This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

A mathematical model of a ship's electrical power system

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER
© Kwong-Keung Ng

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE
CC BY-NC-ND 4.0

REPOSITORY RECORD

Ng, K. K.. 2019. "A Mathematical Model of a Ship's Electrical Power System". figshare. https://hdl.handle.net/2134/37699.

A MATHEMATICAL MODEL

OF
A SHIP'S POWER SYSTEM
by
K.K.NG, B.Sc. (Hons)

A Master's Thesis
submitted in partial fulfilment of the requirements for the award of the degree of Master of Philosophy in Engineering of Loughborough University of Technology

June, 1989

Supervisors: Mr. J.G. Kettleborough
Professor I.R. Smith

Department of Electronic and
Electrical Engineering

Acknowledgements

I wish to express my deepest gratitude to my supervisor, Mr J. G. Kettleborough and Professor I. R. Smith (Director of Research) for their invaluable guidance, advice, encouragement and their patience during the period of research and preparation of this thesis.

Many thanks to Mr K. Gregory and Dr. C. R. Fitton for their advice during the periods of research.

Also, I wish to thanks my parents for their endurance and precious help throughout the period of study.

Synopsis

The work described in this thesis concerns the time-domain simulation of various items of plant for a limited-size electrical power system. Initially an isolated 3-phase synchronous generator is considered, with the electrical equations being expressed in the phase reference frame, since this copes easily with both unbalanced fault and load switching conditions. The study looks at theoretical results for a 3-phase short circuit test on a generator as provided by the computer model and by a conventional $d q o$ approach. In addition, the generator model is used in investigations of various unbalanced load conditions.

The single generator study is then extended to a multi-generator power system, and models for the following items of plant are developed:
a) A 3-phase synchronous generator driven by a diesel engine. The engine is governor speed controlled, and the generator has an automatic voltage regulator (AVR) to maintain a constant generator output voltage.
b) A motor/generator set, comprising a 3-phase synchronous machine, mechanically coupled to a separately-excited dc machine.
c) Section switches and a bus-coupler, which may be switched both in or out during the simulation.
d) A fully controlled 3-phase bridge converter with back-to-back thyristors, which is capable of both rectification and pulse-width-modulated (PWM) inversion.

A method of numerical analysis based on Kron's diakoptic approach is used to investigate the behaviour of the complete system. For the purpose of calculation the system is torn into 5 sub-networks and for each seperate sub-network a set of differential equations is solved. Using numerical data derived from each sub-network, the currents and voltages of the complete system are then obtained using inverse transformations.

Finally, the performance of the system is illustrated by considerations for a variety of balanced and unbalanced switching conditions.

LIST OF SYMBOLS

In the following list, subscripts i and j equal r, y, b, f, d and q, referring respectively to the red, yellow and blue armature phase windings, the field winding, and the effective direct- and quadrature- axis damper windings of the synchronous generator. Subscript L refers to the load. An additional subscript 0 used with the inductance coefficients implies the value of the coefficient with zero field current.
$\mathrm{C}, \mathrm{C}^{\mathrm{t}} \quad-\quad$ branch/mesh current transformation for a synchronous machine and its transpose.
$C_{\cdot m}^{\mathbf{L}}, C_{m}^{\mathbf{L}} \quad-\quad$ link/mesh transformation and its transpose.
E_{0} - Synchronous machine open - circuit phase voltage.
$\mathrm{G}_{\mathrm{ij}} \quad-\quad$ time rate-of-change of inductances.
h - integration step length.
$\mathrm{i}_{\mathrm{TO}} \quad-\quad$ thyristor current at the beginning of an integration step.
${ }^{i_{T}}$

- thyristor current at the end of an integration step.

J

- combined interia of the synchronous machine and dc machine.
$\mathrm{k} \quad-\quad \mathrm{DC}$ machine voltage constant.
$\mathrm{k}_{\mathrm{a}} \quad-\quad$ AVR amplifier gain.
$\mathrm{k}_{\mathrm{e}} \quad-\quad$ exciter gain.
$k_{f} \quad-\quad$ exciter feedback circuit gain.
$\mathrm{k}_{\mathrm{ff}} \quad-\quad$ frictional constant for DC machine.
$k_{R} \quad-\quad$ feedback transformer/rectifier gain.
$\mathrm{L}_{\mathrm{ii}} \quad$ - self inductance of winding i .
$\mathrm{L}_{\mathrm{i}} \quad-\quad \mathrm{L}_{\mathrm{ii}}+\mathrm{L}_{\mathrm{Li}}$.
$\mathrm{L}_{\mathrm{ad}}, \mathrm{L}_{\mathrm{aq}}$ - direct- and quadrature- axis coefficients of armature phase/phase self inductances.

$\mathrm{M}_{\text {sf, }} \mathrm{M}_{\mathrm{fs}}$	mutual inductance between series and shunt fields of DC machine and vice versa.
$\mathrm{M}_{\mathrm{ha}}, \mathrm{M}_{\text {ah }}$	mutual inductance between interpole and armature and vice versa.
M_{ij}	mutual inductance between windings i and j .
$\mathrm{Mad}_{\text {d, }}, \mathrm{M}_{\mathrm{aq}}$	direct- and quadrature-axis coefficients of armature phase/phase mutual inductances.
M_{f}	direct-axis coefficient of armature phase/field mutual inductance.
$\mathrm{M}_{\mathrm{d}}, \mathrm{M}_{\mathrm{q}}$	direct- and quadrature- axis coefficients of armature phase/damper mutual inductances.
$\mathrm{N}_{1} / \mathrm{N}_{4}$	effective armature phase/field turns ratio.
$\mathrm{N}_{5} / \mathrm{N}_{4}$	effective damper/field turns ratio.
$\mathrm{N}_{6} / \mathrm{N}_{1}$	q -axis damper/ q -axis armature turns ratio.
P	- synchronous machine output power.
p_{0}	number of poles on synchronous machine.
$\mathrm{R}_{\text {ii }}$	resistance of winding i.
R_{1}	$\mathrm{R}_{\mathrm{ii}}+\mathrm{R}_{\mathrm{Li}}$
$\mathrm{R}_{\mathrm{a}}, \mathrm{L}_{\mathrm{a}}$	DC machine armature resistance and inductance.
$\mathrm{R}_{\mathrm{h}}, \mathrm{L}_{\mathrm{h}}$	DC machine interpole resistance and inductance.
$\mathrm{R}_{\mathrm{y}}, \mathrm{L}_{\mathrm{y}}$	DC machine series field resistance and inductance.
$\mathrm{R}_{\mathrm{f}}, \mathrm{L}_{\mathrm{f}}$	DC machine shunt field resistance and inductance.
SF	synchronous machine saturation factor.
Ta	AVR amplifier time constant.
T_{b}	exciter time constant.
$\mathrm{T}_{\text {e }}$	- electrical torque produced by synchronous machine.
$\mathrm{T}_{\mathrm{do}}{ }^{\prime}$	- direct-axis transient open-circuit time constant.

$\mathrm{T}_{\mathrm{do}}{ }^{\prime \prime}$	direct-axis sub-transient open-circuit time constant
$\mathrm{T}_{\mathrm{d}}{ }^{\prime}$	direct-axis transient short-circuit time constant.
$\mathrm{T}_{\mathrm{d}}{ }^{\prime \prime}$	direct-axis sub-transient short-circuit time constant.
Tkd	direct-axis damper leakage time constant.
$\mathrm{T}_{\mathrm{q}}{ }^{\prime \prime}$	quadrature-axis sub-transient short-circuit time constant.
$\mathrm{Tqo}^{\prime \prime}$	quadrature-axis sub-transient open-circuit time constant.
$\mathrm{T}_{\mathrm{f} 1}, \mathrm{~T}_{\mathrm{f} 2}$	exciter feedback circuit time constant.
t_{d}	- time to current discontinuity in the converter from the beginning of an integration step.
$\mathrm{t}_{\mathrm{poi}}$	time to a point of intersection from the start of an integration step.
V_{T}	AVR feedback voltage.
ω	- angular speed of a dc machine.
ω_{0}	synchronous speed.
X_{d}	direct-axis synchronous reactance.
$\mathrm{X}_{\mathrm{d}}{ }^{\prime}$	direct-axis transient reactance.
$\mathrm{X}_{\mathrm{d}}{ }^{\prime}$	direct-axis sub-transient reactance.
$\mathrm{X}_{\text {md }}$	\therefore direct-axis magnetizing reactance
X_{kd}	direct-axis damper leakage reactance.
X_{q}	quadrature-axis synchronous reactance.
$\mathrm{X}_{\mathrm{q}}{ }^{\text {a }}$	quadrature-axis transient reactance.
$\mathrm{X}_{\mathrm{q}}{ }^{\prime}$	- quadrature-axis sub-transient reactance.
X_{mq}	quadrature-axis magnetizing reactance.
X_{kq}	quadrature-axis leakage reactance.
X_{a}	- armature leakage reactance.
X_{2}	- negative sequence reactance.
$\mathrm{X}_{\mathrm{z}}, \mathrm{L}_{\mathrm{z}}$	- zero-sequence reactance and inductance.

Table of Contents

Acknowledgements i
Synopsis ii
List of Symbols iv
Chapter $1:$ INTRODUCTION 1
1.1 Three -phase synchronous generator model 1
1.2 Motor/generator set model 2
1.3 Bus-coupler model 2
1.4 The 3-phase thyristor bridge converter model 3
1.5 The complete ship's power system model 3
Chapter 2: SIMULATION OF A 3-PHASE SYNCHRONOUS 5 GENERATOR
2.1 The generator model 5
2.1.1 Electrical Equations 5
2.1.2 Saturation (SF) 11
2.1.3 Machine inductance 13
2.1.4 Rate-of-change of inductances 14
2.2 Diesel Engine/Speed Governor 16
2.3 AVR/exciter model 16
2.3.1 AVR Feedback Voltage (V_{T}) 17
2.4 Comparison of the theoretical results for a sudden 3-phase 18 short circuit
2.4.1 Synchronous generator sudden short circuit 18
2.4.1.1 Sub-transient state 18
2.4.1.2 Transient state 19
2.4.1.3 Steady state 19
2.4.1.4 DC offset 20
2.4.2 Simulation of a synchronous generator 20
2.4.2.1 The 3-phase short circuit test 20
2.4.2.2 Unbalanced fault situation 21
2.4.2.3 Load application and rejection 21
2.5 Dqo and phase parameters for the synchronous generator 22
Chapter 3 : SIMULATION OF THE MOTOR/GENERATOR SET 37
3.1 Synchronous machine 37
3.1.1 Generator operation 37
3.1.2 Motor operation 37
3.2 DC machine 38
3.2.1 Motor operation 39
3.2.2 Generator operation 40
3.3 MG set performance during load switching 41
Chapter 4 : BUS-COUPLER REPRESENTATION 48
4.1 Tensor mesh analysis 49
Chapter 5 : SIMULATION OF A 3-PHASE FULL-WAVE THYRISTOR 54 BRIDGE CONVERTER
5.1 Rectification 55
5.1.1 Rectifier meshes 55
5.1.2 Thyristor switching 57
5.1.3 Computer algorithm for the rectifier model 57
5.1.3.1 Conduction states 57
5.1.3.2 Conduction meshes 58
5.1.4 Converter performance in rectification mode 61
5.2 Inversion 61
5.2.1 Pulse-Width Modulation 62
5.2.2 Intersection of reference and carrier waveforms 62
5.2.3 Conduction patterns 63
5.2.4 Computer implementation of the inverter model 68
5.2.4.1 Thyristor numbering 68
5.2.4.2 Conduction state 69
5.2.4.3 Conduction meshes 70
5.2.5 Converter performance in inversion mode 71
Chapter 6 : SIMULATION OF THE COMPLETE SHIP'S POWER SYSTEM 99
6.1 Modelling of the Completer Ship's Power System 99
6.1.1 A diakoptic approach 99
6.1.2 Partitioning of the Network Equation 103
6.1.3 Summary of the complete model solution algorithm 106
6.2 Formation of the link/mesh transformation 106
6.2.1 Possible current transformations for the thyristor converter 107
6.2.2 Computer algorithm for determining C_{5} 108
Chapter 7 : SIMULATION RESULTS FOR THE SHIP'S POWER SYSTEM 120
7.1 The system performance on generation 120
7.1.1 Converter Rectification 120
7.1.2 The motor/generator set 121
7.2 System performance on re-generation 121
7.2.1 Converter Inversion 121
7.3 System performance on load application 122
7.4 Summary 123
Chapter 8: CONCLUSIONS 151
REFERENCES 153
APPENDICES 155
Appendix A: Dqo/phase Transformation 156
A. 1 The dqo parameters relationships 157
A.1.1 Time Constant 157
A.1.2 Dqo reactances 158
A.1.3 Dqo/phase parameter relationship 159
A. 2 Dqo/phase conversion 159
A.2.1 D-axis armature/field turns ratio 159
A.2.2 Phase parameters 160
A.2.3 D-axis damper winding parameters 161
A.2.4 Q -axis damper winding parameters 163
Appendix B : 4th order Runge Kutta equations 166
Appendix C: Program Listings 167
C. 1 Typical input data for the ship's power system model 167
C. 2 Program listing of the ship's electrical power system 170

Chapter 1

INTRODUCTION

Due to the continual expansion of power systems, a more accurate and time-saving means of studying their behaviour is required. In this context, mathematical modelling provides a very effective technique of considerable value to the designer of electrical power systems. It enables the designer to carry out a detailed investigation of the system for both transient and steady state operation and, in addition, it provides a theoretical basis from which the system parameters may be optimised.

In this thesis, a mathematical model is developed for the typical ship's electrical power system shown in Fig 1.1. The modelling is based on Kron's [1] diakoptic approach, in which the system is torn into several sub-networks which are solved as if they existed separately. It enables an efficient solution to be obtained for the numerical integration of the system equations and, although a time-varying inductance matrix has to be inverted at every step of the solution, this presents few problems to a high speed digital computer. The disadvantage of diakoptics is that the numerical solution obtained may be unstable if many torn sub-network are used, but this is not a problem in the present study.

The thesis describes the simulation of the various item of plants of the power system shown in Fig 1.1. Individual models are given for a 3-phase synchronous generator, a motor/generator set, a bus-coupler and a 3-phase thyristor bridge.

1.1 Three-phase synchronous generator model

Modelling of a synchronous generator in either $d q o$ or $\alpha \beta o$ co-ordinates involves
considerable approximation. In the dqo approach, the behaviour of the machine is considered along both its direct and quadrature axes, and the employment of various tensor transformations enables the time-varying coefficients present in the basic equations to be eliminated, so allowing an analytical solution. However, the analytical solution is limited to only a certain range of problems and if the resulting model is used to investigate an unbalanced loading conditions, inaccurate results may be obtained [2]. In general, it is preferrable to use a model based upon the phase reference frame, which is both more flexible and allows saturation of the generator to be included. In this case, the only approximation involved is that saturation arises principally from the effective direct-axis current. In chapter 2, a synchronous generator model is developed, with the equation expressed in the phase reference frame. The performance of the generator following a sudden short-circuit is investigated, and a comparison is made with theoretical predictions obtained using a dqo approach. Various unbalanced fault and load switching conditions are also simulated.

1.2 Motor/generator set model

In chapter 3, a mathematical model is presented for a motor/generator set comprising a 3-phase synchronous machine directly coupled to a separately-excited DC machine. Using electrical and mechanical equations developed for the DC machine, together with the model of the synchronous generator from chapter 2 , the computer simulation is tested for various load rejection conditions.

1.3 Bus-coupler model

The section switches in Fig 1.1 (SW1 to SW5) have to be switched in and out during the simulation and this may be modelled using constant flux-linkage considerations.

However, the process involves a considerable number of computing statements and a simpler method is to change instantaneously the switch inductances of the bus-coupler. This reduces the number of computer statements and is also closer to the practical situation.

Tensor analysis is introduced to facilitate modelling of the bus-coupler and the technique is described in chapter 4.

1.4 The 3-phase thyristor bridge converter model

Chapter 5 describes a mathematical model for a 3-phase bridge converter which is capable of both rectification and inversion in a PWM manner.

Tensor analysis is again used for the converter model, with the program being developed to handle the changing thyristor conduction pattern. Results of simulations of various voltages and currents waveforms are presented for different trigger angles in the rectification mode. In the inversion mode, the converter response to various modulating frequencies is simulated and typical results obtained are presented.

1.5 The complete ship's power system model

In chapter 6, the complete model for the ships power system of Fig 1.1 is developed using a diakoptic approach, and in chapter 7 simulated results of the voltage and current waveforms at various points of the system are used to illustrate the system behaviour for a number of different switching conditions. The computer program is written in Fortran 77 and runs on a Honeywell Multics computer.

Fig 1.1 A typical ship's electrical power system

Chapter 2

SIMULATION OF A 3-PHASE SYNCHRONOUS GENERATOR

This chapter presents a mathematical model for an isolated diesel driven 3-phase synchronous generator, with the output voltage controlled by an automatic voltage regulator $(A V R)$. The model is based on the phase reference frame for the machine [3], and a set of linear differential equations with variable coefficients is presented which describes the machine behaviour under both steady state and transient conditions.

2.1 The generator model

The phase reference frame is used to define the generator model, since it copes easily with both unbalanced fault and switching conditions.In addition, any higher order harmonics present in the airgap mmf of the machine may easily be included [3]. The early disadvantage of the phase reference frame representation was that the inversion of a time-varying inductance matrix with a rank of five, which is needed at each step of the numerical solution, could introduce long computer run-times. However, following the development of modern high-speed computer, this does not now present any significant problems.

In this thesis, a saturation factor (SF) accounts for magnetic saturation of the inductance coefficients associated with the short direct-axis airgap. The quadrature-axis coefficients are associated with the long quadrature-axis airgap, which is naturally much less sensitive to saturation.

2.1.1 Electrical Equations

Fig 2.1 is a circuit representation of a 3-phase synchronous generator with damping on
both the direct and quadrature axes. The armature windings $\mathrm{r}, \mathrm{y}, \mathrm{b}$ are carried on the rotor of the machine, with the field winding f and the effective direct and quadrature axes damper winding (d and q respectively) being on the stator. The corresponding circuit equations are ${ }^{[3]}$

$$
\begin{align*}
& {\left[\begin{array}{c}
0 \\
0 \\
0 \\
\mathrm{~V}_{\mathrm{f}} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cccccc}
\mathrm{R}_{\mathrm{r}} & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{R}_{\mathrm{y}} & 0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{R}_{\mathrm{b}} & 0 & 0 & 0 \\
0 & 0 & 0 & \mathrm{R}_{\mathrm{ff}} & 0 & 0 \\
0 & 0 & 0 & 0 & \mathrm{R}_{\mathrm{dr}} & 0 \\
0 & 0 & 0 & 0 & 0 & R_{\mathrm{q}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{i}_{\mathrm{r}} \\
\mathrm{i}_{\mathrm{y}} \\
i_{\mathrm{b}} \\
i_{\mathrm{f}} \\
i_{\mathrm{d}} \\
i_{q}
\end{array}\right]+} \\
& \frac{d}{d t}\left[\begin{array}{cccccc}
L_{r} & M_{r y} & M_{r b} & M_{x f} & M_{r d} & M_{r q} \\
M_{y r} & L_{y} & M_{y b} & M_{y f} & M_{y d} & M_{y q} \\
M_{b r} & M_{b y} & L_{b} & M_{b f} & M_{b d} & M_{b q} \\
M_{f f} & M_{f y} & M_{f b} & L_{f f} & M_{f d} & M_{f q} \\
M_{d} & M_{d y} & M_{d} & M_{f} & L_{d t} & M_{d q} \\
M_{q} & M_{q y} & M_{q} & M_{f f} & M_{q d} & L_{q f}
\end{array}\right]\left[\begin{array}{c}
i_{r} \\
i_{y} \\
i_{b} \\
i_{b} \\
i_{f} \\
i_{d} \\
i_{q}
\end{array}\right] \tag{2.1}
\end{align*}
$$

or, in abbreviated form,

$$
\begin{equation*}
\left[\mathrm{V}_{\mathrm{b}}\right]=\left[\mathrm{R}_{\mathrm{b}}\right]\left[\mathrm{I}_{\mathrm{b}}\right]+\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{~L}_{\mathrm{b}} \mathrm{I}_{\mathrm{b}}\right] \tag{2.2}
\end{equation*}
$$

For a 3-phase 3-wire connection to the armature, it follows that

$$
\begin{equation*}
i_{x}+i_{y}+i_{b}=0 \tag{2.3}
\end{equation*}
$$

which allows the rank of the matrices in equation (2.1) to be reduced by one, by use of a transformation matrix defined by,
$\left[\begin{array}{c}i_{r} \\ i_{y} \\ i_{b} \\ i_{f} \\ i_{d} \\ i_{q}\end{array}\right]=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}i_{r} \\ i_{y} \\ i_{i} \\ i_{f} \\ i_{d} \\ i_{q}\end{array}\right]$
or , in abbreviated form,

$$
\begin{equation*}
I_{b}=C I_{m} \tag{2.5}
\end{equation*}
$$

where $\quad \mathrm{C}$ is the branch/mesh transformation of the synchronous machine,

$$
I_{b}=\left[\begin{array}{llllll}
i_{r} & i_{y} & i_{b} & i_{f} & i_{d} & i_{q}
\end{array}\right]^{t}
$$

and $I_{m}=\left[\begin{array}{lllll}i_{r} & i_{y} & i_{f} & i_{d} & i_{q}\end{array}\right]^{t}$

Assuming power invariance between the branch and mesh reference frames [4], the mesh and branch voltages of the generator are related by

$$
\begin{equation*}
V_{m}=C^{t} V_{b} \tag{2.6}
\end{equation*}
$$

where $\quad \mathrm{C}^{t}$ is the transpose of C , V_{b} is the vector of generator branch voltages,
and

$$
\mathrm{V}_{\mathfrak{m}} \text { is the vector of generator mesh voltages. }
$$

Substituting equation (2.5) into equation (2.2) yields

$$
\begin{equation*}
\left[\mathrm{V}_{\mathrm{b}}\right]=\left[\mathrm{R}_{\mathrm{bb}}\right]\left[\mathrm{CI} \mathrm{I}_{\mathrm{m}}\right]+\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{~L}_{\mathrm{bb}}\left[C I_{\mathrm{m}}\right]\right] \tag{2.7}
\end{equation*}
$$

and combining equations (2.6) and (2.7)

$$
\begin{equation*}
\mathrm{V}_{\mathrm{m}}=\left[\left[\mathrm{C}^{\dagger}\right]\left[\mathrm{R}_{\mathrm{bb}}\right][\mathrm{C}]\left[I_{\mathrm{m}}\right]\right]+\frac{\mathrm{d}}{\mathrm{dt}}\left[\left[\mathrm{C}^{\dagger}\right]\left[\mathrm{L}_{\mathrm{bb}}\right][\mathrm{C}]\left[\mathrm{I}_{\mathrm{m}}\right]\right] \tag{2.8}
\end{equation*}
$$

Equation (2.8) may be expressed in the abbreviated form,

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{m}}=\mathrm{R}_{\mathrm{mm}} \mathrm{I}_{\mathrm{m}}+\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{~L}_{\mathrm{mm}} \mathrm{I}_{\mathrm{m}}\right] \tag{2.9}\\
\text { where } & \mathrm{R}_{\mathrm{mm}}=\mathrm{C}^{\mathrm{t}} \mathrm{R}_{\mathrm{bb}} \mathrm{C} \\
\text { and } & \mathrm{L}_{\mathrm{mm}}=\mathrm{C}^{t} \mathrm{~L}_{\mathrm{bb}} C
\end{array}
$$

Equation (2.9) may be defined in full as,

If equation (2.10) is presented in the abbreviated form

$$
\begin{equation*}
\left[\mathrm{V}_{\mathrm{m}}\right]=\left[\mathrm{R}_{\mathrm{mm}}\right]\left[\mathrm{I}_{\mathrm{m}}\right]+\left[\frac{\mathrm{dL}_{\mathrm{mm}}}{\mathrm{dt}}\right]\left[\mathrm{I}_{\mathrm{m}}\right]+\left[\mathrm{L}_{\mathrm{mm}}\right]\left[\frac{\mathrm{dI}_{\mathrm{m}}}{\mathrm{dt}}\right] \tag{2.11}
\end{equation*}
$$

it may be re-arranged in the form suitable for numerical integration as

$$
\begin{equation*}
\left[\frac{\mathrm{dI}_{\mathrm{m}}}{\mathrm{dt}}\right]=\left[\mathrm{L}_{\mathrm{mm}}\right]^{-1}\left[\mathrm{~V}_{\mathrm{m}}-\left(\mathrm{R}_{\mathrm{mm}}+\frac{\mathrm{dL}_{\mathrm{mm}}}{\mathrm{dt}}\right) \mathrm{I}_{\mathrm{m}}\right] \tag{2.12}
\end{equation*}
$$

From equation (2.5), it is seen that,

$$
I_{b}=C I_{m}
$$

or

$$
\frac{\mathrm{dI}_{\mathrm{b}}}{\mathrm{dt}}=\mathrm{C} \frac{\mathrm{dI}_{\mathrm{m}}}{\mathrm{dt}}
$$

The time rate-of-change of the branch current vector is therefore

$$
\left[\begin{array}{c}
\frac{\mathrm{di}_{\mathrm{r}}}{\mathrm{dt}} \tag{2.13}\\
\frac{\mathrm{di}_{\mathrm{y}}}{\mathrm{dt}} \\
\frac{\mathrm{di}_{\mathrm{b}}}{\mathrm{dt}} \\
\frac{\mathrm{di}_{\mathrm{f}}}{\mathrm{dt}} \\
\frac{\mathrm{di}}{\mathrm{~d}} \\
\mathrm{dt}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{di}_{\mathrm{r}}}{\mathrm{dt}} \\
\frac{\mathrm{di}_{\mathrm{y}}}{\mathrm{dt}} \\
\frac{\mathrm{di}_{\mathrm{f}}}{\mathrm{dt}} \\
\frac{\mathrm{di}_{\mathrm{d}}}{\mathrm{dt}} \\
\frac{\mathrm{di}_{\mathrm{q}}}{\mathrm{dt}}
\end{array}\right]
$$

and the terminal voltage is ${ }^{[5]}$

$$
\left[\begin{array}{c}
V_{r} \\
v_{y} \\
v_{b} \\
V_{f}
\end{array}\right]=\left[\begin{array}{cccccc}
R_{r}+G_{r r} & G_{r b} & G_{r y} & G_{f f} & G_{r d} & G_{r q} \\
G_{y r} & R_{y y}+G_{y y} & G_{y b} & G_{y f} & G_{y d} & G_{y q} \\
G_{b r} & G_{b y} & R_{b b}+G_{b b} & G_{b f} & G_{b d} & G_{b q} \\
G_{f r} & G_{f y} & G_{f y} & R_{f_{f}}+G_{f f} & G_{f d} & 0
\end{array}\right]\left[\begin{array}{c}
i_{r} \\
i_{y} \\
i_{y} \\
i_{b} \\
i_{f} \\
i_{d} \\
i_{q}
\end{array}\right]+
$$

where $M_{r y}=M_{y r}, G_{r y}=G_{y r}$, etc, and the G terms are time rate-of-change of inductances.

The power produced by the synchronous generator per phase is

$$
\begin{equation*}
\mathrm{P}=\mathrm{V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \tag{2.15}
\end{equation*}
$$

or, after substitution from equation (2.11)

$$
\begin{equation*}
P=R I_{m}^{2}+L_{m m} I_{m} \frac{d I_{m}}{d t}+I_{m}^{2} \frac{d L_{m m}}{d t} \tag{2.16}
\end{equation*}
$$

In the above equation, the first term is the Ohmic copper loss and the second is the rate-of-change of stored magnetic energy within the machine. The third term alone is the actual mechanical power associated with the generator itself. The torque at the machine shaft is given by the equation

$$
\mathrm{T}_{\mathrm{e}}=\frac{\mathrm{P}}{\omega}
$$

from which it follows that,

$$
\begin{align*}
\mathrm{T}_{\mathrm{e}} & =\frac{1}{\omega} \mathrm{I}_{\mathrm{m}}^{2} \frac{\mathrm{dL}_{\mathrm{mm}}}{\mathrm{dt}} \\
& =\mathrm{p}_{0} \mathrm{I}_{\mathrm{m}}^{2} \frac{\mathrm{dL}_{\mathrm{mm}}}{\mathrm{~d} \theta} \tag{2.17}
\end{align*}
$$

and therefore, that

2.1.2 Saturation (SF)

In this thesis, the armature-phase mmf of the generator is assumed to be sinusoidally distributed in space and saturation to be solely produced by the resultant direct-axis
mmf. This mmf may be defined in terms of an effective direct-axis current $\mathrm{I}_{\mathrm{d}}{ }^{[3]}$, referred to the generator field winding and expressed as

$$
\begin{equation*}
i_{d}=i_{f}+\frac{N_{5}}{N_{4}} i_{5}+\frac{N_{1}}{N_{4}}\left(i_{r} \cos \theta_{r}+i_{y} \cos \theta_{y}+i_{b} \cos \theta_{b}\right) \tag{2.19}
\end{equation*}
$$

The generator open-circuit characteristic shown in Fig 2.2(a) relates the open-circuit phase voltage to the field current. The saturation function $S F$ shown in Fig 2.2(b), is obtained from the piecewise linearisation of this characteristic and is defined between the break points as ${ }^{\text {[5] }}$

$$
\begin{align*}
& \text { If } 0 \leq \mathrm{i}_{\mathrm{d}} \leq \mathrm{i}_{\mathrm{f} 1} \quad \mathrm{SF}=\mathrm{SF}_{1} \\
& \mathrm{i}_{\mathrm{f} 1}<\mathrm{i}_{\mathrm{d}}<\mathrm{i}_{\mathrm{f} 2} \quad \mathrm{SF}=\operatorname{Grad}\left(\mathrm{i}_{\mathrm{d}}-\mathrm{i}_{\mathrm{f} 1}\right)+\mathrm{SF}_{1} \\
& i_{d} \geq i_{f 2} \quad S F=S F_{2} \\
& \text { where } \quad \mathrm{SF}_{1}=\frac{\mathrm{E}_{1}}{\mathrm{i}_{\mathrm{fl}} \text { Norm }}=1 \tag{2.20}\\
& \mathrm{SF}_{2}=\frac{\mathrm{E}_{2}}{\mathrm{i}_{\mathrm{f} 2} \text { Norm }} \\
& \text { Norm }=\frac{E_{1}}{i_{f 1}} \\
& \text { and } \quad \text { Grad }=\frac{\mathrm{SF}_{1}-\mathrm{SF}_{2}}{\mathrm{i}_{\mathrm{f} 1}-\mathrm{i}_{\mathrm{f} 2}}
\end{align*}
$$

In a numerical solution of the generator equations, the value of i_{d} is obtained at each integration step and $S F$ thus calculated from Fig 2.2(b) to gives a realistic representation of saturation according to the currents in the various machine windings.

2.1.3 Machine inductance

The angles $\theta_{\mathrm{r}}, \theta_{\mathrm{y}}$ and θ_{b} refer respectively to the displacement of the centres of the red, yellow and blue armature phase windings from the direct-axis. The angle, θ_{r}, is defined in Fig 2.1 and

$$
\begin{align*}
& \theta_{y}=\theta_{r}+120^{\circ} \\
& \theta_{b}=\theta_{r}-120^{\circ} \tag{2.21}
\end{align*}
$$

a) Self inductances

The self inductance of the r-phase is ${ }^{[3]}$

$$
\begin{equation*}
L_{\mathrm{rr}}=L_{a d} S F \cos ^{2} \theta_{\mathrm{r}}+\mathrm{L}_{\mathrm{aq}} \sin ^{2} \theta_{\mathrm{r}} \tag{2.22}
\end{equation*}
$$

For $\quad L_{y y}$ substitute θ_{y} for θ_{r} and and for $L_{b b}$ substitute θ_{b} for θ_{r}.

The self inductances of the field, d -axis damper and q -axis damper windings, are all independent of the rotor position and saturation is included in the d -axis winding inductances. Hence,

$$
\begin{align*}
& L_{f}=L_{f o} S F \tag{2.23}\\
& L_{d}=L_{d} S F \tag{2.24}\\
& L_{q}=L_{q} \tag{2.25}
\end{align*}
$$

b) Mutual inductances

The mutual inductance between phases r and y is [3]

$$
\begin{equation*}
M_{r y}=M_{a d} S F \cos \theta_{r} \cos \theta_{y}+M_{x q} \sin \theta_{r} \sin \theta_{y} \tag{2.26}
\end{equation*}
$$

For $\quad M_{r b}$ retain θ_{r} and substitute θ_{b} for θ_{y}
and for $M_{y b}$, substitute θ_{y} for θ_{r} and θ_{b} for θ_{y}.

The mutual inductances between the r-phase and the field, d -axis and q -axis dampers winding are respectively,

$$
\begin{align*}
& M_{\mathrm{rf}}=M_{\mathrm{f}} \mathrm{SF} \cos \theta_{\mathrm{r}} \tag{2.27}\\
& M_{\mathrm{rd}}=M_{\mathrm{d}} S F \cos \theta_{\mathrm{r}} \tag{2.28}\\
& M_{\mathrm{rq}}=M_{\mathrm{q}} \sin \theta_{\mathrm{r}} \tag{2.29}
\end{align*}
$$

For $\quad M_{y f}, M_{y d}$, and $M_{y q}$, substitute θ_{y} for θ_{r} and and for $M_{b f}, M_{b d}$, and $M_{b q}$, substitute θ_{b} for θ_{r}.

2.1.4 Rate-of-change of inductances

The time rate-of-change of the inductance terms are defined as

$$
\begin{equation*}
\mathrm{G}=\frac{\mathrm{dL}}{\mathrm{dt}}=\frac{\mathrm{dL}}{\mathrm{~d} \theta} \frac{\mathrm{~d} \theta}{\mathrm{dt}} \tag{2.30}
\end{equation*}
$$

a) Rate-of-change of self inductances

It follows using equation (2.22) that

$$
\begin{equation*}
G_{\pi}=-\omega\left(2 L_{a d} S F \cos \theta_{\mathrm{r}} \sin \theta_{\mathrm{r}}-2 \mathrm{~L}_{\mathrm{aq}} \cos \theta_{\mathrm{r}} \sin \theta_{\mathrm{r}}\right) \tag{2.31}
\end{equation*}
$$

For $\quad G_{y y}$ substitute θ_{y} for θ_{r} and for $G_{b b}$ substitute θ_{b} for θ_{r}.

$$
\begin{align*}
\mathrm{G}_{\mathrm{ff}} & =0 \tag{2.32}\\
\mathrm{G}_{\mathrm{dd}} & =0 \tag{2.33}\\
\text { and } \quad \mathrm{G}_{\mathrm{qq}} & =0
\end{align*}
$$

b) Rate-of-change of mutual inductances

The time rate-of-change of mutual inductances between the r - and y-phase armature windings follow from equation (2.26) as

$$
\begin{array}{r}
G_{\mathrm{ry}}=-\omega\left[M_{a d} S F\left(\sin \theta_{\mathrm{r}} \cos \theta_{\mathrm{y}}+\cos \theta_{\mathrm{r}} \sin \theta_{\mathrm{y}}\right)-\right. \\
\left.M_{\mathrm{aq}}\left(\cos \theta_{\mathrm{r}} \sin \theta_{\mathrm{y}}+\sin \theta_{\mathrm{r}} \cos \theta_{\mathrm{y}}\right)\right] \tag{2.35}
\end{array}
$$

For $\quad G_{r b}$, retain θ_{r} and substitute θ_{b} for θ_{y}
and for $G_{r y}$, substitute θ_{y} for θ_{r} and θ_{b} for θ_{y}.

The time rate-of-change of the mutual inductances between the r-phase and the field, d -axis and q -axis damper winding, follow respectively from equations (2.27) to (2.29) as,

$$
\begin{align*}
G_{\mathrm{rf}} & =-\omega M_{\mathrm{f}} S F \sin \theta_{\mathrm{r}} \tag{2.36}\\
\mathrm{G}_{\mathrm{rd}} & =-\omega M_{\mathrm{d}} S F \sin \theta_{\mathrm{r}} \tag{2.37}\\
G_{\mathrm{rq}} & =-\omega M_{\mathrm{q}} \cos \theta_{\mathrm{r}} \tag{2.38}
\end{align*}
$$

For $\quad G_{y f}, G_{y d}$ and $G_{y q}$, substitute θ_{y} for θ_{r} and and for $G_{b f}, G_{b d}$ and $G_{b q}$, substitute θ_{b} for θ_{r}.

The dq/phase transformation and the expressions for $L_{a d}, L_{a q}, L_{f o}, L_{q o}, M_{a d}, M_{a q}, M_{f}$, M_{d} and M_{q} are derived in Appendix A.

2.2 Diesel Engine/Speed Governor

The diesel engine/governor model is based on a overall block diagram obtained from RAE (West Drayton) [5], and shown in Fig 2.3. The state-variable form of the equation describing the overall system in Fig 2.3 is

$$
\left[\begin{array}{c}
\frac{d S_{3}}{d t} \tag{2.39}\\
\frac{d S_{5}}{d t} \\
\frac{d \omega}{d t}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{k_{2}} & 0 & -\frac{k_{0}}{k_{2}} \\
\left(1-\frac{k_{1}}{k_{2}}\right) \frac{1}{k_{3}} & -\frac{1}{k_{3}} & -\frac{k_{1} k_{0}}{k_{2} k_{3}} \\
0 & \frac{1}{J} & -\frac{k_{f}}{J}
\end{array}\right]\left[\begin{array}{l}
S_{3} \\
S_{5} \\
\omega
\end{array}\right]+\left[\begin{array}{cc}
\frac{k_{0}}{k_{2}} & 0 \\
\frac{k_{1} k_{0}}{k_{2} k_{3}} & 0 \\
0 & -\frac{1}{J}
\end{array}\right]\left[\begin{array}{l}
S_{1} \\
\mathrm{r}_{e}
\end{array}\right]
$$

Equation (2.39) may be solved numerically on a step-by-step basis, using a suitable numerical integration process such as the 4th-order Runge Kutta method. The electrical torque $\left(\mathrm{T}_{\mathrm{e}}\right)$ produced by the synchronous generator is defined in equation (2.18).

