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We study convective motion in vertically vibrated three-dimensional granular beds
by comparing the predictions of a model based on a hydrodynamic description
to Navier–Stokes order with experimental results obtained using positron emission
particle tracking (PEPT). The three-dimensional conservation equations relating mass,
momentum and energy are solved using the finite element (FE) method for a viscous
vibrofluidized bed by using only observable system parameters such as particle
number, size, mass and coefficients of restitution. The mean velocity profiles from the
viscous model show reasonable agreement with the experimental results at relatively
low altitudes for the range of experimental values studied, though the velocity fields
at higher altitudes were systematically underestimated by the model. We confirm
that the convection rolls are influenced by the sidewall coefficient of restitution and
demonstrate the scaling relationships that operate, where increasing amplitude of
vibration leads to a reduction in the angular velocity of the rolls.
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1. Introduction
Granular materials, when subject to vertical vibration, exhibit a variety of

phenomena which are non-uniform in space and time. Some of the commonly
reported instabilities are convection, wave formation (shock & standing waves) and
clustering (Falcon et al. 1999). It has been known since Faraday (1831) that granular
materials in a vibrating bed develop permanent convective rolls when the strength
of the vibration exceeds a critical value. Unlike the well-known Rayleigh–Bénard
thermal convection in fluids, however, the origin of granular convection has remained
relatively unexplored since its discovery. Recent experiments using positron emission
particle tracking (PEPT) (Wildman et al. 2000; Wildman, Huntley & Parker 2001a;
Wildman, Huntley & Parker 2001b) have substantially aided our understanding of
convection in vibrofluidized granular beds through visualization. Explanations for
low vibration amplitude convection in granular materials have been proposed by a
number of authors. Savage (1988) suggested that a form of acoustic streaming drove
the convective rolls while Knight et al. (1996) have suggested that the nature of the
collisions with the wall creates a ratcheting effect that causes the convection. The
experimental results have been complemented by a description of convection that
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relies on an analysis of void probabilities near the walls (Shinbrot et al. 1997) and
predicts many of the features observed by Knight et al. (1996).

Hayakawa, Yue & Hong (1995) and Bourzutschky & Miller (1995) have attempted
to solve the conservation equations for dense, weakly vibrated beds using a numerical
solution scheme, whilst convective instabilities of granular materials have also been
investigated using two-dimensional traffic equations (Hong & Yue 1998). These
showed that bouncing solutions of two and four convection rolls could be observed
and a change in convection pattern was detected by altering the aspect ratio of
the system. Khain & Meerson (2003) employed a Navier–Stokes like granular
hydrodynamics with periodic boundaries to determine the threshold of thermal
convection in terms of the inelasticity of the particles, using the Froude and Knudsen
numbers. Their results indicated that convection instabilities are formed due to
the presence of steeper temperature gradients that arise with increased numbers of
particles or dissipation due to collisions.

Experimentally, free buoyancy-driven convection has been observed in three-
dimensional highly fluidized granular flows (Wildman et al. 2001a,b). The presence
of density variations with negative temperature gradients were interpreted as the
mechanism by which convection rolls were initiated. Similar behaviour has also been
used to observe convection in a vibrofluidized bed containing two sizes of particles
(Wildman & Parker 2002).

Molecular dynamics simulations have shown that convection is expected to occur
for a fully enclosed system when dissipation exceeds a threshold value (Ramı́rez,
Risso & Cordero 2000; Paolotti et al. 2004). In this study, the particle wall collisions
were elastic, and thus, this convection was independent of the material properties
of the wall. In the work by Sunthar & Kumaran (2001), an event-driven simulation
of a dilute vibrofluidized granular material in two dimensions was performed. Two
phenomena, both showing inhomogeneity in the horizontal direction were observed.
They are convection rolls similar to the Rayleigh–Bénard thermal convection in fluids
(Chandrashekar 1981), and a clustering instability, where the bed spontaneously
phase separates into coexisting dense and dilute regions. The convection acts to
reduce the temperature gradient of the system; granular temperature differences were
seen to reduce following the onset of convection in a study of the characterization of
the stationary states of a dilute vibrofluidized granular bed. Detailed investigations
by Sunthar & Kumaran (2001) showed that these are different from the known
instabilities in a vibrated granular medium. Characterization of these instabilities was
carried out with a phase diagram using suitable parameters from the kinetic theory of
vibrofluidized beds (Sunthar & Kumaran 2001). Talbot & Viot (2002) studied a three-
dimensional vibrofluidized bed using event-driven molecular dynamics simulations
which provided good agreement with the experimental density, granular temperature
and velocity field profiles from PEPT experiments. They demonstrated that the
direction and intensity of the circulation are strong functions of the particle–wall
restitution coefficient and also suggested modifications to the system to generate new
buoyancy-driven convection patterns which were later observed by Wildman et al.
(2005).

