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A Self-Structured Adaptive Decision
Feedback Equalizer

Yu Gong and Colin F. N. Cowan, Senior Member, IEEE

Abstract—In a decision feedback equalizer (DFE), the structural
parameters, including the decision delay, the feedforward filter
(FFF), and feedback filter (FBF) lengths, must be carefully chosen,
as they greatly influence the performance. Although the FBF
length can be set as the channel memory, there is no closed-form
expression for the FFF length and decision delay. In this letter,
first we analytically show that the two-dimensional search for the
optimum FFF length and decision delay can be simplified to a
one-dimensional search and then describe a new adaptive DFE
where the optimum structural parameters can be self-adapted.

Index Terms—Adaptive algorithm, decision delay, decision feed-
back equalizer (DFE), tap-length.

I. PROBLEM STATEMENTS

THE typical structure of a decision feedback equalizer
(DFE) consists of a feedforward filter (FFF), a feedback

filter (FBF), and a decision device. Although an ideal DFE
generally has infinite length [1], most designs use finite length
filters because of simplicity and robustness. This brings up the
problem of how to choose the structural parameters, including
the FFF tap-length , the decision delay , and the FBF
tap-length , as they have great influence on the performance.
Note that the decision delay determines to which transmitted
symbol the detected symbol corresponds. To be specific, on
the one hand, when and are fixed, there exists an
optimum that minimizes the minimum mean-square error
(MMSE); on the other hand, for a given , the MMSE is
always a nonincreasing function of or , but too long a

or not only unnecessarily increases the complexity with
little MMSE improvement but also increases the adaptation
noise when the adaptive algorithm is applied. Therefore, for all
possible choices of , , and , there must exist a group
of optimum values of them that correspond to the best MMSE
performance. The purpose of this letter is, therefore, to search
for the optimum structural parameters that normally vary with
different channels.

Some designs, by comparison, intend to reach a preset target
MMSE with the simplest complexity, such as the smallest tap-
length. However, how to choose the target MMSE, thereafter,
becomes another issue that is different from that of this letter,
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where we want the MMSE as small as possible. In some other
approaches, the algorithm fixes the tap-length based on a toler-
able complexity and finds the corresponding optimum . For
example, in [2], fixing the total number of taps “

,” Al-Dhahir et al. described a method to search for the op-
timum values of and that minimize the MMSE. Such
an approach, however, has two disadvantages: First, it did not
point out how to choose an appropriate value of , which,
similar to that for the linear equalizer [3], should balance the
complexity and performance and thus generally varies with the
channel. Thus, the resulting structural parameters are only “lo-
cally” optimum for one particular choice of . Second, al-
though the assumption of fixing attempts to place a con-
straint on the complexity, two DFEs with the same may
vary significantly in complexity, depending on how the taps are
assigned between the FFF and FBF. This is because the compu-
tation load for a DFE mainly comes from the FFF as the inputs to
the FBF are the output from the hard decision device that are, for
example, binary signals in a binary phase-shift keying (BPSK)
system. Therefore, fixing is not equivalent to “fixing” the
complexity. In fact, as will be shown later in this letter, the con-
straint on or may result in performance loss. Thus, from
the performance point of view, it is more appropriate to choose
the tap-length based on specific channels rather than complexity
constraint. It is true that, if the channel has very long memory,
the DFE has high complexity. However, under such a scenario,
it is difficult for a single DFE to do the equalization at all, and
other approaches such as orthogonal frequency-division multi-
plexing (OFDM) should be applied. In general, how to trade
off the MMSE performance and the complexity constraint is an
issue beyond the scope of this letter.

It has been proved in [4] that the FBF with length of
performs as well as any longer filters, where is the channel
length. In contrast, is generally related to the inverse of the
channel but has no closed-form expression. Chen et al. pointed
out in [5] that the DFE should have and .
In a more recent paper [6], Hillery et al. further argued that,
when is at least as long as the channel span, the DFE is in-
sensitive to the decision delay for a fairly wide band. What the
exact value of an appropriate should be, however, still re-
mains a question. In fact, in many cases, setting is
not enough, as will be shown in an example later. Similarly, al-
though Tidestav et al. and Lopez-Valcarce have shown in [7]
and [8], respectively, that there is no need to increase be-
yond a given value of , they did not point out how to choose
an appropriate so that the best MMSE performance can be
reached.
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Since, as was just mentioned, the complexity of a DFE mainly
comes from the FFF part, the DFE is more tolerant to an over-
estimated than an overestimated . So in practice, we may
let , where can be roughly estimated by ei-
ther order selection criteria (e.g., [9]) or variable length adaptive
algorithms (e.g., [3]), and find the optimum values of and

. This is clearly a two-dimensional search problem. Most cur-
rent approaches, unfortunately, mainly consider searching for
the optimum for a given or . For example, in [10],
Voois et al. expressed the decision delay as an explicit param-
eter for the DFE and described a method to obtain the optimum

for a given . Further, in [11], Al-Dhahir et al. proposed an
efficient algorithm to calculate that optimum . None of these
approaches, including that in [2], guarantees to give the true op-
timum structural parameters, where all possible and must
be taken into consideration. Besides, all these approaches are
based on the “brute-force” search by directly manipulating the
input correlation matrix, resulting in high complexity.