2.3 AVR/exciter model

The 3-phase synchronous generator model has an automatic voltage regulator (AVR) to ensure a constant output voltage. The model adopted for the AVR is based on the type 2 representation described in the IEEE report on excitation system ${ }^{[6]}$ and given in the block diagram of Fig 2.4. The state-variable equation relating to this representation is,

$$
\left[\begin{array}{l}
\frac{d V_{4}}{d t} \tag{2.40}\\
\frac{d V_{7}}{d t} \\
\frac{d V_{8}}{d t} \\
\frac{d V_{f}}{d t}
\end{array}\right]=\left[\begin{array}{cccc}
-\frac{1}{T_{a}} & -\frac{k_{a}}{T_{a}} & \frac{k_{a}}{T_{a}} & 0 \\
\frac{k_{f}^{\prime}}{T_{f 1}} & -\frac{1}{T_{\mathrm{f} 1}} & 0 & 0 \\
\frac{k_{f}^{\prime}}{\mathrm{T}_{\mathrm{f} 2}} & 0 & -\frac{1}{\mathrm{~T}_{\mathrm{f} 2}} & 0 \\
\frac{\mathrm{k}_{\mathrm{e}}}{\mathrm{~T}_{\mathrm{b}}} & 0 & 0 & -\frac{1}{\mathrm{~T}_{\mathrm{b}}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{4} \\
\mathrm{~V}_{7} \\
\mathrm{~V}_{8} \\
\mathrm{~V}_{\mathrm{f}}
\end{array}\right]+\left[\begin{array}{cc}
\frac{\mathrm{k}_{\mathrm{a}}}{\mathrm{~T}_{\mathrm{a}}} & -\frac{\mathrm{k}_{\mathrm{a}} \mathrm{k}_{\mathrm{R}}}{\mathrm{~T}_{\mathrm{a}}} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\mathrm{~V}_{\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathrm{rf}} \\
0
\end{array}\right]
$$

where $\quad k_{f}^{\prime}=\frac{k_{f}}{T_{f 2}-T_{f 1}}$

Equation (2.40) may be solved by to give the generator field voltage V_{f} defined in equation (2.10).

2.3.1 AVR Feedback Voltage (V_{T})

In the practical scheme the 3-phase output voltage is transformed and rectified, and the resulting direct voltage is filtered to provide a smooth dc feedback voltage V_{T} proportional to the output voltage. However, a simplified method of determining numerically the average phase voltage is given below.

The positive and negative peak of each generator phases voltage is recorded during each cycle. At the end of the cycle, the average of the six valued stored represents the AVR feedback voltage V_{T}. The method eliminates the need to model accurately the rectifier/filter arrangement and thereby reduces the program run-times.

2.4 Comparison of the theoretical results for a sudden 3-phase short circuit

The following sections will consider the theoretical results for a sudden 3-phase short circuit test on an open circuit synchronous generator using the conventional $d q o$ approach.

2.4.1 Synchronous generator sudden short circuit

When a sudden armature short circuit is applied to the armature of a synchronous generator, it takes time for the flux to penetrate into the iron of the machine. The corresponding changes which occur in the armature currents can be subdivided into three states. These states are illustrated in Fig 2.5 and they are normally categorised as;
(i) Sub-transient state
(ii) Transient state
(iii) Steady state

These states will be discussed individually in the following sections.

2.4.1.1 Sub-transient state

Fig 2.5 respresents the current waveform of a synchronous generator following a sudden short circuit. It is clear that there is a large momentary increase in current which occurs at the instant the short circuit is applied. Any change in flux linkage is immediately opposed by eddy currents in the iron, although these penetrate only as far as the damper winding. The sub-transient reactances associated with this period of change in the direct and quadrature axes are $X_{d} "$ and $X_{q} "$ respectively, both of which are small when compared with the steady state synchronous reactances, X_{d} and X_{q}
respectively. The generator sub-transient current (I') given by

$$
\begin{equation*}
I^{\prime \prime}=\frac{E_{0}}{X_{d}^{\prime \prime}} \tag{2.41}
\end{equation*}
$$

is much greater than the steady state value of the short-circuit current.

2.4.1.2 Transient state

The sub-transient state of a synchronous generator normally lasts for a very short period, until the change in flux linkages have penetrated to the field winding. The flux path then becomes more in iron than in air, and the transient reactances for this state $X_{d}{ }^{\prime}$ and $X_{q}{ }^{\prime}$ are larger than those for the sub-transient state. Hence, the transient state current (I') given by

$$
\begin{equation*}
I^{\prime}=\frac{E_{0}}{X_{d}^{\prime}} \tag{2.42}
\end{equation*}
$$

is smaller than that in the sub-transient state, as is evident in Fig 2.5.

2.4.1.3 Steady state

In the steady state, the change in flux linkage in the magnetic circuit have ceased and the corresponding synchronous reactances, X_{d} and X_{q}, are larger than for the transient state. The steady state armature current is shown in Fig 2.5.

2.4.1.4 The DC offset

A DC offset is initially present in the short-circuit current, as shown in Fig 2.5. The magnitude of this component depends on the instant at which the short circuit is applied, with the maximum offset occurring when the short circuit is applied when the corresponding phase voltage passes through zero.

2.4.2 Simulation of a synchronous generator

Simulation results for sudden symmetrical and unsymmetrical short circuit on a 60 kVA , 400 Hz generator are presented and described in this section. The generator parameters are given in section 2.5.

2.4.2.1 The 3-phase short circuit test

Fig 2.6(a), (b) and (c) shows waveforms of the phase currents of the synchronous generator following a sudden armature short circuit from open circuit. The large current which occurs in the sub-transient state, persists for only about one cycle. The DC offset decays at the same rate as the armature current in the transient state and the steady state is reached after about 0.04 s . The field current of the synchronous generator following the short circuit is shown in Fig 2.6(d).

Fig 2.7 (a) and (b) show respectively the transient current in the red armature phase when the sudden short circuit is applied at the instant the red phase voltage passes through zero and at a voltage maximum. Fig 2.7(a) confirms that the maximum DC offset is obtained when switching is at a voltage zero and Fig 2.7(b) that no DC offset occurs when switching is at a voltage maximum.

2.4.2 2 Unbalanced fault situation

Figs 2.8 and 2.9 show respectively the results obtained when two phase to earth, and single phase to earth faults are simulated. It will be seen that, the field currents now contain an additional fundamental frequency component, due to the unbalanced currents in the armature.

The unbalanced stator mmf may be resolved into two components, each rotating at synchronous speed but in opposite directions. The backwards-rotating component induces second-harmonic currents in the rotor, which in turn give rise to higher-order harmonic currents in the rotor windings. The effect of these is responsible for the non sinusoidal armature current evident in both figures.

2.4.2.3 Load application and rejection

Fig 2.10 and 2.11 show the armature currents and the field current of the generator following the sudden application to the unloaded generator of rated load of 0.8 pf and 0.2 pf lag respectively. It is clear that, for the load of 0.8 pf , the highly resistive load impedance causes the armature currents to rise rapidly to the new steady state. However, in the case of the 0.2 pf load, the time taken to achieve the steady state is much longer due to the load impedance now being highly reactive. In addition, oscillatory currents at fundamental frequency are seen prominently in the field winding for a load application of 0.2 pf . However, in the case of the 0.8 pf load, no oscillatory current is evident in the field winding due to the more resistive nature of the load.

Figs 2.12 and 2.13 show the armature currents of the generator following the sudden rejection of rated load at 0.8 pf and 0.2 pf lag respectively. It is clear that, in both cases, the armature current falls instantaneously to zero.

From all these computer simulation tests, it is clear that the phase reference frame is highly flexible for the modelling of a synchronous generator. It can cope with both balanced and unbalanced load conditions and also allows a saturation factor to be included in the model.

2.5 Dqo and phase parameters for the synchronous generator

A 60 kVA synchronous generator with the following parameters were used to provide the data for the simulation. Base per unit values were taken as 60 kVA and $160 \mathrm{~V} /$ phase. Parameters with a bar denote per unit values.

$$
\begin{aligned}
& \mathrm{Z}=0.6930 \Omega \\
& \overline{X_{d}}=1.7753 \\
& \overline{X_{m d}}=1.6664 \\
& \overline{X_{q}}=0.9251 \\
& \overline{X_{m q}}=0.8162 \\
& \overline{X_{d}}=0.2506 \\
& \overline{X_{d}^{\prime \prime}}=0.1998 \\
& \overline{X_{q}^{\prime \prime}}=0.1735 \\
& \overline{R_{a}^{\prime}}=0.0186 \\
& \mathrm{R}_{\mathrm{ff}}=0.6119 \Omega
\end{aligned}
$$

The generator phase parameters as obtained from the dqo/phase transformations (See Appendix A) are:

$$
\begin{aligned}
\mathrm{L}_{\mathrm{ad}} & =0.3280 \mathrm{mH} \\
\mathrm{~L}_{\mathrm{aq}} & =0.1724 \mathrm{mH} \\
\mathrm{~L}_{\mathrm{f}} & =103.96 \mathrm{mH}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{L}_{\mathrm{d}} & =0.0392 \mathrm{mH} \\
\mathrm{~L}_{\mathrm{q}} & =0.0181 \mathrm{mH} \\
\mathrm{M}_{\mathrm{ad}} & =0.3216 \mathrm{mH} \\
\mathrm{M}_{\mathrm{aq}} & =0.1652 \mathrm{mH} \\
\mathrm{M}_{\mathrm{fd}} & =1.7993 \mathrm{mH} \\
\mathrm{M}_{\mathrm{f}} & =5.3979 \mathrm{mH} \\
\mathrm{M}_{\mathrm{d}} & =0.1021 \mathrm{mH} \\
\mathrm{M}_{\mathrm{q}} & =0.0500 \mathrm{mH} \\
\mathrm{R}_{\mathrm{rr}} & =0.0128 \Omega \\
\mathrm{R}_{\mathrm{yy}} & =0.0128 \Omega \\
\mathrm{R}_{\mathrm{bb}} & =0.0128 \Omega \\
\mathrm{R}_{\mathrm{ff}} & =0.6119 \Omega \\
\mathrm{R}_{\mathrm{dd}} & =0.9262 \mathrm{~m} \Omega \\
\mathrm{R}_{\mathrm{qq}} & =0.01672 \mathrm{~m} \Omega
\end{aligned}
$$

Fig 2.1 An ideal 3-phase synchronous generator

field current
(a)

(b)

Fig 2.2 Determination of saturation factor

Fig 2.3 Diesel Engine/Governor Block Diagram

Fig 2.4 AVR Block Diagram

Fig 2.5 Synchronous Current: Sudden Short Circuit appied from open circuit

Fig 2.6 Synchronous generator: sudden armature short circuit from open circuit

Fig2.7(a) Synchronous generator red phase current when short circuit applied

Fig2.7(b) Synchronous generator red phase current when short circuit applied at red phase voltage maximum from open circuit

Fig 2.8 Synchronous generator: sudden armature short circuit applied between red and yellow phases from open circuit

Fig 2.10 Synchronous generator currents following sudden application of rated load at 0.8 pf lag

Fig 2.11 Synchronous generator currents following sudden application of rated load at 0.2 pf lag

Fig 2.12 Synchronous generator currents following sudden rejection of rated load at 0.8 pf lag

Fig 2.13 Synchronous generator currents following sudden rejection of rated load at 0.2pf lag

Chapter 3

SIMULATION OF THE MOTOR/GENERATOR SET

This chapter describes a mathematical model for a motor/generator set comprising a 3-phase synchronous machine directly coupled to a separately-excited DC machine. A block diagram of the arrangement considered is shown in Fig 3.1.

The model used for the synchronous generator is as described in the previous chapter, while that for the DC machine is based on the equivalent circuit of Fig 3.2. The electrical and mechanical equations for the MG set are presented below, together with results illustrating the transient performance of the set.

3.1 Synchronous machine

The synchronous machine of Fig 3.1 is capable of both generator and motor operation and the following sections present the electrical equations for both cases.

3.1.1 Generator operation

The electrical behaviour of this machine is defined by equation (2.12) and its output torque (T_{e}) may be calculated using equation (2.18).

3.1.2 Motor operation

Fig 3.3 is a circuit representation of a 3-phase synchronous motor with a damper winding on both the direct and quadrature axes. The armature currents on the rotor now flow in the opposite direction to those described in the generator model of section 2.1.

As a result, the direction of the torque produced is reversed. If the same analysis is followed as for the generator in section 2.1, the resulting voltage equation is

As in case of the generator model in section 2.1, the motor model defined by equation (3.1) may be re-stated in the form suitable for numerical integration

$$
\begin{equation*}
\left[\frac{\mathrm{dI}_{\mathrm{m}}}{\mathrm{dt}}\right]=\left[\mathrm{L}_{\mathrm{mm}}\right]^{-1}\left[\mathrm{~V}_{\mathrm{m}}-\left(\mathrm{R}_{\mathrm{mm}}+\frac{\mathrm{dL}_{\mathrm{mm}}}{\mathrm{dt}}\right)_{\mathrm{I}_{\mathrm{m}}}\right] \tag{3.2}
\end{equation*}
$$

and as in section 2.1, the output torque T_{e} may be calculated using equation (2.18).

3.2 DC machine

The following sections present the electrical and mechanical equations for the DC machine of Fig 3.2 during both motor and generator operation.

3.2.1 Motor operation

When the synchronous machine is generating and the DC machine motoring, the direction of the armature current in the latter machine is as given in Fig 3.2 and the following differential equations may be deduced.

a) Armature circuit

$$
\begin{align*}
E_{a}= & {\left[R_{a}+R_{h}+R_{y}\right] i_{a}+\left[L_{a}+L_{h}+L_{y}+M_{h a}+M_{h a}\right] \frac{d i_{a}}{d t}+} \\
& M_{s f} \frac{d i_{f}}{d t}+V_{a} \tag{3.3}
\end{align*}
$$

Re-arranged in a form suitable for numerical integration

$$
\begin{equation*}
\frac{\mathrm{di}_{\mathrm{a}}}{\mathrm{dt}}=\frac{E_{a}-\left[R_{a}+R_{h}+R_{y}\right] i_{a}-M_{s f} \frac{\mathrm{di}_{\mathrm{f}}}{\mathrm{dt}}-V_{a}}{\left[L_{a}+L_{h}+L_{y}+M_{h a}+M_{a h}\right]} \tag{3.4}
\end{equation*}
$$

b) Field circuit

$$
V_{f}=R_{f} i_{f}+L_{f} \frac{d i_{f}}{d t}+M_{f} \frac{d i_{a}}{d t}
$$

or

$$
\begin{equation*}
\frac{\mathrm{di}_{\mathrm{f}}}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{f}}-R_{\mathrm{f}} \mathrm{i}_{\mathrm{f}}-M_{\mathrm{fs}} \frac{\mathrm{di}_{\mathrm{a}}}{\mathrm{dt}}}{\mathrm{~L}_{\mathrm{f}}} \tag{3.5}
\end{equation*}
$$

c) Torque

The torque-balance equation for the MG set is

$$
\mathrm{T}_{\mathrm{e}}=\mathrm{T}_{\mathrm{eg}}+\mathrm{k}_{\mathrm{ff}} \omega+\mathrm{J} \frac{\mathrm{~d} \omega}{\mathrm{dt}}
$$

which may be rearranged as

$$
\begin{align*}
\mathrm{T}_{\mathrm{eg}} & =k \mathrm{i}_{\mathrm{f}} \mathrm{i}_{\mathrm{a}} \\
\text { where } \quad \frac{d \omega}{\mathrm{dt}} & =\frac{1}{J}\left[\mathrm{~T}_{\mathrm{e}}-k i_{f} i_{a}-k_{f f} \omega\right] \tag{3.6}
\end{align*}
$$

3.2.2 Generator operation

When the synchronous machine is motoring and the DC machine generating, the direction of the armature current flow is reversed and the differential equations become:

a) Armature circuit

$$
\begin{aligned}
V_{a}= & {\left[R_{a}+R_{h}+R_{y}\right] i_{a}+\left[L_{a}+L_{h}+L_{y}+M_{h a}+M_{a h}\right] \frac{d_{a}}{d t}+} \\
& M_{s} \frac{d_{f}}{d t}+E_{a}
\end{aligned}
$$

or

$$
\begin{equation*}
\frac{d_{a}}{d t}=\frac{V_{a}-\left[R_{a}+R_{h}+R_{y}\right] i_{a}-M_{s f} \frac{d_{f}}{d t}-E_{a}}{\left[L_{a}+L_{h}+L_{y}+M_{h a}+M_{a h}\right]} \tag{3.7}
\end{equation*}
$$

b) Field circuit

The field circuit is independent of the operating mode of the DC machine. and i_{f} can always be calculated using equation (3.5).
c) Torque

The torque-balance equation is now

$$
\begin{align*}
& T_{\mathrm{eg}}=\mathrm{T}_{\mathrm{e}}+\mathrm{k}_{\mathrm{ff}} \omega+\mathrm{J} \frac{\mathrm{~d} \omega}{\mathrm{dt}} \\
& \frac{\mathrm{~d} \omega}{\mathrm{dt}}=\frac{1}{\mathrm{~J}}\left[k \mathrm{i}_{\mathrm{f}} \mathrm{i}_{\mathrm{a}}-\mathrm{T}_{\mathrm{e}}-\mathrm{k}_{\mathrm{ff}} \omega\right] \tag{3.8}
\end{align*}
$$

3.3 MG set performance during load switching

Two load application tests were performed to illustrate the MG set performance with the DC machine motoring. Firstly, the application of rated load impedance at 0.8 pf lag from open circuit gave the results shown in Fig 3.4. The load impedance is substantially resistive, causing the armature currents to rise rapidly to the new steady state. The application of rated load impedance at 0.4 pf lag gave the results shown in Fig 3.5, in which the armature currents again xise to the steady state but in a longer time, due to more reactive nature of the load.

Two load rejection tests were performed to illustrate the MG set performance with the DC machine motoring. Firstly, the rejection of rated load at 0.8 pf lag gave the results shown in Fig 3.6, where the armature currents falls instantaneously to zero. A second load rejection using rated load at 0.4 pf lag produced a similar result as shown in Fig 3.7.

Fig 3.1 Block Diagram of motor/generator set

Direction of armature current when the synch. machine is generating and the DC machine is motoring.
Direction of armature current when the synch. machine is motoring and the DC machine is generating.

Fig 3.2 Equivalent circuit for dc machine

Fig 3.3 An ideal 3-phase synchronous motor

Fig 3.4 AC line currents of MG set following application of rated load at 0.8pf

Fig 3.5 AC line currents of MG set following application of rated load at 0.4 pf

Fig 3.6 $1 C$ line currents of MG set following rejection of rated load at 0.8 pf

Fig 3.7 AC line currents of MG set following rejection of rated load at 0.4pf

Chapter 4

BUS-COUPLER REPRESENTATION

A bus coupler is a section-switch which can be opened or closed in order to direct the current flow in a circuit. As used in Fig 1.1, it will allow current to be directed to any junction, so that, for example, it is possible to direct power flow from synchronous generator 1 to the converter simply by closing SW1, SW4 and SW5 and opening SW2 and SW3.

The section switches (SW1 to SW5) in Fig 1.1 have to be effectively switched in and out during the simulation, a process which is regarded as happening instantaneously and which may be analyzed using the constant flux-linkage theorem. However, in a computer solution this will consume considerable computing time and the alternative and simpler approach outlined below was therefore adopted.

In the computer program, switching from an open to a closed state is achieved by an instantaneous change of the switch inductance from a very high to a low value. The more complex process of switching from a closed to an open state is best implemented by an initial change in the inductance of one pole of the switch from a low to a very high value at the instant of a current zero when the 'a' phase in Fig 4.1 is opened. This process eliminates the need for constant flux-linkage considerations, and is close to the practical situation where current extinction usually occurs at a current zero. The remaining two poles of the switch are opened subsequently as the corresponding ' b ' and ' c ' phase currents fall to zero, as indicated in Fig 4.2, when their inductances are increased to the high value. Fig 4.3 shows the circuit representation when the switch is closed, with the values of L and R being simply the cable inductance and resistance respectively.

Tensor mesh analysis is used to convert a branch reference frame the bus coupler (see Fig 4.4(a)) to a mesh reference frame (see Fig 4.4(b)). The reason for this conversion becomes apparent from consideration of the associated resistive/inductive matrix, which in the branch reference frame is both large and complicated, but by means of such a conversion becomes smaller and simplified. By using tensor mesh analysis the rank of the matrix is reduced, which considerably reduces the computing time is required in a numerical solution.

4.1 Tensor mesh analysis

The equations which relate the voltages and currents of the bus coupler in the branch reference frame follow from Fig 4.4(a) as

$$
\left[\begin{array}{l}
\mathrm{E}_{1} \tag{4.1}\\
\mathrm{E}_{2} \\
\mathrm{E}_{3}
\end{array}\right]+\left[\begin{array}{l}
\mathrm{V}_{1} \\
\mathrm{~V}_{2} \\
\mathrm{~V}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{R}_{1} & & \\
& \mathrm{R}_{2} & \\
& & \mathrm{R}_{3}
\end{array}\right]\left[\begin{array}{l}
\mathrm{i}_{1} \\
\mathrm{i}_{2} \\
\mathrm{i}_{3}
\end{array}\right]+\left[\begin{array}{lll}
\mathrm{L}_{1} & & \\
& \mathrm{~L}_{2} & \\
& & \mathrm{~L}_{3}
\end{array}\right]\left[\begin{array}{c}
\overline{\mathrm{dt}} \\
\frac{\mathrm{di}_{2}}{\mathrm{dt}} \\
\frac{\mathrm{di}_{3}}{\mathrm{dt}}
\end{array}\right]
$$

or, in abbreviated form,

$$
\begin{equation*}
\mathrm{E}_{\mathrm{b}}+\mathrm{V}_{\mathrm{b}}=\mathrm{R}_{\mathrm{bb}} \mathrm{I}_{\mathrm{b}}+\mathrm{L}_{\mathrm{bb}} \frac{\mathrm{dI}_{\mathrm{b}}}{\mathrm{dt}} \tag{4.2}
\end{equation*}
$$

The abbreviated form of the mesh reference frame equations, which is concerned with the mesh equations relating to the closed meshes of Fig 4.4(b) is

$$
\begin{equation*}
E_{m}+V_{m}=R_{m m} I_{m}+L_{m m} \frac{d I_{m}}{d t} \tag{4.3}
\end{equation*}
$$

with the mesh currents I_{m} being relation to the individual branches I_{b} by a
transformation matrix, such that

$$
\left[\begin{array}{l}
\mathrm{i}_{1} \tag{4.4}\\
\mathrm{i}_{2} \\
\mathrm{i}_{3}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{i}_{1} \\
\mathrm{i}_{2}
\end{array}\right]
$$

or

$$
\begin{equation*}
I_{b}=C_{\cdot m}^{b} I_{m} \tag{4.5}
\end{equation*}
$$

If power invariance is assumed between the branch and mesh reference frame [4], the impressed mesh voltage vector E_{m} is

$$
\begin{equation*}
E_{m}=C_{m}^{. b} V_{b} \tag{4.6}
\end{equation*}
$$

It was shown previously in section 2.1 that the mesh inductance and resistance matrices $L_{m m}$ and R_{mm} may be determined from the corresponding branch matrices by

$$
\begin{equation*}
L_{m m}=C_{m}^{b} L_{b b} C_{. m}^{b} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{m m}=C_{m}^{\cdot b} R_{b b} C_{\cdot m}^{b} \tag{4.8}
\end{equation*}
$$

respectively, and using these results they may be calculated as

$$
R_{m m}=\left[\begin{array}{cc}
\left(R_{1}+R_{3}\right) & R_{3} \\
R_{3} & \left(R_{2}+R_{3}\right)
\end{array}\right]
$$

$$
L_{m m}=\left[\begin{array}{cc}
\left(L_{1}+L_{3}\right) & L_{3} \tag{4.9}\\
L_{3} & \left(L_{2}+L_{3}\right)
\end{array}\right]
$$

Kirchhoff's voltage law states that the sum of the voltage in a closed mesh is zero, or

$$
\begin{equation*}
V_{m}=0 \tag{4.10}
\end{equation*}
$$

so that equation (4.3) becomes,

$$
\begin{equation*}
\frac{\mathrm{dI}_{\mathrm{m}}}{\mathrm{dt}}=\mathrm{L}_{\mathrm{mm}}^{-1}\left[\mathrm{E}_{\mathrm{m}}-\mathrm{R}_{\mathrm{mm}} \mathrm{I}_{\mathrm{m}}\right] \tag{4.11}
\end{equation*}
$$

The elements of equation (4.11) may be assembled using equations (4.5) to (4.10) and the resulting equation may be solved using numerical integration.

Phase 'a' current zero
indicate the current in the three phases, with i_{a} falling to zero
Fig 4.1 Phase 'a' open circuit

Fig 4.2 Phase ' b ' and ' c ' open circuit

Switch

Fig 4.3 Switch closed representation

Fig 4.4(a) Branch reference frame for the bus bar

Fig 4.4(b) Mesh reference frame for the bus bar

Chapter 5

SIMULATION OF A 3-PHASE FULL-WAVE THYRISTOR BRIDGE CONVERTER

Power conversion from AC to DC is often achieved by means of a static converter in the form of a thyristor bridge. This chapter describes a mathematical model for the analysis of the 3-phase bridge converter shown in Fig 5.1, in which each arm contains two back-to-back thyristor pairs. For example, the arm to phase 'r' contains thyristor pairs $(1,7)$ and $(4,10)$ and the arm to phase ' y ' contains thyristor pairs $(3,9)$ and $(6,12)$. During rectification the power circuit becomes effectively as shown in Fig 5.2, with thyristors 7 to 12 switching sequentially to convert the 3-phase AC input to a DC output. During inversion, the power flow is reversed and the effective power circuit becomes as shown in Fig 5.3. Thyristors 1 to 6 are now fired in a PWM manner and thyristors 7 to 12 provide freewheeling paths. Sections 5.1 and 5.2 describe respectively mathematical models for both rectification and inversion modes of the thyristor bridge, and numercial results obtained from these models are presented at the end of each section.

The conduction pattern in the converter changes continually with time and for this reason tensor analysis is used to assemble and to solve automatically the system equations. The computer program which solves the converter equations is able to handle these change automatically, and also to assemble the required transformation matrix ($C \cdot \frac{b}{b}$) relating the currents in the mesh reference frame to those in the branch reference frame. The resulting differential equation is solved using the 4th-order Runge Kutta method outlined in Appendix B.

5.1 Rectification

The circuit model for the converter operating as a rectifier is shown in Fig 5.2.

5.1.1 Rectifier meshes

The converter circuit may be specified by the 10 branch currents defined in Fig 5.2, with the various currents conveniently being categorised into three groups;
(i) i_{1} in the converter DC side mesh,
(ii) i_{2} to i_{4} in the converter AC side meshes,
(iii) i_{5} to i_{10} in the meshes including the thyristors 7 to 12 .

The branch/mesh current transformation tensor C. . $_{\boldsymbol{m}}$ for the rectifier is assembled from two master matrices. The first of these, Cmast, is shown in Table 5.1 and defines the six meshes which each contain one thyristor from the top row and one from the bottom row of the bridge. As the various thyristors become both sequentially forward biased and triggered, the relevant column from this matrix is selected and loaded into $C \cdot \frac{b}{m}$.

During the transfer of current from one thyristor to another, the commutation mesh which is established is defined by the second master matrix Cmin in Table 5.2. In the situation when only thyristors 7 and 12 are conducting, $C \cdot$. m contains the first column of Cmast (mesh 1). When thyristor 8 is fired, the commutation mesh shown in Fig 5.4 is formed and the second column of $\mathrm{Cmin}(\operatorname{mesh} 8)$ is added to $\mathrm{C} \cdot \mathrm{m}$. At the end of the commutation interval, the current in thyristor 12 has reduced to zero, this device turns off and a new transformation matrix is formed from the second column of Cmast. In summary, two meshes are required during commutation but only one during normal conduction periods.

Mesh	1	2	3	4	5	6
Branch						
1	1	1	1	1	1	1
2	1	1	-1	0	-1	0
3	-1	0	1	1	0	-1
4	0	-1	0	-1	1	1
TH7	1	1	0	0	0	0
TH9	0	0	1	1	0	0
TH11	0	0	0	0	1	1
TH10	0	0	1	0	1	0
TH12	1	0	0	0	0	1
TH8	0	1	0	1	0	0

Table 5.1 Normal conduction matrix Cmast for rectification

Mesh	7	8	9	10	11	12
Branch						
1	0	0	0	0	0	0
2	1	0	-1	-1	0	1
3	0	1	1	0	-1	-1
4	-1	-1	0	1	1	0
TH7	1	0	-1	0	0	0
TH9	0	0	1	0	-1	0
TH11	-1	0	0	0	1	0
TH10	0	0	0	1	0	-1
TH12	0	-1	0	0	0	1
TH8	0	1	0	-1	0	0
incoming						
thy	TH7	TH8	TH9	TH10	TH11	TH12
outoging thy	TH11	TH12	TH7	TH8	TH9	TH10

Table 5.2 Commutation conduction matrix Cmin for rectification

5.1.2 Thyristor switching

a) Turn-on

The two conditions necessary to turn-on a thyristor are that the anode voltage is positive with respect to the cathode and that an adequate trigger pulse is applied to the gate. Thyristor turn-on occurs in the mathematical model at the start of an integration step following the one in which both of these conditions have been achieved.
b) Turn-off

Thyristor turn off occurs when the anode current falls below the holding value, which is normally sufficiently small to be regarded as zero. The time to a turn-off discontinuity from the start of an integration step is then determined by linear interpolation as shown in Fig 5.5, such that

$$
\begin{equation*}
\mathrm{t}_{\mathrm{d}}=\frac{\mathrm{i}_{\mathrm{TO}}}{\mathrm{i}_{\mathrm{TO}}-\mathrm{i}_{\mathrm{T}}} \mathrm{~h} \tag{5.1}
\end{equation*}
$$

where $\quad \mathrm{i}_{\mathrm{TO}}$ is the current at the beginning of the integration step, i_{T} is the predicted current at the end of the integration step, and $\quad h$ is the integration step length.

5.1.3 Computer algorithm for the rectifier model

5.1.3.1 Conduction states

The conduction state of each arm of the bridge is recorded in a single dimensional array having three elements, icirc, with the three possible conduction states of each arm being considered below.

(i) Normal conduction period

The array icirc records the identification number of the conducting thyristors in each arm. If there is no conducting thyristor, a zero is recorded in the corresponding location of the array. As an example, if thyristors 7 and 12 are conducting the three entries in icirc are (7,12,0).

(ii) Start of commutation

During commutation, the location in icirc which corresponds to the incoming thyristor records a number which is larger by 6 than the identification number of the incoming thyristor. Thus when thyristors 7 and 12 are conducting, and thyristor 8 is triggered causing thyristor 12 to commutate off, the entries in icirc are $(7,12,14)$.

(iii) End of commutation

At the end of commutation, the entry in icirc that corresponds to the incoming thyristor is reduced by 6 , to identify the newly fired device. The entry in icirc which corresponds to the outgoing thyristor is set to zero, so that the entries in icirc, at the end of the commutation conditions specified in (ii) are ($7,0,8$).

By repeating steps (i) to (iii), the computer records the conduction states of all three arms of the converter bridge.

5.1.3.2 Conduction meshes

In the computer program, a composite condition matrix Crec which contains the twelve possible conduction meshes in the rectifier is defined as in Table 5.3. Each mesh
contains two conducting thyristors, so that, for example, if thyristors 7 and 12 are conducting column 1 of Crec is chosen. The twelve possible conduction meshes for the rectifier are represented in Table 5.4; with each column in the table giving the conditions required for choosing a particular column from Crec.

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	0	0	0	0	0	0
2	1	1	-1	0	-1	0	1	0	-1	-1	0	1
3	-1	0	1	1	0	-1	0	1	1	0	-1	-1
4	0	-1	0	-1	1	1	-1	-1	0	1	1	0
TH7	1	1	0	0	0	0	1	0	-1	0	0	0
: TH9	0	0	1	1	0	0	0	0	1	0	-1	0
TH11	0	0	0	0	1	1	-1	0	0	0	1	0
TH10	0	0	1	0	1	0	0	0	0	1	0	-1
TH12	1	0	0	0	0	1	0	-1	0	0	0	1
? TH8	0	1	0	1	0	0	0	1	0	-1	0	0
Converter mesh	1	3	4	2	6	5	3	2	4	6	5	1

Table 5.3 Complete master matrix Crec for rectification

The computer compares the values stored in icirc with the conditions given in each column in Table 5.4, and a column in Crec is chosen only if the stored elements correspond with the conditions of that column. The selected columns of Crec are used to form the required transformation tensor $C \cdot \frac{b}{b}$ as indicated below.

First entry in icirc	7	7	10	X	10	X	13	X	7	16	X	10
Second entry in icirc	12	X	9	9	X	12	X	12	15	X	9	18
Third entry in icirc	X	8	X	8	11	11	11	14	X	8	17	X
Column chosen in Crec	1	2	3	4	5	6	7	8	9	10	11	12

where X denotes "don't care" .
Table 5.4 The twelve possible conditions for Crec

(i) Normal conducting period

During this period, the entries in icirc are ($7,12,0$). The computer compares these figures with the condition in each column of the table and chooses column 1 from Crec to form $\mathrm{C}_{\mathrm{m}}^{\mathrm{b}}$.

(ii) Start of commutation

The elements in icirc are now $(7,12,14)$ and the comparison process again selects column 1. The eighth column of the table is also satisfied, since the second and third entries of icirc are 12 and 14 , and column 8 of Crec is chosen. Columns 1 and 8 of Crec together form $C \cdot \frac{b}{m}$.
(iii) End of commutation

The entries in icirc are now $(7,0,8)$ and column 2 in Crec is accordingly chosen to form $C \cdot \frac{b}{m}$.

In the program, a subroutine called recmesh holds the above table and determines the required columns in Crec during each period.

After $C \cdot \frac{b}{m}$ has been formed, the tensor methods described in section 4.1 are used to produce the relevant meshes for the rectifier.

5.1.4 Converter performance in rectification mode

Simulated results for load voltage and current, AC side line currents, and line voltages are all shown in Fig 5.6 to 5.9 for various trigger angles between 0° to 120°.

For trigger angles between 0° and 60° (See Fig 5.6 to 5.8) the load voltage is continuous. When the trigger angle is greater than 60°, the load voltage becomes discontinuous (See Fig 5.9), with the mean output voltage and current decreasing as the trigger angles increases from 0° to 120°. At, the maximum trigger angle of 120°, no voltage and current are supplied to the load, since the thyristors are now reverse biased when the firing pulse is applied.

5.2 Inversion

During inversion, the current flow in Fig 5.3 may be defined in terms of the sixteen branches defined by the branch currents i_{1} to i_{16}. Thyristors 1 to 6 are fired in a PWM manner, while thyristors 7 to 12 are fired to provide freewheeling paths as the current commutates between thyristors 1 to 6 .

During inversion the synchronous generators 1 and 2 in Fig 1.1, are represented by suitable phase impedances inserted to act as inductive/resistive loads on the 3-phase system.

5.2.1 Pulse-Width Modulation

The pulse-width modulation technique is illustrated in Fig 5.10, whereby a comparison between three reference sine-waves and a high-frequency triangular carrier wave determines the firing instants for each thyristor and results in three trains of output pulses shifted 120° with respect to one another. The reference waveform has a variable frequency which determines the frequency of the PWM waveform ${ }^{[7]}$.

With the control as in Fig 5.10 one or other of the thyristors in each arm is conducting at all time, so connecting an output line to either the positive or negative side of the DC source. For example, consideration of Fig 5.3 shows that, if i_{2} is positive, thyristor 1 is conducting and the corresponding output line is connected to the positive DC input. However, when thyristor 4 is fired, thyristor 1 turns off and the load current transfers to thyristor 10 , which provides a freewheeling path. Similarly, the load current will transfer to thyristor 7 when thyristor 1 is fired.

5.2.2 Intersection of reference and carrier waveforms

The difference between the instantaneous values of the modulating and carrier waveforms is calculated and recorded at the beginning (zb) and the end (za) of each integration step. If a change in sign occurs, ie: $\mathrm{zb} \times \mathrm{za}<0$, an intersection point exists,
as shown in Fig 5.11(a) at a position determined by linear interpolation as

$$
\begin{equation*}
\mathrm{t}_{\mathrm{poi}}=\frac{\bmod (\mathrm{zb})}{\bmod (\mathrm{zb})+\bmod (\mathrm{za})} \mathrm{h} \tag{5.2}
\end{equation*}
$$

It is possible that several points of intersection between the reference and carrier waveforms occur in a single step, as shown in Fig 5.11(b), in which case the smallest value of $t_{\text {poi }}$ chosen. Thus, in Fig $5.11(\mathrm{~b})$, point A is chosen and t_{1} used as the integration step length. The next step then ends at point B and t3 is used as the step length.

5.2.3 Conduction patterns

The branch/mesh current transformation tensor $C \cdot \frac{b}{m}$ for the inverter is assembled from three master matrices,
(i) Cml which contains the normal conduction meshes,
(ii) Cm 2 which contains the commutation meshes with one freewheeling thyristor,
(iii) Cm 3 which contains the commutation meshes with two freewheeling thyristors.

