steadily increasing with time. An overall

ncrease in the pressure difference of 30% and 4% are shown for

 = 0 . 05 and R = 0 . 1 , respectively, over this timescale. For larger

 values the behaviour is quite different, with the pressure con-

erging to the leading order behaviour for large R . This is demon-

trated in Fig. 2 (c) and (d) where the pressure steadily decreases as

ime increases. The result shown is a reduction in the pressure dif-

erence of 10% and 20% for R = 0 . 3 and R = 1 . 0 , respectively. Fur-

her investigations reveal that by reducing the value of η (thereby

educing the contribution of the first order component, and reduc-

ng the timescale in real terms), the pressure behaviour for each

alue of R is similar to that shown in Fig. 2 (c) and (d). Note that

he diffusion, which is simply a linear scaling of the pressure, ex-

ibits a similar behaviour. 

In Fig. 3 , the behaviour surface of the non-dimensional radial

tress, AR , is shown to first order for varying values of R . The
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Fig. 2. Plots illustrating the non-dimensionalised pressure as given by Eqs. (3.4) , (3.19) and (3.23) . In all cases η = 10 −3 , c v = 0 . 05 and R � η. The parameter R is given by 

(a) R = 0 . 05 , (b) R = 0 . 1 , (c) R = 0 . 3 and (d) R = 1 . 0 . The remaining parameter values are as follows: p a = 10 5 , p g0 = 10 p a , �= 0.32 and 
= 10 0 0. 
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non-dimensional spatial variable, x , is scaled with respect to the

initial bubble volume of 10 −18 m 

3 , and is varied here up to ten-

fold the initial bubble volume. In real terms the timescale used

represents 0–1 s, and recall that the non-dimensionalised radial

stress is initially equal to one throughout the fluid. The overall be-

haviour shown for each value of R is seen to be similar in each

case. With respect to the non-dimensional time ( ϑ), for small x the

radial stress initially decreases sharply before increasing at a rela-

tively steady rate. The rate of this increase reduces as x increases,

and for larger x this increase is relatively minimal. The radial stress

is shown to be less sensitive with respect to the distance from the

bubble surface, x , however, there is a gradual increase in AR as x

increases, which is most evident around the time at which AR first

begins to increase. Increasing the inertia through increasing R is

shown to have little impact for small x (that is, close to the bub-

ble surface); however, for larger x , increasing inertia is shown to

increase the severity of the initial decrease in AR (that is, for small

ϑ). With R = 0 . 05 , the overall reduction in radial stress over the

early time period is approximately 55% close to the bubble sur-

face, and the reduction is approximately 40% far from the bubble

surface. In comparison, with R = 1 . 0 , the overall reduction in ra-

dial stress over the early time period is approximately 55% close to

the bubble surface, and approximately 60% reduction far from the

bubble surface. Increased inertia therefore results in reduced radial

stress at the steady-state of the system (for larger x and larger ϑ). 
The non-dimensional circumferential (hoop) stress, AQ , is exam-

ined to first order in Fig. 4 for varying values of R . As in Fig. 3 ,

the timescale represents a range of 0–1 s in real terms, the non-

dimensional spatial variable is varied from the initial bubble vol-

ume (equivalent to 10 −18 m 

3 ) up to a ten-fold increase of this

volume, and the non-dimensional stress is initially equal to one
hroughout the fluid. Measured in a compression frame of refer-

nce, negative values indicate stretching in this case. The most

nteresting hoop stress behaviour is found to occur close to the

ubble surface, where the effect of increasing inertia is shown to

ncrease the extent of an initial phase of increasing compression

portrayed in Fig. 4 as a surface increasing above one), and subse-

uently reduce the extent of a second phase of increasing stretch-

ng (portrayed in Fig. 4 as a decreasing negative surface). Fig. 4 (a)