Eshuis et al. (2005) and Eshuis, van der Meer & Alam (2010) have considered
similar phenomena from the standpoint of an analogue to the Leidenfrost effect
(Leidenfrost 1966; Meerson, Poschel & Bromberg 2003). In this scenario, a high-
density region is supported from below by a highly energetic band of gas. At a critical
shaking strength, this becomes unstable and local convection rolls are observed, even
in an unbounded system. There are, then, two possible causes for convection. First,
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an instability in the bulk caused by, for example, clustering or inversion, can lead to
spontaneous convection roll formation. Second, the instability can be imposed on the
system through the boundary, which when inelastic causes curvature in the isotherms
and drives convection.

Recently, Cordero, Ramı́rez & Risso (2003) have numerically integrated the
hydrodynamic equations to study convection in a bi-dimensional granular gas in
a square box, subject to gravity. Three of the walls were adiabatic while the base
behaved as if the system were in contact with a ‘heat-bath’. The four walls were
treated as shear-free. The solutions predict buoyancy-driven convection triggered by
a dynamically created ‘temperature gradient’. However, in actual experiments, the
energy source is typically a vibrating base unlike the thermal boundary condition
as treated above. Also, an adiabatic boundary condition at the sidewalls is not
equivalent to the boundary conditions employed in experiments, as wall effects are
highly significant in describing convection (Wildman et al. 2001a). A number of
researchers have derived formulae using kinetic theory for the transport coefficients
in the hard sphere case (which at the simplest level are the granular equivalents
to the Fourier Law), the stress tensor and the diffusion laws (Jenkins & Savage
1983; Jenkins & Richman 1985; Jenkins 1999). More recent derivations have shown
the presence of a term proportional to the gradient of the number density in the
heat constitutive relations, in addition to the usual temperature gradient (Brey et al.
1998; Sela & Goldhirsch 1998; Garzó & Dufty 1999). Martin, Huntley & Wildman
(2005) developed radially averaged models based on different kinetic-theory-based
models which predicted both the granular temperature and the packing fraction
as a function of altitude for a vibrofluidized bed. This included the effect of the
dissipation at the walls in a through-thickness averaged way, but was unable to
predict the radial variation. Subsequently, Viswanathan et al. (2006) took a similar
approach by extending the analysis of Martin et al. (2005) to the axisymmetric
(3D) case and solved the equations with the variables retained as two-dimensional
quantities, allowing the granular temperature and packing fraction to be predicted as
a function of both height and radius. However, the effect of viscosity was neglected in
both of these models and they were therefore incapable of predicting the steady-state
convection patterns that are observed experimentally (Wildman et al. 2001a).

In this paper, a hydrodynamic model based on the kinetic theory method is
described and solved numerically to predict the convection behaviour of particles in a
vibro-fluidized bed. The fundamental viscous hydrodynamic equations are employed
with the appropriate closures derived using an approximation to the simplest type
of flow: steady state with binary and instantaneous collisions. Subsequently, results
are presented and compared to both numerical results from the inviscid model by
Viswanathan et al. (2006) and experimental results obtained using PEPT (Wildman
et al. 2001a, b).

2. System description and hydrodynamic viscous model
A cylindrical system of radius R and height L containing N particles each with a

diameter d and mass m was used to model the real-life vibro-fluidized granular system
shown in figure 1, in which the base was vibrated sinusoidally at an angular frequency
ω and amplitude A0 using an electrodynamic shaker. The modelling technique involves
solving the hydrodynamic equations for a dissipative fluid closed with constitutive
relations appropriate for inelastic collisions between particles. To achieve this closure,
we use the constitutive equations derived for frictionless (smooth), nearly elastic hard
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Figure 1. Axisymmetric solution domain. Boundary definitions are provided in the text.

spheres using Grad’s 13-moment method for the solution of the inelastic Enskog–
Boltzmann equation (Jenkins & Savage 1983; Jenkins & Richman 1985; Jenkins
1999) and the derivation of Garzó & Dufty (1999) using the revised Enskog Theory.
These hydrodynamic equations describe the basic fields such as granular temperature,
number density (packing fraction) and mean velocity field vector.

