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Synopsis: M.Phil Thesis by D. Belahrache

Studies of Air Cored Toroidal Inductors

The thesis 1s mainly concerned with some optimum designs for air cored toroidal
inductors. It also describes theoretical and practical investigations of the
inductance and losses of toroidal cage coills with the optimum Shafranov D
shape.
Alxr cored toroidal 1?ductors are used in many power electronics applications.
Unlike soclencids they do not generate high external magnetic fields that can
cause interference in other neighbouring components. They are also preferred
to 1ron cored inductors because they do not have saturation problems.
The thesis has three main sections. The first outlines two different methods
giving a family of optimum shapes for the cross section of an ideal thin
toroidal inductor. A Fortran computer program was prepared for the numerical
calculation of the optimum shape, its perimeter lerngth, and the ainductance of
the whole toroad. The second part deals with the problem of winding the
greatest possible 1nductance with a given length of wire for single layer
toroads. It treats the prcblem of toroids with square, circular and D shape
cross sections. In the case of D shape cross sections, the optimum radius-
ratio has been determined. This means that the most economical desaign for
single layer toroids,with both optimum turns and optimum shape, 1s obtained.
In the third part, the toroidal cage coil, which 1s a special type of toroidal
inductorﬁ/that was 1nvented to overcome practical manufacturing problems,
exploits the Shafranov D shape for maxaimum field energy. Five cages have

)
been prepared to test the accuracy of a theoretical inductance formula. Loss
calculations and measurements are also given for alternating currents and the

frequency-squared dependance of proximity effects 1s shown.
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CHAPTER 1
INTRODUCTION

Inductors [1,2,3]) are one of the essential elements which
play important roles in electrical networks. They are
passive components and have the property of opposing chan-

ges of currents flowing through them.

There is a wide variety of inductance coil types ranging
from the large low fregquency smoothing iron cored choke to
the tiny high frequency tuning air cored inductor. Induc~
tors may also be classified according to core mater:ial (air
or iron), frequency (audio or radio), method of winding
(solenoid, toroid, spiral, etc.), or application. Unlike
resistors, capacitors and other components, inductors are
generally madewthe circuit designer. Nevertheless we can
find miniature components with standardised values (100 nH

to 100 mH) for use in telecommunication circuits ([4].

The rapid progress in electronics with the advent of inte-
grated circuits brought a big trend towards size reduction
of circuitry, but the physical form of inductors as well as
other magnetic components sometimes causes problems. Des-
pite some successful attempts to replace or avoid inductive
reactances, inductors remain essential circuit elements.
For some applications there is no alternative but to con-

centrate on inductors themselves and faind optimum designs.




One area of interest where inductors are considered as
important circuit elements, and are still widely used, is
the power electronics field. Here are a few examples of

their uses [5]:

- To smooth the current in filters.

~ To 1limit the rate of current rise in thyristors.
- To turn off thyristors in resonant commutation circuats.
Power electronics inductors, which are designed for low
frequency applications, are generally large in physical
dimensions because they are reguired to have large induc-
tances and carry high currents. The inductance and the
current rating are then the main factors which characterise
an inductor. The first depends on the type of winding and
core material, and the second defines the choice of the
diameter of wire. Usually, the choice of an inductor |is
due to technical constraints. 1Iron cored inductors, for
example, are avoided by some engineers because they have
saturation problems. Some air-cored inductors, like scle-
noids, generate high magnetic fields that may interfere
with other neighbouring components, for instance causing

unwanted firings of thyristors.

one good solution, that has proved efficient in power elec-
tronics circuits, 1s the air-cored toroidal inductor which
is becoming widely used. These coils have no saturation
problems and confine their magnetic field very well. In-

deed it is theoretically possible to wind a toroid with no

external field whatever.




We can imagine the importance of toroidal windings when we
know that the UK market required approximately £10m of

toroidal coils and transformers in 1985 [6].

However, from an economic point of view, these inductors
seem to have a worse position compared with simpler wind-
ings. They are more voluminous, and the manufacturing is
not as easy as for solenoids. These disadvantages carry

cost penalties.

Attempts are being made to reduce the labour content by
automating the winding process. Optimisation studies are
also being carried out to find the most economical designs
and to find easier ways of winding toroids, 1like, for

example, the toroidal cage coil [7].




CHAPTER 2

OPTIMUM DESIGNS FOR IDEAL THIN TOROQOIDS

2.1 Introduction

In 1960, Leites [8], who was working on high voltage power
reactors for use in long distance transmission lines,
studied the problem of winding torocidal reactors with Ao
bending stresses. His calculations led him to a second
order differential equation from which he plotted the curve
of the cross-section shape of the toroid using a step by

step graphical method.

Working in the context of research on thermonuclear re-
actors like the tokamak type, File et al [9], an 1971, used
the same method and obtained the expression of the first
derivative of the curve which they integrated numerically.
After their work, the shape is sometimes referred to as the
"Princeton-D", but it is better known as the "D-shape"

because 1t resembles the letter D.

A year later, Shafranov [10] examined the‘problem of find-
ing the optimum shape of an ideal toroidal coil to ensure
maximum field energy for a fixed length of coil material.
He arrived at the same result as File et al, which consist-

ed of a family of shapes depending on the ratio of inner to

outer radii of the toroid.




The two methods are reviewed in the next two sections.

Ten years after Shafranov, Murgatroyd [11] showed that
their result, and particularly as stated by Shafranov,
could be used in the practical design of inductors. He dad
@ further study including optimum shapes for alternating

currents.

2.2 Magnetic Field Energy Method

A toreoidal coil is a long solenoid bent into a circular
shape. 1In an ideal thin toroidal «coil the waindings are
thin in comparison with the overall dimens:ions, and the
turns are very close. Application of Ampere's theorem to
circular paths shows that all the magnetic field is con-
fined within the coil (not completely true for practical
coils). At a radius r from the mean axis of the toroid, it

is given by

B = MolNI (2.2.1)
Z2Ar

The stored magnetic field energy 1s given by

111® _ / slav (2.2.2)
2 2;6

It is evadent that an optimum toroid must have an eguat-

orial plane of symmetry because one half cannot perform




better than the other. A general formula can be derived
for the inductance of a toroidal «c¢oil with an arbitrary
cross—-section, but with a plane of symmetry that coincides

with the surface z = o0, as dimensioned in Fig. 2.1.
Combining equations (2.2.1) and (2.2.2) yields

L PN z(r) dr (2.2.3)

From a similar equation and the expression of the perimeter
of the cross-section, Shafranov recognized an isoperimetric
problem of the calculus of variations [12]. Following his
theory:, the curve z(r), which defines the optimum shape,

has vertical tangents at both ends.

Although they did not affect the final result, Murgatroyd
noticed that any lengths of finite straight portions that
the shape may possibly have at the inner and outer radii
had not been included by Shafranov, and so added them in

the calculations.

The perimeter of the cross-section is thus given by

c
1 = 21/- V1 + 52 dr + 2 (z{(b) + z(c)) (2.2.4)
b
where s = dz is the slope of the curve at a point (r, 2z)

dar




Equation (2.2.4) can be converted to the pure integral

[
1l = 2/ [Vl + 52 + 2 (]’.‘S + Z —(b'l‘Cls)] ar {2.2.5)
2
b

c =-Db

The problem is then the determination of the function

2z = z(r) for which the integral

r

c
GLz] =// z{r} dr (2.2.6)
b

takes the largest value subject to the conditions

c-b

¢
K{z] = // {J1+52 + 2 {rs+z - E%E s)] dr (2.2.7)
b

and

at r=b and r = ¢ (2.2.8)

oo

RN
"
8

To deal with this isoperimetric problem, we form the func-

tional

clz] +iK{z] = ‘/Eir) dr (2.2.9)
with

F(r) = é + A[Vl+52 + 2 (rs+z - E%E s) (2.2.10)
c~b

and write the corresponding Euler-Lagrange equation

F _d 3F _ 1 . x4 s = o (2.2.11)
?Z dr 3s r dr >
1l+s
whaich implies
de _ A4 (s (2.2.12)

r
1+s2
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Fig. 2.1 Ideal thin toroid with arbitrary but symmetrical

cross section.

el

Fig. 2.2 Appearance of the; optimum cross-section
shape of an ideal thin toroid.




Integrataing (2.2.12) we obtain the equation

dz _ + Ln{rc/k) {(2.2.13)
dar

V A% - La?(c/k)

The values of k and A are constants which are determined
from the conditions given by equation (2.2.6)

b we have A% - Ln?(b/k) = o (2.2.14)

at r

and at r c we have M - an(c/k) = o (2.2.15)

The solution of the system composed by equations (2.2.14)

and (2.2.15) yields

A= 1 Ln(b/c) {(2.2.16)
2
and k = Jbc (2.2.17)

The curve z(r) and its symmetrical are then given by the

expression
dz _ + Ln{ v bc/r) (2.2.18)
dr

vin(r/b)Ln(c/r)

We can easily notice that the curve has a maxaimum for
r = \Jbc. The solution of equation (2.2.18) is explained in

the last section of this chapter, but a first sketch of the

appearance of the curve z(r) is given 1in Fig. 2.2.