emonstrates that for comparatively small inertia ( R = 0 . 05 ), the

oop stress is largest close to the bubble surface and increases in

agnitude with time; that is, AQ is most negative for smaller x and

arger ϑ, and is close to zero outside this region. At the bubble sur-

ace the hoop stress shows an almost imperceptible increase for

arly time, followed by a steep decrease. This can be interpreted

s a negligible increase in the magnitude of the circumferential

ompression stress, followed by an increase in the circumferential

tretching stress to a value that is approximately 30-fold the initial

ompression stress. Fig. 4 (b) demonstrates that as inertia increases

he largest magnitude of the hoop stress decreases, indicating re-

uced stress due to expansion. An additional observation is that,

n comparison with Fig. 4 (a), close to the bubble surface the initial

ompression phase of the hoop stress is shown to be slightly in-

reased, and the subsequent stretching phase of the hoop stress is

ot so extreme. Each of these effects becomes increasingly promi-

ent as the effect of inertia is increased further in Fig. 4 (c) and (d),

ith larger initial increases in the hoop stress close to the bubble

urface, followed by smaller decreases as the bubble evolves. The

esult is that in Fig. 4 (d) with R = 1 . 0 , the hoop stress at the bub-

le surface is shown to gradually increase then decrease, whilst

emaining above one (the initial stress value) throughout. This be-

aviour can be interpreted as a steady increase in the circumferen-
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Fig. 3. Plots illustrating the non-dimensionalised radial stress as given by Eqs. (3.2) , (3.17) and (3.30) . In all cases η = 10 −3 , c v = 0 . 05 and R � η. The parameter R is given 

by (a) R = 0 . 05 , (b) R = 0 . 1 , (c) R = 0 . 3 and (d) R = 1 . 0 . 

t  

s  

t  

e  

t

4

 

n  

t  

t

u

A

a

A

S  

r

P

U  

(

I  

(

a

 

A  

c  

i

A

ial compression stress to a value approximately six-fold the initial

tress value, followed by a gradual relaxation of this stress as it re-

urns to approximately the initial value. In this case, no circumfer-

ntial stretching stress is observed over this timescale, indicating

hat only compression is occurring here. 

. Asymptotic analysis: outer solution 

For the outer solution expansions are made in the Reynolds

umber, R , noting the scaling assumption made for the inner solu-

ion, namely, R � η. An expansion in the outer temporal variable,

 , is therefore sought in the form 

 (t, R ) = u 0 (t) + R u 1 (t) + O (R 

2 ) , (4.1) 

 rr (x, t, R ) = A rr 0 (x, t) + R A rr 1 (x, t) + O (R 

2 ) , (4.2) 

nd 

 θθ (x, t, R ) = A θθ0 
(x, t) + R A θθ1 

(x, t) + O (R 

2 ) . (4.3) 

ubstituting Eq. (4.1) in Eq. (2.24) the expansion for P g can be de-

ived as follows 

 g = 

(
A + Bu 0 + �X 

u 0 + �X 

)
+ R 

(
Bu 1 

u 0 + �X 

− u 1 (A + Bu 0 + �X ) 

(u 0 + �X ) 2 

)
+ O (R 

2 ) , 

= P g 0 + R P g 1 + O (R 

2 ) . 
sing these expressions to leading order in R , the momentum Eq.

2.19) is 

4 

3 

˙ u 0 

(
1 

u 0 

− 1 

X + u 0 

)
= De (P g 0 − P u ) 

+ 

2 

3 

γ

∫ X 

0 

(A rr − A θθ ) 0 
x + u 0 

dx − 1 


u 

1 
3 

0 

. (4.4) 

n the same way, expanding Eqs. (2.20) and (2.21) using (4.2) and

4.3) gives to leading order in R 

∂A rr 0 

∂t 
= −4 

3 

˙ u 0 A rr 0 

(x + u 0 ) 
− (A rr 0 − 1) . (4.5) 

nd 

∂A θθ0 

∂t 
= 

2 

3 

˙ u 0 A θθ0 

(x + u 0 ) 
− (A θθ0 

− 1) . (4.6) 

The initial conditions are u 0 (t ∗) = u ∗0 , P g 0 (t ∗) = P ∗g 0 , A rr 0 (x, t ∗) =
 

∗
rr 0 

(x ) , A θθ0 
(x, t ∗) = A 

∗
θθ0 

(x ) and φ0 (t ∗) = φ∗
0 
, where the starred

onstants are to be determined from the inner solution by match-

ng these two asymptotic expansions. 