It has been shown in [4] that, when and is
large enough, the optimum decision delay satisfies .
This result itself, however, does not directly lead to the conclu-
sion that the optimum must be “large enough” to satisfy the
above equation. In fact, one of the contributions of this letter is
to prove in Section II that the optimum values of and do
satisfy , and the two-dimensional search for the op-
timum and can then be simplified to a one-dimensional
search. The proof itself, moreover, provides a deep insight in
understanding the DFE. In Section III, a novel DFE with adap-
tive is proposed, and numerical results are provided in Sec-
tion IV to verify the analysis and the proposed algorithm. To
highlight the key points, in the rest of this letter, we will assume
the channel length is known and , though in
practice, must be estimated, as was mentioned previously.

II. OPTIMUM FFF TAP-LENGTH AND DECISION DELAY

A. Two-Dimensional Definition

In general, an optimum FFF is acausal and has infinite length
[1], implying that the minimum MMSE with respect to all pos-
sible tap-length and decision delay is given by

(1)

where represents the MMSE with the FFF tap-length
and decision delay being at and , respectively. For sim-
plicity, the right-hand side of (1) will be denoted as

later. Then the optimum FFF tap-length
and decision delay are defined as the minimum and
that satisfy

(2)

where is a small positive constant that is preset according to
the system requirements. This definition is based on the assump-
tion that any MMSE that satisfies (2) need not be discriminated
with . It is clear that the larger the value of , the more sac-
rifice to the MMSE in order to achieve length reduction.

In general, finding and requires brute-force
search in two dimensions of and for a reasonably

large number of . For every , only for
need to be computed [12],

though is generally within the range of
outside which the received signal and the desired signal are
uncorrelated.1 However, even with this simplification and the
efficient method to calculate shown in [11], the total
complexity in finding and is still too high. Below
we will show that the search in two dimension can be reduced
to one dimension.

B. One-Dimensional Definition

It has been proved in [4, Theorem 1] that, if
and , then for ,
where is the th tap of the FFF. Thus, for an infinitely long
FFF, we have

for
(3)

For a finite length FFF with , the decision delay satis-
fies . Again from [4, Theorem 1], and
noting (3), we have

for (4)

On the other hand, since the optimum FFF generally has infi-
nite length, with the presence of noise, is normally a
strictly decreasing function of for a given . Thus, we have

for .
Further noting (3) gives

for (5)

The above analysis provides important information in under-
standing the optimum FFF tap-length and decision delay. For
clarity of exposition, we illustrate this problem through a nu-
merical example by plotting the MMSE curves with respect to

in Fig. 1, where is fixed at 4, 7, 12, 20, and , respec-
tively, the channel vector is with

, SNR dB, and the transmission signal are
either 1 or 1 (BPSK) and mutually independent.

As shown in Fig. 1, the curves for different form a “tree”
structure, where the “trunk” of the tree corresponds to the curve
for . For a finite , the “MMSE versus ” curve can
be divided into two segments, corresponding to
and , respectively. According to (4),
the first segment of the curve overlaps with the “trunk,” and
according to (5), the second segment forms a “branch” of the
tree that lies above the “trunk.” Hence, the “trunk” provides a
lower MMSE bound for all possible and . Moreover, (3)
shows that the “trunk” can also be formed by plotting the MMSE
versus for , implying that the
optimum FFF tap-length and decision delay must
be on the “trunk” and satisfy . Therefore, the

1Without losing generality, we assume the transmission signals are mutually
independent.
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Fig. 1. MMSE versus � with N fixed at 4, 7, 12, and1, respectively.

search for needs only to be along the “trunk” by fixing
, which is in one dimension.

From the Theorem 3 in [4], we have
, which is, according to (3),

equivalent to
for . Thus, (or

the “trunk”) is a strictly nonincreasing function of , and then
can be redefined as the minimum that satisfies

(6)

It is clear from Fig. 1 that, in this example, we have
and since the “trunk” curve almost flattens out after

.

C. Some Discussions

As was shown in [4], when is large enough ( in
this example), the optimum decision delay that minimizes the
MMSE for a given must satisfy ; otherwise
( and 7 in this example), we may have

, but then from (5), we have
, which implies that, from the performance point

of view, rather than searching for for a given , it is more
appropriate to increase with .

In [2], another approach of reducing the searching space for
the structure parameters from two to one dimension was also
described, which was achieved by assuming the FBF cancels
all post-cursor ISI so that and
then finding the optimum that minimizes the MMSE, where
the total number of taps is fixed and

.2 It can be easily verified that such an approach,
from the performance point of view, is equivalent to finding the
optimum that minimizes for

, where and
.3 This corresponds to number of searching

2Note that [2] and this letter use slightly different notations for the structure
parameters.