2.3 Mechanical Strength Method

Large toroidal windings are frequently wused in thermo-
nuclear fusion technology because they produce fields in
which the magnetic lines of forces close up on themselves
and provide good confinement for the plasma within the
working volume [13]. They are also used as current limit-

ing devices in high power transmission systems [8].

In this type of reactor, the high current in the windings
together with the magnetic field it creates produce forces
which tend to expand the coil. Because the forces are not
uniformly distributed, this kind of internal magnetic
pressure subjects the reactor to some bending stresses and
hence deformations. In fact the system tends to have a
state of equilibrium. It 1s possible to keep the windings
in position by using very strong structures, but this

method is very costly.

A better solution is to minimise the bending stresses by
choosing a toroid where the windings are in pure tension.
In other words, the cross-section of the torcid should have
a shape in such a way that the tension is the same all the

way round.

Along an arc dl, the force F (see Fig. 2.3) is related to

the radius of curvature R and the tension T, which has to

be constant, by the expression [14]

(2.3.1)

10




11

Since the force is like IdlB and B is proportional to 1

r
equation (2.3.1) becomes
PR = r (2.3.2)
where p is a constant.
The radius of curvature is given by [15]
R=+ (1+u%)3/2 (2.3.3)
du/dr
where u = dr is the inverse of the slope at a point (r,z)
dz
Combining equations (2.3.2) and (2.3.3) yields
p dr = + udu (2.3.4)
2= - —=173
r (1+u2)3 2
This equation can be integrated once to give
pln(r/q) = + 1/(1+u?)1/? (2.3.5)
where q is a constant
whence
1=4dz =+ Ln(r/q) (2.3.6)
u dr

\/pz-an(r/q)

This equation is exactly the same as equation (2.2.13}. It
is not a coincidence, but 1t is simply due to the fact that

stable equilibrium corresponds to minimum free energy {l6].
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Fig. 2.3 Forces acting on an element dil In a
toroidal reactor.
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Fig. 2.4 Optimum cross-section shape with

dimensionless quantities




2.4 Numerical Solution

As mentioned before, the solution for the shape of an
idealised constant tension coil was done by Leites via a
graphical technique, whereas File et al, Shafranov, and

Murgatroyd performed it using numerical methods. The analy

tical solution was given in 1976 by Gralnick and Tenney
[17] in terms of modified Bessel functions of the first

kind.

In his method, Murgatroyd used the Runge Kutta method [18]
and implemented it in an Algol program. At the ends of the
curve, where the slope is 1infinite and where the Runge
Kutta method cannot be applied, he employed analytical

approximations to equation [2.2.18].

In the present work, the fourth order Runge Kutta method
and the third order Taylor's expansion, for the ends of the
range where the slope is infinite, are implemented in a
Fortran 77 program on the Multics computer of Loughborough

University.

The program with details is given in Appendix 1.

The trapezoidal method is also implemented in the same
program to evaluate the inductance and the perimeter of the

cross-section.

For convenience and to have a more general result, the

numerical integration is performed in dimensionless quan-

13




tities depending on the radius ratio a= c/b (see Fig. 2.4).
All quantities are then expressed in terms of the inner

radius b and a function of .

32

L = Mo b s(a) (2.4.1)
2

1 = bP(Q) (2.4.2)

e = bE(Q) (2.4.3)

where S{(Q), P() and E{(Q) are successively the computed
dimensionless inductance, the dimensionless perimeter of
the cross—-section and the length of the straight portion

at = 1.

A family of computed D-shape cross-sections is given in

Fig. 2.5‘

14
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Fig. 2.5

G

A family of computed optimum toroid

cross-sections.
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CHAPTER 3

QPTIMUM DESIGNS FOR SINGLE LAYER TOROIDS

3.1 Introduction

There are many different ways of winding an inductor of a
given type to obtain a certain inductance value. Practical
engineers prefer one design to another for technical or
economic reasons. From the economic peoint of view, the
best design 18 one in which a minimum of coi1l material is

used.

In the last century, Maxwell [192] examined the problem of
the best way of winding a given length of wire into a sole-
noid to achieve the greatest inductance possible. BHis sol-
ution was a sguare cross-section solenoid in which the mean
turn diameter was 3.7 times the side of the square. Shaw-
cross and Wells {[20] used a better formula than Maxwell and
showed that the ratio should be 3. Finally, Brooks [21]
whose name is associated with the optimum design, showed
that the mean diameter is in fact 2.967 times the side of

the square.

The present chapter describes the first investigation of a
similar problem concerning single layer toroidal inductors.
Fig. 3.1 shows two different possibilities of winding a
single layer toroid with a fixed length of wire of a given

diameter. An infinite number of other ways 1is possible,

16




Fig. 3.1

Two different possibilities of winding single-layer

toroidal inductors using the same wire-length.

17




but it is obvious that any constructions in which the wires
are not in close contact at the inner radius must be less
efficient than constructions where the centre of the coil
is more compact. It is also noticeable that a gain of
inductance due to an increase of the number of turns will
be reduced by a decrease of the turn area, and vice versa.
Therefore there has to be a compromise, and the following
calculations show that the maximum inductance is achievable

if the number of turns is correctly chosen.

Optimum designs for toroids with square, circular, and D-

shape cross-sections are analysed and compared.

3.2 Toroids with Square Cross-sections

The general inductance formula of a single layer torocidal
inductor is given by

L = poN z(r) dr + o¥ (3.2.1)

" b r 8X

T

Here, the first term corresponds to the inductance of a
thin toroid, which is given by equation (2.2.3), and the
second term corresponds to the internal inductance fo/the

of the wire of length w.

The turns of the toroid touch around the circumference of a

circle of radius b (see Fig. 3.1}). This geometrical

arrangement allows us to write a wire contact condition

18



between the inner radius b, the wire diameter d, and the
number of turns N (see Fig. 3.2) for any given cross-

section; that is

b = d (3.2.2)
2 sin (K/N)

The inductance of a square section toroid, as dimensioned
in Fig. 3.3, may be obtained from equation (3.2.1) in which

z(r) is constant at l(c=-b)
2

n2 c
L, - Yo" (¢ -b) L (§) (3.2.3)
2R

The side of the square is given by

(3.2.4)

Zle

Introducing the wire contact condition and equation (3.2.4)

into equation (3.2.3), the inductance formula becomes

t =vo™ tn [1+ w sin (n/u)] + Mo (3.2.5)
NG R

For convenience, the inductance may be expressed 1in terms

of the scale ainductance

L = bd (3.2.6)

and the dimensionless wire-length

(3.2.7)

19



Fig. 3.2 Geometry of the wire contact at the inner radius.
f; “ 1 [ ﬁj
LL * ~ ' L\ -~
] R
i t
t.d b { ¢
e }
|
c _J
-
Fig. 3.3 Single-layer toroidal winding with square

cross-section.
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With these substitutions

s _ Nk Ln [1 + k_ sin (N/N)] + X (3.2.8)
4

L. 4 2N
Q

The dimensionless inductance LS/LO is plotted against the
number of turns N for a range of values of the dimension-
less wire-length k (see Fig. 3.4). Every curve 1s seen to
have a soft optimum. The optimum values of N, which are
integers, may easily be determined by tabulation. Plots of
the optimum numbers of turns and the maxamum dimensionless
inductances against k on a logarithmic scale show 1linear

dependences {(see Fig. 3.5 and Fig. 3.6).

A direct differentiation of the function in equation (3.2.5)
does not lead to an analytical solutaion. So the approx-

imation sin (K/N)=%K/N for N large is wused, and yields

L

5 Nk

L_o -——5‘4— Ln (1 +Ti]’_§_2) +
2N

k (3.2.9)
4

To find the value of N that maximises this function, we

make its derivative zero; that is

Ln{2x) - 4x + 2 = 0
or x = 1L Ln (2x}) -1 =20 (3.2.10)
4 2
where
1 =1+ _k (3.2.11)
2X 2

2N

21
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optimum number of turns, N

Fig.

dimensionless inductance,k 10
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3.4 Dimensionless inductance of a square-section toroid as
a function of the number of turns for fixed wire-lengths.
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3.5 Dependance of optimum number of square turns on
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The solution of equation (3.2.10) is achieved using the
iterative method. It is given in Appendix 2, and the
wanted value is

x = 0.1016 (3.2.12)

‘ Substituting x by its value in equation (3.2.11) yields

N = 0.6329 Jk (3.2.13)

When this is put back into equation (3.2.9), the best

inductance is given by

3/2

= 0.2522 k + 0.25 k (3.2.14)

3.3 Toroids with Circular Cross-sections

The inductance of a circular section toroid may be derived
from eqguation (3.2.1) or found in many textbooks [1,3]. As
dimensioned in Fig. 3.7, where z{r) has the expression of a

semi~-circle of diameter (c~b), it is given by

2
L, = uM [bte - Be J (3.3.1)

c - b = W (3.3.2)

24
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Fig. 3.7 Single-layer toroidal winding with circular

cross-section.
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Introducing this expression and the wire contact condition
given by equation (3.2.2) into egquation (3.3.1), the

inductance becomes

Lc= poN2 w + d - d ( d ]
2AN 2 sin (A/N) V2 sin (R/N)}‘'2 sin (A/N} TN
+ PV
ﬁ (3.3-3)

This formula may be rewritten in terms of the scale induc-
tance and the dimensionless wire length introduced pre-

viously

2

2 lx _ x 2kR kK (3.3.4)
=N [N * SIn(R/N) \/sinzm/m * Nsin(n/N) ]* I

hlb
0

0

The dimensionless inductance Lc/Lo is plotted against the
number of turns N, for a range of values of k (see Fig.
3.8). Here, also, every curve is seen to have a soft op-
timum. Similarly to the sguare section torecid, plots of
the maximum dimensionless inductances and the optimum num-
bers of turns against k, on a logarithmic scale, show

linear dependences (see Fig. 3.9 and Fig. 3.10).