Employing the integrating factor method in Eq. (4.5) leads to 

 rr 0 (x, t) = e −t (x + u 0 ) 
− 4 

3 

∫ t 

t ∗
e ˆ t (x + u 0 ) 

4 
3 d ̂ t 

+ A 

∗
rr 0 

(x ) e t 
∗−t 

(
x + u 

∗
0 

x + u 0 

) 4 
3 

. 
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Fig. 4. Plots illustrating the non-dimensionalised circumferential stress as given by Eqs. (3.3) , (3.18) and (3.31) . In all cases η = 10 −3 , c v = 0 . 05 and R � η. The parameter R 

is given by (a) R = 0 . 05 , (b) R = 0 . 1 , (c) R = 0 . 3 and (d) R = 1 . 0 . 
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Similarly, Eq. (4.6) leads to 

(A rr − A θθ ) 0 (x, t) = e −t 

[
(x + u 0 ) 

− 4 
3 

∫ t 

t ∗
e 

ˆ t (x + u 0 ) 
4 
3 d ̂ t 

−(x + u 0 ) 
2 
3 

∫ t 

t ∗
e ˆ t (x + u 0 ) 

− 2 
3 d ̂ t 

+ e t 
∗
(

A 

∗
rr 0 

(x ) 
(

x + u 

∗
0 

x + u 0 

) 4 
3 

−A 

∗
θθ0 

(x ) 

(
x + u 0 

x + u 

∗
0 

) 2 
3 

) ] 

. 

Hence, 

I(u 0 , x, t) = 

( A rr − A θθ ) 0 (x, t) 

(x + u 0 ) 
, 

= I 1 (u 0 , x, t) − I 2 (u 0 , x, t) + I 3 (u 0 , x, t) , (4.7)

= f 1 (u 0 , x, t) 

∫ t 

t ∗
k 1 (u 0 , x, ̂  t ) d ̂ t 

− f 2 (u 0 , x, t) 

∫ t 

t ∗
k 2 (u 0 , x, ̂  t ) d ̂ t + f 3 (u 0 , x, t) , (4.8)

where, 

f 1 (u 0 , x, t) = e −t (x + u 0 ) 
− 7 

3 , 
f 2 (u 0 , x, t) = e −t (x + u 0 ) 
− 1 

3 , 

f 3 (u 0 , x, t) = e t 
∗−t 

(
A 

∗
rr 0 

(x )(x + u 

∗
0 ) 

4 
3 (x + u 0 ) 

− 7 
3 

−A 

∗
θθ0 

(x )(x + u 

∗
0 ) 

− 2 
3 (x + u 0 ) 

− 1 
3 

)
, 

 1 (u 0 , x, ̂  t ) = e ˆ t (x + u 0 ) 
4 
3 , 

nd 

 2 (u 0 , x, ̂  t ) = e ˆ t (x + u 0 ) 
− 2 

3 . 

o leading order, the momentum Eq. (4.4) is of the form 

˙ 
 0 = g(u 0 , t) , 

nd an approximate solution can be found using the Picard itera-

ion method [7] . The first Picard iterate, u 
p1 
0 

(t) , is derived analyti-

ally and a numerical algorithm is produced to test the accuracy of

his first analytic iteration. The first iteration of the Picard method

s given by, 

 

p1 
0 

(t) = u 

∗
0 + 

∫ t 

t ∗
g(u 

∗
0 , t ) dt , (4.9)

here u ∗
0 

= u 0 (t ∗) . 
Plots of this leading order analytic Picard approximation are il-

ustrated in Fig. 5 (a) and (b), for a range of values of P u and De ,

espectively. The grouped parameter De is the ratio of the bub-

le growth rate to the relaxation rate of the polymer and is in-

ersely proportional to the viscosity value μ. Fig. 5 (b) shows that
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Fig. 5. Plots of the first Picard iterate solution, u p1 
0 

given by Eq. (4.9), for a range 

of values of (a) De (which is inversely proportional to viscosity) and (b) P u , the 

non-dimensional value for the pressure amplitude of the irradiating acoustic stand- 

ing wave. The initial conditions and parameters common to both plots are as fol- 

lows: t ∗ = 0 , u ∗ = 1 , X = 10 0 0 , p a = 10 5 , p g 0 = 10 p a , � = 0 . 32 , 
 = 10 0 0 . In (a) 