3Under such a scenario, it is equivalent to having N = N � N and
N = N � 1 in terms of the MMSE performance.

points on the “tree” structure described above. More specifi-
cally, because it can also be easily verified that

for every , there are of the
searching points on the “branches,” and one searching point on
the “trunk,” corresponding to as only then

. Since the “branches” always lie above the “trunk,”
this indicates that the approach described in [2] cannot guar-
antee convergence to the optimum value, and the performance
loss may happen when , where
is the optimum defined in (6). The exact value of the perfor-
mance loss depends on the specific channel. On the other hand,
if , unnecessary complexity will arise.

III. FFF TAP-LENGTH ADAPTATION

A. Cost Function

The previous section shows that the two-dimensional search
for and can be simplified to a one-dimensional
search by fixing , making it possible to adapt

instantaneously as in [3]. First, we need a cost function on
which adaptation can be based. Unfortunately, we cannot
directly apply (6) since it requires , which is normally a
priori unknown. An alternative definition for the optimum FFF
tap-length is thus introduced below.

We observe that, if is large enough and ,
the first several coefficients of the FFF will be very small; so is
the difference between the MMSE and the so-called “segment
MMSE,” which is defined as ,
where we define

(7)
where is the FBF output, is a positive integer much smaller
than , and and consist of the last

coefficients of the FFF tap-vector and input-vector
, respectively. is set to avoid local minima corresponding

to zero channel taps. Note that and are just the
error signal and MMSE of the DFE.

Therefore, similar to that in [3], it is possible to define the
optimum by comparing and . To be specific,
we can define an alternative optimum FFF tap-length as
the minimum that satisfies

(8)

where is also a smaller positive constant [3]. It is clear that,
when and are small, the optimum FFF tap-length based
on (6) and (8) are either the same or very close, i.e.,

. We note that, to make sense of (8), we must ensure
, below which no can be differentiated.

B. Adaptation Rule

If and are known for every , the adap-
tation rule can be simply obtained as

sign
(9)

where is the FFF tap-length at time , and is the step-
size parameter that must be an integer. It can be easily verified
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Fig. 2. N learning curves for different initializations.

Fig. 3. MSE learning curves.

that (9) converges to within a range of
.

In practice, unfortunately, and are not
a priori known. Then the concept of the pseudo-fractional
tap-length introduced in [3] may be applied. Specifically,
defining as the pseudo-fractional FFF tap-length, which
can take fractional values, we have the length adaptation rule as

(10)
where both and are small positive numbers. Specifically,

is an additive leaky factor that is used to prevent the length
adapting into unnecessarily large values, and is the step-size
parameter for the above adaption rule. To ensure stability, we
must have . Initially, we have .

The “true” FFF tap-length is determined according to

otherwise
(11)

where rounds the embraced value to the nearest integer. It
is implied from (11) that is modified by a value of
each time. To be specific, if is to be increased, then
number of zeros are padded at the head of the FFF. Otherwise,
if is to be decreased, the first coefficients of the FFF are
taken out.

Since (9) and (10) are based on the same cost function, they
should converge to the same tap-length. In fact, following sim-
ilar procedures to those in [3], we can easily verify that, if

, (10) converges to within a range of
in the mean. The detail of the analysis, however, is not shown
here due to the space constraints. Finally, we note that, since the

adaptation of (10) is based on instantaneous gradient search,
it imposes very low complexity on the DFE.

IV. NUMERICAL SIMULATIONS

This section gives numerical simulation to verify the pro-
posed algorithm, where the same channel as that in Fig. 1 is
applied: , , and the normalized LMS
with step-size 0.2 is used to adapt both the FFF and FBF coeffi-
cients. For the adaptation, we have , , and

for (10), and for (11).
Fig. 2 shows the learning curves for different initialization

at and 20, respectively. Both curves are for one typ-
ical simulation run. Recalling that the optimum FFF tap-length
is 12, as shown in Fig. 1, we can clearly observe that the algo-
rithm converges to the optimum tap-length for both initializa-
tions. In practice, if is known, we may set , as
it may be a “good guess” of the optimum and shorten the
convergence time. We note that, similar to the famous LMS al-
gorithm, the instantaneous nature of (10) makes the learning
curves keep “bouncing” between 12 and 13 after convergence.

Fig. 3 shows the MSE learning curves for , ,
and the adaptive with , respectively. For clarity of
exposition, all MSE learning curves are obtained by averaging
over 50 independent runs. It is clearly shown that the DFE with

performs significantly better than that with
. Thus, in this example, having is

obviously not large enough. However, it is clear that the DFE
with adaptive performs almost as well as that with

.

V. CONCLUSION

In this letterer, first we showed that, with ,
the generally two-dimensional search for the optimum FFF tap-
length and decision delay can be simplified to a one-dimensional
search by fixing and then proposed a novel DFE
where the optimum can be self-adapted. Numerical simula-
tions were also given to verify the analysis and proposed algo-
rithm.
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