These three master matrix are described in the following sections.
(a) Normal Conduction Meshes

Fig 5.12 shows the mesh formed when thyristors 1 and 6 are conducting. Five further meshes are formed by other thyristor pairs, as given in Table 5.5 below,

Mesh	1	2	3	4	5	6
Thyristor no. (top row)	1	1	3	3	5	5
Thyristor no. (bottom row)	6	2	2	4	4	6

Table 5.5 The six normal conduction meshes

The master matrix Cm 1 relating to the above six normal conduction meshes is shown in Table 5.6.

Mesh	1	2	3	4	5	6
Branch						
1	1	1	1	1	1	1
2	1	1	-1	0	-1	0
3	-1	0	1	1	0	-1
4	0	-1	0	-1	1	1
TH1	1	1	0	0	0	0
TH3	0	0	1	1	0	0
TH5	0	0	0	0	1	1
TH4	0	0	1	0	1	0
TH6	1	0	0	0	0	1
TH2	0	1	0	1	0	0
TH7	0	0	0	0	0	0
TH8	0	0	0	0	0	0
TH19	0	0	0	0	0	0
TH10	0	0	0	0	0	0
TH11	0	0	0	0	0	0
TH12	0	0	0	0	0	0

Table 5.6 The master matrix Cm 1 for the inverter

(b) Freewheeling paths

Freewheeling paths are provided by the rectifier thyristors, as the current commutates between the inverter thyristors. Fig 5.13(a) shows the situation when thyristors 1,6 and 2 are conducting. When thyristor 6 is turned off, freewheeling thyristor 9 is triggered to provide a path for current flow, as shown in Fig 5.13(b). After a predetermined delay, during which time device 6 has turned off, thyristor 3 is turned on.

There are twelve possible freewheeling meshes, formed by freewheeling thyristors, as defined in Table 5.7 and the master matrix Cm 2 relating to the above twelve freewheeling meshes is shown in Table 5.8.
(c) Freewheeling paths with two thyristors

Consider the situation when thyristor 9 is conducting, thyristor 1 is off and the freewheeling thyristor 10 is triggered before the current in device 9 has reduced to zero. Two freewheeling thyristors are conducting simultaneously and two freewheeling meshes are consequently formed as shown in Fig 5.14.

There are now six possible freewheeling meshes, formed by other pairs of freewheeling thyristors, as defined in Table 5.9 and the master matrix Cm 3 relating to the above six freewheeling possibilites is shown in Table 5.10.

In the computer program $\mathrm{Cm} 1, \mathrm{Cm} 2$ and Cm 3 are combined in the composite condition matrix Cmod, which contains all the 24 possible conduction meshes of the inverter and is shown in Table 5.11.

Mesh	7	8	9	10	11	12	13	14	15	16	17	18
Freewheeling Thyristor	7	7	8	8	9	9	10	10	11	11	12	12
Inverter Thyristor	3	5	4	6	1	5	2	6	1	3	2	4

Table 5.7 The twelve commutation meshes with one freewheeling thyristor

Mesh	7	8	9	10	11	12	13	14	15	16	17	18
Branch												
1												
2	-1	0	0	0	0	0	0	0	0	0	0	0
3	0	-1	-1	1	0	-1	-1	-1	0	1	1	0
4	1	1	0	-1	-1	1	1	0	-1	-1	0	1
TH1	0	0	1	0	0	0	0	0	0	0	1	0
TH3	0	0	0	0	1	0	1	0	0	0	0	0
TH5	1	0	0	0	0	0	0	0	1	0	0	0
TH4	0	0	0	0	0	1	0	1	0	0	0	0
TH6	0	1	0	0	0	0	0	0	0	1	0	0
TH2	0	0	0	1	0	0	0	0	0	0	0	1
TH7	1	0	0	0	0	0	1	0	0	0	0	0
TH8	0	1	0	0	0	0	0	1	0	0	0	0
TH9	0	0	1	0	0	0	0	0	1	0	0	0
TH10	0	0	0	1	0	0	0	0	0	1	0	0
TH11	0	0	0	0	1	0	0	0	0	0	1	0
TH12	0	0	0	0	0	1	0	0	0	0	0	1

Table 5.8 The master matrix Cm 2 for the inverter

Mesh	19	20	21	22	23	24
Freewheeling Thyristor (top row)	7	7	9	9	11	11
Freewheeling Thyristor (bottom row)	12	8	10	8	10	12

Table 5.9 The six commutation meshes with two freewheeling thyristors

Mesh						
Branch	19	20	21	22	23	24
1	-1	-1	-1	-1	-1	-1
2	-1	-1	1	0	1	0
3	1	0	-1	-1	0	1
4	0	1	0	1	-1	-1
TH1	0	0	0	0	0	0
TH3	0	0	0	0	0	0
TH5	0	0	0	0	0	0
TH4	0	0	0	0	0	0
TH6	0	0	0	0	0	0
TH2	0	0	0	0	0	0
TH7	1	1	0	0	0	0
TH8	0	1	0	1	0	0
TH9	0	0	1	1	0	0
TH10	0	0	1	0	1	0
TH11	0	0	0	0	1	1
TH12	1	0	0	0	0	1

Table 5.10 The master matrix Cm 3 for the inverter

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	-1	-1	-1	- 1	-1	- 1
2	1	1	-1	0	-1	0	- 1	0	1	1	0	1	- 1	- 1	0	1	1	0	-1	-1	1	0	1	0
3	-1	0	1	1	0	-1	0	-1	-1	0	1	1	1	0	- 1	-1	0	1	1	0	-1	-1	0	1
4	0	- 1	0	-1	1	1	1	1	0	-1	-1	0	0	1	1	0	- 1	-1	0	1	0	1	-1	-1
TH1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
TH3	0	0	1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
TH5	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
TH4	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
TH6	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
TH2	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0		0	0	0	0
TH7	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0
TH8	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0
TH9	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0
TH10	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1	0
TH11	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	1
TH12	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	1
$\begin{array}{r} \text { Forverter } \\ \text { mesh } \end{array}$	1	3	4	2	6	5	4	6	6	5	1	5	3	1	3	2	2	4	4	6	1	5	3	2

Table 5.11 The complete master matrix Cmod

5.2.4 Computer implementation of the inverter model

The algorithm is basically the same as that for the rectifier program and the computer implementation is illustrated below by an example.

5.2.4.1 Thyristor numbering

The freewheeling thyristor labels are six higher than their corresponding inverter thyristor labels. For example, in Fig 5.3 the freewheeling thyristor relating to inverter thyristor 1 is labelled 7.

5.2.4.2 Conduction state

The conduction state in each arm of the bridge is recorded in a single dimension array, icirc, having three elements with the three possible condition states of each arm being illustrated below.

(i) Normal conduction

The array icirc records respectively the conducting thyristor numbers in each arm of the bridge. Thus, if thyristors 1,6 and 2 are conducting the entries in icirc are $(1,6,2)$.

(ii) Start of freewheeling

The freewheeling thyristor number is recorded in its corresponding location in icirc. When thyristor 6 in the second arm is turned off, and its freewheeling thyristor 9 is triggered, the second column of icirc records the value of the freewheeling thyristor 9 and the entries in icirc are ($1,9,2$).
(iii) End of freewheeling

The location in icirc corresponding to the arm which contains the freewheeling thyristor is reduced by 6 , to give the number of the newly fired inverter thyristor. Thus, at the end of freewheeling, the second column of icirc is reduced to 3 and the entries in icirc become (1,3,2).

5.2.4.3 Conduction meshes

The 24 possible conduction meshes for the inverter may be represented as in Table 5.12, with each row in the table giving the conditions required for choosing a column from Cmod. Two inverter meshes are formed at all times and the comparison between icirc and the table stops when two meshes in Cmod have been found. The operation is illustrated below, using the example of the previous section.

(i) Normal conduction states

The entries in icirc are $(1,6,2)$ and for this condition columns 1 and 2 of Cmod are used to form $\mathrm{C} \cdot \mathrm{m}$.

(ii) Start of freewheeling

The entries in icirc are $(1,9,2)$ and columns 2 and 11 of Cmod are used to form $C \cdot$. .
(iii) End of freewheeling

The entries in icirc are $(1,3,2)$ and columns 2 and 4 of Cmod are used to form $C \cdot \cdot \mathbf{b}$.

In the program a subroutine, called choose, holds the above table and determines the required columns of Cmod which form $\mathrm{C}_{\mathrm{m}}^{\mathrm{b}}$, after which tensor methods are used to produce the relevant inverter meshes.

	$\begin{aligned} & \text { First } \\ & \text { entry in } \end{aligned}$ icirc	Second entry in icire	Third entry in icirc	Column chosen in Cmod
Normal conduction patterns	1	6	X	1
	1	X	2	2
	4	3	X	3
	X	3	2	4
	4	X	5	5
	X	6	5	6
One freewheeling thyristor conduction patterns	7	3	X	7
	7	X	5	8
	4	X	8	9
	X	6	8	10
	1	9	X	11
	X	9	5	12
	10	X	2	13
	10	6	X	14
	1	X	11	15
	X	3	11	16
	X	12	2	17
	4	12	X	18
Two thyristor conduction patterns	7	12	X	19
	7	X	8	20
	10	9	X	21
	X	9	8	22
	10	X	11	23
	X	12	11	24

where X denotes "don't care" .
Table 5.12 The 24 possible conditions for Cmod

5.2.5 Converter performance in inversion mode

To test the performance of the converter during the inversion mode, rated load at 0.9 pf lag was applied suddenly to the AC side output. The converter parameters are:

DC input voltage $=400 \mathrm{~V}$
Frequency of reference wave $=40 \mathrm{~Hz}$
Amplitude of reference wave $=5 \mathrm{~V}$
Amplitude of carrier wave $=10 \mathrm{~V}$

The results of simulations for carrier frequencies of 800 Hz and 2 kHz respectively are shown in Fig 5.15 and 5.16. In both case, three PWM voltage waveforms with an amplitude of 400 V and a mutual phase shift of 120° are obtained. For a fixed reference frequency, the number of pulses per half cycle increases and the pulse width reduces as the carrier frequencies increases (see Figs 5.15 and 5.16). The process reduces the harmonic content in the output voltage ${ }^{[8]}$, showing that a better-quality output with less harmonics is obtained by increasing the carrier frequency.

Fig 5.1 Converter with back-to-back thyristor pairs

Fig 5.2 The converter circuit, showing the current flow during rectification

Fig 5.3 The converter circuit, showing the current flow during inversion

Fig 5.4 Commutation mesh formed on firing thyristor 2

Fig 5.5 The time to a turn-off discontinuity

Fig 5.6(a) Converter load current and voltage with zero degree trigger angle

Fig 5.6(b) Converter AC side line currents with zero degree trigger angle

Fig 5.6(c) Converter AC side line voltages with zero degree trigger angle

Fig 5.7(a) Converter load current and voltage with 30 degrees trigger angle

Fig 5.7(b) Converter AC side line currents with 30 degrees trigger angle

Fig 5.7(c) Converter $A C$ side line voltages with 30 degrees trigger angle

Fig 5.8(a) Converter load current and voltage with 60 degrees trigger angle

Fig $5.8(b)$ Converter $A C$ side line currents with 60 degrees trigger angle

Fig 5.8(c) Converter $A C$ side line voltages with 60 degrees trigger angle

Fig 5.9(b) Converter $A C$ side line currents with 90 degrees trigger angle

Fig 5.9(c) Converter $\Lambda \mathbb{C}$ side line voltages with 90 degrees trigger angle

Fig 5.10 PWM waveform for 3-phase inverter

Fig 5.11(a) Intersection between modulating and carrier waves

Fig 5.11(b) Points of intersection between modulating and carrier waveforms

Fig 5.12 Conduction mesh formed by thyristors 1 and 6

Fig 5.13(a) Conduction meshes formed by thyristors 1, 6 and 2

Fig 5.13(b) Freewheeling path formed by thyristors 1 and 9

Fig 5.14 Two freewheeling thyristors current meshes

Fig 5.15(a) Converter 1 C side line currents with a modulating frequency of 800 Hz

Fig $5.15(b)$ Converter AC side line voltages with a modulating frequency of 800 Hz

Fig 5.16(a) Converter AC side line currents with a modulating frequency of 2 kHz

Chapter 6

SIMULATION OF THE COMPLETE SHIP'S POWER SYSTEM

The solution of an electrical network containing synchronous generators yields inductance matrices with time-varying coefficients, which require to be inverted at every stage of a numerical solution [5]. A complete power system of the form of Fig 1.1 contains many meshes and the order of the resultant inductances matrix is consequently large. The solution time required is approximately proportional to the cube of the matrix order and in a conventional mesh analysis a very long computer run-time is required ${ }^{[9]}$. In this thesis, an alternative approach based on Kron's diakoptic method ${ }^{[1]}$ is used to solve the time-varying differential equations. Mesh analysis is used to produce the network equation which can subsequently be partitioned to enable a relatively rapid numerical solution to be obtained, since the order of the corresponding system matrices is much reduced ${ }^{[9]}$. The conduction pattern of the thyristor bridge in Fig 1.1 changes continually with time. The computer program is therefore developed so as to handle automatically the changing conduction pattern and to assemble the corresponding link/mesh transformation ($C \cdot \frac{L}{m}$) described in section 6.2.

6.1 Modelling of the Complete Ship's Power System

6.1.1 A diakoptic approach

It is convenient to consider the sub-networks of the complete system of Fig 6.1 as the various items of plant, and these are defined as: synchronous generator 1 , synchronous generator 2, the synchronous machine of the MG set, the bus coupler (SW4) and the converter bridge. Only the AC interconnected parts of the system are considered, so reducing the rank of the resulting resistive/inductive matrix, which in turn reduces the computing time for the numerical solution. In addition, it may also avoid the probability
of numerical instability in the resulting solution if too many sub-networks are formed ${ }^{[10]}$. Using the numerical data obtained from the resulting solution, the DC part of the system (ie. the DC machine in the MG set) are solved separately from the set of differential equations derived in section 2.2 and 3.2. To facilitate the diakoptic tearing process, fictitious infinite inductances ${ }^{[11]}$ are inserted at points A and B where, for the purpose of analysis, they are be replaced by the fictitious voltage sources V_{1} to V_{4} of Fig 6.2. Each voltage source is common to more than one sub-network. (eg V_{1} and V_{2} are common to synchronous generator 1 , the synchronous motor and the bus coupler, and V_{3} and V_{4} to generator 2, the converter bridge and the bus coupler) The networks may now be separated at tear points A and B , without affecting the system currents, to give five sub-networks, together with two extra networks called the link networks comprising the infinite inductance and the current sources i_{1} to i_{4}. The torn and link networks are all shown in Fig 6.3. The mesh current i_{11}, i_{12}, etc of Fig 6.1 are related to the current sources i_{1} to i_{4} in the link network of Fig 6.3 by a link/torn-mesh transformation $C_{\text {m }}^{L}$ which may be shown to be

or, in abbreviated form

$$
\begin{equation*}
I^{L}=C_{\cdot m}^{L} I^{m} \tag{6.2}
\end{equation*}
$$

In a similar manner, the fictitious voltage sources in the torn networks of Fig 6.3 may be shown to be related to the voltages across the infinite inductances of the link network of Fig 6.3

$$
\begin{align*}
& e_{m}=C_{m}^{. L} V_{L} \tag{6.3}\\
& \text { where } \quad e_{m}=\left[\begin{array}{llllll}
e_{11} & e_{12} & e_{f 1} & e_{d 1} & e_{q 1} & e_{21} \\
e_{22} & e_{12} & e_{d 2} & e_{q}
\end{array}\right.
\end{align*}
$$

$$
\begin{aligned}
& \text { and } \\
& \mathrm{V}_{\mathrm{L}}=\left[\begin{array}{llll}
\mathrm{V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3} & \mathrm{~V}_{4}
\end{array}\right]^{\mathrm{t}}
\end{aligned}
$$

Using the mesh currents defined in Fig 6.1, the mesh voltage equation for the torn sub-networks of Fig 6.3 is,

$$
\left.\begin{array}{c}
{\left[\begin{array}{c}
E_{m 1} \\
E_{m 2} \\
E_{m 3} \\
E_{m 4} \\
E_{m 5}
\end{array}\right]-\left[\begin{array}{l}
e_{m 1} \\
e_{m 2} \\
e_{m 3} \\
e_{m 4} \\
e_{m 5}
\end{array}\right]=\left[\begin{array}{lllll}
R_{m 1} & & & & \\
& R_{m 2} & & & \\
& & R_{m 3} & & \\
& & & R_{m 4} & \\
& & & & R_{m 5}
\end{array}\right]\left[\begin{array}{l}
I^{m 1} \\
I^{m 2} \\
I^{m 3} \\
I^{m 4} \\
I^{m 5}
\end{array}\right]+} \\
\\
\\
\\
\\
\\
L_{m 2}
\end{array}\right]\left[\begin{array}{lll}
L_{m 1} & & \\
\frac{d I^{m 1}}{d t}
\end{array}\right]
$$

where $\quad L_{m 1}, L_{m 2}$ and $L_{m 3}$ are the mesh inductance matrices for generators 1 and 2 and the synchronous machine, as defined in equation 2.10.
$R_{m 1}, R_{m 2}$ and $R_{m 3}$ are the sum of both the R and G matrices for generators 1 and 2 and the synchronous machine, as defined in equation 2.10.
$E_{m 1}, E_{m 2}$ and $E_{m 3}$ are the mesh voltage source vectors for generators 1 and 2 and the synchronous machine, as defined in equation 2.10 .
$\mathrm{E}_{\mathrm{m} 4}, \mathrm{R}_{\mathrm{m} 4}$ and $\mathrm{L}_{\mathrm{m} 4}$ are the impressed voltage vector, the mesh resistance and inductance matrices for the bus coupler, as defined in equations 4.1 to 4.11 .
$\mathrm{E}_{\mathrm{m} 5}, \mathrm{R}_{\mathrm{m} 5}$ and $\mathrm{L}_{\mathrm{m} 5}$ are the source voltage vector, the mesh resistance and inductance matrices of the converter, as described in chapter 5.

In abbreviated form, equation (6.4) may be written

$$
\begin{equation*}
E_{m}-e_{m}=R_{m m} I^{m}+L_{m m} \frac{d I^{m}}{d t} \tag{6.5}
\end{equation*}
$$

The matrix voltage equation for the link networks is

$$
\begin{equation*}
\mathrm{V}^{\mathrm{L}}=\mathrm{L}_{\mathrm{LL}} \frac{\mathrm{dI}^{\mathrm{L}}}{\mathrm{dt}} \tag{6.6}
\end{equation*}
$$

where $L^{L L}$ is a diagonal matrix containing the infinite inductances.

Combining equation (6.3) and (6.5)

$$
\begin{equation*}
E_{m}-C_{m}^{\cdot L} V_{L}=R_{m m} I^{m}+L_{m m} \frac{d I^{m}}{d t} \tag{6.7}
\end{equation*}
$$

from which

$$
\begin{equation*}
\frac{d I^{m}}{d t}=L_{m m}^{-1}\left(E_{m}-C_{m}^{\cdot L} V_{L}-R_{m m} I^{m}\right) \tag{6.8}
\end{equation*}
$$

From equation (6.6)

$$
\begin{equation*}
\frac{\mathrm{dI}^{\mathrm{L}}}{\mathrm{dt}}=\mathrm{L}_{\mathrm{L}}^{-1} \quad \mathrm{~V}_{\mathrm{L}} \tag{6.9}
\end{equation*}
$$

Differentiating both sides of equation (6.2) and substituting the result into equation (6.6) gives

$$
\begin{equation*}
C_{\cdot m}^{L} \frac{d I^{m}}{d t}=L_{L}^{-1} \quad V_{L} \tag{6.10}
\end{equation*}
$$

Substituting equation (6.7) into equation (6.10) gives

$$
\begin{equation*}
C_{. m}^{L} L_{m m}^{-1}\left(E_{m}-C_{m}^{\cdot L} V_{L}-R_{m m} I^{m}\right)=L_{L L}^{-1} V_{L} \tag{6.11}
\end{equation*}
$$

and on re-arranging

$$
\begin{equation*}
C_{. m}^{L} L_{m m}^{-1}\left(E_{m}-R_{m m} I^{m}\right)=\left(L_{L L}^{-1}+C_{\cdot m}^{L} L_{m m}^{-1} C_{m}^{\cdot L}\right) V_{L} \tag{6.12}
\end{equation*}
$$

If a simplifying substitution is defined by

$$
\begin{equation*}
A=\left(L_{L}^{-1}+C_{. m}^{L} L_{m m}^{-1} C_{m}^{. L}\right) \tag{6.13}
\end{equation*}
$$

then, on substituting equation (6.12) and (6.13) in equation (6.8)

$$
\begin{align*}
\frac{d I^{m}}{d t} & =L_{m m}^{-1}\left(E_{m}-R_{m m} I^{m}-C_{m}^{\cdot L} A^{-1} C_{\cdot m}^{L} L_{m m}^{-1}\left(E_{m}-R_{m m} I^{m}\right)\right) \\
& =L_{m m}^{-1}\left(U_{m m}-C_{m}^{\cdot L} A^{-1} C_{\cdot m}^{L} L_{m m}^{-1}\right)\left(E_{m}-R_{m m} I^{m}\right) \tag{6.14}
\end{align*}
$$

where U_{mm} is a unit matrix.

Since the elements of the matrix $L_{L L}$ have infinite value, the matrix $L_{L L}{ }^{-1}$ is null, i.e. $L_{L L^{-1}}=0$, so that,

$$
\begin{equation*}
A=C_{\cdot m}^{L} L_{m m}^{-1} C_{m}^{. L} \tag{6.15}
\end{equation*}
$$

Equation (6.14) may be solved using numerical integration to give a step-by-step solution for the vector Im , which is a solution for the mesh currents in the original networks.

6.1.2 Partitioning of the Network Equation

Equation (6.14) may be re-arranged in the abbreviated form,

$$
\begin{align*}
\frac{d I^{m}}{d t} & =A^{m m}\left(E_{m}-R_{m m} I_{m}\right) \tag{6.16}\\
\text { where } A^{m m} & =L_{m m}^{-1}\left(U_{m m}-C_{m}^{. L} A^{-1} C_{\cdot m}^{L} L_{m m}^{-1}\right) \\
\text { in which } A & =C_{\cdot m}^{L} L_{m m}^{-1} C_{m}^{L}
\end{align*}
$$

A^{mm} is a large matrix which may require considerable computer storage space. A technique of partitioning ${ }^{[9]}$ can be used to simplified the network equation and to reduce the program run-times.

The link/mesh transformation of equation (6.1) may be partitioned to give

and it can be shown ${ }^{[9]}$, that A^{mm} can be partitioned as follows

$$
A^{m m}=\left[\begin{array}{lllll}
A^{11} & A^{12} & A^{13} & A^{14} & A^{15} \tag{6.18}\\
A^{21} & A^{22} & A^{23} & A^{24} & A^{25} \\
A^{31} & A^{32} & A^{33} & A^{34} & A^{35} \\
A^{41} & A^{42} & A^{43} & A^{44} & A^{45} \\
A^{51} & A^{52} & A^{53} & A^{54} & A^{55}
\end{array}\right]
$$

where

$$
\left.\begin{array}{rl}
A^{a b} & =L_{m a}^{-1}\left(-C_{a}^{t} A^{-1} C_{a} L_{m b}^{-1}\right) \\
\text { with } a=1 \text { to } 5 \\
b=1 \text { to } 5 \\
\text { and } a \neq b
\end{array}\right) \quad \begin{aligned}
& A^{a b}=L_{m a}^{-1}\left(U_{a a}-C_{a}^{t} A^{-1} C_{a} L_{m a}^{-1}\right) \\
& \text { with } a=1 \text { to } 5
\end{aligned}
$$

Combining equations (6.16) and (6.18) gives
$\left[\begin{array}{c}\frac{d I^{m 1}}{d t} \\ \frac{d I^{m} 2}{d t} \\ \frac{d I^{m}}{d t} \\ \frac{d I^{m 4}}{d t} \\ \frac{d I^{m}}{d t}\end{array}\right]=\left[\begin{array}{lllll}A^{11} & A^{12} & A^{13} & A^{14} & A^{15} \\ A^{21} & A^{22} & A^{23} & A^{24} & A^{25} \\ A^{31} & A^{32} & A^{33} & A^{34} & A^{35} \\ A^{41} & A^{42} & A^{43} & A^{44} & A^{45} \\ A^{51} & A^{52} & A^{53} & A^{54} & A^{55}\end{array}\right]\left[\begin{array}{l}E_{m 1} \\ E_{m 2} \\ E_{m 3} \\ E_{m 4} \\ E_{m 5}\end{array}\right]-$

The first sub-vector $\left(\frac{d r^{m 1}}{d t}\right)$ of equation (6.19) is

$$
\begin{align*}
\frac{d I^{m 1}}{d t}= & A^{11}\left(E_{m 1}-R_{m 1} I^{m 1}\right)+A^{12}\left(E_{m 2}-R_{m 2} I^{m 2}\right)+A^{13}\left(E_{m 3}-R_{m 3} I^{m 3}\right)+ \\
& A^{14}\left(E_{m 4}-R_{m 4} I^{m 4}\right)+A^{15}\left(E_{m 5}-R_{m 5} I^{m 5}\right) \tag{6.20}
\end{align*}
$$

from which a numercial solution for I^{ml} may be obtained using a numerical integration. Since similar solutions may be obtained for $\mathrm{I}^{\mathrm{m}}, \mathrm{I}^{\mathrm{m}}, \mathrm{I}^{\mathrm{m} 4}$ and $\mathrm{I}^{\mathrm{m} 5}$, each sub-vector of equation (6.19) may be solved separately.

6.1.3 Summary of the complete model solution algorithm

After the system of Fig 6.1 is torn into the 5 sub-networks shown in Fig 6.3 the following steps are performed ${ }^{[9]}$.
(a) Assemble and invert the subdivision inductance matrices

$$
\mathrm{L}_{\mathrm{ma}}^{-1} \text { with } \mathrm{a}=1 \text { to } 5
$$

where n is the number of sub-networks.
(b) Determine the link inductance matrix, A^{-1}, from equation (6.16).
(c) Determine the component of the torn mesh rate-of-change of current vectors.

$$
\begin{align*}
\frac{d I^{m a}}{d t}=\sum_{b=1}^{n} A^{\infty}\left[V_{m b}-R_{m b} I_{m b}\right] & \tag{6.21}\\
& \text { where } a=1 \text { to } 5
\end{align*}
$$

6.2 Formation of the link/mesh transformation

The converter bridge tensor, C_{5} in equation (6.17), changes as the conduction pattern in the bridge changes continually with time. The following section describes the way in
which the program assembles automatically the required tensor, according to the changes in the thyristor bridge.

6.2.1 Possible current transformations for the thyristor converter

Depending on which thyristors are conducting, the six possible mesh currents on the AC side of the converter shown in Fig 6.4(a) to (f) illustrate the current flow into the tear points A and B for each of the possible converter meshes. Each of the converter meshes has a corresponding connection to the torn sub-network of the converter bridge represented in Fig 6.5(a) to (f). These enables the converter bridge tensor, C_{5}, to be derived for each individual converter mesh.

The converter link/torn mesh sub-tensor C_{5} of equation (6.17), for the situation when converter mesh 1 is conducting as in Fig 6.4(a), is obtained as follows. The mesh currents i 51 at the point of tear are related to the currents i_{1} to i_{4} in the link network of Fig 6.3 such that

$$
\begin{aligned}
C_{5} & =\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right] \\
\text { and } \mathrm{I}^{\mathrm{m} 5} & =\left[\mathrm{i}^{51}\right]
\end{aligned}
$$

Similarly, when converter mesh 2 conducts as shown in Fig 6.4(b),

$$
\begin{aligned}
\mathbf{C}_{5} & =\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \\
\text { and } \mathrm{I}^{\mathrm{m} 5} & =\left[\begin{array}{l}
\mathrm{i}^{51}
\end{array}\right]
\end{aligned}
$$

The same procedure applies to all the other converter meshes, and a master link/torn mesh transformation matrix Cpwm, which contains the six individual link/torn mesh transformations, is given in Table 6.1.

	Converter Meshes				
1	2	3	4	5	6
0	0	0	0	0	0
1	0	0	0	0	0
-1	0	1	-1	0	-1
	1	1	-1	1	

Table 6.1 The master link/torn mesh transformation matrix Cpwm

6.2.2 Computer algorithm for determining $\mathbf{C} 5$

The algorithm for determining the transformation matrix C_{5} is conveniently illustrated by
considering the inversion mode of the converter. The converter mesh labels (1 to 6) are defined in the last row of Cmod in Table 5.11. When a column in Cmod is chosen, its converter mesh is also recorded in an array ipass. According to the elements of ipass, the corresponding columns of Cpwm are chosen to form C_{5}. The technique is described below using the example of section 5.2.4.

(i) Normal conduction period

The mesh currents flowing into the tear points A and B, when thyristors 1,6 and 2 are conducting, are as shown in Fig 6.6(a). Columns 1 and 2 of Cmod corresponding to mesh labels 1 and 3 are chosen and the elements of ipass are (1,3). According to ipass, columns 1 and 3 in Cpwm are chosen to form C_{5}. Thus

$$
\begin{aligned}
C_{5} & =\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & 1 \\
-1 & 0
\end{array}\right] \\
\text { and } I^{\mathrm{m} 5} & =\left[\begin{array}{l}
\mathrm{i}^{51} \\
\mathrm{i}^{52}
\end{array}\right]
\end{aligned}
$$

In this manner, C_{5} may be formed by determining the converter meshes and choosing their corresponding columns in Cpwm.

(ii) Start of freewheeling

When thyristor 6 turns off, and its freewheeling thyristor 9 is triggered, the mesh currents flowing into the tear points A and B are as shown in Fig 6.6(b). Columns 2 and

11 of Cmod are chosen and their corresponding converter mesh labels are 3 and 1. The corresponding elements of ipass are therefore $(3,1)$ and columns 3 and 1 of Cpwm are therefore chosen to form C_{5}. Thus

$$
C_{5}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & 1 \\
0 & -1
\end{array}\right]
$$

(iii) End of freewheeling

At the end of the freewheeling period, thyristor 3 is turned on and current flows into the tear points as shown in Fig 6.6(c). Columns 2 and 4 of Cmod are chosen and their corresponding mesh labels are 3 and 2. The elements of ipass are therefore (3,2) and columns 3 and 2 in Cpwm are chosen to form C_{5}.

$$
C_{5}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

The same technique applies to the rectification mode and matrix C_{5} may be determined during each conduction period.

Fig 6.1 Points of tear showing link currents

Fig 6.2 Replacing infinite inductances by voltage sources

Torn sub-networks

Fig 6.3 Torn and link networks

Fig 6.4(a) Current flow in converter for mesh 1

Fig 6.4(b) Current flow in converter for mesh 2

Fig 6.4(c) Current flow in converter for mesh 3

Fig 6.4(d) Current flow in converter for mesh 4

Fig 6.4(e) Current flow in converter for mesh 5

Fig 6.4(f) Current flow in converter for mesh 6

Fig 6.5(a) Converter torn sub-network for mesh 1

Fig 6.5(b) Converter torn sub-network for mesh 2

Fig 6.5(c) Converter torn sub-network for mesh 3

Fig 6.5(d) Converter torn sub-network for mesh 4

Fig 6.5(e) Converter torn sub-network for mesh 5

Fig 6.5(f) Converter torn sub-network for mesh 6

Fig 6.6(a) Current flow in converter when thyristor 1,6 and 2 are conducting

Fig 6.6(b) Current flow in converter when thyristor 1,9 and 2 are conducting

Fig 6.6(c) Current flow in converter when thyristors 1, 3 and 2 are conducting

Chapter 7

SIMULATION RESULTS FOR THE SHIP'S POWER SYSTEM

In this chapter, the overall performance of the ship's power supply system is examined. To illustrate the various switching conditions which are considered, a simplified representation of the system is given in Fig 7.1. Simulation results are presented as waveforms of voltage and current at different points of the system.

7.1 The system performance on generation

7.1.1 Converter Rectification

Fig 7.2 shows the result of a simulation in which the converter has a constant trigger angle of 30° and rated load at 0.9 pf lag is applied suddenly to the DC side. The supply is provided by synchronous generator 1 , with switches 1,4 and 5 of Fig 7.1 being closed and switches 2 and 3 open.

It follows from the defined switching conditions that power is fed from the synchronous generator to the converter through the bus bar. Fig 7.2(a) shows the waveforms obtained for the load current and voltage of the converter. As expected, the load voltage has a a six-pulse characteristic and a mean voltage of 220 V . The load impedance is mainly resistive and the load current is therefore almost cophasal with the load voltage waveform. The converter AC side line currents and voltages are shown in Fig 7.2(b) and (c) respectively. Due to the sequential switching of thyristors 1 to 6 , the line voltage is somewhat distorted with voltage spikes occurring in the voltage waveform.

Fig 7.2(d) and (e) show the generator line current and voltage waveforms. The defined switching conditions cause the converter line currents to be identical with those of the source (generator 1), so that identical current waveforms are obtained. However, voltage spikes occur in the line voltages shown in Fig 7.2(e). Fig 7.2(f) and (g) show respectively the bus bar line currents and voltages.

7.1.2 The motor/generator set

Fig 7.3 shows various circuit waveforms obtained when the motor/generator set is supplied by synchronous generator 2 , with switches 2,3 and 4 closed and switches 1 and 5 open.

Power from the generator is fed to the MG set via the bus bar. Figs 7.3(a) and (b) show the sinusoidal waveforms obtained for the line currents and voltages of the generator. Fig 7.3(c) and (d) show waveforms obtained for the line currents and voltages of the MG set, which are identical with those of the generator.

7.2 System performance on re-generation

7.2.1 Converter Inversion

Two inversion mode tests were made to illustrate the system performance with the converter operating in the PWM manner. Generator 1 of Fig 7.1 is held stationary to form a static load of rated kVA at 0.8 pf lag on the 3 -phase system, with SW1, SW4 and SW5 of Fig 7.1, closed and SW2 and SW3 open. The relevant data is;

DC input voltage $=400 \mathrm{~V}$
Carrier wave of amplitude $=10 \mathrm{~V}$
Reference wave of amplitude $=5 \mathrm{~V}$

Carrier wave frequency $=800 \mathrm{~Hz}$
Reference wave frequency $=40 \mathrm{~Hz}$
The resulting circuit waveforms are presented in Fig 7.4.

From the waveforms of the converter line currents and voltages shown in Fig 7.4(a) and (b), it will be seen that the line voltage contains approximately 20 pulses per half cycle, while Fig 7.4(b) makes clear that three PWM voltage waveforms, each with an amplitude of 400 V and mutual phase shift of 120°, are obtained at the converter output. Fig 7.4(c) and (d) show waveforms obtained for the line currents and voltages in generator 1, with the direct connection between the generator and the converter causing the generator and converter currents to be identical.

A second test with the same parameters, but with the carrier frequency increased to 2 kHz , gave the circuit waveforms shown in Fig 7.5. The number of pulses per half cycle of the converter line voltages and currents, shown in Figs 7.5(a) and (b) are greater than in the first test, with a narrower pulse width due to the increase in carrier frequency. Fig 7.5(c) and (d) show the generator 1 line currents and voltages, which are almost cophasal since the load is substantially resistive.

7.3 System performance on load application

A test was performed in which switches SW1, SW3 and SW4 were initially open and switches SW2 and SW5 were closed and power was directed to the converter from generator 2. After steady state had been achieved, switches SW3 and SW4 were closed to direct power to both the converter and the MG set from generator 2 .

When current is supplied only to the converter, generator 2 and the converter current
waveforms are identical (See Fig 7.6), and when the MG set is connected after 0.1 sec , generator 2 line current increases as shown in Fig 7.6(a). The mean converter DC voltage and current both decrease following application of the MG set and the converter AC side line currents, shown in Fig 7.6(d), are reduced. The line currents and voltages of the MG set shown in Fig 7.7(e) and (f) both rises rapidly until a new steady state is reached.

7.4 Summary

In this chapter, various load conditions and switching permutations were investigated, in order to demonstrate the flexibility of the computer programme.

Tests performed during generation show that
(i) During rectification, a load voltage with a six-pulse characteristic was obtained.
(ii) When the MG set was fed from a generator, sinusoidal waveforms were obtained for both the line currents and voltages.
(iii) In the load application test, changing the switch conditions in the network enables the transient performance to be studied.

During re-generation; when power was directed to the generator from the converter:
(iv) A better-quality of PWM waveforms with a reduced harmonic content was obtained by increasing the carrier frequencies [8].

Overall, the system was shown to be highly flexible. Results from the computer model produced an entirely consistent performance in both generation and re-generation operation.

Fig 7.1 Simplified representation of ship's power system

Fig 7.2(b) Converter $1 \mathbb{C}$ side currents

Fig 7.2(c) Converter AC side line voltages

Fig 7.2(d) Generator 1 line currents

Fig 7.2(e) Generator 1 line voltages

Fig 7.2(g) Bus coupler line voltages

Fig 7.3(a) Generator 2 line currents

Fig 7.3(b) Generator 2 line voltages

Fig 7.3(c) The MG set line currents

Fig 7.3(d) The MG set line voltages

Fig 7.4(a) Converter line currents with carrier frequency of 800 Hz

Fig 7.4(b) Converter line voltages with carrier frequency of 800 Hz

Fig 7.4(c) Generator 1 line currents with carrier frequency of 800 Hz

Fig 7.4(d) Generator 1 line voltages with carrier frequency of 800 Hz

Fig 7.5(a) Converter line currents with carrier frequency of 2 kHz

Fig 7.5(b) Converter line voltages with carrier frequency of 2 kHz

Fig $7.5(c)$ Generator 1 line currents with carrier frequency of 2 kHz

Fig 7.5(d) Generator 1 line voltages with carrier Frequency of 2 kHz

Fig 7.6(a) Generator 2 line currents

Fig 7.6(b) Generator 2 (ine voltages

Fig 7.6(c) The converter DC side current and voltage

Fig 7.6(d) Converter 1 C side currents

Fig 7.6(e) The MG set line currents

Fig 7.6(f) The MG set line voltages

Chapter 8

CONCLUSIONS

This thesis has presented a mathematical model for a ship's electrical power system. Initially, an isolated 3-phase synchronous generator was considered, with the electrical equation being expressed in the phase reference frame which was shown to be highly flexible for the modelling of a synchronous generator. It could cope with both balanced and unbalanced load conditions and also allowed for saturation in the model. In addition, the parameters used in the program were physical values, and the approach eliminates the need for complex current and voltage transformation such as in the dqo model. Accurate predictions of the behaviour of the synchronous generator were shown to be obtained for a variety of sudden symmetrical and unsymmetrical short circuit tests as well as various balanced and unbalanced loading conditions. The model thus forms the basis of an accurate technique for the modelling of a synchronous generators of any rating.