P u = 0 and the range of values for De are 0.1 (solid line), 1 (dashed line), 10 (dot- 

ted line), and in (b) the non-dimensional pressure amplitude values, P u , are zero 

(solid line), 0.03 (long-dashed line), 0.05 (dotted line), 0.10 (dot-dashed line), 0.50 

(short-dashed line), with De fixed at 1. 
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o  
s viscosity decreases, for a constant initial gas pressure difference

cross the bubble wall, the initial bubble growth rate increases

s expected. The next section will show, however, that although

he numerical solution predicts the same qualitative increase, it

symptotes to a steady state value, whereas the Picard solution

oes not. This is not unexpected since only one iteration of the

icard scheme has been carried out to retrieve the leading order

inear solution (4.9) . This leading order solution is relatively accu-

ate near to the inital bubble volume but as t increases it is less

o, as illustrated in Fig. 7 . The Picard method is a function-wise

teration and would require several more iterations to produce a

easonable approximation over a larger domain interval. Theoreti-

ally this is possible, but due to the complexity of the system and

he integro-differential momentum equation this analytical path is

ot pursued further. 

The relationship between the irradiating acoustic standing wave

ressure amplitude, P u , and the final bubble volume can be ob-

erved in Fig. 5 (a) and implies that increasing this amplitude sup-

resses the speed of bubble volume growth at early time. Since

his linear approximation does not asymptote as the numerical so-

ution is expected to do, the effect of the pressure amplitude on

he steady state bubble volume cannot be predicted. This effect is

nvestigated in the following section, where a numerical analysis is
erformed for the outer solution in the case of instantaneous dif-

usion. 

.1. Numerical solution of the leading order momentum equation 

The momentum Eq. (4.4) contains an integral in t given by Eq.

4.8) within an integral over x . For the temporal integrals within

he integrand I ( u 0 , x, t ) a quadrature rule is used with weightings

k , where u 0 k = u 0 ( ̂ t k ) , ̂  t 1 = t ∗, ̂  t j = t j and t j ∈ [ t ∗, t ] to give, 

 1 ( u 0 j , x, t j ) = e −t j (x + u 0 j ) 
− 7 

3 

j ∑ 

k =1 

αk e 
ˆ t k (x + u 0 k ) 

4 
3 , 

 2 ( u 0 j , x, t j ) = e −t j (x + u 0 j ) 
− 1 

3 

j ∑ 

k =1 

αk e 
ˆ t k (x + u 0 k ) 

− 2 
3 , 

 3 ( u 0 j , x, t j ) = e t 
∗−t j 

(
A 

∗
rr 0 

(x )(x + u 0 
∗
j ) 

4 
3 (x + u 0 ) 

− 7 
3 

−A 

∗
θθ0 

(x )(x + u 

∗
0 ) 

− 2 
3 (x + u 0 j ) 

− 1 
3 

)
. 

he spatial integral can be written as 

ˆ 
 ( u 0 j , t j ) = 

ˆ I 1 ( u 0 j , t j ) − ˆ I 2 ( u 0 j , t j ) + ̂

 I 3 ( u 0 j , t j ) , 

here 

ˆ 
 i ( u 0 j , t j ) = 

∫ X 

0 

I i ( u 0 , x, t j ) dx, i = 1 , 2 , 3 . 

 quadrature in x is introduced via the weightings αL to give, 

ˆ 
 1 ( u 0 j , t j ) = e −t j 

m ∑ 

L =1 

αL (x L + u 0 j ) 
− 7 

3 

j ∑ 

k =1 

αk e 
ˆ t k (x L + u 0 k ) 