2.1. Granular temperature

In this work, we define the granular temperature in terms of the mean-squared
fluctuating velocity, such that

T = 1
3
m〈c2〉, (2.1)

where c is the speed of a particle about the mean velocity of the flow and 〈 〉 denotes
an ensemble average. In a granular flow, equipartition does not necessarily hold
(Feitosa & Menon 2002; Wildman & Parker 2002) and the stress tensor may be
anisotropic. In this case, the granular temperatures in the r, θ and z directions are
given by

Tr ≡ m〈u2〉, (2.2a)

Tθ ≡ m〈v2〉, (2.2b)

Tz ≡ m〈w2〉, (2.2c)

where u, v and w are the velocity components of the particles in the respective
directions.

2.2. Hydrodynamic equations

By considering the balance of mass, momentum and kinetic energy, it is possible to
derive relations similar to the conservation equations for thermal systems (Landau &
Lifshitz 1987). These are, respectively,

∂n

∂t
+ ∇ · (nu) = 0, (2.3)

n

(
∂u
∂t

+ u · ∇ u
)

= ∇ · Pij − ng ẑ, (2.4)

3

2
n

(
∂T

∂t
+ u · ∇ T

)
= − ∇ · J + Pij : E − γ. (2.5)
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where t is time, Pij is the stress tensor, vector J is the flux of the fluctuation energy,
E is the symmetric part of the velocity gradients, n is the number density, γ is the
collisional rate of dissipation of the fluctuation energy per unit volume and g is the
acceleration due to gravity.

The components of the symmetrized velocity gradient tensor E are given by
(Landau & Lifshitz 1987)

Eij = 1
2
(∂jui + ∂iuj ). (2.6)

The components of the stress tensor Pij are split into two components Pij =P0
ij +P1

ij ,
where Pij is related to hydrostatic pressure P as

P0
ij = −Pδij , (2.7)

P1
ij =

((
λ − 2

3
µ

)
Ekk

)
δij + 2µEij , (2.8)

and the heat flux is given by

J = −κ∇T − µe∇n, (2.9)

where κ is the thermal conductivity and µe is additional transport coefficient due to
inelasticity of granular media. In the following sections, two constitutive relationships
are presented.

2.3. Transport coefficients of Jenkins

Thermal conductivity κ is given by Jenkins (1999) as

κ =
4MGPd√

πm(1 + 4G)T 1/2
, (2.10)

where

M = 1 +
9π

32

(
1 +

5

12G

)2

, (2.11)

and

G = ηg0, (2.12)

where η is the packing fraction. The radial distribution function at contact, g0, is
given by Carnahan & Starling (1969)

g0 =
(2 − η)

2 (1 − η)3
. (2.13)

In this case, the inelasticity coefficient is zero, i.e. µe = 0. The expressions for bulk
dissipation, bulk viscosity and shear viscosity are given by Jenkins (1999), such that
the bulk dissipation rate is

γ =
24√
πm

(1 − e)
P

1 + 4G
G

T 1/2

d
. (2.14)

The bulk viscosity is given by

λ =
8

3
√

π
ndGT 1/2, (2.15)

and the shear viscosity is

µ =

√
π

6
ndT 1/2

[
5

16G
+ 1 +

4

5

(
1 +

12

π

)
G

]
, (2.16)



190 H. Viswanathan, N. A. Sheikh, R. D. Wildman and J. M. Huntley

where e is the particle–particle coefficient of restitution (Jenkins 1999). The
relationship between n and the packing fraction, η, is given by

n =
6η

πd3
. (2.17)

The second set of constitutive relationships use the dense granular gas inelastic
relationships developed by Garzo & Dufty (1999).

2.4. Transport coefficients of Garzo and Dufty

The transport coefficients are reduced to non-dimensional form using κ0 and η0 as
follows:

κ∗ =
κ

κ0

, (2.18)

µ∗ =
µ

η0

, (2.19)

λ∗ =
λ

η0

, (2.20)

µ∗
e =

ηµe

T κ0

, (2.21)

where κ0 = 15η0/4m and η0 = (5m/16d2)(
√

T/π) are the dilute limit values of thermal
conductivity and shear viscosity, respectively. The cooling rate γ is reduced as
γ ∗ = γ /ν0, with ν0 the characteristic collision frequency given by

ν0 =
ρT

η0

. (2.22)

The coefficients for the transport of bulk viscosity, shear viscosity and cooling rate
are given as

λ∗ =
32

45
πηG (1 + e)

(
1 − 1

32
c∗

)
(2.23)

and

µ∗ = µk

[
1 +

2

15
πG (1 + e)

]
+

3

5
λ∗, (2.24)

where the kinetic parts, µk and c∗, are given by

µk =
1(

νη − 1

2
γ (0)