The single generator study was extended to a multi-generator power system which contained a 3-phase synchronous generator, a motor/generator set, a bus coupler and a 3-phase thyristor bridge converter. A mathematical model for the 3-phase bridge converter which was capable of both rectification and inversion, was developed. In the rectification mode, it was shown that the mean output voltage and current decreased as the trigger angle increased, with the load voltage being continuous for trigger angles between 0° and 60° and discontinuous when the trigger angles exceeded 60°. Although the converter can, in general, be used as a variable DC power supply, it suffers from the drawback of producing a high harmonic content in the supply voltage. In the inversion mode, the converter was operated in a PWM manner at a fixed reference frequency and was shown that the higher the frequency of the carrier wave,
the greater the number of pulses per half cycle produced in the PWM output voltage waveforms. For a fixed reference wave amplitude, the pulses in the output waveform are reduced in width as the frequency of the carrier wave is increased, which makes the harmonic content smaller [8]. It is preferable, therefore, to work at a high carrier frequency, in order to produce a high-quality output voltage with a reduced harmonic content.

Using the component models developed earlier, the final stage of the thesis explains how diakoptic analysis was employed to model the complete power system, with matrix partitioning being used to reduce the program run-time. The performance of the ship's power system was assessed, by means of simulated results for various switching conditions. Diakoptic analysis was thereby shown to be an effective method for modelling interconnected items and the results obtained using these techniques shows a considerable saving in computing time. In addition, the approach readily allows for a detailed investigation of the system's performance under a variety of switching conditions. The techniques developed in this thesis are sufficiently flexible to be used for the modelling of any complicated parallel-connected network. They enable the designer to investigate economically both the transient and steady state response of a proposed system using various parameters, ultimately enable the performance of the system to be optimised.

REFERENCES

1. Kron, G: "Diakoptics - the piecewise solution for large-scale systems", MacDonald, 1963.
2. Adkin, B and Harley, R: "The General Theory of Alternating Current Machines", Chapman and Hall, London, 1975.
3. Snider, L.A and Smith, I.R: "Measurement of inductance coefficients of saturated synchronous machines", IEE Proceedings, 1972, Vol. 119, Page 597-602.
4. Kron, G: "Tensor analysis of systems", MacDonald, 1955.
5. Kettleborough, J.G: "Mathematical model for a ship's electrical power systems", Loughborough University of Technology, 1987.
6. "Computer representation of excitation systems", IEEE Committee Report, Pas-87, 1968, page 1460-1464.
7. Lander, C.W: "Power Electronics", MacGraw-Hill (UK) Limited, 1981.
8. Ohno, E.C: "Introduction to Power Electronics", Clarendon Press, Oxford, 1988
9. Gregory, K, Kettleborough, J.G and Smith, I.R: "Diakoptic mesh analysis of limited size power supply systems", IEE Proceedings, Vol. 135, Pt. C, No. 2, March, 1988.
10. Fernando, L. T. M: "Modelling of electrical power system", MPhil Thesis, Loughborough University of Technology, 1984.
11. Kettleborough, J.G., Smith, I.R., Fernando, L.T.M: "Numerical solution of electrical power systems using diakoptics", Fourth International Conference on Mathematical Modelling, Zurich, Switzerland, 15-17 August, 1983.
12. Kettleborough, J.G: "Mathematical model of an aircraft generator/radar load system", RBX Contract Report, 1980.
13. Dubey, G.K., Doradla, S.R., Joshi, A., Sinba, R.M.K: "Thyristorised power controllers", John Wiley and Sons, 1986.
14. Mergen, A.F: "Minimisation of Inverter-fed induction-motor losses by optimisation of PWM voltage waveforms", Ph.D. Thesis, Loughborough University of Loughborough, 1977.

APPENDICES

Appendix A

Dqo/phase Transformation

In deriving a conversion between the two sets of parameters, the following assumptions are made,
a) The 2 nd-harmonic components of phase self and phase/phase mutual inductances in the phase co-ordinate reference frame are equal. This assumption is a fundamental requirement of the transformation, and non-compliance with it would yield time varying dq parameters.
b) The d-axis damper/d-axis armature turns ratio $\mathrm{N}_{5} / \mathrm{N}_{1}$ is assumed to be 0.33 . This typical value was obtained from static AC tests on several generators. Its actual value is not however critical since, although the damper parameters may be incorrect, their referred values, the mmf contribution by the damper winding and the loss dissipation are all correct.
c) The q -axis damper/ q -axis armature turns ratio $\mathrm{N}_{6} / \mathrm{N}_{1}$ is assumed to be 0.33 . The arguments of (b) apply again here.
d) $T_{d}{ }^{\prime \prime}=0.0025 s$, and is a typical value ${ }^{[12]}$ based on experimental values obtained from several 400 Hz different machines.
e) $\mathrm{T}_{\mathrm{q}}{ }^{\prime \prime}=1.5 \mathrm{~T}_{\mathrm{d}}{ }^{\prime \prime}$, and as above, is an assumption based on experimental values obtained from several 400 Hz machines.

The conversion equations developed in the following sections are all derived from the basic dq parameter relationships. Parameters with a bar denote per-unit values and Z is the base impedance given by

$$
\begin{equation*}
\mathrm{Z}=\frac{\text { rated phase voltage }}{\text { rated phase current }} \tag{A.1}
\end{equation*}
$$

A. 1 The dqo parameters relationships

A.1.1 Time Constant

All reactances are in per unit and time constant in seconds. [5]

$$
\begin{align*}
& T_{d}^{\prime}=\frac{1}{\omega_{0} \bar{R}_{f}}\left[\bar{X}_{f}+\frac{\bar{X}_{m d} \bar{X}_{a}}{\bar{X}_{m d}+\bar{X}_{a}}\right] \tag{A.2}\\
& T_{d}{ }^{\prime \prime}=\frac{1}{\omega_{0} \bar{R}_{k d}}\left[\bar{X}_{k d}+\frac{\bar{X}_{m d} \bar{X}_{a} \bar{X}_{f}}{\bar{X}_{m d} \bar{X}_{a}+\bar{X}_{m d} \bar{X}_{f}+\bar{X}_{a} \bar{X}_{f}}\right] \tag{A.3}\\
& \mathrm{T}_{\mathrm{q}}{ }^{\prime \prime}=\frac{1}{\omega_{0} \overline{\mathrm{R}}_{\mathrm{kq}}}\left[\bar{X}_{\mathrm{kq}}+\frac{\overline{\mathrm{X}}_{\mathrm{mq}} \overline{\mathrm{X}}_{\mathrm{a}}}{\overline{\mathrm{X}}_{\mathrm{mq}}+\overline{\mathrm{X}}_{\mathrm{a}}}\right] \tag{A.4}\\
& T_{q \rho}^{\prime \prime}=\frac{1}{\omega_{0} \bar{R}_{\mathrm{kq}}}\left[\bar{X}_{\mathrm{kq}}+\overline{\mathrm{X}}_{\mathrm{mq}}\right] \tag{A.5}\\
& T_{\mathrm{d}}{ }^{\prime}=\frac{1}{\omega_{0} \overline{\mathrm{R}}_{\mathrm{f}}}\left[\overline{\mathrm{X}}_{\mathrm{f}}+\overline{\mathrm{X}}_{\mathrm{md}}\right] \tag{A.6}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{T}_{\mathrm{d}}^{\prime \prime}=\frac{1}{\omega_{0} \overline{\mathrm{R}}_{\mathrm{kd}}}\left[\overline{\mathrm{X}}_{\mathrm{kd}}+\frac{\overline{\mathrm{X}}_{\mathrm{md}} \overline{\mathrm{X}}_{\mathrm{f}}}{\overline{\mathrm{X}}_{\mathrm{md}}+\overline{\mathrm{X}}_{\mathrm{f}}}\right] \tag{A.7}
\end{equation*}
$$

A.1.2 Dqo reactances

$$
\begin{align*}
& \bar{X}_{d}=\bar{X}_{m d}+\bar{X}_{a} \tag{A.8}\\
& \bar{X}_{d}{ }^{\prime}=\bar{X}_{d} \frac{T_{d}^{\prime}}{T_{d}{ }^{\prime}}=\bar{X}_{a}+\frac{\bar{X}_{m d} \bar{X}_{f}}{\bar{X}_{m d}+\bar{X}_{f}} \tag{A.9}\\
& \bar{X}_{d}{ }^{\prime \prime}=\bar{X}_{d} \frac{T_{d}^{\prime} T_{d}{ }^{\prime \prime}}{T_{d}{ }^{\prime} T_{d}{ }^{\prime \prime}} \\
& =\bar{X}_{\mathrm{a}}+\frac{\bar{X}_{\mathrm{md}} \bar{X}_{\mathrm{f}} \overline{\mathrm{X}}_{\mathrm{kd}}}{\overline{\mathrm{X}}_{\mathrm{md}} \overline{\mathrm{X}}_{\mathrm{mf}}+\overline{\mathrm{X}}_{\mathrm{md}} \overline{\mathrm{X}}_{\mathrm{kd}}+\overline{\mathrm{X}}_{\mathrm{f}} \overline{\mathrm{X}}_{\mathrm{kd}}} \tag{A.10}\\
& \bar{X}_{q}=\bar{X}_{\mathrm{a}}+\overline{\mathrm{X}}_{\mathrm{mq}} \tag{A.11}\\
& \bar{X}_{q}{ }^{\prime \prime}=\bar{X}_{q} \frac{T_{q}{ }^{\prime \prime}}{T_{q}{ }^{\prime \prime}}=\bar{X}_{\mathrm{a}}+\frac{\bar{X}_{\mathrm{mq}} \bar{X}_{\mathrm{qq}}}{\overline{\mathrm{X}}_{\mathrm{mq}}+\overline{\mathrm{X}}_{\mathrm{kq}}} \tag{A.12}\\
& \bar{X}_{2}=\frac{\bar{X}_{d}^{\prime \prime}+\bar{X}_{q}^{\prime \prime}}{2} \tag{A.13}
\end{align*}
$$

A.1.3 Dqo/phase parameter relationship

$$
\begin{align*}
& \bar{I}_{d}=\frac{\bar{X}_{d}}{\omega_{0}}=\bar{I}_{\infty}+\bar{M}_{\mathrm{abo}}+\frac{3}{2} \bar{L}_{\mathrm{a} 2} \tag{A.14}\\
& \overline{\mathrm{I}}_{\mathrm{q}}=\frac{\bar{X}_{q}}{\omega_{0}}=\bar{I}_{\infty}+\bar{M}_{\mathrm{abo}}-\frac{3}{2} \bar{L}_{\mathrm{a}} \tag{A.15}\\
& \bar{L}_{\mathrm{md}}=\frac{\bar{X}_{m d}}{\omega_{0}}=\bar{M}_{\mathrm{F}} \tag{A.16}\\
& I_{2}=\frac{\bar{X}_{2}}{\omega_{0}}=I_{\infty}-2 \overline{\mathrm{M}}_{\mathrm{abo}} \tag{A.17}
\end{align*}
$$

A. 2 Dqo/phase conversion

A.2.1 D-axis armature/field turns ratio

The per-unit field self-reactances ${ }^{[5]}$ is

$$
\begin{equation*}
\bar{X}_{\mathrm{ff}}=\frac{3}{2}\left[\frac{N_{\mathrm{d}}}{N_{\mathrm{f}}}\right]^{2} \frac{\mathrm{X}_{4}}{\mathrm{Z}} \tag{A.18}
\end{equation*}
$$

where $\frac{N_{d}}{N_{f}}$ is the d-axis armature/field turns ratio

$$
\begin{equation*}
\therefore \frac{\mathrm{N}_{\mathrm{d}}}{\mathrm{~N}_{\mathrm{f}}}=\sqrt{\frac{2}{3} \frac{\overline{\mathrm{X}}_{\mathrm{ff}}}{\mathrm{X}_{4}} \mathrm{Z}} \tag{A.19}
\end{equation*}
$$

and from equation A. 8 and A.9,

$$
\begin{equation*}
\bar{X}_{\mathrm{ff}}=\frac{\overline{\mathrm{X}}_{\mathrm{md}}^{2}}{\overline{\mathrm{X}}_{\mathrm{d}}-\overline{\mathrm{X}}_{\mathrm{d}}{ }^{\prime}} \tag{A.20}
\end{equation*}
$$

From equation A.6, it follows that

$$
\begin{equation*}
X_{4}=T_{d o}^{\prime} \omega_{0} R_{4} \tag{A.21}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{N_{d}}{N_{f}}=\sqrt{\frac{2}{3} \frac{Z \bar{X}_{m d}^{2}}{T_{d b}^{\prime} \omega_{0} R_{4}\left(\bar{X}_{d}-\bar{X}_{d}^{\prime}\right)}} \tag{A.22}
\end{equation*}
$$

A.2.2 Phase parameters

From equations A. 14 and A.15, the second-harmonic component of armature phase self inductance is

$$
\begin{equation*}
L_{a 2}=Z \bar{L}_{2}=\frac{\bar{Z}}{3 \omega_{0}}\left[\bar{X}_{d}-\bar{X}_{q}\right] \tag{A.23}
\end{equation*}
$$

The second harmonic component of phase/phase mutual inductance is

$$
\begin{equation*}
\mathrm{M}_{\mathrm{ab} 2}=\mathrm{L}_{\mathrm{a} 2} \quad \text { (according to assumption (a)) } \tag{A.24}
\end{equation*}
$$

and from equations A. 14 and A.17, the constant component of armature phase/phase mutual inductance is

$$
\begin{equation*}
M_{a b o}=\frac{Z}{3 \omega_{0}}\left[\bar{X}_{d}-\bar{X}_{Z}\right]-\frac{1}{2} L_{a 2} \tag{A.25}
\end{equation*}
$$

From equation A.17, the constant component of the armature phase self inductance is

$$
\begin{equation*}
L_{\mathrm{a}}=\frac{\mathrm{Z}}{\omega_{0}} \bar{X}_{Z}+2 \mathrm{M}_{\mathrm{abo}} \tag{A.26}
\end{equation*}
$$

From equation A.6, the field self inductance is

$$
\begin{align*}
& L_{\mathrm{fo}}=\mathrm{T}_{\mathrm{do}}^{\prime} \mathrm{R}_{\mathrm{ff}} \tag{A.27}\\
& \bar{X}_{\mathrm{md}}=\frac{3}{2}\left[\frac{N_{\mathrm{d}}}{N_{\mathrm{f}}}\right] \frac{\omega_{0}}{Z} M_{\mathrm{f}} \tag{A.27}
\end{align*}
$$

hence,

$$
\begin{equation*}
M_{f}=\frac{2}{3}\left[\frac{N_{\mathrm{f}}}{\mathrm{~N}_{\mathrm{d}}}\right] \frac{\mathrm{Z}}{\omega_{0}} \bar{X}_{\mathrm{md}} \tag{A.28}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\pi}=Z \bar{R}_{a} \tag{A.29}
\end{equation*}
$$

A.2.3 D-axis damper winding parameters

From equation A.10, the d-axis damper leakage reactances is

$$
\begin{equation*}
\bar{X}_{\mathrm{kd}}=\frac{\overline{\mathrm{X}}_{\mathrm{md}} \overline{\mathrm{X}}_{\mathrm{f}}\left(\overline{\mathrm{X}}_{\mathrm{d}}-\overline{\mathrm{X}}_{\mathrm{a}}\right.}{\overline{\mathrm{X}}_{\mathrm{md}} \overline{\mathrm{X}}_{\mathrm{f}}-\overline{\mathrm{X}}_{\mathrm{ff}}\left(\overline{\mathrm{X}}_{\mathrm{d}}-\overline{\mathrm{X}}_{\mathrm{z}}\right)} \tag{A.30}
\end{equation*}
$$

and the d-axis damper leakage reactance is

$$
\begin{equation*}
\overline{\mathrm{X}}_{\mathrm{kkd}}=\overline{\mathrm{X}}_{\mathrm{kd}}+\overline{\mathrm{X}}_{\mathrm{md}} \tag{A.31}
\end{equation*}
$$

but

$$
\begin{equation*}
\bar{X}_{\mathrm{kkd}}=\frac{3}{2}\left[\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{5}}\right]^{2} \frac{\omega_{0} \mathrm{~L}_{\mathrm{do}}}{\mathrm{Z}} \tag{A.32}
\end{equation*}
$$

therefore

$$
\begin{equation*}
L_{\mathrm{d}}=\frac{2}{3}\left[\frac{\mathrm{~N}_{5}}{\mathrm{~N}_{1}}\right]^{2} \frac{\mathrm{Z} \overline{\mathrm{X}}_{\mathrm{kkd}}}{\omega_{0}} \tag{A.33}
\end{equation*}
$$

Assuming that all of the mutual reactances on the d-axis are equal

$$
\begin{equation*}
\bar{X}_{\mathrm{md}}=\frac{3}{2}\left[\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{5}}\right] \frac{\omega_{0} M_{d}}{Z} \tag{A.34}
\end{equation*}
$$

therefore

$$
\begin{equation*}
M_{d}=\frac{2}{3}\left[\frac{N_{5}}{N_{1}}\right] \frac{Z \bar{X}_{m d}}{\omega_{0}} \tag{A.35}
\end{equation*}
$$

From equation A.10, the d-axis open-circuit sub-transient time constant is

$$
\begin{equation*}
T_{d o}^{\prime \prime}=\frac{T_{d}^{\prime} T_{d}^{\prime \prime}}{T_{d}^{\prime}} \frac{\bar{X}_{d}}{\bar{X}_{d}^{\prime \prime}} \tag{A.36}
\end{equation*}
$$

and from equation A.7, the per-unit d-axis damper resistance is

$$
\begin{equation*}
\overline{\mathrm{R}}_{\mathrm{kd}}=\frac{1}{\omega_{0} \mathrm{~T}_{d}{ }^{\prime \prime}}\left[\overline{\mathrm{X}}_{\mathrm{kd}}+\frac{\overline{\mathrm{X}}_{\mathrm{md}} \overline{\mathrm{X}}_{\mathrm{f}}}{\overline{\mathrm{X}}_{\mathrm{md}}+\overline{\mathrm{X}}_{\mathrm{f}}}\right] \tag{A.37}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{dd}}=\frac{2}{3}\left[\frac{\mathrm{~N}_{5}}{\mathrm{~N}_{1}}\right]^{2} \mathrm{Z} \overline{\mathrm{R}}_{\mathrm{kd}} \tag{A.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{M}_{\mathrm{fd}}=\left[\frac{\mathrm{N}_{5}}{\mathrm{~N}_{1}}\right] \mathrm{M}_{\mathrm{f}} \tag{A.39}
\end{equation*}
$$

A.2.4 Q-qxis damper winding parameters

From equation A.11, the q -axis damper leakage reactance is

$$
\begin{align*}
& \bar{X}_{\mathrm{kkq}}=\overline{\mathrm{X}}_{\mathrm{kq}}+\overline{\mathrm{X}}_{\mathrm{mq}} \tag{A.40}\\
& \overline{\mathrm{X}}_{\mathrm{kkq}}=\frac{3}{2}\left[\frac{N_{1}}{N_{6}}\right]^{2} \frac{\omega_{0} L_{\mathrm{qo}}}{Z} \tag{A.41}
\end{align*}
$$

and,

$$
\begin{align*}
& L_{\varphi}=\frac{2}{3}\left[\frac{N_{6}}{N_{1}}\right] \frac{Z \bar{X}_{\text {kkq }}}{\omega_{0}} \tag{A.42}\\
& \bar{X}_{\mathrm{mq}}=\frac{3}{2}\left[\frac{N_{1}}{N_{6}}\right] \frac{\omega_{0} M_{q}}{Z} \tag{A.43}
\end{align*}
$$

therefore,

$$
\begin{equation*}
M_{q}=\frac{2}{3}\left[\frac{N_{6}}{N_{1}}\right] \frac{Z \bar{X}_{m q}}{\omega_{0}} \tag{A.44}
\end{equation*}
$$

From assumption (e), $\mathrm{T}_{\mathrm{q}}{ }^{\prime \prime}=1.5 \mathrm{~T}_{\mathrm{d}}{ }^{\prime \prime}$

Also from equation A.12, the q-axis open-circuit sub-transient time constant is

$$
\begin{align*}
& \mathrm{T}_{\mathrm{q}}^{\prime \prime}=\frac{\overline{\mathrm{X}}_{\mathrm{q}}}{\overline{\mathrm{X}}_{\mathrm{q}}^{\prime \prime}} \mathrm{T}_{\mathrm{q}}{ }^{\prime \prime} \tag{A.45}\\
& \mathrm{T}_{\mathrm{q}}^{\prime \prime}=\frac{\mathrm{L}_{\mathrm{qq}}}{\mathrm{R}_{\mathrm{q}}} \tag{A.46}
\end{align*}
$$

therefore,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{q}}=\frac{\mathrm{L}_{\mathrm{q}}}{\mathrm{~T}_{\mathrm{q}}} \tag{A.47}
\end{equation*}
$$

The d-axis and q-axis component of phase self and mutual inductances are

$$
\begin{align*}
& L_{a d}=L_{a 0}+L_{a 2} \tag{A.48}\\
& L_{a \mathrm{a}}=L_{a b}-L_{a 2} \tag{A.49}\\
& M_{a d}=2 M_{a b o}+M_{a b 2} \tag{A.50}\\
& M_{\mathrm{aq}}=2 M_{a b o}-M_{a b 2} \tag{A.51}
\end{align*}
$$

Appendix B

4th ORDER RUNGE KUTTA EOUATIONS

A first-order differential equation may usually be arranged in the form

$$
\begin{equation*}
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{ax}+\mathrm{bu} \tag{B.1}
\end{equation*}
$$

where x is the state variable and u the system input.

A step-by-step solution for this equation may be obtained using the 4th order Runge Kutta integration procedure, defined as

$$
\begin{equation*}
x_{n}=x_{n-1}+\frac{h}{6}\left[G_{0}+2 G_{1}+2 G_{3}+G_{3}\right] \tag{B.2}
\end{equation*}
$$

where
x_{n} is the value of the state variable at the end of the integration step, $\mathrm{x}_{\mathrm{n}-1}$ is the value of the state variable at the beginning of the integration step, h is the duration of the integration step,

$$
\begin{align*}
& \mathrm{G}_{0}=\frac{\mathrm{dx}}{\mathrm{dt}}\left(\mathrm{t}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-1}\right) \tag{B.3}\\
& \mathrm{G}_{1}=\frac{\mathrm{dx}}{\mathrm{dt}}\left(\mathrm{t}_{\mathrm{n}-1}+\frac{\mathrm{h}}{2}, \mathrm{x}_{\mathrm{n}-1}+\mathrm{G}_{0} \frac{\mathrm{~h}}{2}\right) \tag{B.4}\\
& \mathrm{G}_{2}=\frac{\mathrm{dx}}{\mathrm{dt}}\left(\mathrm{t}_{\mathrm{n}-1}+\frac{\mathrm{h}}{2}, \mathrm{x}_{\mathrm{n}-1}+\mathrm{G}_{1} \frac{\mathrm{~h}}{2}\right) \tag{B.5}\\
& \mathrm{G}_{3}=\frac{\mathrm{dx}}{\mathrm{dt}}\left(\mathrm{t}_{\mathrm{n}-1}+\mathrm{h}, \mathrm{x}_{\mathrm{n}-1}+\mathrm{G}_{2} \mathrm{~h}\right) \tag{B.6}
\end{align*}
$$

where t_{n-1} is the time at the start of the integration step.

Appendix C

PROGRAM LISTING

C. 1 Typical input data for the ship's power system model

$400.0,40.00,10.00 \mathrm{e}-06,10.00 \mathrm{e}-05,0.075,1$
98.00, 7.35,
163.3, 14.70,
212.00, 29.4
$1.7753,1.6664,0.9251,0.8162,0.2506,0.1998,0.1735,0.0259$
$0.0186,0.6119,10.00,40.00,0.6930$
$0.1699,0.0239,0.0025$
$1.000,0.000,0.000,0.000,0.000$,
$0.000,1.000,0.000,0.000,0.000$,
$-1.000,-1.000,0.000,0.000,0.000$,
$0.000,0.000,1.000,0.000,0.000$,
$0.000,0.000,0.000,1.000,0.000$,
$0.000,0.000,0.000,0.000,1.000$
200.00, 5.0, -5.0
$1.20,5.000 \mathrm{e}-04,2.00,4.04 \mathrm{e}-02$
$9.00 \mathrm{e}-03,7.517 \mathrm{e}-03,19.38 \mathrm{e}-03,12.00 \mathrm{e}-03$
$0.65,5.00,0.05,0.05,0.001$
$0.03,250$
240.00, 35.00
$0.148,0.300,0.300,90.9094$
$67.4 \mathrm{e}-03,30.00 \mathrm{e}-03,30.00 \mathrm{e}-03,24.00 \mathrm{e}-03$
$0.000,2.419,0.000,38.6-03,38.6 \mathrm{e}-03,38.6 \mathrm{e}-03,38.6 \mathrm{e}-03$
$0.100,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.100,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.100,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.100,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.100,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.100,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.100,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.100,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.100,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.100,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.100,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.100,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.100,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.100,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.100,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.100$ $10.0 \mathrm{e}-03,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,10.0 \mathrm{e}-03,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,10.0 \mathrm{e}-03,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,10.0 \mathrm{e}-03,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,10.0 \mathrm{e}-06,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, 0.0,0.0,0.0, $0.0,0.0,10.0 \mathrm{e}-06,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,10.0 \mathrm{e}-06,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,10.0 \mathrm{e}-06,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,10.0 \mathrm{e}-06,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,10.0 \mathrm{e}-06,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,10.0 e-07,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,10.0 \mathrm{e}-07,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,10.0 \mathrm{e}-07,0.0,0.0,0.0$,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,10.0e-07,0.0,0.0, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,10.0 \mathrm{e}-07,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,10.0 \mathrm{e}-07$ $1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,0.0$, $1.0,1.0,-1.0,0.0,-1.0,0.0,-1.0,-1.0,-1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,-1.0,-1.0,-1.0,1.0,0.0,1.0,0.0,0.0$, $-1.0,0.0,1.0,1.0,0.0,-1.0,1.0,0.0,0.0,-1.0,-1.0,-1.0,0.0,-1.0,0.0,1.0,1.0,1.0,1.0,0.0,-1.0,-1.0,0.0,1.0,0.0$, $0.0,-1.0,0.0,-1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,-1.0,0.0,-1.0,-1.0,-1.0,0.0,0.0,1.0,0.0,1.0,-1.0,-1.0,0.0$, $1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0$ $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0$ $800.00,10.00,8.00,20.00 \mathrm{e}-06$
$1,6,5,0,3,2$
1.0,0.0,
0.0,1.0,
$-1.0,-1.0$
0.100,0.0,0.0, $0.0,0.100,0.0$, $0.0,0.0,0.100$ 1.0,0.0,0.0,0.0,0.0, 0.0,1.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0, $0.0,0.0,0.0,0.0,0.0$, 0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0, 1.0,0.0,0.0,0.0,0.0, $0.0,1.0,0.0,0.0,0.0$, -1.0,0.0,0.0,0.0,0.0, $0.0,-1.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, 0.0,0.0,0.0,0.0,0.0, -1.0,0.0,0.0,0.0,0.0, $0.0,-1.0,0.0,0.0,0.0$, $1.0,0.0,0.0,0.0,0.0$, 0.0,1.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0, $0.0,0.0,0.0,0.0,0.0$, 0.0,0.0,0.0,0.0,0.0, $0.0,0.0,0.0,0.0,0.0$ $0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0$, 1.0,0.0,1.0,-1.0,0.0,-1.0,0.0, $-1.0,1.0,0.0,1.0,-1.0,0.0,0.0$ $0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $1.0,0.0,1.0,-1.0,0.0,-1.0,0.0$, $-1.0,1.0,0.0,1.0,-1.0,0.0,0.0$ $1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $1.0,1.0,-1.0,0.0,-1.0,0.0,1.0,0.0,-1.0,-1.0,0.0,1.0,0.0$, $-1.0,0.0,1.0,1.0,0.0,-1.0,0.0,1.0,1.0,0.0,-1.0,-1.0,0.0$, $0.0,-1.0,0.0,-1.0,1.0,1.0,-1.0,-1.0,0.0,1.0,1.0,0.0,0.0$, $1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,-1.0,0.0,0.0,0.0,0.0$,
$0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,-1.0,0.0,0.0$, $0.0,0.0,0.0,0.0,1.0,1.0,-1.0,0.0,0.0,0.0,1.0,0.0,0.0$, $0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,-1.0,0.0$, $1.0,0.0,0.0,0.0,0.0,1.0,0.0,-1.0,0.0,0.0,0.0,1.0,0.0$, $0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,-1.0,0.0,0.0,0.0$
$50.00,1.00 \mathrm{e}-03,10.0 \mathrm{e}-06,10.0 \mathrm{e}-06,10.0 \mathrm{e}-07$
$10.00,10.00,10.00$
0,0,0,0,0
$0.0,0.0,0.100,0.0,0.0,0.0$
1,0,0,1,1
2.00

1,2

C. 2 Program listing of the ship's electrical power system

This program models the complete system. Diakoptics is used to reduces the program complexity.
Open the input and output files required.
Open(unit $=50$, file $=$ "system_data", status $=$ "old",

+ form = 'formatted')
Open(unit $=60$, file $=$ ' $>$ site $>$ plot_dir $>$ see $>$ gen1',
+ form = 'unformatted', binary stream = .true., mode $=$ 'out') Open(unit $=70$, file $=$ ' $>$ site $>$ plot_dir $>$ see $>$ gen2',
+ form = 'unformatted', binary stream = .true., mode $=$ 'out') Open(unit $=80$, file $=$ ' $>$ site>plot_dir $>$ see $>$ gen 3 ',
$+\quad$ form $=$ 'unformatted', binary stream $=$.true., mode $=$ 'out') Open(unit $=90$, file $=$ ' $>$ site $>$ plot_dir $>$ see $>$ bus',
+ form = 'unformatted', binary stream = .true., mode $=$ 'out') Open(unit $=92$, file $=$ ' $>$ site>plot_dir>see>diode',
+ form = 'unformatted', binary stream = .true., mode = 'out') Open(unit $=95$, file $=$ ' $>$ site>plot_dir $>$ see $>P W M '$,
+ form = 'unformatted', binary stream = .true., mode $=$ 'out') Open(unit $=96$, file $=$ ' $>$ site>plot_dir>see>exc',
+ form = 'unformatted', binary stream $=$.true., mode $=$ 'out') Open(unit $=97$, file $=$ ' $>$ site $>$ plot_dir $>$ see $>$ dies',
+ form = 'unformatted', binary stream = .true., mode = 'out') Open(unit $=98$, file $=$ ' $>$ site $>$ plot_dir>see $>$ motor',
+ form = 'unformatted', binary stream = .true., mode = 'out') Open(unit $=99$, file $=$ ' $>$ site $>$ plot_dir $>$ see $>$ line',
+ form = 'unformatted', binary stream = .true., mode $=$ 'out') Set up the common block. Common/b1/Vb(5,16),e(16),h(4),gg(4),t
Common/b2/Cd(16), Rb(16), Xb(16),sl,w,V1,ire, sir, sli Common/b3/Cbt(2,16), Vdrop(5), $\mathrm{Rba}(3,3)$
Common/b4/Cdi(5), $\mathrm{Cd} 2(5), \mathrm{Rbb}(16,16), \mathrm{Xbb}(16,16)$
Common/b5/m $(2,16), x x(2,16)$, idone
Common/b6/t1, amp, am, ti, ti1, ti2, ti3
Common/b7/twen, vsa, vsb, vsc, samp, ff Common/b8/za1, za2, za3, zb1, $\mathrm{zb} 2, \mathrm{zb} 3$, aa, bb
Common/b9/icio(3), icirc(3), int
Common/b10/nire, inter, ipass(2), iooo, ibbb
Common/b11/r1, tr2, nn1, nn2
Common/b12/wo,pi,fo,xd,xmd,xq,xd1,xd2,xq2,xo,xmq
Common/b13/ra,r4,p,z,tdo,td1,td2,freq
Common/b14/xlad, xlaq, xmad,xmaq,xmf,xxmd,xxmq,xlf,xmfd
Common/b15/xld,xlq, $\mathrm{rl}, 12, \mathrm{r} 3, \mathrm{r} 5, \mathrm{r} 6, \mathrm{rl1}, \mathrm{r} 12, \mathrm{rl3}$
Common/b16/Conl($5,4,5$), $\mathrm{Clm}(5,4,5), \mathrm{Cml}(5,5,4), x L 1(5,3), x o p e n, x c l o s e$
Common/b17/cos1(3), $\cos 2(3), \cos 3(3), \sin 1(3), \sin 2(3), \sin 3(3)$
Common/b18/Cm1 $(3,4,6), \mathrm{Cm} 2(3,4,6)$
Common/b19/cm(5,5), cma(5,5), cmb(5,5),Cmast(6,5), $\mathrm{dd}(5,5)$
Common/b20/cf1,cf2,sf(3),Oc(3,2),coo,const,ca1,ca2
Common/b21/Vh, Vv, Vp, three, ppi, V5, Vmin, Vmax
Common/b22/ava(4), avb(4), avc(4), avd(4)
Common/b23/aref(2,2), $\mathrm{d}(4), \mathrm{Vft}(3)$, iexc
Common/b24/time(3), cycle, dummy (3,3,2), Tot
Common/b26/S(3,3), Si(2,2), d2(3), Xji, S1(3), S2(3), zx
Common/b27/ca,cf,Va, Vf,rtt,rt,zxy,xt,xf,ck,rf,ckf,Ji
Common/b28/dumm,ion, $\mathrm{Vfr}(6)$,max,trig,itrg,ioni
Common/b29/idis,cbi(16),tsis,icom
Common/b30/dd1,dd2,dd3,Vdc,sign,db1,db2,zfy,zyh
Common/b31/aug(2,2), $\operatorname{Ar}(4,4), \operatorname{Ar1}(2,4,4)$
Common/b32/isw,iti(5),cb(5,16),Xba(3,3),Rload,Xload,srec,spwm
Common/b33/tyr,diod,tde
Define the real and integer variables.

```
            Real Lmm( \(5,5,5\) ), \(\mathrm{A}(1,4,4)\), ta1(3), pi, twen, \(\operatorname{Vm}(5,5)\),
```