4 
3 , 

ˆ 
 2 ( u 0 j , t j ) = e −t j 

m ∑ 

L =1 

αL (x L + u 0 j ) 
− 1 

3 

j ∑ 

k =1 

αk e 
ˆ t k (x L + u 0 k ) 

− 2 
3 , 

nd 

ˆ 
 3 ( u 0 j , t j ) = e t 

∗−t j 

m ∑ 

L =1 

αL A 

∗
rr 0 

(x )(x L + u 0 j ) 
− 7 

3 (x L + u 

∗
0 ) 

4 
3 

−e t 
∗−t j 

m ∑ 

L =1 

αL A 

∗
θθ0 

(x )(x L + u 0 j ) 
− 1 

3 (x L + u 

∗
0 ) 

− 2 
3 . 

n Euler iterative scheme is then used to integrate in time this

on-linear system of ODEs to give 

 0 j+1 = u 0 j + δt 
3 u 0 j 

4 X 

(X + u 0 j ) 

(
De 

A + B u 0 j + �X 

u 0 j + �X 

− P u De 

− 1 


( u 0 j ) 
1 
3 

+ 

2 

3 

γ ˆ I ( u 0 j , t j ) 

)
, (4.10) 

ith initial conditions u 0 (t ∗) = u ∗
0 
, A rr 0 (x, t ∗) = A 

∗
rr 0 

(x ) and

 θθ0 
(x, t ∗) = A 

∗
θθ0 

(x ) defined through matching this numerical

olution with the inner solution. Note that for t � 1, the bubble

olume found numerically through Eq. (4.10) is found to match

ith the equilibrium bubble volume u ∞ 

, as defined by [16] and

iscussed following Eq. (2.24) . Furthermore, for t � 1 it can be

hown that ˆ I → 0 , and as the bubble approaches its equilibrium

olume u 0 j+1 → u 0 j . Setting P u = 0 in Eq. (4.10) then recovers

e P g 0 − 1 / 
u 0 
1 / 3 → 0 for t � 1, which corresponds to leading

rder with the limit stated in [16] for cases where the bubble

rowth rate is dominated by the surface tension towards the end

f the bubble expansion. 

The initial time t ∗ is selected as the boundary time at which

he matched asymptotic solution transitions from the inner to the

uter temporal region. This boundary time is defined as the time at
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Fig. 6. (a) The first order inner solution given by Eq. (3.28) (dashed line) and the 

outer solution calculated through the Euler iterative scheme given by Eq. (4.10) (full 

line). The inner and outer solutions have been matched by selecting the time t ∗

such that the derivatives calculated from each respective equation are equal at this 

time, and the subsequent value of u ∗0 = u 0 (t ∗) initialises the Euler iterations. Plot (b) 

displays the same solutions, focused around t ∗ for clarity. The parameters common 

to both plots are as follows: t ∗ = 0 . 077 , X = 10 0 0 , p a = 10 5 , p g 0 = 10 p a , � = 0 . 32 , 


 = 10 0 0 , γ = 1 , P u = 0 and De = 9 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) The first iterate, u p1 
0 

, for the analytic Picard solution (dotted line) given 

by Eq. (4.9) and the associated numerical solution calculated using the Euler itera- 

tive scheme given by Eq. (4.10) (solid line). Plot (b) shows that this first iterate is 

only reasonably accurate close to the initial condition at t ∗ = 0 and does not pro- 

vide a good description of u 0 for t � t ∗ . The initial conditions and parameters com- 

mon to both plots are as follows: t ∗ = 0 , u ∗ = 1 , X = 10 0 0 , p a = 10 5 , p g 0 = 10 p a , 