For N large, sin (R/N} is approximated by (A/N) in eguation

(3.3.4)
2
Lo N [N "k - o2+ 2}:} *x (3.3.5)
L

o
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Fig. 3.10 Dependance of optimum number of circular turns on
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To f£ind the optimum number of turns, we make the derivative

Zero

2

N -2k =o0 (3.3.6)

2
3

which implies

N=J§_JF

or N = 0.8165 k1/2

(3.3.7)

When this is put back into equation (3.3.5), the best in-

ductance is given by

L

c _
o)

3/2 L 5.25 x

3.4 Toroids with D-shape Cross-sections

The inductance of a D-shape cross-section single layer
toroid, as dimensioned in Fig. 3.11, is given by
L. =vo N° b s(a) + Mo (3.4.1)

D % 8RN

where the first term corresponds to the inductance of a
thin toroid, which is given by eqguation (2.4.1), and the

second term is the internal inductance of the wire.

The inner radius 1s given from equation (2.4.2) by

b = (3.4.2)

1 W
B(@) Np({a)
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Introducing this expression into equation (3.4.1), the

inductance formula becomes

+ MoV (3.4.3)

Nw s(a) + Mo
P(Q) R

T

L. = (o]

Nl'C
b |

Rewriting it in terms of the scale inductance and the
dimensionless wire-length, the inductance is now given by

(3.4.4)

From equation (3.4.2) and the wire contact condition, b is
eliminated and sin{(A/N) is approximated by R/N, as in the
previous cases, to give

N o= (27 )1/2 (3.4.5)

P{Q)

Back into equation (3.4.6), the full inductance is now given

by

Lp ____(27‘)1/2‘ s(Q) k372

S(Q) + X
L_o B(a) 3/2 4

(3.4.6)

The inductance is maximised for a value of O that maximises

S(G)/P(G)a/z. This quantity 1is plotted in Fig. 3.12

against Ol using values obtained numerically by the computer

program given in Appendix 1. The peak occurs for Q= 5.3,

3/2

where S{a)/P () = 0.,1252 and P(Q) = 19.69.
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The optimum number of turns is thus given by
N = 0.5649 k/2 (3.4.7)

and the maximum inductance is

L
=2 = o0.3139 k32 4 0.25 (3.4.8)
Q

The D-shape correspondaing to (X = 5.3 is plotted on a square

grid in Fig. 3.13.

3.5 Comparison of Results

Best inductance L/Lo Optimum number

of turns
Square section 0.2522 k3/%+ 0.25k 0.6329 k1/?
circular section  0.2722 k°/2+ 0.25 x 0.8165 k1’2
D-shape section 0.3139 k3/2+ .25 k 0.5648 kl/2

The above table shows that the inductance of the best D-
shape toroid (comparing just the first term for large k)
is about 15% better than the inductance of the best circle
section toroid, which is 8% better than the inductance of
the best sguare section toroid. The most economic single
layer toroid is, therefore, a D-shape section toroid with
radius ratio Q= 5.3. On the other hand the best D-shape
toroid is seen to have fewer turns than the circular
toroid, which means it is a bit more voluminous. A graph
is given in Fig. 3.14 to help designing any of the three

optimum toroids.
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In practaice it is not always possible to use the most
economic design because it may not fit into the space
allowed in the electronic system. Nevertheless, the
previous study will heip engineers, if space is not a
problem, make the most economic design of single layer
toroids without getting any inferior design by trial and
error especially when the production is high. A direct
application of these results has already found its way 1in
the practical design of inductors for dI/dt limitation ain

a power electronics circuit [22].

The principal results of this chapter have been published

{23] and a reprint of the paper appears 1in Appendix 4.
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CHAPTER 4

THE D-SHAPE TOROIDAL CAGE INDUCTOR

4.1 Introduction

The development of new devices capable of controllang
larger currents has made possible a rapid advance in power
electronics. However, some difficulties are encountered
with the passive components required for this technology.
Inductors, in particular, sometimes present serious prob-
lems. As mentioned in Chapter 1, because of the high cur-
rents they carry, inductors (like solencids, for example),
generate high external magnetic fields that may interfere
with nearby electronic equipment. Inducteors can also have

saturation problems 1f they are iron cored.

A good solution to these problems is the air cored toreidal
inductor which is used in many power electronics circuits.
Unfortuntely, this type of inductor has manufacturing prob-
lems at the present time and cost disadvantages, 1if com=-
pared to solenoids. Nevertheless, attempts are being
carried out by specialists to overcome them and £find opt-

timum solutions.

One special air cored inductor, which has proved itself
useful in high current 'power electronics, is the toroidal
cage co1l |7]. It is a robust component that was developed

a few years ago at Brush Electrical Machines Ltd. and at
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Loughborough University. The first cages were constructed
with rectangular shaped windows and are used in thyristor
choppers for railway traction drives. Good formulae for
the inductance and power dissipation were derived and

tested for this type of cage [7].

In the present work, a similar study is carried out for
cages having the optimum D-shape of window. It will be
shown in the last section of this chapter that this type of
cage gives improved performance compared with the rectang-

ular cage.

4.2 Construction of the Cage

As shown in Plate 1, a toroidal cage inductor is made by
assembling six identical subcoils. They are Jjoined to-
gether in a well defined way so that the complete structure
loocks like a six turns toroid. Each subcoil 1s wound sep-
arately on a special former using a winding machine or a

slow running lathe.

The former, shown in Plate 2 and Fig. 4.1, consists of a
central wooden board which is cut to shape using a bandsaw
and a sander; the shape we are concerned with in this work
is the D-shape treated in Chapter 2. In order to secure
the winding against slipping, the central board is sand-
wiched between two wooden cheeks which are fixed to 1t by

means of small bolts. Slots and windows are successively

cut into the board and cheeks to alleow for tapes to pass
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Plate 1




Plate 2
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under and around the stack of wire, s0 as to

collapse and facilitate the easy removal of

prevent

the sub

after the winding operation. A hub and a keyway are

at the centres of the central board and chee

ks, then

any
coil
made

the

thin threaded end of a metal shaft, with a key fixed on it,

is passed through the former and secured with

Finally, the other end of the shaft is house

a big

d inside

mandrel of the winding machine and solid enamelled co

wire is wound onto the central board.

The first layer of the winding has n turns an
whole width of the central board which

H = nd

d covers
is given

(4.

nut.
the

pper

the

by
2.1)

where d is the diameter of the enamelled copper wire and n

is given from the relation

Li)

N=262i

i=1

or N 3n (n + 1)

where N is the total number of turns

Each of the following layers slotsinto the gr
layer below it and has thus one turn fewer.
Fig. 4.2, all the layers, with the last one

jJust one turn, constitute a regular pyramid.

(4.
(4.

of the ¢

ooves of
As shown

consisting

2.2)
2.3)

age.

the
in

of

The same process is repeated for the five other subcoils.

In each one the wires form a bunch with an envelope section

that is an equilateral triangle. As sketched ain Fig.

when the six subcoils are joined together and bound

glass tape, the constructed cage has a solid

with an hexagonal envelope section.

central

4.3'
with

limb
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Fig. 4.2

Fig. 4.3

Method of winding a subcoil

Plan cross-~section of cage inductor
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To\Egrden the structure and avoid short circuits the cage
could be impregnated with ligquid resin and heat treated.
This technique is used for production coils at Brush Elec-
trical Machines Ltd., but as similar facilities are not
available at Loughborough University three of our proto-

types were left without impregnation.

Different connections of the subcoils are possible. They

could be

-~ Series-connected to give the greatest inductance.

- Paralleled in pairs and the pairs series-~connected to
give one quarter the inductance with twice the current
rating.

— Paralleled in threes and the threes series-connected to
give one ninth the inductance with three times the cur-

rent rating.

4.3 Inductance Formula

In order to construct inductors with determined inductance
and current rating values, it is necessary to have in hang
accurate encugh formulae from which the design parameters
can be obtained. Inductance formulae of well known coils

are available in many textbooks, but for special types they

have to be derived theoretically and tested in practice.
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In the case of the toroidal cage with rectangular window
shape, for example, a working formula [7] was derived in
terms of the geometry and the number of turns using the
magnetic field energy method. A good agreement between

theory and experiment was obtained.

That successful method is extended here to toroidal cages
having the optimum D-shape of window. Similarly to the
rectangular cage, the open hexagonal structure 1is approx-
imated by a closed configuration, as shown in Fig. 4.4, so
that circular field 1lines can be assumed and Ampere's
theorem can be used. The D-shape is also divided into four
regions in which the magnetic field is estimated separately.
The energy is obtained from the expression of the magnetic

field and the inductance is finally deduced.

The following calculations are done for a c¢oil having N

turns and carrying I amps.