 Real Lmm(\(5,5,5\)), \(\mathrm{A}(1,4,4)\), ta1(3), pi, twen, \(\operatorname{Vm}(5,5)\),
 \(+\quad \operatorname{tad}(3), \mathrm{ww}(5), \operatorname{ta} 2(3), \operatorname{ta} 3(3), \mathrm{G}(3,5,5), \mathrm{tt}(4), \mathrm{Cpwm}(4,7)\),
 \(+\quad \operatorname{tad}(3), \mathrm{ww}(5), \operatorname{ta} 2(3), \operatorname{ta} 3(3), \mathrm{G}(3,5,5), \mathrm{tt}(4), \mathrm{Cpwm}(4,7)\),
 \(+\quad \operatorname{Amm}(16,5,5), \mathrm{Li}(5,5,5), \operatorname{Ai}(1,4,4), \mathrm{Rmm}(5,5,5)\),
 \(+\quad \operatorname{Amm}(16,5,5), \mathrm{Li}(5,5,5), \operatorname{Ai}(1,4,4), \mathrm{Rmm}(5,5,5)\),
 \(+\quad\) av1 \((4,4)\), av2(4,2), av(4,4), \(x\) mat1 \((3,3)\), \(x m a t 2(3,2)\),
 \(+\quad\) av1 \((4,4)\), av2(4,2), av(4,4), \(x\) mat1 \((3,3)\), \(x m a t 2(3,2)\),
 \(+\mathrm{Cbar}(3,2), \mathrm{tc}(6)\),thr,diod,shift,sfi(3), \(\mathrm{Cbm}(16,2)\),
 \(+\mathrm{Cbar}(3,2), \mathrm{tc}(6)\),thr,diod,shift,sfi(3), \(\mathrm{Cbm}(16,2)\),
 \(+\operatorname{Con}(5,4,5), \operatorname{An}(5,5), \operatorname{Amt}(16,5,5), \mathrm{Te}(5), \mathrm{Vrt}(4)\),
 \(+\operatorname{Con}(5,4,5), \operatorname{An}(5,5), \operatorname{Amt}(16,5,5), \mathrm{Te}(5), \mathrm{Vrt}(4)\),
 \(+\mathrm{ka}, \mathrm{kf}, \mathrm{ke}, \mathrm{kr}, \mathrm{Cmod}(16,25), \mathrm{rl1}, \mathrm{rl2}, \mathrm{rl} 3\),
 \(+\mathrm{ka}, \mathrm{kf}, \mathrm{ke}, \mathrm{kr}, \mathrm{Cmod}(16,25), \mathrm{rl1}, \mathrm{rl2}, \mathrm{rl} 3\),
 \(+\operatorname{Rit}(5,5,5), \operatorname{Crec}(10,13), \operatorname{Crpm}(4,7), \mathrm{Vli}(5,3), \operatorname{opf}(4)\)
 \(+\operatorname{Rit}(5,5,5), \operatorname{Crec}(10,13), \operatorname{Crpm}(4,7), \mathrm{Vli}(5,3), \operatorname{opf}(4)\)
 Integer mesh1, mesh2, num(3), ino, itwo, iooo, ibbb, zero,k3,
 Integer mesh1, mesh2, num(3), ino, itwo, iooo, ibbb, zero,k3,
 + ire, ioy, change(3), Total, mm(4), open, close, switch,
 + ire, ioy, change(3), Total, mm(4), open, close, switch,
 \(+\mathrm{ch}(5), \mathrm{SW}(6)\), State(5),run,ipold(2),power,in,ini,ic,icalc,
 \(+\mathrm{ch}(5), \mathrm{SW}(6)\), State(5),run,ipold(2),power,in,ini,ic,icalc,
 \(+\quad \mathrm{icin}(6)\), imot, ichh, ifree(3), ifn(3), iq
 \(+\quad \mathrm{icin}(6)\), imot, ichh, ifree(3), ifn(3), iq
 Data (\(\operatorname{Rnm}(\mathrm{i}, 1,3), \operatorname{Rmm}(\mathrm{i}, 1,4), \operatorname{Rmm}(i, 1,5), \operatorname{Rmm}(\mathrm{i}, 2,3), \operatorname{Rmm}(i, 2,4)\),
 Data (\(\operatorname{Rnm}(\mathrm{i}, 1,3), \operatorname{Rmm}(\mathrm{i}, 1,4), \operatorname{Rmm}(i, 1,5), \operatorname{Rmm}(\mathrm{i}, 2,3), \operatorname{Rmm}(i, 2,4)\),
 \(+\operatorname{Rmm}(\mathrm{i}, 2,5), \operatorname{Rmm}(\mathrm{i}, 3,1), \operatorname{Rmm}(\mathrm{i}, 3,2), \operatorname{Rmm}(\mathrm{i}, 3,4), \operatorname{Rmm}(\mathrm{i}, 3,5)\),
 \(+\operatorname{Rmm}(\mathrm{i}, 2,5), \operatorname{Rmm}(\mathrm{i}, 3,1), \operatorname{Rmm}(\mathrm{i}, 3,2), \operatorname{Rmm}(\mathrm{i}, 3,4), \operatorname{Rmm}(\mathrm{i}, 3,5)\),
 \(+\operatorname{Rmm}(i, 4,1), \operatorname{Rmm}(i, 4,2), \operatorname{Rmm}(i, 4,3), \operatorname{Rmm}(i, 4,5), \operatorname{Rmm}(i, 5,1)\),
 \(+\operatorname{Rmm}(i, 4,1), \operatorname{Rmm}(i, 4,2), \operatorname{Rmm}(i, 4,3), \operatorname{Rmm}(i, 4,5), \operatorname{Rmm}(i, 5,1)\),
 \(+\operatorname{Rmm}(\mathrm{i}, 5,2), \operatorname{Rmm}(\mathrm{i}, 5,3), \operatorname{Rmm}(\mathrm{i}, 5,4), \mathrm{i}=1,3) / 54^{*} 0.000 /\)
 \(+\operatorname{Rmm}(\mathrm{i}, 5,2), \operatorname{Rmm}(\mathrm{i}, 5,3), \operatorname{Rmm}(\mathrm{i}, 5,4), \mathrm{i}=1,3) / 54^{*} 0.000 /\)
 Data (\(\operatorname{Vm}(\mathrm{i}, 1), \operatorname{Vm}(\mathrm{i}, 2), \operatorname{Vm}(\mathrm{i}, 4), \operatorname{Vm}(\mathrm{i}, 5), \mathrm{i}=1,3) / 12 * 0.000 /\)
 Data (\(\operatorname{Vm}(\mathrm{i}, 1), \operatorname{Vm}(\mathrm{i}, 2), \operatorname{Vm}(\mathrm{i}, 4), \operatorname{Vm}(\mathrm{i}, 5), \mathrm{i}=1,3) / 12 * 0.000 /\)
 Data (\(G(i, 3,3), G(i, 4,4), G(i, 5,5), G(i, 3,4), G(i, 3,5), G(i, 4,3)\),
 Data (\(G(i, 3,3), G(i, 4,4), G(i, 5,5), G(i, 3,4), G(i, 3,5), G(i, 4,3)\),
 \(+\quad G(i, 5,3), G(i, 4,5), G(i, 5,4), \operatorname{Lmm}(i, 3,5), \operatorname{Lmm}(i, 5,3), \operatorname{Lmm}(\mathrm{i}, 4,5)\),
 \(+\quad G(i, 5,3), G(i, 4,5), G(i, 5,4), \operatorname{Lmm}(i, 3,5), \operatorname{Lmm}(i, 5,3), \operatorname{Lmm}(\mathrm{i}, 4,5)\),
 \(+\quad \operatorname{Lmm}(\mathrm{i}, 5,4), \mathrm{i}=1,3) / 39 * 0.000 /\)
 \(+\quad \operatorname{Lmm}(\mathrm{i}, 5,4), \mathrm{i}=1,3) / 39 * 0.000 /\)
 Data avl(1,4), avl(2,3), av1(2,4), av1(3,2), avl(3,4), av1(4,2),
 Data avl(1,4), avl(2,3), av1(2,4), av1(3,2), avl(3,4), av1(4,2),
 \(+\quad x \operatorname{mat1}(1,2), x \operatorname{mat2}(3,1),((\operatorname{av} 2(i, j), j=1,2), i=2,4)\)
 \(+\quad x \operatorname{mat1}(1,2), x \operatorname{mat2}(3,1),((\operatorname{av} 2(i, j), j=1,2), i=2,4)\)
 \(+\quad 114^{*} 0.000 /\)
 \(+\quad 114^{*} 0.000 /\)
 Read(50,*) V1, freq, spwm, srec, Tstop, jcc
 Read(50,*) V1, freq, spwm, srec, Tstop, jcc
 \(\operatorname{Read}(50, *)((\mathrm{Oc}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1,2), \mathrm{I}=1,3)\)
 \(\operatorname{Read}(50, *)((\mathrm{Oc}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1,2), \mathrm{I}=1,3)\)
 \(\operatorname{Read}(50, *) x d, x m d, x q, x m q, x d 1, x d 2, x q 2, x o\)
 \(\operatorname{Read}(50, *) x d, x m d, x q, x m q, x d 1, x d 2, x q 2, x o\)
 \(\operatorname{Read}\left(50, *{ }^{*}\right.\) ra, r4, p, fo,z
 \(\operatorname{Read}\left(50, *{ }^{*}\right.\) ra, r4, p, fo,z
 Read(50,*)tdo, td1, td2
 Read(50,*)tdo, td1, td2
 \(\operatorname{Read}(50, *)((\operatorname{Cmast}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1,5), \mathrm{I}=1,6)\)
 \(\operatorname{Read}(50, *)((\operatorname{Cmast}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1,5), \mathrm{I}=1,6)\)
 Read(\(50, *\))Vref, \(V \max , V \min\)
 Read(\(50, *\))Vref, \(V \max , V \min\)
 Read(50,*)ka, kf, ke, kr
 Read(50,*)ka, kf, ke, kr
 Read(50,*)Ta, Tf1, Tf2, Te1
 Read(50,*)Ta, Tf1, Tf2, Te1
 Read(50,*) ck0, ck1, ck2, ck3, ckf
 Read(50,*) ck0, ck1, ck2, ck3, ckf
 \(\operatorname{Read}(50, *) X j i\), sref
 \(\operatorname{Read}(50, *) X j i\), sref
 Read(50,*) Vf, Ji
 Read(50,*) Vf, Ji
 \(\operatorname{Read}(50, *) \mathrm{rma}, \mathrm{rh}, \mathrm{ry}, \mathrm{rf}\)
 \(\operatorname{Read}(50, *) \mathrm{rma}, \mathrm{rh}, \mathrm{ry}, \mathrm{rf}\)
 \(\operatorname{Read}(50, *) x a, x h, x y, x f\)
 \(\operatorname{Read}(50, *) x a, x h, x y, x f\)
 Read(50,*) ckf, ck, cky, zha, zah, zfy, zyh
 Read(50,*) ckf, ck, cky, zha, zah, zfy, zyh
 \(\operatorname{Read}(50, *)((\operatorname{Rbb}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1,16), \mathrm{I}=1,16)\)
 \(\operatorname{Read}(50, *)((\operatorname{Rbb}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1,16), \mathrm{I}=1,16)\)
 \(\operatorname{Read}(50, *)((\mathrm{Xbb}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1,16), \mathrm{I}=1,16)\)
 \(\operatorname{Read}(50, *)((\mathrm{Xbb}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1,16), \mathrm{I}=1,16)\)
 Do \(551 \mathrm{I}=1,16\)
 Do \(551 \mathrm{I}=1,16\)
 \(\operatorname{Read}(50, *)(\operatorname{Cmod}(I, J), \mathrm{J}=1,25)\)
 \(\operatorname{Read}(50, *)(\operatorname{Cmod}(I, J), \mathrm{J}=1,25)\)
 Do \(552 \mathrm{i}=1,25\)
 Do \(552 \mathrm{i}=1,25\)
 552 print*, ${ }^{\text {mesh } ", ~} \mathrm{i}, \mathrm{"}=",(\operatorname{Cmod}(\mathrm{j}, \mathrm{i}), \mathrm{j}=1,16)$
552 print*, ${ }^{\text {mesh } ", ~} \mathrm{i}, \mathrm{"}=",(\operatorname{Cmod}(\mathrm{j}, \mathrm{i}), \mathrm{j}=1,16)$
$\operatorname{Read}(50, *)$ carry, amp, samp, safe
$\operatorname{Read}(50, *)$ carry, amp, samp, safe
Read(50,*) (icin(1), I=1,6)
Read(50,*) (icin(1), I=1,6)
$\operatorname{Read}(50, *)((\operatorname{Cbar}(\mathrm{i}, \mathrm{j}), \mathrm{j}=1,2), \mathrm{i}=1,3)$
$\operatorname{Read}(50, *)((\operatorname{Cbar}(\mathrm{i}, \mathrm{j}), \mathrm{j}=1,2), \mathrm{i}=1,3)$
$\operatorname{Read}(50, *)((\operatorname{Rba}(\mathrm{i}, \mathrm{j}), \mathrm{j}=1,3), \mathrm{i}=1,3)$
$\operatorname{Read}(50, *)((\operatorname{Rba}(\mathrm{i}, \mathrm{j}), \mathrm{j}=1,3), \mathrm{i}=1,3)$
$\operatorname{Read}(50, *)(((\operatorname{Clm}(\mathrm{i}, \mathrm{j}, \mathrm{k}), \mathrm{k}=1,5), \mathrm{j}=1,4), \mathrm{i}=1,5)$
$\operatorname{Read}(50, *)(((\operatorname{Clm}(\mathrm{i}, \mathrm{j}, \mathrm{k}), \mathrm{k}=1,5), \mathrm{j}=1,4), \mathrm{i}=1,5)$
$\operatorname{Read}(50, *)((C p w m(i, j), j=1,7), i=1,4)$
$\operatorname{Read}(50, *)((C p w m(i, j), j=1,7), i=1,4)$
$\operatorname{Read}\left(50,{ }^{*}\right)((\operatorname{Crpm}(\mathrm{i}, \mathrm{j}), \mathrm{j}=1,7), \mathrm{i}=1,4)$
$\operatorname{Read}\left(50,{ }^{*}\right)((\operatorname{Crpm}(\mathrm{i}, \mathrm{j}), \mathrm{j}=1,7), \mathrm{i}=1,4)$
$\operatorname{Read}(50, *)((\operatorname{Crec}(\mathrm{i}, \mathrm{j}), \mathrm{j}=1,13), \mathrm{i}=1,10)$
$\operatorname{Read}(50, *)((\operatorname{Crec}(\mathrm{i}, \mathrm{j}), \mathrm{j}=1,13), \mathrm{i}=1,10)$
Read(50,*) xopen, xclose, tde, tyr, diod
Read(50,*) xopen, xclose, tde, tyr, diod
$\operatorname{Read}(50, *) \mathrm{rl1,rl2,r13}$
$\operatorname{Read}(50, *) \mathrm{rl1,rl2,r13}$
$\operatorname{Read}(50, *)(S W(i), i=1,5)$
$\operatorname{Read}(50, *)(S W(i), i=1,5)$
$\operatorname{Read}(50, *)(t c(i), i=1,5)$
$\operatorname{Read}(50, *)(t c(i), i=1,5)$
$\operatorname{Read}(50, *)(\operatorname{State}(\mathrm{i}), \mathrm{i}=1,5)$
$\operatorname{Read}(50, *)(\operatorname{State}(\mathrm{i}), \mathrm{i}=1,5)$
Read(50,*) shift
Read(50,*) shift
$\operatorname{Read}(50, *)$ in,ini
$\operatorname{Read}(50, *)$ in,ini
Print*, "Run as power forward(1), or power reverse(2)?"
Print*, "Run as power forward(1), or power reverse(2)?"
Read*, power
Read*, power
If(power .EQ. 1) then

```
            If(power .EQ. 1) then
```

175 c Setting the inductance values for the swithch. All the switches
176 c are assumed to be closed except the bus-bar.
print*, "Input the load resistance? "
Read*, $\operatorname{Rbb}(1,1)$
print*, "Input the load Inductance? "
Read*, Xbb(1,1)
print*, "Input the trigger interval in degrees"
Read*, deg
print*, "It is now carry out rectification!"
elseif(power .EQ. 2) then
print*, "Input the modulating frequency in Hz "
Read*, carry
print*, "It is now carry out convertion!"
else
go to 133
endif
Setting up the load resistance and inductance.
Rload $=\operatorname{Rbb}(1,1)$
Xload $=\mathrm{Xbb}(1,1)$
Setting the binary file.
Write(60)0,11,3
Write(70)0,11,3
Write(80)0,11,3
Write(90)0,7,3
Write(92)0,13,3
Write(95)0,9,3
Write(96)0,9,3
Write(97)0,7,3
Write(98)0,9,3
Write(99)0,7,3
Defining the values pi and calculates the value of w
$\mathrm{pi}=4.0 * \operatorname{atan}(1.0)$
$w w(1)=2$ * pi * freq
Do $1 \mathrm{i}=2,5$
$\mathrm{ww}(\mathrm{i})=\mathrm{ww}(1)$
twen $=120.00 * \mathrm{pi} / 180.00$
Calculate the trigger angle for the rectification.
trig $=\mathrm{deg}^{*} \mathrm{pi} / \mathrm{ww}(1) / 180.00$
Reset the trigger angle to zero.
tsi $=0.000$
tsis $=1.00 /$ freq $/ 6.00$
$\mathrm{itrg}=1$
icond = 1
idone $=1$
ion $=1$
ioni $=0$
jint $=0$
icom $=0$
$\max =1$
$\mathrm{sl}=\mathrm{sli}$
Do $3 \mathrm{i}=1,2$
ipold(i) $=0$
ipass $(i)=0$
Do $2 \mathbf{i}=1,3$
$\mathrm{sf}(\mathrm{i})=0.000$
are assumed to be closed except the bus-bar.
Do $56 \mathrm{j}=1,5$
If(State(j).EQ. 1) then
Do $55 \mathrm{i}=1,3$
$x \mathrm{Ll}(\mathrm{j}, \mathrm{i})=\mathrm{xclose}$
go to 56
endif
If(State(j) .EQ. 0) then

```
    Do 57i=1,3
57
    xLl(j,i)= xopen
    endif
    Continue
    If(State(5).EQ. 0) then
        Do 58 i=1,16
58 Xbb(i,i)=xopen
        Do 465 i= 1,4
        Do 465j=1,4
        Lii(5,i,j)=0.000
        Lmm(5,i,j) = 0.000
    Rmm(5,i,j)=0.000
    elseif(State(5) EQ. 1) then
        Do 59 i = 1,16
        If(power .EQ. 2) then
        If(i.EQ. 1) Xbb(i,i)=tdc
        elseif(power.EQ. 1) then
        If(i .LE.4 ,AND. i.NE. 1) Rbb(i,i)=rl1
        endif
        If(i .LE. 4 .AND. i .NE. 1) Xbb(i,i)= xclose
        If(i .GT.4 .AND. i LE. 10) Xbb(i,i) = tyr
        If(i .GT. 10) Xbb(i,i) = diod
    Continue
    endif
    If(power .EQ. 2 .AND. State(4).EQ. 0)then
        iforw = 1
        iback =2
        ww(1)=0.000
        ww(2) =0.000
    elseif(power .EQ. 2 .AND. State(4) .EQ. 1) then
        iback =1
        iforw =2
        ww(1) = 0.000
        ww(2) = 0.000
    elseif(power .EQ. 1 .AND. State(4) .EQ. 0) then
        iforw = 1
        iback=2
    elseif(power .EQ. 1 AND. State(4) .EQ. 1) then
        If(State(1).EQ. 1) then
            iback =1
            iforw = 2
        elseif(State(2).EQ. 1) then
            iback =2
            iforw = 1
        else
            print*, "Error in switching pattern"
            go to 3000
        endif
    else
        print*, "Error in switching pattem"
        go to 3000
    endif
    Determine if the motor is on during power forward generation.
    If(State(3).EQ. 0) then
        ww(3) = 0.000
        imot =1
    else
        imot = 0
    endif
    If(power .EQ. 2) then
        Do }61\textrm{ix}=1,
        cos1(ix)= cos(ta1(1))
```

246		$\cos 2(\mathrm{ix})=\cos (\operatorname{ta} 2(1)$)
247		$\cos 3(\mathrm{ix})=\cos (\mathrm{ta3}(1))$
248		$\sin 1(\mathrm{ix})=\sin (\operatorname{ta} 1(1)$)
249		$\sin 2(\mathrm{ix})=\sin (\mathrm{ta} 2(1))$
250		$\sin 3(\mathrm{ix})=\sin (\mathrm{ta3}(1)$)
251	61	Continue
252		endif
253	c	Setting up the initial step length fot eh system.
254		If(power .EQ. 2 .AND. State(5) .EQ. 1) then
255		sli $=$ spwm
256		Do $88 \mathrm{i}=1,3$
257	88	$\operatorname{icirc}(\mathrm{i})=\mathrm{icin}(\mathrm{i})$
258		elseif(power .EQ. $1 . \mathrm{OR} . \operatorname{State}(5) . \mathrm{EQ} .0$) then
259		sli $=$ srec
260		Do $89 \mathrm{i}=4,6$
261	89	icirc(i-3) $=\mathrm{icin}(\mathrm{i})$
262		else
263		print*, "Error in step lengh"
264		go to 3000
265		endif
266	c	Updating the step length.
267		$\mathrm{sl}=\mathrm{sli}$
268	c	Setting up all the initial conditions for the current
269	c	and voltage.
270		Do $5 \mathrm{ii}=1,5$
271		Do $5 \mathrm{i}=1,5$
272	5	$\mathrm{cm}(\mathrm{ii}, \mathrm{i})=0.000$
273		Do $9 \mathrm{ii}=1,4$
274		Do $8 \mathrm{i}=1,6$.
275	8	$\mathrm{cb}(\mathrm{ii}, \mathrm{i})=0.000$
276		Do $9 \mathrm{i}=1,4$
277	9	$\mathrm{Vb}(\mathrm{ii}, \mathrm{i})=0.000$
278		Do $10 \mathrm{i}=1,16$
279		$\mathrm{Vb}(5, \mathrm{i})=0.000$
280	10	$\mathrm{cb}(5, \mathrm{i})=0.000$
281		Do $233 \mathrm{i}=1,5$
282		Do $233 \mathrm{j}=1,3$
283	233	$\mathrm{VH}(\mathrm{i}, \mathrm{j})=0.000$
284		Do $234 \mathrm{i}=1,3$
285	234	$\mathrm{Te}(\mathrm{i})=0.000$
286	c	Setting the time to zero to start the program.
287		$\mathrm{t}=0.000$
288	c	Setting the initial phase difference for the synchronous
289	c	machine.
290		$\operatorname{tal}(1)=0.000$
291		$\operatorname{ta} 2(1)=\operatorname{tal}(1)-\mathrm{twen}$
292		$\mathrm{ta3}(1)=\mathrm{ta}(1)+\mathrm{twen}$
293		Do $11 \mathrm{i}=2,3$
294		$\operatorname{ta1}(\mathrm{i})=\operatorname{tal}(1)$
295		$\operatorname{ta} 2(\mathrm{i})=\operatorname{ta} 2(1)$
296	11	$\mathrm{ta} 3(\mathrm{i})=\mathrm{ta} 3(1)$
297	c	Set up the constant values for Runge-Kutta Method.
298		$\mathrm{h}(1)=0.5000$
299		$h(2)=0.5000$
300		$h(3)=1.0000$
301		$h(4)=0.0000$
302		$\mathrm{gg}(1)=1.00 / 6.00$
303		$\mathrm{gg}(2)=1.00 / 3.00$
304		$\mathrm{gg}(3)=1.00 / 3.00$
305		$\mathrm{gg}(4)=1.00 / 6.00$
306		$\operatorname{tt}(1)=0.0000$

$\mathfrak{t t}(2)=0.5000$
$\mathrm{tt}(3)=0.5000$
$\operatorname{ttt}(4)=1.0000$
ic $=1$
icalc $=$ ini +1
ich $=0$
Do $12 \mathrm{i}=1,3$
$\operatorname{tad}(\mathrm{i})=0.000$
cycle $=1.00 /$ freq
$\mathrm{kfl}=\mathrm{kf} /(\mathrm{Tf} 2-\mathrm{Tf} 1)$
av1 $1(1,1)=-1.00 / \mathrm{Ta}$
av1 $(1,2)=-\mathrm{ka} / \mathrm{Ta}$
$\operatorname{av} 1(1,3)=-\operatorname{av} 1(1,2)$
av1 $(2,1)=\mathrm{kf} 1 / \mathrm{T} f 1$
$\operatorname{av} 1(2,2)=-1.00 / \mathrm{Tf} 1$
$\operatorname{av1}(3,1)=\mathrm{kf} 1 / \mathrm{Tf} 2$
av1 $(3,3)=-1.00 / \mathrm{Tf} 2$
av $1(4,1)=\mathrm{ke} / \mathrm{Te} 1$
av $1(4,4)=-1.00 / \mathrm{Te} 1$
$\operatorname{av} 2(1,1)=\mathrm{ka} / \mathrm{Ta}$
$\mathrm{av} 2(1,2)=-\mathrm{ka}{ }^{*} \mathrm{kr} / \mathrm{Ta}$
Do 16 ii $=1,2$
Do $15 \mathrm{i}=1,4$
$\mathrm{av}(\mathrm{ii}, \mathrm{i})=0.000$
Do $77 \mathbf{i}=1,3$
Do $77 \mathbf{j}=1,2$
dummy (ii,i,j) $=0.000$
Continue
Continue
Do $18 \mathbf{i}=1,2$
$\operatorname{aref}(\mathrm{i}, 1)=\mathrm{Vref}{ }^{*} \mathrm{kr}$
$\operatorname{aref}(\mathrm{i}, 2)=\operatorname{aref}(\mathrm{i}, 1) / \mathrm{kr}$
iexc $=0$
$\mathrm{S}(1,3)=\mathrm{ww}(1)$
$S(2,3)=w w(2)$
Do 31 ii $=1,2$
Do $31 \mathbf{i}=1,2$
$\mathrm{S}(\mathrm{ii}, \mathrm{i})=0.000$
Continue
Do $166 \mathrm{i}=1,2$
$166 \quad \mathrm{Si}(\mathrm{i}, 1)=$ sref
x mat1 $(1,1)=-1,00 / \mathrm{ck} 2$
x mat1 $(1,3)=-c k 0 / c k 2$
$\operatorname{xmat} 1(2,1)=(1.00-\mathrm{ck} 1 / \mathrm{ck} 2) / \mathrm{ck} 3$
$\operatorname{xmat1}(2,2)=-1.00 / \mathrm{ck} 3$
$\operatorname{xmat1}(2,3)=-c k 1 * c k 0 / c k 2 / c k 3$
x mat1 $(3,2)=1.00 / \mathrm{Xji}$
$\operatorname{xmat1}(3,3)=-\mathrm{ckf} / \mathrm{Xji}$
$x \operatorname{mat} 2(1,1)=\mathrm{ck} 0 / \mathrm{ck} 2$
$x \operatorname{mat} 2(2,1)=\mathrm{ck} 1^{*} \mathrm{ck} 0 / \mathrm{ck} 2 / \mathrm{ck} 3$
$x \operatorname{mat} 2(3,2)=-1.00 / X j i$
tim = 1 /carry
$\mathrm{ff}=2^{*}$ pi*freq
iiii $=0$ carrier waves.
$\mathrm{vt}=0.000$

Updating the number of inversion in the generators.

Calculate the required matrix for the exciter.

Set up the initial condition for the diesel engine.

Calculate the time for the conduction pattem.

Set up some initial values for the PWM modulating and

369	$t \mathrm{t}=0.000$
370	sir $=0.000$
371	$\mathrm{zb1}=0.000$
372	$\mathrm{zb} 2=\mathrm{samp} * \sin$ (twen/shift)
373	zb3 $=$ samp* $\sin (-t w e n / s h i f t)$
374	vsa $=0.000$
375	$\mathrm{vsb}=\mathrm{zb} 2$
376	$\mathrm{vsc}=\mathrm{zb} 3$
377 c	Calculate the parameter for the dc machine.
378	$\mathrm{dd1}=0.000$
379	$\mathrm{dd2}=0.000$
380	$\mathrm{dd} 3=0.000$
381	$\mathrm{dbl}=0.000$
382	$\mathrm{db2}=0.000$
383	$\mathrm{ca}=0.000$
384	cf $=\mathrm{Vf} / \mathrm{rf}$
385 c	Determine if it is motoring or generating in the dc machine.
386	If(power .EQ. 1) then
387	$\operatorname{sign}=1.000$
388	$\mathrm{Vdc}=0.000$
389	$\mathrm{rtt}=\mathrm{rma}+\mathrm{rh}+\mathrm{ry}+\mathrm{Rbb}(1,1)$
390	$\mathrm{xt}=\mathrm{xa}+\mathrm{xh}+\mathrm{xy}+\mathrm{zha}+\mathrm{zah}+\mathrm{Xbb}(1,1)$
391	elseif(power .EQ. 2) then
392	$\operatorname{sign}=-1.000$
393	$\mathrm{Vdc}=\mathrm{V} 1$
394	$\mathrm{rtt}=\mathrm{rma}+\mathrm{rh}+\mathrm{ry}$
395	$x t=x a+x h+x y+z h a+z a h$
396	endif
397 c	Calculate some required constant.
398	$\mathrm{ti}=0.500 *$ tim
399	$\mathrm{am}=2.0 * \mathrm{amp} / \mathrm{ti}$
400	$\mathrm{ti1}=0.500 * \mathrm{ti}$
401	ti $2=\mathrm{ti}+\mathrm{til}$
402	ti3 $=$ tim
403	$\mathrm{yy}=0$
404 c	Set up all the initial values of the program.
405	$\mathrm{tl}=0.000$
406	$12=0.000$
407	dumm $=0$
408	$\mathrm{jij}=0$
409	mesh1 $=0$
410	mesh2 $=0$
411	Do $99 \mathrm{i}=1,3$
412	ifree $(\mathrm{i})=0$
413	ifn(i) $=0$
41499	num (i) $=0$
415	ino $=0$
416	itwo $=0$
417	1000 $=0$
418	$\mathrm{ibbb}=0$
419	zero $=0$
420	int $=1$
421	ire $=0$
422	nire $=0$
423	ioy $=0$
424	$\mathrm{iq}=0$
425	ichh $=0$
426	open $=0$
427	close $=0$
428	jclose $=0$
429	switch $=0$

 \(\mathrm{k} 3=0\)
 Do \(43 \mathrm{i}=1,5\)
 $43 \quad \mathrm{iti}(\mathrm{i})=0.000$
Do $13 \mathbf{i}=1,3$
time $(\mathrm{i})=0.000$
change $(\mathrm{i})=0$
Test if it is a inverter or a rectifier and
set up the required impressed branch voltage vectors.
If(power .EQ. 2) then
$\mathrm{e}(1)=\mathrm{V} 1$
elseif(power .EQ. 1) then
$e(\mathrm{l})=0.000$
endif
Do $40 \mathbf{i}=2,16$
$e(\mathrm{i})=0.000$
Do $41 \mathrm{i}=1,2$
$\mathrm{Vm}(5, \mathrm{i})=0.000$
Do $42 \mathrm{i}=1,4$
Do $42 \mathrm{j}=1,4$
$\operatorname{Ar} 1(1, \mathrm{i}, \mathrm{j})=0.000$
$\operatorname{Ar} 1(2, i, j)=0.000$
$\operatorname{Ar}(\mathrm{i}, \mathrm{j})=0.000$
Produce Cml from Clm .
Do $19 \mathrm{ii}=1,5$
Do $19 \mathrm{i}=1,5$
Do $19 \mathbf{j}=1,4$
$\operatorname{Cml}(\mathrm{ii}, \mathrm{i}, \mathrm{j})=\operatorname{Clm}(\mathrm{ii}, \mathrm{j}, \mathrm{i})$
Set up the constant for the matrix.
$\operatorname{ch}(1)=5$
$\operatorname{ch}(2)=5$
$\operatorname{ch}(3)=5$
$\operatorname{ch}(4)=2$
$\operatorname{ch}(5)=2$
Setting up the initial values for the bus-bar.
$\mathrm{Xba}(1,1)=\mathrm{xLl}(4,1)$
$\mathrm{Xba}(2,2)=\mathrm{xL}(4,2)$
$\mathrm{Xba}(3,3)=x \mathrm{Ll}(4,3)$
Do $144 \mathrm{i}=1,3$
Do $144 \mathrm{j}=1,3$
$\operatorname{If}(\mathrm{i} . \mathrm{EQ} . j) \mathrm{Xba}(\mathrm{i}, \mathrm{j})=0.000$
144 Continue
$\operatorname{Lmm}(4,1,1)=x L 1(4,1)+x \operatorname{LL}(4,3)$
$\operatorname{Lmm}(4,1,2)=x \operatorname{Ll}(4,3)$
$\operatorname{Lmm}(4,2,1)=x \operatorname{Ll}(4,3)$
$\operatorname{Lmm}(4,2,2)=x \operatorname{Ll}(4,2)+x \operatorname{Ll}(4,3)$
$\operatorname{Rmm}(4,1,1)=\operatorname{Rba}(1,1)+\operatorname{Rba}(3,3)$
$\operatorname{Rmm}(4,1,2)=\operatorname{Rba}(3,3)$
$\operatorname{Rmm}(4,2,1)=\operatorname{Rba}(3,3)$
$\operatorname{Rmm}(4,2,2)=\operatorname{Rba}(2,2)+\mathrm{Rba}(3,3)$
Call twin(Lmm,Lii,4,aug,icond)
Call recalc(Lii,4,ich)
Call the subroutine to calculate the required for the
synchnous generator.
Call para(Vm,cm,vb,Rmm)
Calculate the open circuit voltage for the three generators.
Since saturation factor $=1$.
If(power .EQ. 1) then
$\operatorname{opf}(1)=-w w(1)^{*} x m f^{*} \sin (\operatorname{ta1}(1))$
$\operatorname{opf}(2)=-w w(1) * x m * \sin (\operatorname{ta} 2(1))$
$\operatorname{opf}(3)=-w w(1) * x m f * \sin (\operatorname{ta3}(1))$
$\operatorname{opf}(4)=r 4$
Do $455 \mathrm{i}=1,4$

492		$\mathrm{Vb}(1, \mathrm{i})=0.000$
493	455	$\mathrm{Vb}(1, \mathrm{i})=\operatorname{opf}(\mathrm{i}) * \mathrm{~cm}(1,3)$
494		Do $466 \mathrm{i}=2,3$
495		Do $466 \mathrm{j}=1,4$
496	466	$\mathrm{Vb}(\mathrm{i}, \mathrm{j})=\mathrm{Vb}(1, \mathrm{j})$
497		Do $477 \mathrm{i}=1,3$
498	477	$\mathrm{e}(\mathrm{i}+1)=\mathrm{Vb}(2, \mathrm{i})$
499		endif
500		Do $4 \mathrm{i}=1,3$
501	c	Define some values for the matrix.
502		Cm1 $(\mathrm{i}, 4,6)=0.000$
503		$\operatorname{Cml}(\mathrm{i}, 4,5)=0.000$
504		$\mathrm{Cm} 2(\mathrm{i}, 4,6)=0.000$
505	4	$\mathrm{Lmm}(\mathrm{i}, 5,5)=\mathrm{xlq}$
506	c	Calculate the initial line voltage.
507		Do $787 \mathrm{i}=1,5$
508		If(i. EQ. 5) then
509		$\mathrm{Vli}(\mathrm{i}, 1)=\mathrm{Vb}(\mathrm{i}, 2)-\mathrm{Vb}(\mathrm{i}, 3)$
510		$\mathrm{Vli}(\mathrm{i}, 2)=\mathrm{Vb}(\mathrm{i}, 3)-\mathrm{Vb}(\mathrm{i}, 4)$
511		$\mathrm{Vli}(\mathrm{i}, 3)=\mathrm{Vb}(\mathrm{i}, 4)-\mathrm{Vb}(\mathrm{i}, 2)$
512		else
513		$\mathrm{Vli}(\mathrm{i}, 1)=\mathrm{Vb}(\mathrm{i}, 1)-\mathrm{Vb}(\mathrm{i}, 2)$
514		$\mathrm{Vli}(\mathrm{i}, 2)=\mathrm{Vb}(\mathrm{i}, 2)-\mathrm{Vb}(\mathrm{i}, 3)$
515		$\mathrm{Vl}(\mathrm{i}, 3)=\mathrm{Vb}(\mathrm{i}, 3)-\mathrm{Vb}(\mathrm{i}, 1)$
516		endif
517	787	Continue
518	c	Output the initial values.
519		Write(60) t, (cb($1, \mathrm{i}$), $\mathrm{i}=1,6),(\mathrm{Vli}(1, \mathrm{i}), \mathrm{i}=1,3), \mathrm{Vb}(1,4)$
520		Write(70) t , (cb $2, \mathrm{i}), \mathrm{i}=1,6),(\mathrm{Vli}(2, i), \mathrm{i}=1,3), \mathrm{Vb}(2,4)$
521		Write(80) t , ($\mathrm{cb}(3, \mathrm{i}), \mathrm{i}=1,6),(\mathrm{Vli}(3,1), \mathrm{i}=1,3), \mathrm{Vb}(3,4)$
522		Write(90) $\mathrm{t},(\mathrm{cb}(4, \mathrm{i}), \mathrm{i}=1,3)$, (Vli(4,i), $\mathrm{i}=1,3)$
523		Write(92) t, (cb(5,i), $\mathrm{i}=5,16$)
524		Write(95) t, (cb(5,i), i=1,4), (Vb(5,i), i=1,4)
525		Write(96) t, ($(\operatorname{av}(\mathrm{i}, \mathrm{j}), \mathrm{j}=1,4), \mathrm{i}=1,2)$
526		Write(97) t, ((S $\mathrm{i}, \mathrm{j}), \mathrm{j}=1,3), \mathrm{i}=1,2)$
527		Write(98) t, (ww(i), i=1,3), ca, cf, ($\mathrm{Te}(\mathrm{i}), \mathrm{i}=1,3$)
528		Write(99) t, (Vli(iback, i), $\mathrm{i}=1,3$), (Vli(5,i), $\mathrm{i}=1,3$)
529		$\mathrm{j} \mathrm{jj}=1$
530		$\mathrm{jc}=0$
531	c	Determine if the convertor is turn off.
532	c	Determine if it is doing rectification.
533	5005	If(power .EQ. 1) then
534		Call the subroutine to test if there is any thyristor
535	c	turn on in rectification.
536		Call rect(Vm,Rmm,Lmm,Lii,mesh1,mesh2,mm,ipold,icond,tsi,iback,
537	$+$	jclose)
538		If(max .EQ. I) then
539		$\max =0$
540		go to 6000
541		elseif(max EQ. 0) then
542		go to 2000
543		else
544		print*, "Error in rectifier"
545		print*, max
546		go to 3000
547		endif
548		endif
549		If(t.EQ. 0.000) then
550		Do $311 \mathrm{i}=1,3$
551	311	$\mathrm{icio}(\mathrm{i})=\mathrm{icirc}(\mathrm{i})$
552		Call test(change, num, tr, 2, vt, ioy, shift)
553		Call choose(mesh1, mesh2, ino, ifree, ioy, ifn, icio, ipass)