� = 0 . 32 , 
 = 10 0 0 , γ = 1 , P u = 0 and De = 1 . 
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n  
which the inner and outer solutions are equivalent; an additional

requirement imposed here is that the gradients of the inner and

outer solutions are equivalent at this boundary time, in order to

ensure a smooth transition between the two regions. The boundary

time t ∗ (the initial time of the outer solution scheme) can there-

fore be determined analytically by solving 0 = d /d ϑ(U(t ∗/η)) −
d /d t(u 0 (t ∗)) for t ∗ subject to U(t ∗/η)) = u 0 (t ∗) = u 0 1 , where U ( ϑ)
is defined by Eq. (3.28) , u 0 j+1 

is defined by Eq. (4.10) , and the

derivative of the discrete numerical iteration scheme (4.10) is de-

fined as d /d t(u 0 (t j )) = (u 0 j+1 
− u 0 j ) /δt . The initial volume u ∗

0 
then

initialises the Euler iteration (4.10) , and the remaining initial con-

ditions, A 

∗
rr 0 

(x ) and A 

∗
θθ0 

(x ) , then follow directly. This matching is

demonstrated in Fig. 6 . In the limit as t gets very large, the bubble

volume is shown to approach an asymptotic limit, and the value of

this limit corresponds with the equilibrium bubble volume given

in [16] . For the purpose of constructing Figs. 6–8 the Composite

Simpson rule is used with quadrature weightings, 

α1 = αm 

= 

h 

3 

, α j = 

{
4 
3 

h, j even 

2 
3 

h, j odd 

, 

where h = δx, δt and the accuracy is O ( h 4 ). Fig. 7 compares the Pi-

card iteration solution with this numerical approach. 
.2. Investigating the effects of viscosity and the acoustic pressure 

mplitude on the final bubble volume 

In Fig. 8 the numerical approach is used to look at the effect of

ltering the viscosity via the dimensionless parameter, De , and the

imensionless applied acoustic pressure amplitude, P u . In the case

f instantaneous diffusion, Fig. 8 (a) shows that an increase in P u 
esults in a decrease in the final bubble volume, though the time

o achieve this steady state solution is unaffected. Note that by set-

ing the inertia term to zero, the case of zero ultrasound pressure

mplitude shown in Fig. 8 (a) is representative of the model pre-

ented in [16] . In Fig. 8 (b) the converse effect is evident due to

ncreasing viscosity; that is, the steady state bubble volume is un-

ffected but the time required to reach this steady state volume is

ncreased. 

. Conclusions and further work 

A model has been produced to track the growth of a bubble in

 free rising, non-reacting polymer foam incorporating the effects

f inertia. The system was partially decoupled by assuming instan-

aneous diffusion, enabling inner and outer asymptotic solutions to

e derived to first and leading order, respectively. 

The asymptotic analysis performed in Section 3 derived an in-

er solution for the nondimensional bubble volume in the case
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Fig. 8. The numerical solution of (4.10) and how it is affected by (a) acoustic pres- 

sure amplitude, P u , and (b) viscosity via the dimensionless grouped parameter De . 

In (a) the values of P u are zero (dotted line), 0.03 (dashed line) and 0.05 (solid line). 

The Deborah numbers, De , in (b) are 0.1 (solid line), 1.0 (dashed line) and 10.0 (dot- 

ted line), corresponding to viscosity values of 9 × 10 6 Nsm 

−2 , 9 × 10 5 Nsm 

−2 and 9 

× 10 4 Nsm 

−2 , respectively. The initial conditions and parameters common to both 

plots are as described in Fig. 7 except for those parameter values detailed above 

for (a) and (b). Note that these P u = 0 . 03 and P u = 0 . 05 relate to acoustic pressure 

amplitude values of p u = 2 . 7 × 10 4 Pa and 4.5 × 10 4 Pa, respectively, and reflect in- 

strumental values. In practice, the actual pressure amplitude, in situ would be much 

lower due to the effects of attenuation [43] . 
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Table 1 

Parameters required for bubble expansion in the non-reacting system 

(2.19) –(2.23) . 