Region (1l): The toroidal air space

The inductance of this region, assumed perfectly toroidal,
has the expression of the inductance of an ideal toroid
having the same shape, but with the same number of turns as
the complete cage. It is given in section 2.4 in terms of
the inner radius b and the computed inductance S(Q): and

rewritten here

L. = PN b os( ' (4.3.1)
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Fig. 4.4

@ (1) 3

Closed model for calculating the inductance
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where OL corresponds to the ratio of the outer to inner

radius of the inner envelope or window of the coil.

Region (2): The central limb

Inside the central limb, assumed having a circular cross-

section, fhe average magnetic field, at a radius r, is

Bz(r) = M NI
2

(4.3.2)
27 b

The field energy in a limb of length lc is then

B (r)dV
W, = (4.3.3)

= Mo NIr 1., 2Azdr (4.3.4)
2 x.2 ¢
Ab
an b2 4 °
= Vo 1\12121C (4.3.6)
16R

and the internal inductance follows

L., = 2 (4.3.7)
¢ Tz
I
2
= BY 1 (4.3.8)
8R

Using the relation lc = 2e = 2bE(Q), given in section 2.4,

the above inductance expression becomes

2
5 WY bE(Q) (4.3.9)
4 7

L
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Region (3): The outer layer

Having two parallel envelopes, this region is bounded by
the toroidal air space and the outside of the cage. The
inner envelope has the optimum D-shape toroid geometry., but
the outer has no simple analytical expression that may help
to compute the inductance of the outer layer. The radius
of curvature could be used, but it would lead to very com-
plicated computations that are unnecessary because the con-
tribution of the outer layer is not big, as will be seen
later. The outer envelope is, therefore, approximated by
the envelope of an optimum shape ideal toroid with radius

ratio Q+ 1.

In the rectangular cage the magnetic field was assumed [7]
to fall linearly to zero across the two cylindrical zones
at the top and bottom ¢f the cages, so that the energy
density would fall quadratically to zero into these regions.
Since the mean of such a quadratically varying function is
one third of the peak value, they were assigned the maximum

energy for one third of their thickness.

This reasoning is used for the whole outer layer and its

inductance is thus estimated by

n%b
L,=1[ s{aa+l) - s(ov) 1 % (4.3.10)
3 2R

3
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Region (4): The corners layer

which are located between the central limb and the outer
layer. Due to its difficult geometry and its very small
contribution in the total inductance of the cage, it is
dealt with by just arbitrarily adding a 1length b to the

central limb.

NZ
L, = Vo b (4.3.11)
2N

This crude procedure seems justified because even a large
percentage error in a small part of the total energy cannot

make a serious error in the whole.

Summing the contributions of the four regions vyields the

full inductance

2R

2
Lib,a@) = BV P [ZE(CI)-l- 1+ 2 s(a)+ 1 s(a+ 1)] (4.3.12)
4 3 3

2

= BYP o) (4.3.13)
2R

Values of E{(Q), S{) and S(0+1l) were obtained with the com-
puter program in Appendix 1, and are given with T(Q ) in

Table 4.1 for a range of values ocf Q.

From that table it can be seen that the contribution of the

outer layer is about 38% for Q= 2, 23% for a= 3, 16% for

|
|
|
It is the small region containing the six small corners
g
|
\
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o E(@  s(@) sy ZEQIL2S{a) o Lslarl) g g,

2 0.2575 0.7191 2.7401 0.3787  0.4794 0.9134  1.7715
3 0.8469 2.7401 5.7561 0.6735  1.8267 1.9187  4.4189
4 1.5937 5.7561 9.6058 1.0468  3.8374 3.2019  8.0861
5 2.4527 9.6058 14.1663 1.4763 6.4039 4.7221 12.6023
6 3.3949 14.1663 19.3475 1.9479 9.4442 6.4493 17.8410
7 4.4024 19.3479 25.0819 2.4512 12.8986 8.3606  23.7104
8 5.4633 25.0819 31.3139 2.98l¢6 16.7213 10.4380 30.1409
9 6.5692 31.3139 37.9999 3.5346  20.8759 12.6666  37.0771
10 7.713%9 37.9999 45.1035 4.1069 25.3332 15.0345 44,4746

Table 4.1




= 4, and continuecto increase for high values of g. With
these results, one has to be careful in wusing the above
inductance formula for low values of Q. The formula has
yet to be tested in practice, as it is in the next section,
but it is possible to have boundaries for it first. We can
say that for the lower limit the last two terms must be
s{(), and for the upper limit they must be S{(a+ 1). In a

more general way, the formula may be given by

*

2
L{b,d,q) = PQN b [2E(a)+ 1l + q 8(a) + (1=-q) s(a+1)]
2N 4

(4.3.14)
where g is a constant comprised between O and 1, and has to

be determined experimentally.

4,4 Inductance Measurements

Five coils with different radius ratios and sizes (see
Plate 3) have so far been prepared to test the general
formula given by equation (4.3.14). Two of them were wound
on a slow running lathe and the three others on a heavy
duty winding machine made by Whitelegg of type CAW, as
shown in Plate 4. During the winding operation the wires
were kept in constant tension by a brake device which is

added to the machine.

A Maxwell bridge arrangement, as shown in Fig. 4.5, was
used for the inductance measurements. The voltage across

the bridge was detected by an oscilloscope via an inter-
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Plate 3
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Plate 4




Condition of balance

R,R; = (R + jLw)
which implies
L = CR2R3
and R = R2R3
Ry

Fig.4.5 Maxwell Bridge

R

1 + JCwR

4
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bridge transformer. The supply was also obtained via an
interbridge transformer from an amplifier which was driven

by a variable frequency sinuscidal oscillator.

The measurements were made for a range of power freguencies
from 30 Hz to 3 kHz. As plotted in Fig. 4.6, in the 1low
frequency band, which we are concerned with, the inductance
has a constant value. For frequencies higher than 1 kHz,
a decrease is observed. That.fall of inductance is due to
the creation of eddy currentswhich oppose the main current
in the winding and result 1in some cancellation of parts of

the magnetic field.

For calculation and practical purposes, the inner radius of
the central limb, assumed circular, was approximated by the
relation

b = nd (2.4.1)
where d is the diameter of the wire and n is the number of

layers in each subcoil.

The measured values of the inductance are compared in Table
4.2 to values calculated from the formula given by equation
(4.3.12) which corresponds to g = 2 in equation (4.3.14).
The corresponding values of T(Q) aie also compared in Fig.

4.7. For that specific value of g the agreement is very

good and the error is reasonably small.
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Coil 1 Coil 2 Coil 3 Coil 4 Coil 5

e 3 4 6 8 10
d(mm) 2.6 2.6 2.6 2.0 2.0
b(mm) 23.4 20.8 28.6 17.2 8.6
N 270 216 396 216 60
N® 72900 46656 156816 46656 3600

T(C) 4.4189 8.0861 17.8410 30.14GC9 44.4746

Calc. 1.508 1.569 16.003 4.838 0.275

L{mB)
meas. 1.4%90 1.595 15.970 4,660 0.280
error(%) +1.2 -1.6 +0.2 +3.8 -1.8

Table 4 2
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4.5 Effect of Field Ripples on the Inductance

The last line of Table 4.2 shows negative and positive
signs for the error between the measured and calculated
values of the inductance. This result is partly due to the

approximation made to the outer envelope.

The derivation of the general inductance formula was made
upon assuming a closed model in which the field lines are
circular and we would have expected it to underestimate the
measurements because the cage is made up of a small number
of subcoils where the magnetic field has some ripples which

raise up the energy: it could be explained as follows:

The magnetic field i1n a toroidal coil with a discrete
number of subcoils is not totally confined inside. It may
be given by

Bé = Bav + R (4.5.1)

where Bav is the average azimuthal field considered in the
closed configuration and R is a field ripple which has zero
line integral along any circular path having its centre on

the coil axis.

In the expression for the energy, the magnetic field has
.-+ the squared form
2 2 2
= + 4.5.2
Bzs Bav + 2 Bav R R ( )

The second term averages to zero, and we are left with the

average field squared and a term which is always positive.




Indeed, this shows that the presence of ripples results in

a higher inductance compared to the closed configuration.

To explain this reasoning experimentally, some measurements
have been made with the cages having different numbers of
subcoils. Table 4.3 shows that with just two symmetrical
subcoils connected in series the inductance, which is
proportional to the number of turns squared, i1s one £fifth
the inductance of the six subcoils connection instead of
being one ninth. Also, with three subcoils it is one third
instead of one fourth. These results imply that for a same
number of turns the inductance of a two subcoils cage is
higher than the inductance of one with three subcoils which
is itself higher than the inductance of the six subcoils

structure.

The effect of ripples is, therefore, greater as the number
of subcoils is decreased. It is also obvious that it
becomes negligible when the number of subcoils is highly

increased because we will meet the closed configuration.