If(ire .EQ. 0) then

$$
s l=s l i
$$

elseif(ire .EQ. 1) then
ire $=0$
$\mathbf{s l}=\mathbf{s l r}$
else
print*, "Error in step lengh"
endif
$\mathbf{m m}(1)=$ meshl
$\mathrm{mm}(2)=\operatorname{mesh} 2$
$\operatorname{mm}(3)=$ ipass (1)
$\operatorname{mm}(4)=\mathrm{ipass}(2)$
print*, "111", (mm(i), $i=1,4)$
go to 6000
endif
5001 ift $=$ ifree(1) + ifree (2) + ifree(3)
If(ift .GT. 0) Call check(ifree,ifn, cb,icirc, cm, ichh,mm,iq)
If(ire.EQ. 0) then
sl = sli
elseif(ire .EQ. 1) then
ire $=0$
$\mathrm{sl}=\mathrm{slr}$
else
print*, "Error in step lengh"
endif
Determine the required matrix for the operation.
Total $=$ change $(1)+$ change $(2)+$ change (3)
Do $710 \mathrm{i}=1,3$
icio(i) $=\operatorname{icirc}(\mathrm{i})$
Call test(change, num, tr, $\mathrm{t} 2, \mathrm{vt}$, ioy, shift)
If(Total .GE. 1 .OR. ichh .EQ. 1) then
ichh $=0$
Do $121 \mathbf{i}=1,2$
121
ipold(i) $=$ ipass(i)
Call choose(mesh1, mesh2, ino, ifree, ioy, ifn, icio, ipass)
If(ino .EQ. 1) then
$\mathrm{mm}(1)=25$
$\mathrm{mm}(2)=25$
$\mathrm{mm}(3)=7$
$\operatorname{mm}(4)=7$
else
Call rearr(ipold, ipass, mm, mesh1, mesh2)
endif
go to 6000
elseif(ichh .EQ. 2) then
ichh $=1$
go to 6000
else
go to 2002
endif
6000 If(power .EQ. 2) then
Do $45 \mathrm{i}=1,16$
$\operatorname{Cbm}(1,1)=\operatorname{Cmod}(i, \operatorname{mm}(1))$
$\operatorname{Cbt}(1, i)=\operatorname{Cmod}(i, \operatorname{mm}(1))$
$\operatorname{Cbm}(\mathrm{i}, 2)=\mathrm{Cmod}(\mathrm{i}, \mathrm{mm}(2))$
$\mathrm{Cbt}(2, \mathrm{i})=\operatorname{Cmod}(\mathrm{i}, \mathrm{mm}(2))$
Do $46 \mathrm{i}=1,4$
$\operatorname{Clm}(5, \mathrm{i}, 1)=\operatorname{Cpwm}(\mathrm{i}, \mathrm{mm}(3))$
$\operatorname{Clm}(5, \mathrm{i}, 2)=\operatorname{Cpwm}(\mathrm{i}, \mathrm{mm}(4))$
$\operatorname{Cml}(5,1, \mathrm{i})=\operatorname{Cpwm}(\mathrm{i}, \mathrm{mm}(3))$
$\operatorname{Cml}(5,2, \mathrm{i})=\operatorname{Cpwm}(\mathrm{i}, \mathrm{mm}(4))$
elseif(power .EQ. 1) then
640 If(idone .EQ. 1.AND. power .EQ. 1.OR. power .EQ. 2)then
641 c Call subroutine to calculate the inverse of Lii , and

Do $66 \mathrm{i}=1,10$
$\operatorname{Cbm}(\mathrm{i}, \mathrm{l})=\operatorname{Crec}(\mathrm{i}, \mathrm{mm}(1))$
$\operatorname{Cbt}(1, \mathrm{i})=\operatorname{Crec}(\mathbf{i}, \mathrm{mm}(1))$
$\mathrm{Cbm}(\mathrm{i}, 2)=\mathrm{Crec}(\mathrm{i}, \mathrm{mm}(2))$
$66 \quad \operatorname{Cbt}(2, i)=\operatorname{Crec}(\mathrm{i}, \mathrm{mm}(2))$
Do $67 \mathrm{i}=1,4$
$\operatorname{Clm}(5, \mathrm{i}, 1)=\operatorname{Crpm}(\mathrm{i}, \mathrm{mm}(3))$
$\operatorname{Clm}(5, \mathrm{i}, 2)=\operatorname{Crpm}(\mathrm{i}, \mathrm{mm}(4))$
$\operatorname{Cml}(5,1, \mathrm{i})=\operatorname{Crpm}(\mathrm{i}, \mathrm{mm}(3))$
$67 \operatorname{Cml}(5,2, \mathrm{i})=\operatorname{Crpm}(\mathrm{i}, \mathrm{mm}(4))$
idone $=1$
endif
iiii $=1$
2000 If(iiii .EQ. $0 . A N D$. power .EQ. 2) go to 2002
$\mathrm{iii}=0$
Determine if it is doing inversion or rectification, then call the subroutine to calculate Rm, Xm for the converter.
If(power .EQ. 2) then
Call calc(Vm, Rmm, Lmm, Cbm,2,power)
elseif(power.EQ. 1.AND. icond .EQ. 1) then Call calc(Vm,Rmm,Lmm,Cbm,2,power)
elseif(power .EQ. 1 .AND. icond .EQ. 2) then Call calc(Vm,Rmm,Lmm,Cbm,1,power)
endif
If(idone .EQ. 1 .AND. power .EQ. 1 .OR. power .EQ. 2)then
Call subroutine to calculate the inverse of Lii , and
$\mathrm{Clm} * \mathrm{Lii}^{*} \mathrm{Cml}$ for the converter.
If(ichh .EQ. 1) then
ichh $=0$
$\mathrm{Li}(5,1,2)=0.000$
$\mathrm{Lii}(5,2,1)=0.000$
If(iq .EQ. 2) then
$\operatorname{Lii}(5,1,1)=1.0 / \mathrm{Lmm}(5,1,1)$
$\operatorname{Lii}(5,2,2)=0.000$
elseif(iq.EQ. 1) then
$\operatorname{Lii}(5,1,1)=0.000$
$\operatorname{Lii}(5,2,2)=1.0 / \mathrm{mm}(5,2,2)$
endif
elseif(ino .EQ. 1) then
Do $3111 i=1,2$
Do $3111 \mathrm{j}=1,2$
$3111 \quad \mathrm{Lii}(5, \mathrm{i}, \mathrm{j})=0.000$
else
Call twin(Lmm, Lii, 5, aug, icond)
endif Call recalc(Lii,5,ich) idone $=0$
endif
Determine if there is any change in the switching pattern
Do $48 \mathrm{i}=1,5$
If(SW(i).EQ. 1 .AND. t .GE. tc(i)) then isw $=\mathbf{i}$
close $=1$
open $=0$
Call opcl(Rmm,Lmm,Lii,power,close,open,State,
rll,icond,ich, Vm,Cbm,SW,ww,imot,iback)
If(isw .EQ. 5) then
jclose $=1$
else
jclose $=0$
endif

69 c Calculate the saturation function for each synch.machine.
$697 \quad$ Do $44 \mathbf{i}=1,3$
698
700 c
701 c
702
703
704 c
705
706
707
708
709
710
711
712
71366
714 c
715 c
7165004 Do $21 \mathrm{ij}=1,4$
717 If(ij NE. 1) ich $=0$
$718 \quad$ Do $98 \mathbf{i}=1,5$
$719 \quad$ Do $98 \mathbf{j}=1,5$
$720 \quad 98$
721 c Determine if it is necessary to calculate the inversions.
722 If(ic .LE. in .OR. icalc .EQ. ini .OR. ich .EQ. 1) then
723 Do 22 iii $=1,3$
724
725
726
727
728
729 c
730
731
732
733
734
735
736 c Calculate the inductance mesh for the three synchuous gen.
737 Call synch(iii, ww(iii), Lmm, G)
$738 \mathrm{c} \quad$ Call the inverse of the inductanch matrix.
739
elseif(SW(i) .EQ. 2 .AND. t.GE. tc(i)) then
isw $\mathbf{= 1}$
open $=1$
close $=0$
Call opcl(Rmm,Lmm,Lii,power, close,open,State,

+ rll,icond,ich,Vm,Cbm,SW,ww,imot,iback)
endif
Continue
If (jclose EQ. 1 .AND. power .EQ. 1) then go to 5005
elseif(jclose .EQ. 1.AND. power .EQ. 2) then go to 5001
endif
Produce constant for Runge-Kutta.
2100 Do $25 \mathrm{i}=1,5$
Do $25 \mathbf{j}=1,5$
$\operatorname{cma}(\mathrm{i}, \mathrm{j})=\mathrm{cm}(\mathrm{i}, \mathrm{j})$
$\operatorname{cmb}(\mathrm{i}, \mathrm{j})=\mathrm{cm}(\mathrm{i}, \mathrm{j})$
$\operatorname{sfi}(i)=\operatorname{sf}(\mathbf{i})$
c Determine if it is necessary to recalculate the stationary
c generators.
Do $667 \mathrm{iii}=1,2$
If(power .EQ. 2 .AND. sf(iii) .NE. sfi(iii))then
c Calculate the inductance mesh for the three synchuous gen.
Call synch(iii, ww(iii), Lmm,G)
Call the inverse of the inductanch matrix.
Call inv(Lmm, Lii, 5, 5, iii, is)
c Calculating Rmm $+G$.
Do $533 \mathrm{i}=1,5$
Do $533 \mathrm{j}=1,5$
$533 \operatorname{Rit}(\mathrm{iii}, \mathrm{i}, \mathrm{j})=\operatorname{Rmm}(\mathrm{iii}, \mathrm{i}, \mathrm{j})+G(\mathrm{iii}, \mathrm{i}, \mathrm{j})$
endif
667 Continue
c Calculate the values of the ta in the three phase
c circuit.

If(power .EQ. 2 .AND. iii .NE. 3) go to 22
$\operatorname{tal}(\mathrm{iii})=\operatorname{tad}(\mathrm{iii})+\mathrm{ww}(\mathrm{iii}) * \mathrm{sl}{ }^{*} \mathrm{ttt}(\mathrm{ij})$
If(tal(iii) .GE. 3*twen) tal (iii) $=\operatorname{ta}$ (iii) -3^{*} twen
ta2(iii) $=\operatorname{ta}$ (iii) - twen
ta 3 (iii) $=\mathrm{ta}$ (iii) + twen
c Setting up the constant for the trig functions.
$\begin{aligned} \cos 1(\text { iii }) & =\cos (\operatorname{ta1}(\text { iii })) \\ \cos 2(\mathrm{iii}) & =\cos (\operatorname{ta} 2(\mathrm{iii}))\end{aligned}$
$\cos 3(\mathrm{iii})=\cos (\mathrm{ta} 3(\mathrm{iii}))$
$\sin 1$ (iii) $=\sin ($ tal (iii) $)$
$\sin 2$ (iii) $=\sin ($ ta2(iii))
$\sin 3$ (iii) $=\sin ($ ta $3($ iii $))$

Call inv(Lmm, Lii, 5, 5, iii, is)

740 c	Calculating Rmm+G.
741	Do $553 \mathrm{i}=1,5$
742	Do $553 \mathrm{j}=1,5$
743553	$\operatorname{Rit}(\mathrm{iii}, \mathrm{i}, \mathrm{j})=\operatorname{Rmm}(\mathrm{iii}, \mathrm{i}, \mathrm{j})+\mathrm{G}(\mathrm{iii}, \mathrm{i}, \mathrm{j})$
74422	Continue
745 c	Find out A and its inverse in diakoptics.
746555	Do $23 \mathrm{i}=1,4$
747	Do $23 \mathrm{j}=1,4$
74823	$\mathrm{A}(1, \mathrm{i}, \mathrm{j})=\operatorname{Ar}(\mathrm{i}, \mathrm{j})$
749	Do 24 iii $=1,3$
750	Do $26 \mathrm{i}=1,4$
751	Do 27 $\mathrm{j}=1,5$
752	Con1(iii,i,j) $=0.000$
753	Do $27 \mathrm{k}=1,5$
75427	$\operatorname{Conl}(\mathrm{iii}, \mathrm{i}, \mathrm{j})=\operatorname{Conl}(\mathrm{iii}, \mathrm{i}, \mathrm{j})+\operatorname{Clm}(\mathrm{iii}, \mathrm{i}, \mathrm{k}) * \operatorname{Lii}(\mathrm{iii}, \mathrm{k}, \mathrm{j})$
75526	Continue
756	Do $28 \mathrm{i}=1,4$
757	Do $28 \mathrm{j}=1,4$
758	Do $28 \mathrm{k}=1,5$
75928	$\mathrm{A}(1, \mathrm{i}, \mathrm{j})=\mathrm{A}(1, \mathrm{i}, \mathrm{j})+\operatorname{Conl}(\mathrm{iii}, \mathrm{i}, \mathrm{k}) * \operatorname{Cml}(\mathrm{iii}, \mathrm{k}, \mathrm{j})$
76024	Continue
761	Call inv(A, Ai, 4, 1, 1,is)
762 c	Calculate $\mathrm{Ai}^{*} \mathrm{Cim}^{*}$ Lii
763	Do $49 \mathrm{ii}=1,5$
764	Do $49 \mathrm{i}=1,4$
765	Do $32 \mathrm{j}=1$, ch(ii)
766	$\operatorname{Con}(\mathrm{ii}, \mathrm{i}, \mathrm{j})=0.000$
767	Do $32 \mathrm{k}=1,4$
76832	$\operatorname{Con}(\mathrm{i}, \mathrm{i}, \mathrm{j})=\operatorname{Con}(\mathrm{ii}, \mathrm{i}, \mathrm{j})+\mathrm{Ai}(1, \mathrm{i}, \mathrm{k}) * \operatorname{Con1}(\mathrm{ii}, \mathrm{k}, \mathrm{j})$
76949	Continue
770	endif
771 c	Carry out diakoptic to solve the rate of change of current.
772	$\mathrm{it}=0$
773	Do 33 ih $=1,5$
774 c	Determine if it is a diagonal and off-diagonal elements, if
775 c	$\mathrm{jz}=1$, it is diagonal and vica versa.
776	$\mathrm{jz}=0$
777	Do $33 \mathrm{iv}=\mathrm{ih}, 5$
778	$\mathrm{j}=\mathrm{j} \mathrm{z}+1$
779	it $=$ it +1
780 c	Determine if it is necessary to carry out the operation.
781	If(ic .LE. in .OR. icalc .EQ. ini .OR. ich .EQ. 1) then
782	Do $34 \mathrm{i}=1$, ch(iv)
783	Do $34 \mathrm{j}=1, \mathrm{ch}$ (ih)
784	If(jz .EQ. 1 .AND. i .EQ. j) then
785	$\operatorname{An}(\mathrm{i}, \mathrm{j})=1.000$
786	else
787	$\operatorname{An}(\mathrm{i}, \mathrm{j})=0.000$
788	endif
789	Do $35 \mathrm{k}=1,4$
79035	$\operatorname{An}(\mathrm{i}, \mathrm{j})=\operatorname{An}(\mathrm{i}, \mathrm{j})-\mathrm{Cml}(\mathrm{iv}, \mathrm{i}, \mathrm{k}) * \operatorname{Con}(\mathrm{ih}, \mathrm{k}, \mathrm{j})$
79134	Continue
792 c	Working out Lii*Am
793	Do $36 \mathrm{i}=1$, ch(iv)
794	Do $36 \mathrm{j}=1$, ch(ih)
795	Amm($\mathrm{it}, \mathrm{i}, \mathrm{j})=0.000$
796	Do $37 \mathrm{k}=1$, ch(iv)
79737	$\operatorname{Amm}(\mathrm{it}, \mathrm{i}, \mathrm{j})=\operatorname{Amm}(\mathrm{i}, \mathrm{i}, \mathrm{j})+\mathrm{Lii}(\mathrm{iv}, \mathrm{i}, \mathrm{k}) * \operatorname{An}(\mathrm{k}, \mathrm{j})$
79836	Continue
799	endif
800 c	Call the subroutine to calculate the rate of change of current.
801	$\mathrm{ic1}=\mathrm{ch}(\mathrm{iv}) \quad$.

836 c Updating the new cm .
837 Do $199 \mathrm{i}=1,5$
$\mathrm{ic} 2=\mathrm{ch}(\mathrm{ih})$
If(ih .EQ. 1 .OR. ih .EQ. 2 .OR. ih .EQ. 3) then
Call rate(Amm,ic1,ic2,iv,ih,ij, Vm,Rit,Lmm,power,it)
elseif(ih .EQ. 4 .OR. ih .EQ. 5) then
Call rate(Amm, icl, ic2,iv, $\mathrm{i}, \mathrm{ij}, \mathrm{Vm}, \mathrm{Rmm}, \mathrm{Lmm}$, power, it)
else
print*, "Error in diakoptic"
go to 3000
endif
If jz . NE. 1) then
Determine if it is necessary to carry out the operations to
calculate Lii for the synchronous machine.
If(ic .LE. in .OR. icalc .EQ. ini .OR. ich .EQ. 1) then
Work out the transpose of Amm.
Do $38 \mathrm{i}=1$, $\mathrm{ch}(\mathrm{ih})$
Do $38 \mathrm{j}=1, \mathrm{ch}(\mathrm{iv})$
$\operatorname{Amt}(\mathrm{i}, \mathrm{i}, \mathrm{j})=\operatorname{Amm}(\mathrm{i}, \mathrm{j}, \mathrm{i})$
endif
Call the subroutine to calculate the rate of change of current.
If(iv.EQ. 1 .OR. iv .EQ. 2 . OR. iv .EQ. 3) then
Call rate(Amt,ic2,ic1,ih,iv,ij,Vm,Rit,Lmm,power,it)
elseif(iv .EQ. 4.OR. iv.EQ. 5) then
Call rate(Amt,ic2,ic1,ih,iv,ij,Vm,Rmm,Lmm,power, it)
else
print*, "Error in diakoptic"
go to 3000
endif
endif
If(icalc .EQ. ini) then
icalc $=1$
elseif(icalc .LT. ini) then
icalc $=$ icalc +1
endif
Continue
Do $199 \mathrm{j}=1, \operatorname{ch}(\mathrm{i})$
$\mathrm{cm}(\mathrm{i}, \mathrm{j})=\mathrm{cm}(\mathrm{i}, \mathrm{j})+\mathrm{dd}(\mathrm{i}, \mathrm{j}) * \mathrm{sl}{ }^{*} \mathrm{gg}(\mathrm{ij})$
$\mathrm{cmb}(\mathrm{i}, \mathrm{j})=\mathrm{cma}(\mathrm{i}, \mathrm{j})+\mathrm{dd}(\mathrm{i}, \mathrm{j}) * \mathrm{sl} * \mathrm{~h}(\mathrm{ij})$
Continue
Updating the ic and icalc.
ic $=\mathrm{ic}+1$
If(ic .GT. in .AND. ic .NE. 100)then
ic $=99$
icalc $=1$
endif
Determine if it is rectification or inversion.
If(power .EQ. 1) then
Calculate the derivate of dcm/dt.
Do $331 \mathrm{i}=1,5$
Do $331 \mathrm{j}=1,5$
$\mathrm{cmb}(\mathrm{i}, \mathrm{j})=\mathrm{cm}(\mathrm{i}, \mathrm{j})$
$331 \mathrm{dd}(\mathrm{i}, \mathrm{j})=0.000$
it $=0$
Do 333 ih $=1,5$
$\mathrm{jz}=0$
Do $333 \mathrm{iv}=\mathrm{ih}, 5$
$\mathrm{jz}=\mathrm{jz}+1$
it $=\mathrm{it}+1$
Call the subroutine to calculate the rate of change of current.
icl $=\operatorname{ch}(\mathrm{iv})$
ic2 $=\mathrm{ch}(\mathrm{ih})$
elseif(ih .EQ. 4 .OR. in .EQ. 5) then
else
print*, "Error in diakoptic"
go to 3000
endif
If(jz NE. 1) then
If(iv .EQ. 1 .OR.iv .EQ. 2 .OR. iv .EQ. 3) then
elseif(iv.EQ. 4 .OR. iv .EQ. 5) then
else
print*, "Error in diakoptic"
go to 3000
endif
endif
Continue
endif
Determine if the convertor is turned off.
If(State(5) .EQ. 0) then
$t=t+s l$
go to 7001
endif
Do $777 \mathrm{i}=1,16$
$777 \quad \mathrm{cbi}(\mathrm{i})=\mathrm{cb}(5, \mathrm{i})$
If(power .EQ. 2) then
elseif(power.EQ. 1) then
Call branch(Rmm,Lii,Vm,Cbm,5,16,10,power)
endif
If(power .EQ. 1) then
Call dis(jint,tsi)
If(jint .EQ. 1) then
jint $=2$
$\max =2$
Do $111 \mathrm{i}=1,5$
Do $111 \mathrm{j}=1,5$
$\mathrm{cm}(\mathrm{i}, \mathrm{j})=\mathrm{cma}(\mathrm{i}, \mathrm{j})$
$\mathrm{cmb}(\mathrm{i}, \mathrm{j})=\mathrm{cma}(\mathrm{i}, \mathrm{j})$
go to 5004
endif
endif
$\operatorname{tad}(\mathrm{i})=\operatorname{tal}(\mathrm{i})$

If(ih .EQ. 1 .OR. ih .EQ. 2 .OR. ih .EQ. 3) then
Call rate(Amm,ic1,ic2,iv,ih,ij, Vm,Rit,Lmm,power,it) Call rate(Amm,ic1,ic2,iv,ih,ij,Vm,Rmm,Lmm,power,it)
Call the subroutine to calculate the rate of change of current.
Call rate(Amt,ic2,ic1,ih,iv,ij,Vm,Rit,Lmm,power,it)
Call rate(Amt,ic2,ic1,ih,iv,ij,Vm,Rmm,Lmm,power,it)
Calculate the branch voltage and current for converter.
If(ioy .EQ. 0) Call branch($\mathrm{Rmm}, \mathrm{Lii}, \mathrm{Vm}, \mathrm{Cbm}, 5,16,16$, power)
Determine if there is any current discontinuity in rectification.
Call the subroutine to test if there is current discontinuity

916 c Calculate the branch current, voltage and its torque for
917 c three synchronous machine.
918 Call torque(Rit,Lii,Vm,Te,G,ww,power,iback,imot)

919 c Calculate the branch voltage and current for the bus-bar.
$920 \quad$ Call branch(Rmm,Lii,Vm,Cbar, 4,3,3,power)
921 c Calculate exciter and diesel output for the generators.

If(power .EQ. 1) then

923
924
925
926
927
928
929 c
930
931
932
933
934
935
936 c
937
938
939
940
941
942
943
944
945
946
94787
948 c
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966 c
967
968 c
969
970
971 c
972300
973
974
975
976
177
Do $177 \mathrm{i}=1,2$
Call excite(av, av1, av2, Vrt, Vm, i)
$\mathrm{Si}(\mathrm{i}, 2)=\mathrm{Te}(\mathrm{i})$
Call approx(xmat1, xmat2, ckf, ww, i)
c Updating the output for the de motor.
If (imot .EQ. 0) Call motor ($3, \mathrm{ww}, \mathrm{Te}$)
If(power .EQ. 1) then
$\mathrm{e}(2)=\mathrm{Vb}($ iback,1)
$\mathrm{e}(3)=\mathrm{Vb}($ iback, 2$)$
$e(4)=V b($ iback,3)
endif
Calculate the line voltage.
Do $87 \mathrm{i}=1,5$
If(i.EQ. 5) then
$\mathrm{Vl}(\mathrm{i}, 1)=\mathrm{Vb}(\mathrm{i}, 2)-\mathrm{Vb}(\mathrm{i}, 3)$
$\mathrm{Vi}(\mathrm{i}, 2)=\mathrm{Vb}(\mathrm{i}, 3)-\mathrm{Vb}(\mathrm{i}, 4)$
$\mathrm{Yli}(\mathrm{i}, 3)=\mathrm{Vb}(\mathrm{i}, 4)-\mathrm{Vb}(\mathrm{i}, 2)$
else
$\mathrm{Vli}(\mathrm{i}, 1)=\mathrm{Vb}(\mathrm{i}, 1)-\mathrm{Vb}(\mathrm{i}, 2)$
$\mathrm{Vli}(\mathrm{i}, 2)=\mathrm{Vb}(\mathrm{i}, 2)-\mathrm{Vb}(\mathrm{i}, 3)$
$\mathrm{Vli}(\mathrm{i}, 3)=\mathrm{Vb}(\mathrm{i}, 3)-\mathrm{Vb}(\mathrm{i}, 1)$
endif
Continue
Print out the results.
If(jc.EQ. jcc) then
Write(60) t, (cbl $1, \mathrm{i}), \mathrm{i}=1,6),(\mathrm{Vli}(1, \mathrm{i}), \mathrm{i}=1,3), \mathrm{Vb}(1,4)$
Write (70) t , $(\mathrm{cb}(2, \mathrm{i}), \mathrm{i}=1,6),(\mathrm{Vli}(2, \mathrm{i}), \mathrm{i}=1,3), \mathrm{Vb}(2,4)$
Write(80) t , $(\mathrm{cb}(3, \mathrm{i}), \mathrm{i}=1,6),(\mathrm{Vli}(3, \mathrm{i}), \mathrm{i}=1,3), \mathrm{Vb}(3,4)$
Write $(90) \mathrm{t}$, (cb(4,i), $i=1,3),(\operatorname{Vi}(4, i), i=1,3)$
Write(92) t, (cb(5,i), $i=5,16)$
Write $(95) \mathrm{t}_{4}(\mathrm{cb}(5, \mathrm{i}), \mathrm{i}=1,4),(\mathrm{Vb}(5, \mathrm{i}), \mathrm{i}=1,4)$
Write(96) $t,((a v(i, j), j=1,4), i=1,2)$
Write(97) t, (($S(i, j), j=1,3), i=1,2)$
Write(98) $\mathrm{t},(\mathrm{ww}(\mathrm{i}), \mathrm{i}=1,3), \mathrm{ca}, \mathrm{cf},(\mathrm{Te}(\mathrm{i}), \mathrm{i}=1,3)$
Write(99) t, (Vli(iback,i), $i=1,3$), (Vil(5,i), $i=1,3$)
$\mathrm{jij}=\mathrm{jij}+1$
$\mathrm{jc}=0$
else
$\mathrm{jc}=\mathrm{jc}+1$
endif
If(t .GT. Tstop) go to 3000
Determine if the converter is tumed off.
If(State(5).EQ. 0) go to 2002
Determine if it is a rectifier.
If(power .EQ. 1) go to 5005
If(power .EQ. 2) go to 5001
Rewind the output binary files.
3000 Rewind(60)
Rewind(70)
Rewind(80)
Rewind(90)
Rewind(92)
Rewind(95)
Rewind(96)
Rewind(97)
Rewind(98)
Rewind(99)
Write(60) jiji
Write(70) jij
1021 Do $50 \mathrm{i}=1, \mathrm{kk}$
1022 Do $50 \mathbf{j}=1,16$
$1023 \quad x x(\mathrm{i}, \mathrm{j})=0.000$
1024 Do $60 \mathrm{k}=1,16$
102560
1027 Do $70 \mathrm{i}=1, \mathrm{kk}$
1028 Do $70 \mathrm{j}=1, \mathrm{kk}$
$1029 \quad \operatorname{Lmm}(5, \mathrm{i}, \mathrm{j})=0.000$
1030 Do $80 k=1,16$
$103180 \quad \operatorname{Lmm}(5, \mathrm{i}, \mathrm{j})=\operatorname{Lmm}(5, \mathrm{i}, \mathrm{j})+\mathrm{xx}(\mathrm{i}, \mathrm{k}) * \operatorname{Cbm}(\mathrm{k}, \mathrm{j})$
103270 Continue
1033 c Calculate the value of $\mathrm{em}=\mathrm{Cbt}^{*} \mathrm{e}$
$10341 \quad$ Do $90 \mathrm{i}=1, \mathrm{kk}$
$1035 \quad \operatorname{Vm}(5, \mathrm{i})=0.000$
1036
$103790 \quad \mathrm{Vm}(5, \mathrm{i})=\mathrm{Vm}(5, \mathrm{i})+\mathrm{Cbt}(\mathrm{i}, \mathrm{j}) * \mathrm{e}(\mathrm{j})$
1038 Return
1039 End
1040
1041
1042 c This subroutine calculates the inverse of a 2 by 2 matrix.
1043 Subroutine twin (x, xout, ni, aug, icon)
1044 Real $x(5,5,5)$, xout($5,5,5$) aug(2,2)
1045 Integer i,n

Write(80) jiij
Write(90) jijj
Write(92) jijij
Write(95) jiji
Write(96) jijj
Write(97) jijj
Write(98) jiji
Write(99) jij
Stop
End

This subroutine is used to calculate the required values
of Rm, Xm, em in the converter set.
Subroutine calc(Vm, Rmm, Lmm,Cbm,kk, power)
Common/bl/ $\mathrm{Vb}(5,16), \mathrm{e}(16), \mathrm{h}(4), \mathrm{gg}(4), \mathrm{t}$
Common/b3/Cbt(2,16), Vdrop(5), Rba(3,3)
Common/b4/Cd1(5), Cd2(5), $\operatorname{Rbb}(16,16), \mathrm{Xbb}(16,16)$
Common/b5/m(2,16), xx(2,16), idone
Real $\operatorname{Vm}(5,5), \operatorname{Rmm}(5,5,5), \operatorname{Lmm}(5,5,5), \operatorname{Cbm}(16,2)$
Integer $\mathrm{i}, \mathrm{j}, \mathrm{k}$, kk , power
c Determine if it is necessary to recalculate Lmm and Rmm .
If(power .EQ. 1 .AND. idone .EQ. 0) go to 1
Calculate the value of $\mathrm{Rm}=\mathrm{Cbt}^{*} \mathrm{Rbb} * \mathrm{Cbm}$
Do $10 \mathbf{i}=1, \mathrm{kk}$
Do $10 \mathbf{j}=1,16$
$\operatorname{rr}(\mathrm{i}, \mathrm{j})=0.000$
Do $20 k=1,16$
$20 \quad \mathrm{rr}(\mathrm{i}, \mathrm{j})=\mathrm{rr}(\mathrm{i}, \mathrm{j})+\mathrm{Cbt}(\mathrm{i}, \mathrm{k}) * \mathrm{Rbb}(\mathrm{k}, \mathrm{j})$
10 Continue
Do $30 \mathrm{i}=1$, kk
Do $30 \mathbf{j}=1, \mathrm{kk}$
$\operatorname{Rmm}(5, \mathrm{i}, \mathrm{j})=0.000$
Do $40 k=1,16$
$40 \quad \operatorname{Rmm}(5, \mathrm{i}, \mathrm{j})=\operatorname{Rmm}(5, \mathrm{i}, \mathrm{j})+\mathrm{rr}(\mathrm{i}, \mathrm{k}) * \operatorname{Cbm}(\mathrm{k}, \mathrm{j})$
30 Continue
c Calculate the value of $\mathrm{Xm}=\mathrm{Cbt} * \mathrm{Xbb}^{*} \mathrm{Cbm}$.
$1021 \quad$ Do $50 \mathrm{i}=1, \mathrm{kk}$
1022 Do $50 \mathbf{j}=1,16$
$1023 \quad x x(\mathrm{i}, \mathrm{j})=0.000$
$60 \quad \mathrm{xx}(\mathrm{i}, \mathrm{j})=\mathrm{xx}(\mathrm{i}, \mathrm{j})+\mathrm{Cbt}(\mathrm{i}, \mathrm{k}) * \mathrm{Xbb}(\mathrm{k}, \mathrm{j})$
50 Continue
Do $70 \mathrm{i}=1$, kk
Do $70 \mathrm{j}=1$, kk
$\operatorname{Lmm}(5, \mathrm{i}, \mathrm{j})=0.000$
Do $80 k=1,16$
$80 \quad \operatorname{Lmm}(5, \mathrm{i}, \mathrm{j})=\operatorname{Lmm}(5, \mathrm{i}, \mathrm{j})+\mathrm{xx}(\mathrm{i}, \mathrm{k}) * \operatorname{Cbm}(\mathrm{k}, \mathrm{j})$
103270 Continue
$1033 \mathrm{c} \quad$ Calculate the value of $\mathrm{em}=\mathrm{Cbt}^{*} \mathrm{e}$
10341 Do $90 \mathrm{i}=1$, kk
$1035 \quad \operatorname{Vm}(5, i)=0.000$
$1036 \quad$ Do $90 \mathrm{j}=1,16$
$103790 \quad \operatorname{Vm}(5, \mathrm{i})=\operatorname{Vm}(5, \mathrm{i})+\operatorname{Cbt}(\mathrm{i}, \mathrm{j}) * e(\mathrm{j})$
1038 Return
1040
1041
1042 c This subroutine calculates the inverse of a 2 by 2 matrix.
1043 Subroutine twin ($\mathrm{x}, \mathrm{xout}, \mathrm{ni}$, aug, icon)
1044 Real $x(5,5,5)$, xout($5,5,5$) aug(2,2)
Integer i,n

If(icon .EQ. 2) then
$1047 \quad \operatorname{xout}(5,1,1)=1 / x(5,1,1)$
1048 go to 200
1049
endif
$\operatorname{aug}(1,1)=x(n i, 2,2)$
1050
$\operatorname{aug}(2,2)=x(n i, 1,1)$
1052
$\operatorname{aug}(1,2)=-1 * x(n i, 1,2)$
1053
$\operatorname{aug}(2,1)=-1 * x(n i, 2,1)$
$\operatorname{det}=x(n i, 1,1) * x(n i, 2,2)-x(n i, 1,2)^{*} x(n i, 2,1)$
1055 Do $10 \mathrm{i}=1,2$
1056 Do $10 \mathrm{j}=1,2$
$1057 \quad \operatorname{aug}(i, j)=\operatorname{aug}(i, j) / d e t$
$1058 \quad \operatorname{xout}(\mathrm{ni}, \mathrm{i}, \mathrm{j})=\operatorname{aug}(\mathrm{i}, \mathrm{j})$
105910
continue
1060200 Return
1061 End
1062
1063 c This subroutine is used to determine if there is any
1064 c point of contact between the reference waves.
1065 Subroutine test (change, num, tr, t, vt, ioy, shift)
$1066 \quad$ Common/bl/Vb(5,16),e(16),h(4),g(4),t
1067 Common/b2/Cd(16),Rb(16),Xb(16),sl,w,V1,ire, slr, sli
1068 Common/b6/t1, amp, am, ti, til, ti2, ti3
1069 Common/b7/twen, vsa, vsb, vsc, samp, ff
1070 Common/b8/zal, za2, za3, zb1, zb2, zb3, aa, bb
1071 Common/b9/icio(3), icirc(3), int
1072 Common/b10/nire, inter, ipass(2), iooo, ibbb
1073 Common/b11/tr1, t2, mn1, mn2
1074 Integer change(3), num(3)
1075 Real tr, shift
$1076 \quad$ Do $3 \mathrm{i}=1,3$
$10773 \quad$ change $(\mathrm{i})=0$
$1078 \quad \mathrm{zt1}=0.000$
$1079 \quad z 12=0.000$
$1080 \quad \mathbf{2 t} 3=0.000$
1081 c Calculate the amplitude in the triangle wave.
$1082 \quad \mathrm{tl}=\mathrm{t} 1+$ sli
$1083 \quad \mathrm{t} 2=\mathrm{t} 1$
$1084 \quad \mathrm{t}=\mathrm{t}+$ sli
10851111 Continue
1086 If (t 1 .LE. til) then
$1087 \quad \mathrm{vt}=\mathrm{t} 1 * \mathrm{am}$
elseif (t1 .GT. til .AND. t1 .LE. ti2) then
$\mathrm{vt}=\mathrm{amp}$ - (tl - til$)^{*} \mathrm{am}$
elseif (t 1 .GT. ti2 .AND. t 1 .LE. ti3) then
$\mathrm{vt}=-\mathrm{amp}+(\mathrm{t} 1-\mathrm{ti} 2)^{*} \mathrm{am}$
else
$\mathrm{tl}=\mathrm{tl}$ - ti 3
go to 1111
endif
1096 c Calculate the values of the three reference carrier waves
1097 c Updating the new time.
1098 w =ff:t
$1099 \quad$ vsa $=-$ samp $* \sin (w)$
$1100 \quad$ vsb $=\operatorname{samp}{ }^{*} \sin (w+$ twen $/$ shift $)$
$1101 \quad$ vsc $=s a m p * \sin (w-$ twen $/$ shift $)$
1102 c Determine if there is any point of intersection.
$1103 \quad$ zal $=\mathbf{v s a}-\mathrm{vt}$
$1104 \quad \mathrm{za} 2=\mathrm{vsb}-\mathrm{vt}$
$1105 \quad \mathrm{za3}=\mathrm{vsc}-\mathrm{vt}$
1106 If(ire .EQ. 1) go to 2222
1107 inter $=0$

1108
$\mathrm{nnl}=0$

$$
\mathrm{n} \cap 2=0
$$

$$
t 2=0.000
$$

$$
\mathrm{trl}=0.000
$$

$$
\text { If }((\mathrm{za} 1 * \mathrm{zb} 1) \text {.LE. } 1.00 \mathrm{e}-07 \text {.AND. zb1 .NE. } 0.000) \text { then }
$$

$$
\text { change }(1)=\text { change }(1)+1
$$

$$
\operatorname{num}(1)=\operatorname{num}(1)+1
$$

$$
a a=a b s(z b 1)
$$

$$
\mathrm{bb}=\mathrm{abs}(\mathrm{zal})
$$

$$
\mathrm{nn} 2=\mathrm{nn} 1
$$

$$
\mathrm{nn} 1=1
$$

$$
\mathrm{t} 2=\mathrm{tr} 1
$$

$$
\mathrm{tr} 1=(\mathrm{t}-\mathrm{sli})+\mathrm{sli}^{*} \mathrm{aa} /(\mathrm{aa}+\mathrm{bb})
$$

$$
\text { inter }=\text { inter }+1
$$

endif
If $((\mathrm{za} 2 * \mathrm{zb} 2)$.LE. $1.00 \mathrm{e}-07$.AND. zb 2 .NE. 0.000$)$ then
change $(2)=$ change $(2)+1$
num $(2)=$ num $(2)+1$
$\mathrm{aa}=\mathrm{abs}(\mathrm{zb} 2)$
$\mathrm{bb}=\mathrm{abs}(\mathrm{za} 2)$
$\mathrm{nn} 2=\mathrm{nn} 1$
$\mathrm{nnl}=2$
$\mathrm{t} 2=\mathrm{tr} 1$
trl $=(\mathrm{t}-\mathrm{sli})+\mathrm{sli}{ }^{*} \mathrm{a} /(\mathrm{aa}+\mathrm{bb})$
inter $=$ inter +1
endif
If($\left(\mathrm{za}^{3} * \mathrm{zb} 3\right)$.LE. $1.00 \mathrm{e}-07$.AND. zb 3 .NE. 0.000$)$ then
change $(3)=$ change $(3)+1$
num (3) $=$ num $(3)+1$
$\mathrm{aa}=\mathrm{abs}(\mathrm{zb} 3)$
$\mathrm{bb}=\mathrm{abs}(\mathrm{za} 3)$
$\mathrm{nn} 2=\mathrm{nn} 1$
$\mathrm{nnl}=3$
$\mathrm{tr} 2=\mathrm{tr} 1$
trl $=(t-s l i)+s l i^{*} a a /(a a+b b)$
inter $=$ inter +1
endif
If(inter .EQ. 0) go to 1113
If point of intersection occurs, determine the smallest point and
use it as the step length for the next integrating step.
If(tr2 .NE. 0.000) then
$\operatorname{If}(\mathrm{t} 2 . \mathrm{GT} . \mathrm{tr} 1)$ then

$$
\mathrm{tr}=\mathrm{t} 1
$$

num(nn2) $=0$
change $(\mathrm{nn} 2)=0$
elseif($\mathbf{4} 2$.LT. tr1) then
$t r=t 2$
num $(\mathrm{nn} 1)=0$
change $(\mathrm{nn} 1)=0$
endif
else
$t r=t r l$
endif
$\mathrm{slr}=\mathrm{tr}-\mathrm{t}+\mathrm{sli}$
t2 $=\mathrm{t} 2-\mathrm{sli}+\mathrm{slr}$
$\mathrm{t} 1=\mathrm{t}$
ire $=1$
$t=t r$
go to 1111
Determine which new thyristor is triggering if change in
conduction pattern occurs.
222 If(num(1) .NE. 0 .AND. ioy .EQ. 0) then

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

If(icirc(1).EQ. 1) then
icirc $(1)=10$
elseif(icirc(1) EQ. 10) then $\operatorname{icirc}(1)=1$
elseif(icirc(1).EQ. 4)then $\operatorname{icirc}(1)=7$
elseif(icirc(1).EQ. 7) then icirc(1) $=4$
endif
endif
If(num(2).NE. 0 .AND. ioy .EQ. 0) then
If(icirc(2).EQ. 3) then $\operatorname{icirc}(2)=12$
elseif(icirc(2).EQ. 12) then $\operatorname{icirc}(2)=3$
elseif(icirc(2).EQ.6) then $\operatorname{icirc}(2)=9$
elseif(icirc(2).EQ. 9) then icirc(2) $=6$
endif
endif
If(num(3).NE. 0 .AND. ioy .EQ. 0) then
If(icirc(3).EQ. 5) then $\operatorname{icirc}(3)=8$
elseif(icirc(3).EQ. 8) then icirc(3) $=5$
elseif(icirc(3) .EQ. 2) then $\operatorname{icirc}(3)=11$
elseif(icirc(3).EQ. 11) then icirc $(3)=2$ endif
endif
If(num(1).NE. 0 .AND. ioy .EQ. 1) then
ioy $=0$
$\operatorname{If}(\operatorname{icirc}(1) . E Q .1)$ then $\operatorname{icirc}(1)=4$
elseif(icirc(1) .EQ. 4) then $\operatorname{icirc}(1)=1$
endif
endif
If(num(2) .NE. 0 .AND. ioy .EQ. 1) then
ioy $=0$
$\operatorname{If}(\operatorname{icirc}(2) . E Q .3)$ then $\operatorname{icirc}(2)=6$
elseif(icirc(2).EQ.6) then icirc(2) $=3$
endif
endif
If(num(3) .NE. 0 .AND. ioy .EQ. 1) then
ioy $=0$
If(icirc(3).EQ. 5) then icirc $(3)=2$
elseif(icirc(3) .EQ. 2) then $\operatorname{icirc}(3)=5$
endif
endif
If(num(1).NE.0) zal $=0.000$
If(num(2) .NE. 0) za2 $=0.000$
If(num(3).NE.0) za3 $=0.000$
num (1) $=0$
num (2) $=0$
num (3) $=0$

Resetting the difference between two waves.