Parameter Value Units 

Pressure outside the fluid layer, p a 1 10 5 Nm 

−2 

Initial bubble gas pressure, p g 0 10 10 5 Nm 

−2 

Elastic modulus, G 1 − 10 10 5 Nm 

−2 

Solvent viscosity, μ 1,6 10 5 Nsm 

−2 

Polymer relaxation time, τ 1 s 

Initial bubble volume, u 0 1 10 −18 m 

3 

Surface tension, S 0 − 5 10 −1 Nm 

−1 

Gas constant, R g 8.31 Jmol 
−1 

K −1 

Temperature, T 370 K 

Henry’s law constant, H 10.5 10 −5 molN 

−1 
m 

−1 

Diffusivity, D 0 . 1 − 100 10 −12 m 

2 s −1 

Fluid density, ρ 1200 kgm 

−3 
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e

hen the ratio of the bubble volume to the surrounding fluid vol-

me is very small. This describes the non-reacting foam at early

ime when the bubbles have just nucleated and individual bubbles

re located at large distances from neighbouring bubbles. The lead-

ng order solution was parameterised by the initial condition only

nd described the relationship between bubble volume and time

s U ∝ t 6/5 . 

In Section 4.2 , increasing fluid viscosity is shown to have no

mpact on the final bubble volume; however, the time required

o reach this equilibrium state is found to increase with the vis-

osity. This effect was also described by Everitt et al. [16] . They

emonstrated two distinct phases of bubble growth in the case of

nstantaneous diffusion: an initial phase of rapid expansion in bub-

le volume followed by a second phase of slower expansion. The

arly time bubble growth displayed in Fig. 8 (b) agrees qualitatively

ith the results reported by Everitt et al. [16] for their numerical

olution at early time. Critically, however, by including inertia in

he work presented here, this paper has shown that inertia plays a

ubstantial role in this phase of growth. 

This paper was motivated by a problem regarding the tailoring

f the porosity gradients within a cured sample of a polymeris-

ng foam under the influence of an acoustic standing wave [43] .
his complex process involves many interacting factors and effects

ncluding rectified diffusion, Ostwald ripening and nucleation, all

f which are affected by the variations in pressure amplitude re-

ulting from the acoustic standing wave. While the acoustic pres-

ure amplitude is found to have little impact on the early stages of

ubble growth, Section 4.2 demonstrates that increasing the acous-

ic pressure amplitude results in a decrease in the final bubble

olume. This promising result indicates that further investigations

hould be carried out to further explore the effects of the ultra-

ound field. 

As has been demonstrated, the inertial effects are important in

he early growth stages of the bubble. This would also be true in

ituations where the bubble was undergoing rapid oscillations due

o an oscillating ultrasound field that was designed to cause the

ubble to resonate. This resonating behaviour could affect the bub-

le growth via rectified diffusion. Only the time averaged RMS sig-

al for the acoustic wave is considered in this paper, however, the

cheme produced here could be employed in the future to exam-

ne the effects of the acoustic pressure amplitude on rectified dif-

usion. 

The effect of the acoustic pressure amplitude of the irradiating

tanding wave will also have an effect on the bubble size distribu-

ion within an expanding polymer foam. Torres-Sanchez and Cor-

ey [43] observed that the porosity value at a given spatial point

s directly proportional to the pressure amplitude at that point.

he porosity value is related to bubble volume and future work

ill develop a mathematical model capable of tracking the bubble

rowth of a homogeneous distribution of bubbles under the influ-

nce of an acoustic standing wave. This will enable the relation-

hip between porosity (or bubble size) and acoustic pressure am-

litude which was observed by Torres-Sanchez and Corney [43] to

e demonstrated mathematically ( Table 1 ). 

The ability to tailor the porosity profiles within polymerising

aterials will lead to significant improvements in a range of man-

factured products such as artificial bone. Given the complexity of

he physics involved it is essential that mathematical modelling

nderpins the design and implementation of the manufacturing

rocess. This paper serves as the first stage in developing such a

athematical model and will pave the way in fully understanding

his fascinating problem. The next steps will be to incorporate a

eacting polymer into the framework presented here, and this will

e addressed in future work. 
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Appendix A. Parameter values for numerical investigations 
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