To show once more that the ripples have an effect on the
inductance some other measurements have been made with
other types of connections. The subcoils were paralleled
in pairs with the pairs series’ connected, and then they
were paralleled - in threes with the threes series
connected. As shown in Table 4.3, the inductances were
respectively one quarter and one ninth the inductance of

the six subcoils series connection. Thus it proves that
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Coil 1 Coil 2 Coil 3 Coil 4 Coil 5
Lg(mH) 1.490 1.595 15.970 4.660 0.280
L (mH) 0.506 0.540 5.300 1.560 0.090
|
L, (mH) 0.308 0.320 3.100 0.920 0.055
Le/Ly 2.95 2.95 3.01 2.99 3.11
Le/L, 4,84 4.98 5.15 5.06 5.09
Ly ,(mH) 0.373 0.400 3.99 1.170 0.070
I
L2'3(mH) 0.165 0.180 1.750 0.500 0.030
3.98 4.00
} L6/L3,2 4.00 3.99 4.00
9,32 9.33
LS/LZ,B 9.03 8.86 9.13
L6 — All six subcoills connected in series
L3 — Just three subcoils connected in series
L2 ~~= Just two subcoils connected in series
L3 5 — All six subcoils paralleled in pairs and the pairs
! series connected
L2 3 All six subcoils paralleled in three and the threes
Fd

series connected

Table 4.3




the effect of the ripples was the same in the three cases,
and it is so because all the six subcoils were present with

these connections.

4.6 Loss Formulae

The ohmic and eddy current losses are the two major Kkinds
of losses appearing in the windings of air cored inductors

carrying time varying currents.

The ohmic loss is easily calculated by assuming the current
density to be uniform in the cross-section of the wire. For
N wires of radius a and conductivity &, connected in series,

it is given by

_ 2
Wdc = Rdc Ic> (4.6.1)
with
Rdc = le (4.6.2)
Racq

where 1 is the mean turn length.

In the case of the D-shape toroidal cage, an expression for

the mean turn length is derived in Appendix 3; that is

1

2b (E + P,A + PZB) (4.6.3)

1

with

A=1+(1~1) 1 (4.6.4)
n

and

(4.6.5)
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Pl’ P2, Zm can be obtained with the computer program given

in Appendix 1.

With alternating currents, the magnetic field induces eddy
currents which oppose the main current. These small cur-
rents result in a non-uniformity of the current density and

thus an effective increase of the resistance.

Two types of eddy currents participate in the losses. The
first is due to the proximity effect which is the induction
of currents in each wire by the magnetic field of the other
conductors. The second is the skin effect which is caused

by the magnetic field of that same conductor.

At low frequencies, the contribution of the skin effect
loss in bunches of wires 1is negligible compared to the
proximity effect loss [1]. Thus it 18 not considered 1in

the formulation of the loss for the cage.

The peak power loss per unit length in a round conductor of
radius a, situated in a uniform transverse alternating
field Bo coswt, is given by [24]

adp? W27 (4.6.6)

For a circular bunch of radius b and composed of N wires,

each one carrying the same current, the magnetic field at a

radius r< b is given by
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B(r) = MpNT (4.6.7)
2Ap2

Provided N is large enough, the average density of wires
per unit area is N/ﬂbz. Taking the annulus between r and

r + dr, the loss in the bunch, using equations (4.6.6} and

(4-6-7)' iS

WE = ]/ N 2Rr dr {4.6.8)

= wIi®N My r~ dr (4.6.9)
16 A b°
2 _ 2.23 4
= 1 bwilNa (4.6.10)
32K 2

In a recent work, Murgatroyd [25] showed that the proximity
effect loss in a bunch of wires of any given envelope
section shape may be expressed asafunction of the proximity
effect loss in a circular envelope bundle having the same
number of turns. The relation is

W = A W (4.6.11)

where A is a factor which depends on the envelope section
shape and the number of wires. 1In the case of the cage, it
15 referred to as Ah for the hexagonal bunch and At for the

triangular bunch.

The loss in the central limb, which is an hexagonal en-

velope section bundle of N wires of 1length lc ¢ 1is

W = A, W 1, (4.6.12)
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The loss in each outer limb, having a number N/6 of turns

and a length (T-lc), is

ra

W, = AL Wg ¢

Replacing b2 by b2/6 and N by.g.in eguation (4.6.7)

2
W= 1 pe 6 w'rl (we)’a®
B
32K b2/6
2 2.2 .3 4
=1 P & wi,Na (4.6.15)
327 36 b2
which implies
= W -
W= AL 35 (1 -1.)
The loss in the six outer limbs is thus given by
6w, = A "B (T-1) (4.6.17)
t t < o]
The total eddy current loss in the cage is then
W, *6W, = Wp [A 1+ At (T - 1) (4.6.18)

=

The ratio of effective a.c resistance to d.c resistance is

given by
R W, +W_ +6W
§EE = dc h t (4.6.19)
de Wdc

Introducing the parameter p defined by

p = Ah fg + ﬂg (1 - 15) (4.6.20)
I © 1
yields
= 1 + W, =
EEE _E 1p
dc Wdc

(T - 1) (4.6.13)

(4.6.14)

(4.6.16)

(4.6.21)
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In terms of the frequency and using equations (4.6.1}) and

(4.6.10) it becomes

R

28 = 1+ sg? (4.6.22)
dc
where
4 6.2.2
s = 2“14 I (4.6.23)
10 b

The value of the permitivity 1s b, = 47 x 107

The above theory was derived with straight isolated bunches
which are situated in their own magnetic field. In the
toroidal cage, the bunches have curved parts and are affect-
ed by each others magnetic field. Therefore, a measurement
based correction has to be made to the «constant S which
becomes

Sc = & 8 (4.6.24)

where £ is a correction factor that will be determined

experimentally in the next section.

4,7 Resistance Measurements

The direct current resistances of the five c¢oils were
measured by Kelvin bridge and compared to the values calcul-
ated from equation (4.6.2) in which the resistivity of cop-
per was taken to be 1.682 x 10"% ohm m. Table 4.4 shows

that the agreement is very good despite the approximation
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Coi1l 1 Corl 2 Co1l 3 Coi1l 4 Co1l 5
o 3 4 6 8 10
n 9 8 11 8 4
N 270 216 396 216 60
E 0.8469 1.5937 3.3949 5.4633 7.7139
Z, 1.4625 2.4000 4.4950 6.7916 9.2318
P 1.0622 1.4262 2.0183 2.5041 2.9244
P, 2.1366 3.4433 6.2978 9.3667 12.5850
A 1.3808 1.2797 1.2059 1.1600 1.1177
B 1.1880 1.1148 1.0652 1.0422 1.0270
b(mm) 23.4 20.8 28.6 17.2 8.6
a(mm) 1.25 1.25 1.25 1.00 1.00
T(mm) 227.1 301.9 717.1 623.7 411.2
Ry calc. 0.210 0.223 0.973 0.721 0.132
({ohm) Meas. 0.221 0.232 0.954 0.694 0.135
error(%) -5.0 -3.9 +2.0 +3.9 +2.2

Table 4.4




made to obtain the total length of wire of the cage.

On the other hand, the a.c resistances were cobtained for a
range of low frequencies in the Maxwell bridge used for the
measurements of the inductance. Similarly to the theory,
the linear dependence of the a.c resistance on squared

frequency is observed, as shown 1n Fig. 4.8.

From the plot given in Fig. 4.8, the values of the constant
S were obtained and compared in Table 4.5 to the values
calculated from egquation (4.6.23). As mentioned in the
previous section, the agreement is not good and a correc-
tion has to be made. However, the way the results have
come out for ¢ large was not as predicted. Acarnley and
Danbury [26] have shown that the loss in bunches of wires
is minimal if the field lines are <circular, so we would

have expected the measurement to underestimate the theory.

. The calculation was performed for isolated
straight bunches made with fine wires while the cage is
comparatively made with thick wires and has a far more
complex geometry. Nevertheless a very interesting result
was obtained. The plot in Fig. 4.9 shows that the error on

S increases almost linearly with Q. Thus the correction

factor is easily obtained graphically. The error on S 1is
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Co1l 1 Coi1l 2 Coil 3 Coi1l 4 Co1l 5
a 3 4 6 8 10
a(mm) 1.25 1.25 1.25 1.00 1.00
b(mm) 23.4 20.8 28.6 17.2 8.6
N 270 216 396 216 60
1_(nm) 39.6 66.3 194.2 187.9 132.7
1(mm) 227.1 301.9 717.1 623.7 411.2
Ky 0.990 0.988 0.993 0.988 0.973
A 0.856 0.850 0.865 0.850 0.774
p 0.291 0.328 0.374 0.397 0.401
S _5 .3 Calc. 1.016 0.929 1.884 0.431 0.134
(x10 “Hz °)
Meas. 1.471 1.134 1.811 0.369 0.096
error (%) -30.9 -18.1 +4.0 +16.8 +39.6
s
(:10‘6Hz‘2) 1.451 1.161 1.884 0.359 0.096
error (%) ~1.4 +2.4 +4.0 -2.7 0.0

Table 4 5




which implies

Scal = —i%%—i Smeas (4.7.2)

Equating corrected and measured S yields

S = 10 s (4.7.3)
C 3T 32 cal

and equation (4.6.22) becomes

Rac 2
x— = 1+ tsf (4.7.4}
dc
with
t= 10 (4.7.5)
a + 4

The error on Sc is given at the bottom of Table 4.5 showing

a better agreement.

4.8 Optimum Designs

The inductance of a toroidal cage coil of any cross-section
shape may be given by
L= M N2bF(q) (4.8.1)
2R
where b 1s the inner radius defined previously and F(®K) 1is

a dimensionless quantity which depends on the window shape.