1233
$1240 \mathrm{c} \quad$ This subroutine calculates the inverse of a m by m matrix x
1241 c and stores it into y .
1242 Subroutine inv($\mathrm{x}, \mathrm{y}, \mathrm{m}, \mathrm{ml}, \mathrm{kk}$, is)
1243 Dimension $\mathrm{x}(\mathrm{m} 1, \mathrm{~m}, \mathrm{~m}), \mathrm{y}(\mathrm{m} 1, \mathrm{~m}, \mathrm{~m}), \mathrm{a}(8,16)$
1244 Integer is
1245
1246
1247

1269 If(a(i,j) $\cdot \mathrm{EQ} \cdot 0.000)$ go to 33
$1270 \quad a(i, j)=a(i, j) / d$
33 Continue
Do $16 \mathrm{i}=1$, m
Do $16 \mathrm{j}=1$, m
$16 y(k k, i, j)=a(i, j+m)$
Return
17 is $=1$
End
$\mathrm{Cm} 2(\mathrm{k}, 1,1)=\mathrm{xlad}^{*} \mathrm{sf}(\mathrm{k}) * \cos 1(\mathrm{k})^{*} * 2.0+\mathrm{xlaq} * \sin 1(\mathrm{k})^{* *} 2.0+\mathrm{xLl}(\mathrm{k}, 1)$
$\mathrm{Cm} 2(\mathrm{k}, 1,2)=\mathrm{xmad}^{*} \mathrm{sf}(\mathrm{k}) * \cos 1(\mathrm{k}) * \cos 2(\mathrm{k})+\mathrm{xmaq} \sin 1(\mathrm{k})^{*} \sin 2(\mathrm{k})$
$\mathrm{Cm} 2(\mathrm{k}, 1,2)=\mathrm{xmad}^{*} \operatorname{sf}(\mathrm{k})^{*} \cos 1(\mathrm{k})^{*} \cos 2(\mathrm{k})+\mathrm{xmaq}^{*} \sin 1(\mathrm{k}) * \sin 2(\mathrm{k})$
$\mathrm{Cm} 2(\mathrm{k}, 1,3)=\mathrm{xmad}^{*} \mathrm{sf}(\mathrm{k}){ }^{*} \cos 1(\mathrm{k})^{*} \cos 3(\mathrm{k})+\mathrm{xmaq}^{*} \sin 1(\mathrm{k})^{*} \sin 3(\mathrm{k})$
$\mathrm{Cm} 2(\mathrm{k}, 1,4)=\mathrm{xm} \mathrm{*}^{*} \mathrm{sf}(\mathrm{k})^{*} \cos 1(\mathrm{k})$
$\operatorname{Cm} 2(k, 1,5)=x x_{m d} \cos 1(k) * \operatorname{sf}(k)$
$\operatorname{Cm} 2(k, 1,6)=-x x m q^{*} \sin 1(k)$
$\mathrm{Cm} 2(\mathrm{k}, 2,1)=\mathrm{Cm} 2(\mathrm{k}, 1,2)$
$\mathrm{Cm} 2(\mathrm{k}, 2,2)=\mathrm{xlad}^{*} \mathrm{sf}(\mathrm{k})^{*} \cos 2(\mathrm{k})^{* *} 2.0+\mathrm{xlaq}^{*} \sin 2(\mathrm{k})^{* *} 2.0+\mathrm{xLl}(\mathrm{k}, 2)$
$\mathrm{Cm} 2(\mathrm{k}, 2,3)=\mathrm{xmad}^{*} \mathrm{sf}(\mathrm{k})^{*} \cos 2(\mathrm{k})^{*} \cos 3(\mathrm{k})+\mathrm{xmaq}{ }^{*} \sin 2(\mathrm{k})^{*} \sin 3(\mathrm{k})$
$\operatorname{Cm} 2(\mathrm{k}, 2,4)=x m \mathrm{~m}^{*} \mathrm{sf}(\mathrm{k})^{*} \cos 2(\mathrm{k})$
$\mathrm{Cm} 2(\mathrm{k}, 2,5)=\mathrm{xxmd}^{*} \cos 2(\mathrm{k})^{*} \operatorname{sf}(\mathrm{k})$
$\mathrm{Cm} 2(\mathrm{k}, 2,6)=-\mathrm{xxmq} \mathrm{q}^{*} \sin 2(\mathrm{k})$
$\mathrm{Cm} 2(\mathrm{k}, 3,1)=\mathrm{Cm} 2(\mathrm{k}, 1,3)$
$\mathrm{Cm} 2(\mathrm{k}, 3,2)=\mathrm{Cm} 2(\mathrm{k}, 2,3)$
$\mathrm{Cm} 2(\mathrm{k}, 3,3)=\mathrm{xlad}^{*} \mathrm{sf}(\mathrm{k})^{*} \cos 3(\mathrm{k})^{* *} 2.0+\mathrm{xlaq}^{*} \sin 3(\mathrm{k})^{* *} 2+\mathrm{xLl}(\mathrm{k}, 3)$
$\mathrm{Cm} 2(\mathrm{k}, 3,4)=\mathrm{xmf}{ }^{*} \mathrm{sf}(\mathrm{k})^{*} \cos 3(\mathrm{k})$
$\operatorname{Cm} 2(\mathrm{k}, 3,5)=\mathrm{xxmd}^{*} \cos 3(\mathrm{k})^{*} \mathrm{sf}(\mathrm{k})$
$\mathrm{Cm} 2(\mathrm{k}, 3,6)=-\mathrm{xxmq} * \sin 3(\mathrm{k})$
$\mathrm{Cm} 2(\mathrm{k}, 4,1)=\mathrm{Cm} 2(\mathrm{k}, 1,4)$
$\mathrm{Cm} 2(\mathrm{k}, 4,2)=\mathrm{Cm} 2(\mathrm{k}, 2,4)$
$\mathrm{Cm} 2(\mathrm{k}, 4,3)=\mathrm{Cm} 2(\mathrm{k}, 3,4)$
$\mathrm{Cm} 2(\mathrm{k}, 4,4)=\operatorname{xlf} * \mathrm{sf}(\mathrm{k})$
$\mathrm{Cm} 2(\mathrm{k}, 4,5)=\mathrm{xmfd}{ }^{*} \mathrm{sf}(\mathrm{k})$
Updating the L matrix.
$\operatorname{Lmm}(k, 1,1)=\operatorname{Cm} 2(k, 1,1)+\operatorname{Cm} 2(k, 3,3)-2 * \operatorname{Cm} 2(k, 1,3)$
$\operatorname{Lmm}(k, 1,2)=\operatorname{Cm} 2(k, 3,3)-(\operatorname{Cm} 2(k, 1,3)+\operatorname{Cm} 2(k, 2,3)-\operatorname{Cm} 2(k, 1,2))$
$\operatorname{Lmm}(k, 1,3)=\mathrm{Cm} 2(k, 1,4)-\mathrm{Cm} 2(\mathrm{k}, 3,4)$
$\operatorname{Lmm}(k, 1,4)=\operatorname{Cm} 2(k, 1,5)-\operatorname{Cm} 2(k, 3,5)$
$\operatorname{Lmm}(k, 1,5)=\operatorname{Cm} 2(k, 1,6)-\operatorname{Cm} 2(k, 3,6)$
$\operatorname{Lmm}(\mathrm{k}, 2,2)=\mathrm{Cm} 2(\mathrm{k}, 2,2)+\mathrm{Cm} 2(\mathrm{k}, 3,3)-2 * \mathrm{Cm} 2(\mathrm{k}, 2,3)$
$\operatorname{Lmm}(k, 2,3)=\operatorname{Cm} 2(k, 2,4)-\operatorname{Cm} 2(k, 3,4)$
$\operatorname{Lmm}(\mathrm{k}, 2,4)=\mathrm{Cm} 2(\mathrm{k}, 2,5)-\mathrm{Cm} 2(\mathrm{k}, 3,5)$
$\operatorname{Lmm}(k, 2,5)=\operatorname{Cm} 2(k, 2,6) \cdot \operatorname{Cm} 2(k, 3,6)$
$\operatorname{Lmm}(\mathrm{k}, 3,3)=\mathrm{Cm} 2(\mathrm{k}, 4,4)$
$\operatorname{Lmm}(\mathrm{k}, 3,4)=\mathrm{Cm} 2(\mathrm{k}, 4,5)$
$\operatorname{Lmm}(k, 2,1)=\operatorname{Lmm}(k, 1,2)$
$\operatorname{Lmm}(k, 3,1)=\operatorname{Lmm}(k, 1,3)$
$\operatorname{Lmm}(\mathrm{k}, 3,2)=\operatorname{Lmm}(\mathrm{k}, 2,3)$
$\operatorname{Lmm}(k, 4,1)=\operatorname{Lmm}(k, 1,4)$
$\operatorname{Lmm}(\mathrm{k}, 4,2)=\operatorname{Lmm}(\mathrm{k}, 2,4)$
$\operatorname{Lmm}(\mathrm{k}, 4,4)=\mathrm{xld} * \mathrm{sf}(\mathrm{k})$
$\operatorname{Lmm}(k, 5,1)=\operatorname{Lmm}(k, 1,5)$
$\operatorname{Lmm}(k, 5,2)=\operatorname{Lmm}(k, 2,5)$
$\operatorname{Lmm}(k, 4,3)=\operatorname{Lmm}(k, 3,4)$
$\operatorname{Lmm}(k, 5,5)=x l q$
Setting up some common values.
$G 11=-\mathrm{ww}^{*}\left(2.0^{*} \mathrm{xlad} * \mathrm{sf}(\mathrm{k})^{*} \cos 1(\mathrm{k})^{*} \sin 1(\mathrm{k})\right.$
$\left.+\quad-2.0 * x^{*}{ }^{*}{ }^{*} \cos 1(\mathrm{k})^{*} \sin 1(\mathrm{k})\right)$
$G 22=-\mathrm{ww}^{*}\left(2.0^{*} x \operatorname{lad} * \mathrm{sf}(\mathrm{k}) * \cos 2(\mathrm{k}) * \sin 2(\mathrm{k})\right.$
$\left.+\quad-2.0 * x \operatorname{laq} * \cos 2(\mathrm{k})^{*} \sin 2(\mathrm{k})\right)$
$G 33=-\mathrm{ww}^{*}\left(2.0 * x \operatorname{lad} * \mathrm{sf}(\mathrm{k})^{*} \cos 3(\mathrm{k}) * \sin 3(\mathrm{k})\right.$
$+\quad-2.0^{*}$ xlaq ${ }^{*} \cos 3(\mathrm{k}) * \sin 3(\mathrm{k})$)
Updating the two matrix for calculating the branch voltage.
$\operatorname{Cm1}(k, 1,1)=\mathrm{rl}+\mathrm{G} 11$
$\operatorname{Cm} 1(\mathrm{k}, 1,2)=-\mathrm{ww}^{*}\left(\mathrm{xmad}^{*} \mathrm{sf}(\mathrm{k})^{*}\left(\sin 1(\mathrm{k})^{*} \cos 2(\mathrm{k})+\cos 1(\mathrm{k})^{*} \sin 2(\mathrm{k})\right)\right.$ -
$\left.x_{m a q}{ }^{*}\left(\cos 1(k)^{*} \sin 2(k)+\sin 1(k)^{*} \cos 2(k)\right)\right)$
$\operatorname{Cm} 1(k, 1,3)=-\mathrm{ww}^{*}\left(\mathrm{xmad}^{*} \operatorname{sf}(\mathrm{k})^{*}\left(\sin 1(\mathrm{k})^{*} \cos 3(\mathrm{k})+\cos 1(\mathrm{k})^{*} \sin 3(\mathrm{k})\right)-\right.$
$\left.x_{m a q}^{*}\left(\cos 1(k)^{*} \sin 3(k)+\sin 1(k) * \cos 3(k)\right)\right)$
$\operatorname{Cm1}(k, 1,4)=-w^{*} x^{*} \mathrm{mf}^{*} \mathrm{sf}(\mathrm{k}) * \sin 1(\mathrm{k})$
$\operatorname{Cm} 1(\mathrm{k}, 1,5)=-\mathrm{ww}^{*} \mathrm{xxmd}^{*} \mathrm{sf}(\mathrm{k})^{*} \sin 1(\mathrm{k})$
$\operatorname{Cm} 1(k, 1,6)=-w^{*} * x x m q^{*} \cos 1(k)$
Varop(i)=Vdrop(i)}+\textrm{Rm}(\textrm{n}2,1,\textrm{j})*\textrm{cmb}(\textrm{n}2,\textrm{j}
1408 c Work out Vm - Rtm*Im
1 4 0 9 ~ D o ~ 1 1 ~ i = ~ 1 , k 2
1 4 1 0 ~ 1 1 ~ V d r o p (i) = V m (n 2 , i) ~ - ~ V d r o p (i)
1411 c Work out A(Vm-Rtm*Im)
1412 Do 12 i=1,k1
1413 dl(i)=0.000
1414 Do 12 j= 1,k2
1415 12 dl(i) = dl(i) + A(it,i,j)*Vdrop(j)
1416 c Work out the constant in the runge-kutta.

```
                            \(\operatorname{dd}(\mathrm{nl}, \mathrm{i})=\mathrm{dd}(\mathrm{n} 1, \mathrm{i})+\mathrm{dl}(\mathrm{i})\)
    Return
    End
1423 c This subroutine is written to calculate the dq parameters
    for the synchnous machine.
1425 Subroutine para( \(\mathrm{Vm}, \mathrm{cm}, \mathrm{vb}, \mathrm{Rmm}\) )
1426 Common/b12/wo,pi,fo,xd,xmd,xq,xd1,xd2,xq2,xo,xmq
1427 Common/b13/ra,r4,p,z,tdo,td1,td2,freq
1428 Common/b14/xlad,xlaq,xmad,xmaq,xmf,xxmd,xxmq,xlf,xmfd
1429 Common/b15/xld,xIq,r1, \(2, \mathrm{r} 3, \mathrm{r} 5, \mathrm{r} 6, \mathrm{rl1}, \mathrm{r} 12, \mathrm{r} 13\)
\(1430 \quad\) Common/b18/Cm1 \((3,4,6), \mathrm{Cm} 2(3,4,6)\)
1431 Common/b20/cf1,cf2,sf(3),Oc(3,2),coo,const,ca1,ca2
1432 Common/b32/isw,iti(5), cb(5,16),Xba(3,3),Rload,Xload,srec,spwm
1433 Real Vm(5,5), \(\mathrm{cm}(5,5), \mathrm{vb}(5,16), \operatorname{Rmm}(5,5,5)\)
\(1434 \mathrm{c} \quad\) Calculating the required from the given parameter.
    \(\mathrm{wo}_{\mathrm{o}}=2^{*} \mathrm{pi} * \mathrm{fo}\)
    \(\mathrm{rl}=\mathrm{ra}\) * z
    \(\mathrm{xal}=\mathrm{xd}-\mathrm{xmd}\)
    \(x f f=x m d^{*} x m d /(x d-x d 1)\)
    \(\mathrm{xfl}=\mathrm{xff}-\mathrm{xmd}\)
    \(\mathrm{x} 1=(\mathrm{xd} 2-\mathrm{xa} 1)^{*} \mathrm{xmd}^{*} \mathrm{xfl} /\left(\mathrm{xmd}{ }^{*} \mathrm{xfl} 1-\mathrm{xff}{ }^{*}(\mathrm{xd} 2-\mathrm{xa} 1)\right)\)
    \(x q 1=x m q^{*}(x q 2-x a 1) /(x q-x q 2)\)
    tdodd \(=\mathrm{xd}^{*}\) td1 \({ }^{*}\) td2/tdo/xd 2
    rd \(=\mathrm{xmd}^{*} \mathrm{xfl} /(\mathrm{xmd}+\mathrm{xfl}) /\) wo/tdodd
    xffo \(=\) tdo* \({ }^{\text {wo }}\) * 4
    \(\mathrm{dfn}=\operatorname{sqrt}\left(2.0^{*} \mathrm{xff} * / 3.0 / \mathrm{xffo}\right)\)
    \(\mathrm{xa} 2=\mathrm{z}^{*}(\mathrm{xd}-\mathrm{xq})\) /3.0/wo
    \(\mathrm{xabo}=\mathrm{z}^{*}(\mathrm{xd}-\mathrm{xo}) / 3.0 / \mathrm{wo}-0.5^{*} \mathrm{xa2} 2\)
    \(x a 0=z^{*} x o / w o+2.0^{*} x a b o\)
    \(x \operatorname{lad}=x a o+x a 2\)
    \(\mathrm{xlaq}=\mathrm{xao}-\mathrm{xa} 2\)
    \(\mathrm{xmad}=2.0^{*} \mathrm{xabo}+\mathrm{xa2}\)
    xmaq \(=2.0^{*}\) xabo - xa2
    \(\mathrm{xlf}=2.0^{*} \mathrm{xff}^{*} \mathrm{z} /\left(3.0^{*} \mathrm{wo}^{*} \mathrm{dfn}^{*} \mathrm{dfn}\right)\)
    \(\mathrm{xmf}=2.0^{*} \mathrm{z}^{*} \mathrm{xmd} /\left(3.0^{*} \mathrm{wo}{ }^{*} \mathrm{dfn}\right)\)
    \(\mathrm{xdd}=\mathrm{xmd}+\mathrm{xI}\)
    \(\mathrm{xld}=2.0^{*} z^{*} x d d / 27.0 /\) wo
    \(\mathrm{xxmd}=2.0^{*} \mathrm{z}^{*} \mathrm{xmd} / 9.0 / \mathrm{wo}\)
    \(\mathrm{xxmq}=2.0^{*} \mathrm{z}^{*} \mathrm{xmq} / 9.0 /\) wo
    \(\mathrm{r} 5=2.0 * \mathrm{rd}\) * \(\mathrm{z} / 27.00\)
    \(\mathrm{xmfd}=\mathrm{xmf} / 3.0\)
    \(\mathrm{xkq}=\mathrm{xmq}+\mathrm{xq1}\)
    \(x \mathrm{xq}=2.0 * z^{*} \mathrm{xkq} / 27.0 / \mathrm{wo}\)
    tddd \(=\left(\mathrm{xmd}^{*} \mathrm{xa1}{ }^{*} \mathrm{xfl} /\left(\mathrm{xmd}^{*} \mathrm{xal}+\mathrm{xmd}^{*} \mathrm{xfl}+\mathrm{xa1}{ }^{*} \mathrm{xfl}\right)+\mathrm{x} 1\right) / \mathrm{wo} / \mathrm{r} 5\)
    \(\mathrm{tqdd}=1.5^{*} \mathrm{tddd}\)
    \(\mathrm{rq}=\left(\mathrm{xmq}^{*} \times \mathrm{xal} /(\mathrm{xmq}+\mathrm{xal})+\mathrm{xq} 1\right) / \mathrm{wo} / \mathrm{tqdd}\)
    \(\mathrm{r} 6=2.0^{*} \mathrm{z}^{*} \mathrm{r} \mathrm{q} / 27.0\)
    \(\mathrm{r} 2=\mathrm{r} 1\)
    \(\mathrm{r} 3=\mathrm{r} 1\)
    Calculate the open circuit characteristics for the
    saturation function.
    \(\mathrm{cf1}=\mathrm{Oc}(1,2)\)
    \(c \mathrm{C}=\mathrm{Oc}(3,2)\)
    \(\mathrm{cos}=\mathrm{Oc}(1,1) / \mathrm{cf} 1\)
    const \(=\mathrm{Oc}(3,1) /\left(\mathrm{cf2}{ }^{*} \mathrm{coo}\right)\)
    Updating the Rm matrix.
    \(\operatorname{Rmm}(1,1,1)=r 1+\mathrm{r} 3+\mathrm{rl} 1+\mathrm{rl} 3\)
    \(\operatorname{Rmm}(1,1,2)=r 3+r l 3\)
    \(\operatorname{Rmm}(1,2,1)=\operatorname{Rmm}(1,1,2)\)
    \(\operatorname{Rmm}(1,2,2)=r 2+r 3+r 12+r 13\)
    \(\operatorname{Rmm}(1,3,3)=r 4\)
    \(\operatorname{Rmm}(1,4,4)=55\)
    \(\operatorname{Rmm}(1,5,5)=\mathrm{r} 6\)
    Do \(1 \mathrm{i}=2,3\)
    \(\operatorname{Rmm}(1,1,1)=\operatorname{Rmm}(1,1,1)\)
    \(\operatorname{Rmm}(\mathrm{i}, 1,2)=\operatorname{Rmm}(1,1,2)\)
    \(\operatorname{Rmm}(i, 2,1)=\operatorname{Rmm}(1,2,1)\)
    \(\operatorname{Rmm}(\mathrm{i}, 2,2)=\operatorname{Rmm}(1,2,2)\)
    \(\operatorname{Rmm}(i, 3,3)=\operatorname{Rmm}(1,3,3)\)
    \(\operatorname{Rmm}(i, 4,4)=\operatorname{Rmm}(1,4,4)\)
    \(\operatorname{Rmm}(1,5,5)=\operatorname{Rmm}(1,5,5)\)
    Updating the new field current.
    \(\mathrm{cm}(1,3)=(2 * * 0.5) * 200.00 /\left(\left(3^{* *} 0.5\right) * \mathrm{xmf}^{*} 2.00^{*} \mathrm{pi}^{*}\right.\) freq \()\)
    \(\operatorname{Vm}(1,3)=\mathrm{cm}(1,3)^{*} \mathrm{I} 4\)
    \(\mathrm{vb}(1,4)=\mathrm{Vm}(1,3)\)
    \(\mathrm{cb}(1,4)=\mathrm{cm}(1,3)\)
    Do \(10 \mathrm{ii}=2,3\)
    \(\mathrm{cm}(\mathrm{ii}, 3)=\mathrm{cm}(1,3)\)
    \(\operatorname{Vm}(\mathrm{ii}, 3)=\operatorname{Vm}(1,3)\)
    \(\mathrm{cb}(\mathrm{ii}, 4)=\mathrm{cb}(1,4)\)
\(10 \quad \mathrm{vb}(\mathrm{ii}, 4)=\mathrm{Vm}(1,4)\)
    Retum
    End
    This subroutine is used to calculated the saturation function
    for the synchronous machine.
    Subroutine sat(a, i)
    Common/b20/cf1,cf2,sf(3),Oc(3,2),coo,const,cal,ca2
    Real a
    Calculate the saturation function.
    If(abs(a).LE. cf1) then
        \(\mathrm{sf}(\mathrm{i})=1.000\)
    elseif(abs(a) .GT. cf2) then
        sf(i) \(=\) const
    else
        \(\operatorname{sf(}(\mathrm{i})=-(1.000-\) const \() *(\) abs \((\mathrm{a})-\mathrm{cf1}) /(\mathrm{c} £ 2-\mathrm{cf1})+1.000\)
    endif
    Return
    End
        This subroutine is written to deal with the open and close
        circuits for the system.
        Subroutine opcl(Rmm,Lmm,Lii,power,close,open,State,
        \(+\quad\) rll,icond,ich,Vm,Cbm,SW,ww,imot,iback)
            Common/b1/Vb(5,16),e(16),h(4),gg(4),t
            Common/b2/Cd(16), \(\mathrm{Rb}(16), \mathrm{Xb}(16)\), sl,w, V1, ire, slr, sli
            Common/b3/Cbt(2,16), Vdrop(5), Rba(3,3)
            Common/b4/Cd1(5), \(\mathrm{Cd} 2(5), \mathrm{Rbb}(16,16), \mathrm{Xbb}(16,16)\)
            Common/b5/rr( 2,16 ), \(x x(2,16)\), idone
            Common/b19/cm(5,5), cma(5,5), cmb(5,5),Cmast(6,5),dd(5,5)
            Common/b16/Con1 \((5,4,5), \mathrm{Clm}(5,4,5), \mathrm{Cml}(5,5,4), \mathrm{xLl}(5,3)\), xopen, xclose
            Common/b31/aug ( 2,2 ), \(\operatorname{Ar}(4,4), \operatorname{Ar} 1(2,4,4)\)
            Common/b32/isw,iti(5),cb(5,16),Xba(3,3),Rload,Xload,srec,spwm
            Common/b33/tyr,diod,tde
            Real Rmm( \(5,5,5\) ), \(\operatorname{Lmm}(5,5,5), \operatorname{Lii}(5,5,5), \mathrm{rl1}, \operatorname{Vm}(5,5), \operatorname{Cbm}(16,2)\),
            \(+\quad w w(5)\)
            Integer power, close, open, isw, State(5), icond, ich, SW(6),
                        imot
```