The wire length of the cage may be given by
1 =b NG () (4.8.2)

where G{(Q) 1is the dimensionless mean turn perimeter.

69




The proportion of the central bunch <cross-sectional area

which is metal conductor may be defined as

(4.8.3)

where 4 is the diameter of the wire.

From the last two equaticons, b can be eliminated to give

the number of turns

1/3 2/3

) (4.8.4)

Nosod

(ld
G(Qa)

The inductance is now given by

L= M i3 153 (4.8.5)
27 d2;3 G5;3(a)

In terms of the scale inductance L_ = Mod and the dimension-

|

2R
less wire-length k = %, 1t becomes
L= 13 pay k3 (4.8.6)
Ly 6>/ 3q)
= R k3 (4.8.7)

where R is a dimensionless coefficient which depends on the

geometry of the cage.

The value of R was calculated from Table 4.2 and 4.4 for

the five coils prepared in this work, and is compared to

70



the value of seven other coils with rectangular shape of
window calculated from reference [7]. The tabulation below
shows that the D-shape cages give better performance com-
pared with the rectangular cages, except for large values
of QL. The D-shape advantage is lost for (¢ large, because
in this case the coils are volumincus and therefore have
relatively fewer turns. Better designs are thus for low

values of ..

D~shape cages

Coil 1 Coil 2 Coil 3 Coil 4 Coil 5

R 0.148 0.143 0.123 0.110 0.112

rectangular cages

Coil 1 Coil 2 Coil 3 Coil 4 Coil 5 Coil 6 Coil 7

R 0.111 0.113 0.083 0.11l1 0.103 0.096 0.107
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CHAPTER 5

CONCLUSION AND SUGGESTIONS

This thesis has been mainly concerned with some optimum
designs for air cored toroidal inductors. The calculation
of the cross-section of a toroidal air cored inductor that
has maximum inductance for a given d.c resistance was re-
viewed in Chapter 2. Mathematical methods were implemented
in the computer program, given in Appendix 1, to cobtain the
plot of the optimum shape, the inductance of the toroid,
and the perimeter of the cross-section. The program could
be used with any work involving optimum D-shapes, as it was

throughout this thesis.

In Chapter 3, Maxwell's problem of winding the greatest
inductance for a given length of wire was solved for single
layer toroidal ceils with square, circular and D-shape
cross-sections. The results are summarised in Faig. 3.14,
so that the most economical design for any reqguired induct-
ance and current rating may be achieved using a simple

graphical procedure.

Inductance and loss formulae were derived and tested for
cages which exploit the D-shape profile, as shown in
Chapter 4. A comp&%ison with rectangular cages shows that
this type of cage offers improvements in both manufacture
and performance. The practical feature 1s that the D-shape

has no corners and the wires are -easily wound on the
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former, whereas with rectangular shapes the wires cannot
follow the right angle turns of the former, but bulge from
it. The examination of the ecconomic advantage was based on
some practical results. It was shown in the last section
of Chapter 4 that better values of R were obtained for D-
shape cages with low values of Q. Since the five thirds
dependence of the inductance on the wire-length is true for
cages with any given cross-section shapes, it is obviocus
that the mést economical design is one which corresponds

to the highest possible value of R.

As far as D-shape cages are concerned, further calculations
could be made to f£ind the optimum radius ratio O using
equations (4.3.14) and (4.6.3). First investigations that
have not been aincluded in this thesis, wusing eguation
(4.3.12) which corresponds to q = % in equation (4.3.14),
have shown that the inductance decreases with Q. Due to
the approximation made to the outer envelope of the cage
and because the inductance has a soft optimum no peak was
obtained. However if more coils with low values of QO are
constructed and a better value of g 1s determined giving a

much more accurate formula, a peak may prokably occur.
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APPENDIX 1

THE D-SHAPE COMPUTER PROGRAM

The program given in this appendix is written in Fortran 77,
and was run on the Multacs computer of Loughborough Univer-
sity. All quantities are reduced to dimensionless forms
and depend on the radius ratio . At the beginning of the
program we can see three externai functions which corres-
pond to the first, second and third derivatives of the
curve which defines the optimum D-shape. The second and
third derivatives were added so that Taylor's expansion
could be used with a good enough precision at the ends of
the range where the slope is infinite. The number of steps
chosen is 500, which is reasconably good for the Runge-Kutta
and the trapezoidal method to give precise enough results.

The input-cutput quantities are:

Input:
Alpha —— corresponds to the radius ratio = b/c
OQutput:
curvl —— a file giving the upper curved part of the
D-shape
curv2 —— a file giving the lower curved part of the
D-shape
curvd —— a file giving the straight leg at the inner
radius
E —— corresponds to the length E(Q) at the inner
radius
Zm —— corresponds to the maximum height of the
curve
S —— corresponds to the dimensionless inductance

s(a)
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P —— corresponds to the dimensionless perimeter
P(Q)

PPl —— corresponds to the length Pl(a) between 1
andi@

PP2 — corresponds to the length PZ((I) between V&

and ¢
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F(R)=ALOG(SQRT{R1*R2)/R)/SQRT(ALOG(R/R1)*ALOG(R2/R})
G(R)=( (ALOG(R/R1) *ALOG(R/R2) ) -(ALOG(R/SQRT{R1*R2) )**R)})/(R*
1{ALOG(R/R1l)*ALOG(R2/R))**1.5)
V(R)=((ALOG(R/R1)*ALOG(R2/R})+{ (ALOG(SQRT{R1*R2}/R))**2))*
1{ (ALOG(R/R1)*ALOG(R2/R) )+{3*ALOG(SQRT{R1*R2)/R) )}/ ((R**2)*
1((ALOG/R/R1)*ALOG(R2/R))**2.5))
open{unit=6,file="curvl’,form="formatted’)
open{unit=7,file="curv2’, form="formatted’)
open{unit=8,file="curv3’,form="formatted’}
print*,‘give Alpha“

read(0,*)Alpha

R1=10.

R2=Alpha*R1l

H= .005

Z2=0.

write(6,10)

write(7,10)

write(8,10)

10 format(1l7X), " ,17X,z"/)
Cl=Z/R2
Dl=2
| RR=R2/R1

ZZ=Z/R1

write(6,20)RR,ZZ

write(7,20)RR,2Z

20 format(F20.3,F20.7)

R=R2-H
Z+Z-H*F(R)=-(XH**2)/2)/2)*H(R)-((H**3}/6)*V(R)
c2=Z/R

D2=2

EL=((C1+C2)/2)*H

FL=SQORT((D2-D1)**2+H**2)

Cl=C2

Dl1l=D2

I=IFIX(R/H)

J=IFIX((R1+2*H)/H)

K==1

ZMAX=2Z

do 100 IR=I,J,K

R=1IR*H

P1=F(R}

P2=F(R-0.5%H)

P3=F(R-H)

2=Z-H*(Pl+4*P2+P3)/6

1f (Z.gt.ZMAX) then

ZMAX=2

FLM=FL
end if
X=R-H
A=X=int(X)
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100

105

110

150

200

300

400

500

RR=M/R1

ZZ2+Z/R1

0Z=(-1)*22

if (A.eq.0.) then

write (6;20)RR;ZZ
write(7,20)RR,0Z

end if

C2=2/%

D2=2

EL=EL+{ ((C2+Cl1)/2)*H)
FL=FL+SQRT( (D2-D1)**2+H**2)
Cl=C2

Dl=D2

continue
Z=2-H*F(R1+H)+((B**2)/2)*G(R1+H)—-{ (H**3)/6) *Y(R1+H)
X=X-H .
RR=X/R1

ZZ=Z/R1

0Z=(=1)*22

write(6,20)RR,22Z
write(7,20)RR,0Z
WEitE(8:20)RR:ZZ
write(8,20)RR,02Z
write(0,105)Alpha
format{13X, "Alpha="1X,F8.3)
E=Z/R1

write(0O,110)E

format(17%X, BE=",1X/F12.7)
zm=ZMAX/R1

write(0,150) zm

format (16X, zm=",1X,F12.7)
C2=2/%

D2=Z

EL=EL+( ( (C2+Cl}/2)*H)
FL=FL+SQRT{{(D2-D1)**2+H**2)+D2
S={2*EL)/R1

P={2*FL)/R1l

write(0,200)8
format(17X,°s=",1X,F12.7)
write(0,300)P

format(l'?X; 'P=’ ,lX,Fl2.7)
PP2=FLM/R1
PPl=FL/R1-(E+PP2)
write(0,400}PP1

format{l15X, PPl=’,1X,F12.7)
write(0,500)PP2

format (15X, PP2=",1X,F12.7)
stop

end




APPENDIX 2

THE BISECTION METHOD

The bisection method, also known as Bolzano method or
method of halving the interval, is one of the methods used
for solving non-linear equations. It 1is based on the

following theorem.

- If f£(x) is continuous for x between a and b, and if f(a)
and f(b) have opposite signs, then there exists at least

one real root of f(x} = o between a and b.

Suppose that a continuous function £(x) is positive at x=a
and negative at x=b, so that there is at 1least one root
between a and b (a and b are found by curve sketching). If

we calculate the function at the point of bisection x = a+tb
2

there are three possibilities

-t (EiE =0 the root is atb

2 2
-t (a;b) <o the root lies between a and E%E
- £ (E%E) >0 the root lies between a;b and b

We can see that for any of the two last cases there is a
new interval for which the process can be repeated to
obtain a smaller and smaller interval within which a root

must lie.

The equation obtained ain Chapter 3 is: x - 1 Ln(2x) -1 = o
4 2




We consider the function f(x) x = 1Ln (2x) - 1. A plot
4 2

of £(x) (see Fig. a2.1) shows that there are two rocots. A

direct one which has the value x = 0.5 (this solution is

not the wanted one in Chapter 3, because it corresponds to

a length which is equal to zero). The other solution 1lies
between a 0.01 and b = 0.25 where the function changes
sign.
Cne may tabulate as follows
a 0.01 0.01 0.07 0.1 0.1
b 0.25 0.13 0.13 0.13 0.115
a3b 0.13 0.07 0.1 0.115  0.1075
£fix) -0.03323 0.06100 0.00236 =-0.01758 -0.00822
0.1 0.1 0.1 0.1009 0.1013
0.1075 0.10375 0.1018 0.1018 0.1018
0.10375 0.1018 0.1009 0.1013 0.10155
- 0.993094 -0.0004846 0.00102 0.00043 0.0000064

The flow chart given in Fig. a2.2 may also be used in

gramming.

pro-




read
a;b.e
—
]
x = (a+b)/2
- rint
L al<e. Yes a,b:x,e stop
a = ves f(x)f({a)> o
b = x* 1o Fig a2.2
Y
x=0.1016
i LN X
x=0.5
1
Fig a2t Graph of the tunction y:x—;—ln(2x)—-§
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APPENDIX 3

ELLIPTICAL APPROXIMATION FOR THE LENGTH OF WIRE

OF A D-SHAPE TOROIDAL CAGE

In order to calculate the d.c. resistance of a D-shape
toroidal cage, 1t is necessary to know the length of wire
used to construct 1t. However there is no simple formula
available to help compute 1t. To deal with this problem, a
geometrical approximation 1s used to express the mean turn
perimeter in function of the inner perimeter in each sub-

coil.

As shown in Fig. a3.1, the dimensionless curve z(r/b) which
defines the optimum D-shape may be divided into three parts:
one straight leg of 1length E and two curved parts of
lengths Pl and Pz. The total perimeter is thus given by

P=E+ P, + P2 (a3.1)

The two curved parts have elliptical appearances, and it 1is
possible to express them, as dimensioned in Fig. a3.l1l, by

the relataions

L)
!

1= Cl (Xl + Yl) (a3.2)

o
Il

1 Ja- 1, Y, =z -E and C, = cste (a3.3)

83




and

o
[}

C2 (x2 + Yz) (a3.4)

"
It

P a-\/u ' Y2 =z, and ¢, = c¢ste (a3.5)

Indeed, as seen in Table a3.l., Cl and C2 have almost con-

stant values for a range of values of Ct.
For a n layers elliptical bunch having an equilateral tri-
angular envelope section and with the inner perimeter
defined, as dimensioned in Fig. a3.2, by

P=¢C (X +Y) {(a3.6)

the length of each layer 1is

layer 1 : ll = nC {X+¥)

layer 2 : 12 = (n-1l) C (X+Y¥+2h)

layer i : li = (n-i+l) C [X+¥Y+2{i~1l}h] (a3.7)
layer n : 1n = C [X+Y+2(n-1)h]

The mean turn length of the bunch is then

1 = Lptlpte..tly (a3.8)
aVv

n+t(n-1)+...+1

cg(nmi+l)LX+Y+2(i—l)h] (a3.9)
1

84



C HX+Y)n Z1 - (X+Y) =i + (x+Y) 1 + 2nH i
=i =i b i

-2h3i% + 2hSi - 2nh 31 + 2h Si - 2h 2_1] (23.10)

21 21 Si i Si
with
%1 - n 'gi - n(2+l) and %iz _ n(n+l()5(2n+l) (a3.11)
it becomes
1., = ¢ [{x+¥) + 2 (n-1)h] (a3.12)
or, using equation (a3.6)
1 =P [1 + 2(n-1)h ] (a3.13)

av 3(X+Y)

The dimensionless diameter of wire and the inner radius of

the cage are given by

d = 2h {(a3.14)
b 73

and
b = nd (a3.15)

Introducing these equations into equation (a3.13) yields

1 1
1av = P [l + (1 - H)_B(XTYT] {a3.16)

Applying this result for the D-shape we obtain

1 1 1l
P = E+P 1+(1 - =) ] + P 1+(1-=) 1
av 1 [ n 3ixl+Ylj 2 { n _§T§;:Y;T

(a3.17)

And the average turn length in each subcoil follows, using

equations (a3.3) and (a3.5)
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T =2 P (a3.18)
av
= 2b(E+PlA+P2B) (a3.19)
with
- _1 1
and
- _1 1
B=1+ (1 n) Ba-va + zm) (a3.21)

The quantities E, Pl' P2 and Zm depend on @ and are obtained

with the computer program in Appendix 1.




x 3 4 5 6 7 8 9 10

E 0.8469 1.5937  2.4527 3.3949 4,4024 5.4633 6.5692 7.7139
Z 1.4625 2.4000  3.4169 4.4950 5.6226 6.7916  7.9962 9.2318
Py 1.0622 1.4262 1.7396 2.0183 2.2714 2.5041  2.7213 2.9244
P, 2.1366 3.4434  4.8377 6.2978 7.8103 9.3667 10.9595 12,5850
X, 0.7321 1.0000 1.2361 1.4495 1.6457 1.8284  2.0000 2.1623
Y, 0.6156 0.8064 0.9642 1.1001 1.2202 1.3283  1.4269 1.5179
xl+Yl 1.3477 1.8064 2.2003 2.5496 2.8659 3.1567 3.4269 3.6803
X, 1.2680 2.0000 2.7639 3.5505 4.3543 5.1716  6.0000 6.8377
Y, 1.4625 2.4000  3.4170 4,4950 5.6226 6.7916  7.9962 9.2318
X,+Y, 2.7305 4.4000 6.1809 8.0455 9.9769 11.9632 13.9962 16.0695
c; 0.7882 0.7895 0.7906 0.7916 0.7926 0.7933  0.7941 0.7946
c, 0.7825 0.7826  0.7827 0.7828 0.7828 0.7830 0.7830 0.7832

Table a3.1

.8



Fig. a3.1

89



APPENDIX 4

Murgatroyd, P.N., Belahrache, D.: 'Economic designs for

single-layer toroidal inductors'. IEE Proceedings, Vol.132,

PtoB; NO.G; NOV91985-

90



Economic designs for single-layer
toroidal inductors

P.N. Murgatroyd, B.Sc., Ph.D., F.Inst.P., C.Eng., F.LLE.E., and D. Belahrache,
Dipl.E.S.

Indexing termy

Compuonents Indistrial applications of power Power electromas

Abstract Muaxwell's problem of winding the greatest possible inductance with 4 given length of wire 1s exam-
med for single-layer torods Optimum designs arc obtained when the turns are square or orcutar or the Shalra-
nov D-shape In each case the optimum number of turns 15 proportional to the square root of the wire length,
and the best oblainable inductance increases approximately as the three-halves power of the wire tength A
simple graphical procedure achieves the most economical design for a required inductance and current rating

List of symbols

L, = nductance of circle-section toroid
mductance of square-scction torond
L, = nductance of D-shape-section torowd

il
I

Ly = pod/2n = dimensionless inductance umt
Jto = permittivity of free space
=dn x 10" Hm™!
d = wire diameter
w = wire total length
L = w/d = dimensionless wire length
N = number of turns
T = major radius of circle-section toroid
R = munor radius of circle-section torod
A = side of square section
S = nner contact radius for square-section toroid
x = optimising vanable
B = mner contact rachus for D-section toroid
&« = rato of outer/inner radn, D-section

z(r) = shape function
S{a) = tnductance function for D-section
P(x) = perimeter function for D-section

1 Introduction

Air-cored toroidal inductors are used 1n power electronic
arcuils because they are relatively easy to male, they do
not saturate, and they do not produce troublesome exter-
nal magnetic fields An interesting design problem for
single-layer toroids may be posed as follows ‘For a given
length of wire, how many turns will provide the greatest
self inductance” A similar problem was posed in the last
century by Maxwell, concerming the best way to wind a
given length of wire into a solenowd, and the solution 1s
commonly known nowadays as a Brooks coil [1] If the
corresponding problem for torords has been solved, the
solution 1s not at all widely known

The essential features of the problem are shown 1n Fag
1 Let a given length of wire be wound into a single-layer
toroid of a given shape If the number of turns N s large,
as in Fig 15, the inductance benefits by the usuval depen-
dence on N2, but the small area of each turn cancels thss
out if N 1s large enough, so the inductance 1s low If the
number of turns N 1s small, the inner toroid radius is small
and the turn area 1s large, both effects benefit the induc-
tance, but the advantage of N2 1s lost 1t seems intustively
that there must be some compromise, and 1t will be shown
that, for a given shape, there 1s a value of N that gives a
maximum inductance

Paper 4150B (P2, P6 S8) recarved 3h Apnl 1985
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A second, and related, problem 1s the best turn shape
This 1s approached, first, by considering squares and
circles, because the inductance formulas are relatively