 Test if it is a closed circuit.
 \(\mathrm{kk}=0\)
 If(close .EQ. 1) then
 Do \(10 \mathrm{i}=1,3\)
 $\mathrm{xLl}($ isw, i$)=\mathrm{xclose}$
close $=0$
iti(isw) $=0$
$S W($ isw $)=0$
State(isw) $=1$
If(isw .EQ. 5) then
If(State(1).EQ. 1 .AND. State(4) .EQ. 1) then
iback $=1$
elseif(State(2) .EQ. 1) then
iback $=2$
else
print*, "Error : Incomplete path for the converter"
endif
endif
$\mathrm{kk}=1$
go to 300
endif
Test if it is an opened circuit.
If(open .EQ. 1) then
Do $20 \mathrm{ii}=1,3$
If (isw .EQ. 5) then
$\mathrm{j}=\mathrm{i}+1$
else
$\mathrm{ji}=\mathrm{ii}$
endif
$\mathrm{vvv}=\mathrm{abs}(\mathrm{cb}(\mathrm{isw}, \mathrm{jj}))$
If(vvy LE. 0.200 .AND. xLl(isw,ii) .NE. xopen) then
$\mathrm{xLl}(\mathrm{isw}, \mathrm{ii})=$ xopen
$\mathrm{it}(\mathrm{isw})=\mathrm{it}(\mathrm{isw})+1$
$\mathrm{kk}=1$
endif
Continue
If(kk .EQ. 1) then
If(iti(isw).EQ. 2.OR. iti(isw).EQ.3) then
Do $35 \mathrm{i}=1,3$
$x L 1(i s w, i)=$ xopen
If(isw .EQ. 5) Xbb(isw,i+1) $=x L 1($ isw,i)
Continue
Do $36 \mathrm{i}=1,16$
If(isw .EQ. 5) $\mathrm{Vb}(i s w, i)=0.000$
$\mathrm{cb}(\mathrm{isw}, \mathrm{i})=0.000$
Do $37 \mathrm{i}=1,2$
$\mathrm{cm}(\mathrm{isw}, \mathrm{i})=0.000$
open $=0$
$\mathrm{iti}(\mathrm{isw})=0$
$S W$ (isw) $=0$
State(isw) $=0$
go to 300
else
go to 300
endif
elseif(kk .EQ. 0) then
go to 400
endif
endif
Resetting the speed of the synch mot.

```

If(State(3).EQ. 0 .AND. kk .EQ. 1 .AND. isw .EQ. 3) then \(\mathrm{ww}(3)=0.000\)
imot \(=1\)
go to 400
elseif(State(3) .EQ. 1 .AND. kk .EQ. 1 .AND. isw .EQ. 3) then \(w w(3)=w w(1)\)
\(\mathrm{imot}=0\)
go to 400
endif
Resetting the bus bar inductances matrix.
If(isw .EQ. 4) then
\(\mathrm{Xba}(1,1)=\mathrm{xLl}(4,1)\)
\(\mathrm{Xba}(2,2)=\mathrm{xLl}(4,2)\)
\(\mathrm{Xba}(3,3)=\mathrm{xLl}(4,3)\)
\(\operatorname{Lmm}(4,1,1)=x \operatorname{Ll}(4,1)+x \operatorname{Ll}(4,3)\)
\(\operatorname{Lmm}(4,1,2)=x L(4,3)\)
\(\operatorname{Lmm}(4,2,1)=x \operatorname{LL}(4,3)\)
\(\operatorname{Lmm}(4,2,2)=x L 1(4,2)+x L 1(4,3)\)
Call twin(Lmm,Lii,4,aug,0)
Call recalc(Lii,4,ich)
go to 400
endif
Resetting the converter inductances matrix.
If(isw .EQ. 5 .AND. State(5) .EQ. 1) then
If(iti(5) .GT. 0) then
Do \(30 \mathrm{i}=2,4\)
\(\mathrm{Xbb}(\mathrm{i}, \mathrm{i})=\mathrm{xLl}(5, \mathrm{i}-1)\)
else
Do \(40 \mathrm{i}=1,16\)
If(i .LE. 4 .AND. i .NE. 1) \(\mathrm{Xbb}(\mathrm{i}, \mathrm{i})=\mathrm{xclose}\)
If(i .GT. 4 .AND. \(\mathrm{i} . \operatorname{LE} .10) \mathrm{Xbb}(\mathrm{i}, \mathrm{i})=\mathrm{tyr}\)
\(\operatorname{If}(\mathrm{i}, \mathrm{GT} .10) \mathrm{Xbb}(\mathrm{i}, \mathrm{i})=\operatorname{diod}\)
Continue
If(power .EQ. 1) then
\(\operatorname{Rbb}(1,1)=\) Rload
\(\mathrm{Xbb}(1,1)=\mathrm{Xload}\)
sli \(=\) srec
elseif(power .EQ. 2) then
\(\operatorname{Rbb}(1,1)=\mathrm{rll}\)
\(\mathrm{Xbb}(1,1)=\mathrm{tdc}\)
sli \(=\) spwm
endif
endif
If(icond .EQ. 2) then
Call calc(Vm, Rmm, Lmm,Cbm,2,power)
elseif(icond.EQ. 1) then
Call calc(Vm, Rmm, Lmm,Cbm,2,power)
else
print*, "Error in icond"
endif
Call twin(Lmm, Lii, 5,aug,icond)
Call recalc(Lii, 5 , ich)
elseif(isw .EQ. 5 .AND. State(5) EQ. 0) then Do \(50 \mathrm{i}=1,16\)
\(50 \quad \mathrm{Xbb}(\mathrm{i}, \mathrm{i})=\) xopen
Do \(60 \mathrm{i}=1,4\)
Do \(60 j=1,4\)
\(\mathrm{Li}(5, \mathrm{i}, \mathrm{j})=0.000\)
\(\operatorname{Lmm}(5, \mathrm{i}, \mathrm{j})=0.000\)
\(60 \operatorname{Rmm}(5, i, j)=0.000\)
sli \(=\) srec
endif
\begin{tabular}{ll}
1661 & 400 \\
1662 & Return \\
1663 & End \\
1664 & \\
1665 & \\
1666 c & This subroutine is written to recalculate the value of \\
1667 c & Ar where Ar \(=\) Clm \({ }^{2} \mathrm{Lii} * \mathrm{Cml}\) and Conl where Conl \(=\) Clm
\end{tabular}

1738 c In order to calculate the result actually, the voltage
1739 c output is calculate first. However, reintegeration is
1740 c carried out if V4 is larger than the practical limit
1741 c of the exciter.
1742 c Test if the value of V 4 is greater than the practical
1743 c limit.
\(1744 \quad \operatorname{lf}(\operatorname{av}(n i, 1)\).GT. Vmax) then
\(1745 \quad \mathrm{~V} 5=\mathrm{Vmax}\)
1746 go to 2000
1747 elseif(av(ni,1).LT. Vmin) then
\(1748 \quad\) V5 \(=\) Vmin
1749 go to 2000
1750 endif
1751 c Put this into for dav/dt \(=\mathrm{Vrt}+\mathrm{av} 1 * \mathrm{av}\)
\(1752 \quad \operatorname{Vrt}(1)=0.000\)
1753 Do \(5 \mathrm{i}=1,2\)
\(17545 \quad \operatorname{Vrt}(1)=\operatorname{Vrt}(1)+\operatorname{av} 2(1, i)^{*} \operatorname{aref}(n i, i)\)
1755 Do 10 ii \(=1,4\)
\(1756 \quad\) Do \(20 \mathrm{i}=1,4\)
\(1757 \quad \mathrm{dl}(\mathrm{i})=0.000\)
1758 Do \(25 \mathrm{j}=1,4\)
\(175925 \quad \mathrm{dl}(\mathrm{i})=\mathrm{d} 1(\mathrm{i})+\mathrm{avl}(\mathrm{i}, \mathrm{j}) * \mathrm{avb}(\mathrm{j})\)
1760 20 Continue
1761
\(176230 \quad \mathrm{~d} 1(\mathrm{i})=\mathrm{d} 1(\mathrm{i})+\mathrm{Vrt}(\mathrm{i})\)
1763 Do \(40 \mathrm{i}=1,4\)
\(1764 \quad \operatorname{av}(n i, i)=a v(n i, i)+d 1(i) * s l * g g(i i)\)
\(176540 \quad \operatorname{avb}(\mathrm{i})=\operatorname{ava}(\mathrm{i})+\mathrm{dl}(\mathrm{i}) * \mathrm{sl} * \mathrm{~h}(\mathrm{ii})\)
176610 Continue

1767 c Test if the value of V4 is larger than the practical limit.
\(1768 \mathrm{If}(\mathrm{av}(\mathrm{ni}, 1)\). GE. Vmin .AND. av(ni,1) .LE. Vmax) then
\(1769 \quad\) Vm(ni,3) \(=\operatorname{av}(n i, 4)\)
1770 go to 1000
1771 elseif(av(ni,1).GT. Vmax) then
\(1772 \quad\) V5 = Vmax
1773 go to 2500
1774
        \(\mathrm{rt}(1)=\mathrm{Vrt}(1)+\)
Do \(16 \mathrm{ii}=1,4\)
        \(\mathrm{d} 1(1)=0.000\)
        \(\mathrm{d} 1(1)=\mathrm{av} 1(1,1) * \operatorname{avb}(1)+\operatorname{Vrt}(1)\)
        \(\mathrm{av}(\mathrm{ni}, 1)=\mathrm{av}(\mathrm{ni}, 1)+\mathrm{s} \mathrm{l}^{*} \mathrm{~d} 1(1)^{*} \mathrm{gg}(\mathrm{ii})\)
        \(\operatorname{avb}(1)=\operatorname{ava}(1)+\mathrm{sl}^{*} \mathrm{~d} 1(1) * h(i i)\)
16 Continue
    Reintegeration is carried out
\(\begin{array}{ll}65 & \mathrm{dl}(\mathrm{i})=\mathrm{d} \\ 60 & \text { Continue }\end{array}\)
    Do \(70 \mathrm{i}=1,3\)
    \(\mathrm{dl}(\mathrm{i})=\mathrm{dl}(\mathrm{i})+\mathrm{Vft}(\mathrm{i})\)
1806 Do \(80 \mathrm{i}=1,3\)
\(1807 \quad \operatorname{av}(n i, i+1)=\operatorname{av}(n i, i+1)+d 1(i) * s I^{*} g g(i i)\)
18088
    \(\operatorname{avd}(\mathrm{i}+1)=\operatorname{avc}(\mathrm{i}+1)+\mathrm{dl}(\mathrm{i})^{*} \mathrm{sl}^{*} \mathrm{~h}(\mathrm{ii})\)
    55 Continue
1810 c Making sure the field voltage never goes negative.
\(18111000 \quad \operatorname{If}(\operatorname{av}(\mathrm{ni}, 4) . \operatorname{LT} .0 .000)\) av \((\mathrm{ni}, 4)=0.000\)
\(1812 \quad \operatorname{Vm}(n i, 3)=\operatorname{av}(n i, 4)\)
18131 Return
1814 End
1815
1816
1817 c This is a simple model of a diesel engine according
1818 c to the diesel engine block diagram given.
1819 Subroutine approx(xmat1, xmat2, ckf, ww, ni)
\(1820 \quad\) Common/bl/ \(\mathrm{Vb}(5,16), \mathrm{e}(16), \mathrm{h}(4), \mathrm{gg}(4), \mathrm{t}\)
1821 Common/b2/Cd(16),Rb(16),Xb(16),sl,w,V1,ire, slr, sli
1822 Common/b23/aref(2,2), dl(4), Vft(3), iexc
1823 Common/b26/S(3,3), Si(2,2), d2(3), Xji, S1(3), S2(3), zx
1824 Real xmat1 \((3,3)\), \(x\) mat2 \((3,2)\), ww(5)
1825 c Carry out runge-kutta method.
    \(45 \quad \mathrm{~d} 1(\mathrm{i})=\mathrm{d} 1(\mathrm{i})+\mathrm{d} 2(\mathrm{i})\)
        Do \(50 \mathrm{i}=1,3\)
        \(\mathrm{S}(\mathrm{ni}, \mathrm{i})=\mathrm{S}(\mathrm{ni}, \mathrm{i})+\mathrm{sl}{ }^{*} \mathrm{~d} 1(\mathrm{i})^{*} \mathrm{gg}(\mathrm{ii})\)
    Do \(57 \mathrm{i}=1,3\)
    \(\mathrm{Vft}(\mathrm{i})=0.000\)
    \(57 \quad \mathrm{Vft}(\mathrm{i})=\mathrm{av} 1(\mathrm{i}+1,1)^{*} \mathrm{~V} 5\)
    Do 55 ii \(=1,4\)
    Do \(60 i=1,3\)
    \(\mathrm{d} 1(\mathrm{i})=0.000\)
    Do \(65 \mathrm{j}=1,3\)
    \(\mathrm{dl}(\mathrm{i})=\mathrm{d} 1(\mathrm{i})+\operatorname{av} 1(\mathrm{i}+1, \mathrm{j}+1) * \operatorname{avd}(\mathrm{j}+1)\)
    Do \(15 \mathrm{i}=1,3\)
    S1(i) = S(ni,i)
    \(\mathrm{S} 2(\mathrm{i})=\mathrm{S}(\mathrm{ni}, \mathrm{i})\)
    Do \(20 \mathrm{ii}=1,4\)
    Do \(30 \mathrm{i}=1,3\)
    d1(i) \(=0.000\)
    Do \(30 \mathrm{j}=1,3\)
    \(\mathrm{d} 1(\mathrm{i})=\mathrm{d} 1(\mathrm{i})+\mathrm{xmat} 1(\mathrm{i}, \mathrm{j}) * S 1(\mathrm{j})\)
    Do \(40 \mathrm{i}=1,3\)
    \(\mathrm{d} 2(\mathrm{i})=0.000\)
    Do \(40 \mathrm{j}=1,2\)
    \(\mathrm{d} 2(\mathrm{i})=\mathrm{d} 2(\mathrm{i})+\mathrm{xmat} 2(\mathrm{i}, \mathrm{j}) * \mathrm{Si}(\mathrm{ni}, \mathrm{j})\)
    Do \(45 \mathrm{i}=1,3\)
    S1(i) \(=\mathbf{S} 2(\mathrm{i})+\mathrm{sl}{ }^{*} \mathrm{~d} 1(\mathrm{i}) * \mathrm{~h}(\mathrm{ii})\)
2500 Do 49 i = 2,4
    \(\mathrm{ww}(\mathrm{ni})=\mathrm{S}(\mathrm{ni}, 3)\)

Continue
Return
End

This subroutine is written to calculate motor response, the state variables output are the armature current ca , the field current cf and the rotational speed of the motor ww.
Subroutine motor(ni,ww,Te)
Common/bl/Vb(5,16),e(16),h(4),gg(4),t
Common/b2/Cd(16), \(\mathrm{Rb}(16), \mathrm{Xb}(16)\), si,w, V 1 ,ire, slr, sli
Common/b27/ca,cf, Va, Vf,rtt,rt,zxy,xt,xf,ck,rf,ckf,Ji
Common/b30/dd1,dd2,dd3,Vdc,sign,db1,db2,zfy,zyh
Real ww(5),Te(3)
Carry out Runge-Kutta for the mechanical equations.
\(\mathrm{cal}=\mathrm{ca}\)
\(\mathrm{ca} 2=\mathrm{ca}\)
\(\mathrm{cfa}=\mathrm{cf}\)
\(\mathrm{cfb}=\mathrm{cf}\)
wwl = ww(ni)
\(\mathrm{ww} 2=\mathrm{ww}(\mathrm{ni})\)
Do \(601 \mathbf{i}=1.4\)
db1 = dd1
\(\mathrm{db} 2=\mathrm{dd} 2\)
\(\mathrm{dd1}=\left(\mathrm{Vdc}+\mathrm{sign}^{*} \mathrm{ck}{ }^{*} \mathrm{ww} 1-\mathrm{rt}^{*} \mathrm{cal}-\mathrm{zfy}{ }^{*} \mathrm{db} 2\right) / \mathrm{xt}\)
\(\mathrm{dd} 2=\left(\mathrm{Vf}-\mathrm{rf}\right.\) * \(\left.\mathrm{cfa}-\mathrm{zyh}{ }^{*} \mathrm{db} 1\right) / \mathrm{xf}\)
dd3 \(=\left(\right.\) sign \(^{*}\left(\operatorname{Te}(n i)-\right.\) ck \(^{*}\) cal \({ }^{*}\) cfa \(\left.)-c k f * w w 1\right) / J i\)
\(\mathrm{ca}=\mathrm{ca}+\mathrm{dd} 1{ }^{*} \mathrm{sl}{ }^{*} \mathrm{gg}(\mathrm{i})\)
\(\mathrm{cf}=\mathrm{cf}+\mathrm{dd} 2^{*} \mathrm{sl}^{*} \mathrm{gg}(\mathrm{i})\)
\(\mathrm{ww}(\mathrm{ni})=\mathrm{ww}(\mathrm{ni})+\mathrm{dd} 3 * \mathrm{sl} \mathrm{F}_{\mathrm{gg}}(\mathrm{i})\)
\(\mathrm{cal}=\mathrm{ca} 2+\mathrm{dd1} * \mathrm{sl}{ }^{*} \mathrm{~h}(\mathrm{i})\)
\(\mathrm{cfa}=\mathrm{cfb}+\mathrm{dd2}{ }^{*} \mathrm{~s}{ }^{*} \mathrm{~h}(\mathrm{i})\)
\(\mathrm{ww} 1=\mathrm{ww} 2+\mathrm{dd} 3 * \mathrm{sl} * \mathrm{~h}(\mathrm{i})\)
601 Continue
Return
End

This subroutine is used to calculate the branch current, voltage and torque for the generators.
Subroutine torque(Rit,Lii, Vm,Te,G,ww,power,iback,imot)
Common/bl/Vb(5,16),e(16),h(4),gg(4),t
Common/b2/Cd(16), \(\mathrm{Rb}(16), \mathrm{Xb}(16), \mathrm{sl}, \mathrm{w}, \mathrm{V} 1\), ire, slr, sli Common/b3/Cbt(2,16), Vdrop(5), \(\mathrm{Rba}(3,3)\)
Common/b4/Cd1(5), \(\mathrm{Cd} 2(5), \mathrm{Rbb}(16,16), \mathrm{Xbb}(16,16)\)
Common/b18/Cm1 \((3,4,6), \mathrm{Cm} 2(3,4,6)\)
Common/b16/Con1(5,4,5),Clm(5,4,5),Cml(5,5,4),xLl(5,3),xopen,xclose
Common/b19/cm( 5,5 ), \(\mathrm{cma}(5,5), \mathrm{cmb}(5,5), \mathrm{Cmast}(6,5), \mathrm{dd}(5,5)\)
Common/b32/isw,iti(5),cb(5,16),Xba(3,3),Rload,Xload,srec,spwm
Real \(\operatorname{Rit}(5,5,5), \mathrm{Lii}(5,5,5), \mathrm{Vm}(5,5), \mathrm{Te}(5), \mathrm{zz}(5), \mathrm{Ct}(1,5)\),
\(+\quad G(3,5,5), v(5), w w(5)\)
Integer power,imot
Do 1 iy = 1,3
Determine if it is rectification or convertion.
If(power .EQ. 2) then
Updating the new dIm/dt
Do \(91 \mathbf{i}=1,5\)
vdrop \((i)=0.000\)
Do \(91 \mathrm{j}=1,5\)

1914 c Updating the new branch current and dib/dt
1915 Do \(115 \mathrm{i}=1,6\)
\(1916 \quad \mathrm{cb}(\mathrm{iy}, \mathrm{i})=0.000\)
\(1917 \quad \operatorname{Cd}(\mathrm{i})=0.000\)
1918 Do \(115 \mathrm{j}=1,5\)
\(1919 \quad \operatorname{cb}(\mathrm{iy}, \mathrm{i})=\mathrm{cb}(\mathrm{iy}, \mathrm{i})+\mathrm{Cmast}(\mathrm{i}, \mathrm{j}) * \mathrm{~cm}(\mathrm{iy}, \mathrm{j})\)
1920 If (power .EQ. 1) then
\(1921 \quad \operatorname{Cd}(\mathrm{i})=\operatorname{Cd}(\mathrm{i})+\operatorname{Cmast}(\mathrm{i}, \mathrm{j}) * \mathrm{dd}(\mathrm{i}, \mathrm{j})\)
1922
1923
1924
1925
1926 c
1927
1928 c
1929
1930
1931
1932 c
1933
1934
1935
1936

1950 c Find the transpose of the mesh current.
1951 Do \(301 \mathrm{i}=1,5\)
\(1952301 \quad \mathrm{Ct}(1, \mathrm{i})=\mathrm{cm}(\mathrm{iy}, \mathrm{i}) / \mathrm{ww}(\mathrm{iy})\)
1953 c Find the electric torque.
1954 Do \(351 \mathrm{i}=1,5\)
\(1955 \quad z z(i)=0.000\)
1956 Do \(351 \mathrm{j}=1,5\)
1957
                    \(\operatorname{vdrop}(\mathrm{i})=\operatorname{vdrop}(\mathrm{i})+\operatorname{Rit}(\mathrm{iy}, \mathrm{i}, \mathrm{j}) * \mathrm{~cm}(\mathrm{iy}, \mathrm{j})\)

Do \(110 \mathrm{i}=1,5 \quad 1908 \quad 110\)
\(\mathrm{v}(\mathrm{i})=\mathrm{Vm}(\mathrm{iy}, \mathrm{i})-\mathrm{vdrop}(\mathrm{i})\)
Do \(111 \mathrm{i}=1,5\)
\(\mathrm{Cd} 2(\mathrm{i})=0.000\)
Do \(111 \mathrm{j}=1,5\)
\(111 \quad \mathrm{Cd} 2(\mathrm{i})=\mathrm{Cd} 2(\mathrm{i})+\operatorname{Lii}(\mathrm{iy}, \mathrm{i}, \mathrm{j}) * \mathrm{v}(\mathrm{j})\)
endif
elseif(power .EQ. 2) then
\(\mathrm{Cd}(\mathrm{i})=\mathrm{Cd}(\mathrm{i})+\operatorname{Cmast}(\mathrm{i}, \mathrm{j}) * \mathrm{Cd} 2(\mathrm{j})\)
endif
115 Continue
Calculate the branch voltage for the synchronous machine.
If(power .EQ. 1) then
Resetting the matrix.
Do \(199 \mathrm{i}=1,3\)
\(199 \mathrm{Cm} 2(\mathrm{iy}, \mathrm{i}, \mathrm{i})=\mathrm{Cm} 2(\mathrm{i} y, \mathrm{i}, \mathrm{i})-\mathrm{xLl}(\mathrm{iy}, \mathrm{i})\)
endif
c Calculate Cmast*Ib.
Do \(201 \mathrm{i}=1,4\)
\(\mathrm{Rb}(\mathrm{i})=0.000\)
Do \(211 \mathrm{k}=1,6\)
\(211 \quad \mathrm{Rb}(\mathrm{i})=\mathrm{Rb}(\mathrm{i})+\mathrm{Cml}(\mathrm{iy}, \mathrm{i}, \mathrm{k}) * \mathrm{cb}(\mathrm{iy}, \mathrm{k})\)
201 Continue
Do \(221 \mathrm{i}=1,4\)
\(\mathrm{Xb}(\mathrm{i})=0.000\)
Do \(241 \mathrm{k}=1,6\)
\(\mathrm{Xb}(\mathrm{i})=\mathrm{Xb}(\mathrm{i})+\mathrm{Cm} 2(\mathrm{iy}, \mathrm{i}, \mathrm{k}) * \mathrm{Cd}(\mathrm{k})\)
221 Continue
Do \(251 \mathrm{i}=1,4\)
\(251 \quad \mathrm{Vb}(\mathrm{iy}, \mathrm{i})=\mathrm{Rb}(\mathrm{i})+\mathrm{Xb}(\mathrm{i})\)
If it is in re-generation, generator 1 and 2 is stationary,
so their output torque is zero, hence, the torque is unnecessary to calculate.
If(power .EQ. 2 .AND. iy .NE. 3 .OR. imot.EQ. 1) go to 1
If(power .EQ. 1 .AND. imot.EQ. 1 .AND. iy .EQ. 3) go to 1
\(1 \quad \mathrm{zz}(\mathrm{i})=\mathrm{zz}(\mathrm{i})+\mathrm{G}(\mathrm{iy}, \mathrm{i}, \mathrm{j}) * \mathrm{~cm}(\mathrm{i}, \mathrm{j})\)
\(\mathrm{Te}(\mathrm{iy})=0.000\)
Do \(401 \mathrm{j}=1,5\)
\(401 \quad \mathrm{Te}(\mathrm{iy})=\mathrm{Te}(\mathrm{iy})+\mathrm{Ct}(1, \mathrm{j}) * \mathrm{zz}(\mathrm{j})\)
\(\mathrm{Te}(\mathrm{iy})=\mathrm{abs}(\mathrm{Te}(\mathrm{iy})\) )
1 Continue
Return
End

1968 c This subroutine is written to calculate the branch current and
1980 c
\(1981 \quad \mathrm{v}(1)=0.000\)
\(1982 \quad \mathbf{v}(2)=0.000\)
1983 Do \(90 \mathrm{i}=1,2\)
\(1984 \quad\) Do \(90 \mathrm{j}=1,2\)
\(1985 \quad \mathbf{v}(\mathrm{i})=\mathbf{v}(\mathbf{i})+\mathrm{a}(\mathrm{n} 1, \mathbf{i}, \mathrm{j}) * \mathrm{~cm}(\mathrm{n} 1, \mathrm{j})\)
2004 If(n1 .EQ. 4) then
2005 c Calculate Rba*Ib
2006
2007
\(2009210 \quad \mathrm{Rb}(\mathrm{i})=\mathrm{Rb}(\mathrm{i})+\mathrm{Rba}(\mathrm{i}, \mathrm{k}) * \mathrm{cb}(\mathrm{n} 1, \mathrm{k})\)

\section*{201 Continue}

Do \(221 \mathrm{i}=1, \mathrm{n} 3\)
\(\mathrm{Xb}(\mathrm{i})=0.000\)
```

 Do 241k=1,n3
 thyristors is tumed on for rectification. Also, change

```
2060 If(icom .EQ. 1) go to 500
241 Xb(i)= Xb(i)+Xbb(i,k)*Cd(k)
2 2 1 ~ C o n t i n u e
            If(power .EQ. 1) then
                Do 1i=1,n3
            Vb(n1,i)=Rb(i)+Xb(i) - e(i)
            elseif(power .EQ. 2) then
                Do 2i=1,n3
                Vb(n1,i)=Rb(i)+Xb(i)
            endif
    endif
    Return
    End
        This subroutine program is written to determine which
        the meshes accordingly.
        Subroutine rect(Vm,Rmm,Lmm,Lii,mesh1,mesh2,mm,ipold,icond,tsi,
        +
            iback,jclose)
        Common/bl/Vb(5,16),e(16),h(4),gg(4),t
        Common/b2/Cd(16),Rb(16),Xb(16),sl,w,V1,ire, slr, sli
        Common/b9/icio(3), icirc(3), int
        Common/b10/nire, inter, ipass(2), iooo, ibbb
        Common/b19/cm(5,5), cma(5,5), cmb(5,5),Cmast(6,5),dd(5,5)
        Common/b28/dumm,ion,Vfr(6),max,trig,itrg,ioni
        Common/b29/idis,cbi(16),tsis,icom
        Real Vm(5,5), Rmm(5,5,5), Lmm(5,5,5), Lii(5,5,5)
        Integer mesh1, mesh2, mm(4), ipold(2), icond, jclose, iox
        Determine if it is the commutation interval, if it is,
    c Determine which thyristor is forward biased.
        Vfr(1)= Vb(iback,1) - Vb(iback,2)
        Vfr(2)=Vb(iback,1) - Vb(iback,3)
        Vfr(3)=Vb(iback,2)-Vb(iback,3)
        Vfr(4) = - Vfr(1)
        Vf(5)=-Vfr(2)
        Vfr(6) = - Vfr(3)
        Do 10i=1,6
        If(ion.EQ. i) go to }1
        If(Vfr(i).GE. Vfr(ion)) ion = i
        If(close .EQ. 1) then
        If(ion .EQ. 1) then
        icirc(l)=1
        icirc(3)=0
        icirc(2)=6
        elseif(ion .EQ. 2) then
        icirc(3)=2
        icirc(2)=0
        icirc(1)=1
            elseif(ion.EQ. 3) then
                icirc(2)=3
        icirc(1)=0
        icirc(3)=2
            elseif(ion.EQ. 4) then
        icirc(1)=4
        icirc(3)=0
        icirc(2)=3
```

2091
elseif(ion .EQ. 5) then
$\operatorname{icirc}(3)=5$
$\operatorname{icirc}(2)=0$
icirc(1) $=4$
elseif(ion .EQ. 6) then
$\operatorname{icirc}(2)=6$
$\operatorname{icirc}(1)=0$
$\operatorname{icirc}(3)=5$
endif
ioni $=$ ion
go to 500
endif
If(t .EQ. 0.000) then
ioni $=$ ion
Do $1 \mathrm{i}=1,3$
icio(i) $=\operatorname{icirc}(\mathrm{i})$
Call recmesh(mesh1,mesh2,icond)
If(icond .EQ. 1) then
$\mathrm{mm}(1)=$ mesh 1
$\operatorname{mm}(2)=$ mesh2
$\mathrm{mm}(3)=\mathrm{ipass}(1)$
$\mathrm{mm}(4)=\operatorname{ipass}(2)$
elseif(icond .EQ. 2) then
$\mathrm{mm}(1)=$ mesh 1
$\mathrm{mm}(2)=13$
$\mathrm{mm}(3)=$ ipass (1)
$\mathrm{mm}(4)=7$
endif
$\mathrm{Vm}(5,2)=0.000$
$\mathrm{cm}(5,2)=0.000$
Do $31 \mathrm{i}=1,2$
Do $31 \mathrm{j}=1,2$
If(i.EQ. 1 .AND. j .EQ. 1) go to 31
$\operatorname{Rmm}(5, \mathrm{i}, \mathrm{j})=0.000$
$\operatorname{Lmm}(5, i, j)=0.000$
$\mathrm{Lii}(5, \mathrm{i}, \mathrm{j})=0.000$
Continue
go to 500
elseif(ion .EQ. ioni) then
go to 1000
elseif(ion .NE. ioni .AND. t.GT. sli .AND. itrg .EQ. 1)
then
tsi $=0.000$
irg $=0$
endif
Test if the thyristor is both forward biased and trigged.
If(tsi .GE. trig .AND. itrg .EQ. 0) then
If(ion .EQ. 1) $\operatorname{icirc}(1)=7$
If(ion .EQ. 2) $\operatorname{icirc}(3)=8$
If(ion .EQ. 3) icirc(2)=9
If(ion .EQ. 4) $\operatorname{icirc}(1)=10$
If(ion .EQ. 5) $\operatorname{icirc}(3)=11$
If(ion .EQ. 6) icirc(2) $=12$
ioni $=$ ion
$\max =1$
icom $=1$
itrg $=1$
endif
If(max .EQ. 2) then
icom $=0$
$\max =1$
elseif(t .EQ. 0.000 .OR. jclose .EQ. 1) then

```
2 1 6 3 ~ c ~ d e t e r m i n e ~ t h e ~ c o l u m n ~ i n ~ t h e ~ m a s t e r ~ m a t r i x ~ u s e d . ~
2164 Call recmesh(mesh1,mesh2,icond)
2165 c If two meshes is formed, commutation occurs.
2166 c Two meshes are conducting.
```

2153

2162 c If new thyristor is firing, call the subroutine recmesh to

```
            max =1
            elseif(max NE. 1) then
            go to }100
endif
icond = 1
Do 20 i=1,2
ipold(i) = ipass(i)
Do 21 i=1,3
icio(i) = icirc(i)
If(icond.EQ. 1) then
                                If(t .EQ. 0.000 .OR. jclose.EQ. 1)then
            mm(1) = mesh1
            mm(2) = mesh2
            mm(4) = ipass(2)
            jclose =0
        else
        mm(1)=mesh2
        mm(2) = mesh1
        mm(3) = ipass(2)
        mm(4) = ipass(1)
        jclose =0
        endif
    If one mesh is formed, normal conduction pattern.
    Only one mesh is conducting.
    elseif(icond.EQ. 2) then
        mm(1) = mesh1
        mm(2) = 13
        mm(3) = ipass(1)
        mm(4) = 7
        jclose=0
        Vm(5,2)=0.000
        cm}(5,1)=\textrm{cm}(5,2
        cm}(5,2)=0.00
        Do 30 i=1,2
        Do 30j=1,2
        If(i .EQ. 1 .AND.j.EQ. 1) go to 30
        Rmm(5,i,j) = 0.000
        Lmm(5,i,j)=0.000
        Lii(5,i,j)=0.000
        Continue
            endif
            Retum
            End
            This subroutine is written to calculate the discontinuous
                    of the current waveform.
                    Subroutine dis(jint,tsi)
                    Common/bl/Vb(5,16),e(16),h(4),gg(4),t
                        Common/b2/Cd(16),Rb(16),Xb(16),sl,w,V1,ire, slr, sli
                    Common/b9/icio(3), icirc(3), int
                        Common/b28/dumm,ion,Vfr(6),max,trig,itrg,ioni
                        Common/629/idis,cbi(16),tsis,icom
                        Common/b32/isw,it(5),cb(5,16),Xba(3,3),Rload,Xload,srec,spwm
                    Real tsi
                            Integer jint
                            If(jint .EQ. 2)then
                                jint =0
```

2244 c If current discontinuity occurs, calculate the time when
2245 c the current drops to zero.
2246 If(idis .NE. 0) then
$2247 \quad$ slr $=\operatorname{abs}(\mathrm{cbi}(\mathrm{idis})) * \mathrm{~s} 1 /(\mathrm{abs}(\mathrm{cbi}(\mathrm{idis}))+\operatorname{abs}(\mathrm{cb}(5, \mathrm{idis})))$
2248
2249
2250
2251
2252
2253
2254
2255 c
2256 c
225740
2258
2259

2277
2278
2279
2280
2281
2282
2283
2284
2285 c
2286 c
2287
2288
2289
2290
2291 c
2292 c values stored in icio(3). The values stored in icio(3) records
2293 c respectively the conduction pattem in each poles in the
2294 c
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
$\mathrm{itrg}=0$
tsi $=$ tsi -tsis
endif
sl = sli
80 Return
End
This subroutine is written to choose the correct pattern
of conduction for the rectifier.
Subroutine recmesh (mesh1, mesh2, jij)
Common/b8/zal, za2, za3, zbl, zb2, zb3, aa, bb
Common/b9/icio(3), icirc(3), int
Common/b10/nire, inter, ipass(2), iooo, ibbb
Find out the required meshes according to the
respectively the conduction pattern in each poles in the
converter.
mesh1 $=0$
mesh2 $=$ mesh 1
ipass(1) $=0$
ipass(2) = ipass(1)
If(icio(1) .EQ. 1 .AND. icio(2) .EQ. 6) then
mesh2 $=$ mesh1
mesh1 $=1$
ipass(2) $=$ ipass(1)
ipass $(1)=1$
endif
If(icio(1) .EQ. 1 .AND. icio(3) .EQ. 2) then
mesh2 $=$ mesh1
$\operatorname{mesh} 1=2$
ipass(2) $=$ ipass(1)
ipass(1) $=3$
endif
If(mesh2 NE. 0) go to 2222
If(icio(2) .EQ. 3 .AND. icio(1) .EQ. 4) then
mesh2 $=$ mesh1
mesh1 $=3$
ipass(2) = ipass(1)
ipass $(1)=4$
endif
If(mesh2 NE. 0) go to 2222
If(icio(2) EQ. 3 .AND. icio(3) .EQ. 2) then
mesh2 $=$ mesh1
meshl $=4$
ipass(2) $=$ ipass(1)
ipass $(1)=2$
endif
If(mesh2 NE. 0) go to 2222
If(icio(3) .EQ. 5 .AND. icio(1) .EQ. 4) then
mesh2 $=$ mesh 1
mesh1 $=5$
ipass(2) $=$ ipass (1)
ipass(1) $=6$
endif
If(mesh2 .NE. 0) go to 2222
If(icio(3) .EQ. 5 .AND. icio(2) .EQ. 6) then
mesh2 $=$ mesh1
meshl $=6$
ipass(2) $=$ ipass(1)
ipass(1) $=5$
endif

2339
2340 2341 2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371 c
2372 c
2373
2374
2375
2376
2377
2378
2379 c 2380 c

- 2381

2382
2383
2384 c
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400

If(mesh2 NE. 0) go to 2222
If(icio(1).EQ. 7) then
mesh2 $=$ mesh1
meshl $=7$
ipass(2) $=$ ipass(1)
ipass(1) $=3$
elseif(icio(3).EQ. 8) then
mesh2 $=$ mesh1
mesh1 $=8$
ipass(2) $=$ ipass(1)
ipass(1) $=2$
elseif(icio(2) EQ. 9) then
mesh2 $=$ mesh1
mesh1 $=9$
ipass(2) $=$ ipass(1)
ipass $(1)=4$
elseif(icio(1).EQ. 10) then
mesh2 = mesh1
meshl = 10
ipass(2) $=\operatorname{ipass}(1)$
ipass $(1)=6$
elseif(icio(3) .EQ. 11) then
mesh $2=$ mesh 1
mesh1 $=11$
ipass(2) = ipass(1)
ipass $(1)=5$
elseif(icio(2).EQ. 12) then
mesh2 $=$ mesh 1
mesh1 $=12$
ipass(2) $=$ ipass(1)
ipass(1) =1
endif
Determine how many meshes are consider. If mesh2 $=0$
which means 1 mesh is considered.
If(iji .EQ. 1.AND. mesh2 .EQ. 0) then
$\mathrm{jij}=2$
endif
2222 Return
End
This subroutine is written to choose the correct pattern
of conduction.
Subroutine choose(mesh1, mesh2, ino, ifree, ioy, ifn, icio, ipass)
Integer ifree(3), ifn(3), mesh1, mesh2, ioy, ipass(2), icio(3)
Find out the required meshes.
mesh1 $=0$
mesh2 $=$ mesh1
ipass(1) $=0$
ipass(2) $=$ ipass(1)
If(icio(1).EQ. 1.AND. icio(2) .EQ. 3 .AND. $\mathrm{icio}(3)$.EQ. 5)then
ino $=1$
ioy $=1$
go to 2222
elseif(icio(1).EQ. 4 .AND. icio(2) .EQ. 6 .AND.
icio(3).EQ. 2) then
ino $=1$
ioy $=1$
go to 2222
else
ino $=0$
endif

2401

```
If(icio(1).EQ. 1 .AND. icio(2) .EQ. 6) then
    mesh2 \(=\) mesh 1
    mesh1 \(=1\)
    ipass(2) \(=\) ipass(1)
    ipass(1) = 1
endif
If(icio(1) .EQ. 1 .AND. icio(3) .EQ. 2) then
    mesh2 \(=\) mesh1
    meshl \(=2\)
    ipass(2) = ipass(1)
    ipass(1) \(=3\)
endif
If(mesh2 .NE. 0) go to 2222
If(icio(2) .EQ. 3 .AND. icio(1) .EQ. 4) then
    mesh2 \(=\) mesh 1
    mesh1 \(=3\)
    ipass(2) \(=\) ipass(1)
    ipass \((1)=4\)
endif
If(mesh2 NE. 0) go to 2222
If(icio(2) EQ. 3 .AND. icio(3) EQ. 2) then
    mesh2 \(=\) mesh1
    meshl \(=4\)
    ipass(2) \(=\) ipass(1)
    ipass(1) \(=2\)
endif
If(mesh2 .NE. 0) go to 2222
If(icio(3) .EQ. 5 .AND. icio(1) .EQ. 4) then
    mesh2 \(=\) mesh1
    meshl \(=5\)
    ipass(2) \(=\) ipass(1)
    ipass \((1)=6\)
endif
If(mesh2 NE. 0) go to 2222
If(icio(3) .EQ. 5 .AND. icio(2) .EQ. 6) then
    mesh2 \(=\) mesh1
        meshl \(=6\)
        \(\operatorname{ipass}(2)=\operatorname{ipass}(1)\)
        ipass \((1)=5\)
    endif
    If(mesh2 .NE. 0) go to 2222
    Continue
    Calculate the freewheeling diode conducting.
    If(icio(1).EQ. 7) then
    \(\mathrm{If}(\mathrm{icio}(2) . \mathrm{EQ} .3)\) then
        mesh2 \(=\) mesh1
        mesh1 \(=7\)
        ipass(2) \(=\) ipass(1)
        ipass(1) \(=4\)
        endif
        If(icio(3) .EQ. 5)then
        mesh2 \(=\) mesh1
        meshl \(=8\)
        ipass(2) \(=\operatorname{ipass}(1)\)
        ipass \((1)=6\)
    endif
    endif
    If(mesh2 .NE. 0) go to 2222
    If(icio(3).EQ. 8) then
        If(icio(1).EQ. 4) then
```

2461	mesh2 $=$ mesh1
2462	mesh1 $=9$
2463	ipass(2) = ipass(1)
2464	ipass $(1)=6$
2465	endif
2466	If(icio(2).EQ. 6)then
2467	mesh $2=$ mesh 1
2468	mesh $1=10$
2469	ipass(2) = ipass(1)
2470	ipass(1) $=5$
2471	endif
2472	endif
2473	If(mesh2 .NE. 0) go to 2222
2474	If(icio(2).EQ.9) then
2475	If(icio(1) EQ. 1) then
2476	mesh $2=$ mesh 1
2477	mesh $1=11$
2478	ipass (2) = ipass(1)
2479	ipass(1) $=1$
2480	endif
2481	If(icio(3).EQ. 5) then
2482	mesh $2=$ mesh 1
2483	mesh1 $=12$
2484	ipass(2) = ipass(1)
2485	ipass(1) $=5$
2486	endif
2487	endif
2488	If(mesh2 .NE.0) go to 2222
2489	If(icio(1).EQ. 10) then
2490	If(icio(3) .EQ. 2) then
2491	mesh $2=$ mesh 1
2492	meshl $=13$
2493	ipass(2) = ipass(1)
2494	ipass (1) $=3$
2495	endif
2496	If(icio(2).EQ. 6)then
2497	mesh $2=$ mesh 1
2498	meshl $=14$
2499	ipass(2) = ipass(1)
2500	ipass(1) $=1$
2501	endif
2502	endif
2503	If(mesh2 .NE.0) go to 2222
2504	If(icio(3) .EQ. 11) then
2505	If(icio(1) .EQ 1) then
2506	mesh $2=$ mesh 1
2507	meshl $=15$
2508.	ipass(2) = ipass(1)
2509	ipass $(1)=3$
2510	endif
2511	If(icio(2).EQ. 3)then
2512	mesh $2=$ mesh 1
2513	mesh1 $=16$
2514	ipass(2) = ipass(1)
2515	ipass $(1)=2$
2516	endif
2517	endif
2518	If(mesh2 . NE. 0) go to 2222
2519	If(icio(2) .EQ. 12) then
2520	If(icio(3) .EQ. 2) then
2521	mesh2 = mesh1
2522	mesh $1=17$

 ipass(2) \(=\) ipass(1)
 $$
\text { ipass }(1)=2
$$

> endif

If(icio(1).EQ. 4)then
mesh2 $=$ mesh1
mesh1 $=18$
ipass(2) $=$ ipass(1)
ipass $(1)=4$
endif
endif
If(mesh2 .NE. 0) go to 2222
If(icio(1).EQ. 7) then
If(icio(2) EQ. 12) then mesh2 $=$ mesh 1
meshl $=19$
$\operatorname{ipass}(2)=\operatorname{ipass}(1)$ ipass $(1)=4$
endif
If(icio(3) .EQ. 8) then mesh $2=$ mesh 1
mesh1 $=20$
ipass (2) $=$ ipass (1)
ipass(1) $=6$
endif
endif
If(mesh2 .NE. 0) go to 2222
If(icio(2).EQ. 9) then
If(icio(1).EQ. 10) then mesh $2=$ mesh 1
mesh $=21$
ipass(2) $=\mathrm{ipass}(1)$
ipass $(1)=1$
endif
If(icio(3) .EQ. 8) then
mesh2 $=$ mesh 1
mesh $1=22$
ipass(2) $=$ ipass(1)
ipass $(1)=5$
endif
endif
If(mesh2 NE. 0) go to 2222
If(icio(3).EQ. 11) then
If(icio(1).EQ. 10) then
mesh2 $=$ mesh1
mesh1 $=23$
ipass(2) = ipass(1)
ipass(1) $=3$
endif
If(icio(2) .EQ. 12) then mesh2 $=$ mesh1
mesh1 $=24$
ipass(2) $=$ ipass(1) ipass $(1)=2$
endif
endif
2222 Do $1 i=1,3$
If(icio(i).GT. 6) then
ifree $(\mathrm{i})=1$
ifn(i) $=$ icio(i)
else
ifree $(\mathrm{i})=0$
ifn $(\mathrm{i})=0$

2585		endif
2586	1	Continue
2587		Return
2588		End
2589		
2590		Subroutine rearr(ipold, ipass, mm, mesh1, mesh2)
2591		Integer ipass(2), ipold(2), mm(4)
2592		If(ipass(1) .EQ. ipold(2) .OR. ipass(2) .EQ. ipold(1)) then
2593		$\operatorname{mm}(1)=$ mesh 2
2594		$\operatorname{mm}(2)=m e s h 1$
2595		dummy $=$ ipass(1)
2596		ipass(1) = ipass(2)
2597		ipass(2) = dummy
2598		$\mathrm{mm}(3)=\mathrm{ipass}(1)$
2599		$\mathrm{mm}(4)=$ ipass(2)
2600		else
2601		$\mathrm{mm}(1)=$ mesh 1
2602		$\operatorname{mm}(2)=\operatorname{mesh} 2$
2603		$\mathrm{mm}(3)=$ ipass(1)
2604		$\mathrm{mm}(4)=\mathrm{ipass}(2)$
2605		endif
2606		Return
2607		End
2608		
2609		Subroutine check(ifree, ifn, cb, icirc, cm, ichh, mm, iq)
2610		Integer ifree(3), ifn(3), icirc(3), ichh, mm(4)
2611		Real cb(5,16) $\mathrm{cm}(5,2)$
2612		$\mathrm{kk}=0$
2613		Do $1 \mathrm{i}=1,3$
2614		If(ifree(i) .EQ. 1) then
2615		kk $=1$
2616		ix $=4+\mathrm{ifn}(\mathrm{i})$
2617		If(cb(5,ix) .LE. 0.05 .AND. icirc(i) ,GT. 6) then
2618		icirc(i) $=\mathrm{icirc}(\mathrm{i})-6$
2619		ifree(i) $=0$
2620		$\mathrm{ifn}(\mathrm{i})=0$
2621		kk $=0$
2622		ichh $=1$
2623		endif
2624		endif
2625	1	Continue
2626		If(kx .EQ. 1) then
2627		If($\mathrm{cm}(5,1)$.GT. 0.05 .AND. $\mathrm{cm}(5,2)$.GT. 0.05) then
2628		go to 100
2629		else
2630		Do $2 \mathrm{i}=1,2$
2631		If $\operatorname{cm}(5, \mathrm{i})$.LE. 0.05$)$ then
2632		$\mathrm{iq}=\mathrm{i}$
2633		$\mathrm{mm}(\mathrm{i})=25$
2634		ichh $=2$
2635		endif
2636	2	Continue
2637		endif
2638		endif
2639	100	Return
2640		End

$\%$