(O

-
NA
T

Fig 1 Plan section of o sigle-laver torvid snduciors using the sam.
wire length an different ways

simple, and neither shape presents special difficulty of cal-
culation or manufacture As the best shape of all possible
thin toroid shapes 1s known [2, 3], this has also been
studied, to give a toroid destgn which is optimised for both
shape and number of turns

2 Circular cross-section

The 1inductance of a circular-section toroid, as dimen-
sioned in Fig 2,15 given by

L, = po N}{T - /(T? = RY))} (N
ns




The formula depends on simphfying assumptions which
include

(1) the wire thichness 1s neghgible compared with the
overall dimensions

(u) the number of wires 1s sufficiently large that the
field nside the toroid 1s smooth and the field outside 1s
neghgible

Fig 2 [deal single-layer torosdal winding with circutar cross-seciion

Let the given piece of wire have length w and diameter
d Then the minor radius of the toroid 1s

W
=— 2
R 2nN 2)

The 1nner radius of the winding section, T — R, 15 deter-
mined by the condition that the N wires just touch around
the circumference of the circle as shown in Fig 1

4 _ (zf_
AT—R - "\N

The inductance 1s now given by

)

d + w
L, =y N? sanl® 2aN
N
d d w

+ %)
s 4 N Ho¥ 4
2sm (N) 2 sin (Rf—) i+ 87 “)
where the last term 1s the “nternal’ inductance of the wire

It 1s convenient to express the mductance in terms of a
scale inductance

YL
Ly=2- ()

and to express the wire length as a ratio to the wire diam-
eter, so

w
k=— 6
y (6)
With these substitutions

Lo .. k
=N )+N

Lo sin (

F ]

n? T 2k

"

In Fig 3 the inductance function L/Ly 15 plotted against
the number of turns N, for a range of values of the dimen-
sionless wire length k The inductance 1s seen to have a soft

k
+7 O

316

optumum The optimum number of turns may be found

principle, by differentiating the function m egn 7, but thyy

15 awkward and no analytcal selution has been found The
20

15

[ =]

dimensionless inductance L1l

L=]
o

=8 B

O e e i e
20 30 40
turns N
Fig 3 Dependence of torend vnductance om number of Gircilar surns wirg
fength fixed

peaks can, however, be found to any required accuracy by
tabulation M turns out that, for a gmven wire length
w = kd, the best number of turns 1s clostly proportional to
N¥? and the best available inductance v closely pro-
portional to N¥2 These results are explaincd by the fol-
lowing approximate analysis, when N 15 so large that
sin (n/N) may be replaced by n/N and

& Fa k 2 ” A
L—»N{N+N—-\/(N +-A)}+4 ()

O

The value of N to maximise this function, obtamned ana-
Iytically, 1s 08165k'2 When put back into eqn & this
delivers the best posuble mnductance at 0 27224 2 4 0254

3 Square cross-section

The inductance of a square-scction torod, as dimensioned
in Fig 4,15 given by

Ho 2 A
L =—N*A41 — 9
ek n(l+s) (9)

-

- —

_____f‘_ A S I S ol _ A

Fig 4 ool single-layer torodal winding with square « rosv-sec Hion
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The side of the square 15

"

A=— 10
4N (o)
and the wire contact condition 1s
d 4
E = §In (E) (1)

The inductance, including the internal’ inductance of the
wires, 1s thercfore

How

Ho Nw w n
=——/In <1 —
L, o n{ +2Ndsm (N)}+ . (12)

This formula may be rewrnitten in terms of the scale induc-
tance L, and the dimensionless wire length & introduced
previously

L, Nk k A\l k
L—O—Tln{l+2N51n(N)}+4 (13)

The inductance has a soft optimum with general features
similar to the circular-section inductor, except that the best
square-section tnductor has more turns, and gnes 4 best
inductance about 8% nfertor to the circle If N 1s large,
eqn 13 may be approximated

L, NA nh k

L—O—DTIH (1 +2—N3)+Z (14)
To make the derivative zero, the equation

Im2x}—4x+2=0 (15)
where

1 nh
- T 16
x TN (1o

has to be solved The solution, » = 01016, 15 obtained
numerically and gives the optimum wvalue of N at
06329h"% When this 1s put back mto eqn 14 the best
available inductance s given as 025224>2 4 025k

4 Shafranov D-shape section

Although the aircle section gives the greatest turn area for
a given turn penimeter, 1t does not give the greatest induc-
tance because the flux density 1s not umiform 1n the turn
The best possible shape, giving the greatest inductance of

aB B

T T T T T -

-

—y
Fig 5  Geometry of the ideal (Shafranm)) 1orovd (ross-sediion
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any shape having a given pernimeter, has been calculated by
the vanational method {2, 3] and 1t resembles the letter D
with the straight part on the imward wde, nearest the
toroid principal axis The shape 1s specified by a single
number & which 1s the ratio of maximuem and mimimum
distances from the tormd principal axis, as shownin Fig 5
Unfortunately, the shape z(r), height as a function of
radius, does not have a simple analytical form The indue-
tance of a single-layer toroid of fine wires 1s given by

Ly= f_:; N?BS(a) (17)

where B 1s the mner radius measured from the toroid prin-
cipal axis and $(2) 1s a2 dimensionless function that must be
obtained numerically [3] for each value of shape par-
ameter « The turn permmeter s BP{x), where Pla) 1s the
dimensionless perimeter which 1s also obtaned numen-
cally; so, for N turns from a fixed length w,

w
== 18
BP(a) = — (18)
The wire contact condition 1s approximately
d =
A 19
2B N (1)

for large N, as assumed in the previous cases From the
last two equations B can be climinated to give the number
of turns

ZTIL 12
=12 20
N (P(a)) o
The full inductance 1s now given by
Ho oo St pow
= e Y —— — 2‘
Ly o Nw P(1)+ - (21)
Ly 2 S 3 5 -
So L (27) o) 72 A2+ 3 (22)

Thus 1t has been shown that the dependence on the dimen-
sionless wire length A 15 Just the same 1n this case as for the
cirele and square, but the optimum value of the radius
ratio « has yet to be found From egn 22, the required
value 1s that which maximises S{x)P(x)~ ', and this quan-
tity 1s plotied in Fig 6 using values obtained numencally
S =530

-Pa,pé:msz '

0124 A

20 45 50 55 60 65 70
toroidal shape porameter, o

Fig 6  Graph to lncate the optimum value of shupe parameter

by the methods described previously [3] The peak ociurs
at o = 530, where S{a)P(x)”¥? = 01252 and P(a) = 1969
With these values the optimum number of turns 1 found
to be 05649L'? and the best availlable inductance 18
031394%2 + 025h Ths inductance 1s (comparing just the
first terms for large A} about 15% better than the best
urcle, which was itself about 8% hbetter than the best
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square In Fig 7, the Shafranov shape with 2=53 »
plotted on a square gnd, to facihitate copying
The complete results for the best designs of each turn

]
N
N
)
Frig 7 Opumum toroid cross-section with 2 = 53
108

z

-

c
9 D shape 5
3 10 circle 5
:'!' square
2
2 2
€ E

2
L4
T {100
7
£
-] 150

100 1000 10

dimensionless wire length k=w/d
Fig 8 Design graphs for most economuc single-layer tormds

shape are summarised in Fig 8 The horizontal scale 1s the
dimensionless wire length k. The right vertical scale 1s the
optimum number of turns N, which 1s given by three
parallel lines with slope 05 The left vertical scale 1s the
best available inductance L/L,, given by three ncarly
parallel graphs with slope approximately 1 5

5 Practical example

A toroidal inductor 1s required for a railway traction
chopper aircuit, with the following major properties
L =127 pH (£10%), current rating 390 A RMS, circle
section The design procedure s as follows

(a) Choosc conductor diameter Assuming sohid round
conductors with current density J = 4 A mm~? the calcu-
lated diameter 1s impractically large at 11 1 mm For flex-
ibility, and current sharing against eddy-current effects, a

s

many-stranded brawd v used with nommal diameter
204 mm
(b) Calculate the base inductance L,

Hod

Lo=7—=2x10""%x204x10"%=408 x 10719 H
T

(¢) Find the dimenstonless mductance

L 127x107° 13
L, 408 x10°10

(d) Use the graph (Fig 3) to find the full length of con-
ductor required

k=-;1'=495,w=101m

{(e) Use the graph (Fig 8) to find the numbcr of turns,
and hence the dimensions of the torowd

N = 18 (nearest integer)

T=R = {450 mm

* 2 om N
{/} Check the calculation using

L= o N*IT — J(T? - R?)} +§“;’= 1271 4H

and note that 1n this exampie the “internal’ inductance pro-
vides just over 4% of the total

The economic value of using the best value of N in this
particular example 1s well worthwhile An earlier design of
coll, without benefit of these calculations, needed about
two melres more braid, and the potential saving on pro-
duction of over a4 hundred cotls 1s of the order of thou-
sands of pounds This may bc increased considerably by
using a Shafranov D-shape toroid

In practice, of course, 1t 15 not always possible to use the
most economic design because 1t may not fit into the space
allowed 1n the overall electronic system Designing a less
economic inductor 35 then a matter of tnal and crror,
trading turns against size Even so, 1t 15 plcasing to note
that the graphical method given here makes it easier o get
the most economic design than 1t 15 to get any inferior
design by trial and error
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