) [
1 − 1

15
(1 + e) (1 − 3e) πG

]
(2.25)

and

c∗ = 32 (1 − e) (1 − 2e2)[81 − 17e + 30e2(1 − e)]−1 (2.26)

with

νη =
2 − η

2 (1 − η)3

[
1 − 1

4
(1 − e)2

] [
1 − 1

64
c∗

]
, (2.27)

γ (0) =
5

12

2 − η

2 (1 − η)3
(1 − e2)

(
1 +

3

32
c∗

)
. (2.28)
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The constitutive coefficients for κ and µ are given by

κ∗ = κk

[
1 +

1

5
πG (1 + e)

]
+

64

225
πηG (1 + e)

(
1 +

7

32
c∗

)
, (2.29)

where κk is given by

κk =
2

3 (νk − 2γ (0))

[
1 +

1

2
(1 + p∗)c∗ +

πG

10
(1 + e)2

×
{

2e − 1 +

[
1

2
(1 + e) − 5

3 (1 + e)

]
c∗

}]
(2.30)

and p∗ and νk are given by

p∗ = 1 +
1 + α

3
πG, (2.31)

and

νk =
1

3
(1 + e)

2 − η

2 (1 − η)3

[
1 +

33

16
(1 − e) +

19 − 3e

1024
c∗

]
. (2.32)

The inelastic transport coefficient is given by

µ∗
e = µk

e[1 + 1
5
πG (1 + e)], (2.33)

where the kinetic part µk
e is

µk
e =

2

(2νk − 3γ (0))

⎧⎪⎨
⎪⎩

(1 + η∂η ln g0)γ
(0)κk +

p∗

3
(1 + η∂η lnp∗)c∗

− 2

15
πG

(
1+

1

2
η∂η ln g0

)
(1+e)

{
e (1 − e)+

1

4

[
4

3
+ e (1 − e)

]
c∗

}
⎫⎪⎬
⎪⎭.

(2.34)

The full form of the cooling rate coefficient is given by γ ∗ = γ (0) +γ (1), where γ (1) is

γ (1) =

[
− 1

ν0

(1 − e)(p∗ − 1) +
5

32
(1 − e2)

(
1 +

3

64
c∗

)
g0cD

]
∇ u. (2.35)

Here, cD is given by

cD =
1

ν0

[
1

2
γ (0) + νr +

5c∗

64

(
1 +

3

64
c∗

)
g0(1 − e2)

]−1 [
2

45
απG + (p∗ + 1)

(
2

3
− e

)
c∗

]
,

(2.36)

where νr and α are given by

νr =
1 + e

48
g0(128 − 96e + 15e2 − 15e3) +

c∗

64
(15e3 − 15e2 + 498e − 434), (2.37)

α =
3

8

[
(1 − e)(5e2 + 4e − 1) +

c∗

12
(159e + 3e2 − 19e − 15e3)

]
(1 + e). (2.38)

2.5. Equation of state

The moderately dense phase equation of state suggested by Garzo & Dufty (1999)

P = ηT

(
1 +

1 + α

3
πG

)
(2.39)

is used throughout this work.
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Figure 2. Schematic representation of a 3D vibrated bed.

2.6. Boundary conditions

The required set of boundary conditions for this problem is deduced from symmetry
arguments, energy balance equations and a pressure condition along the four
boundaries B1–B4 surrounding the domain of interest as defined in figure 1. The
symmetry arguments and energy balance equations are expressed here in terms of the
granular temperature T, the radial and axial components of the mean velocity field
(u and v, respectively) or the gradients of these quantities on B1–B4. In addition, the
pressure P needs to be specified at the base. This may be done by specifying the
pressure at the base in terms of the total mass of particles in the system.

Taking B1 (i.e. the axis of the cylinder, r =0) first, the axial symmetry of the
problem allows the gradients of the temperature and of the components of the mean
velocity fields to be specified as follows:

∂T

∂r
= 0, (2.40a)

∂u

∂r
= 0, (2.40b)

∂v

∂r
= 0. (2.40c)

The base of the cell (boundary B4 in figure 1) provides the energy input to the
system. Detailed analysis on vibrating boundaries has been performed by a number of
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researchers, ranging from a consideration of particle trajectories near a base vibrating
with a sawtooth profile (Warr & Huntley 1995) to generalized profiles (Kumaran 1998)
and bumpy boundaries (Richman 1993). Here, we adopt the expression derived by
Richman (1993). He considered collisions with a moving bumpy boundary undergoing
random vibrations along three perpendicular directions. In the limit of a smooth flat
wall, the in-plane vibration components do not contribute to the energy transfer. The
energy flux for a base moving with a mean square velocity of V̄ 2

b only in the vertical
direction is therefore identical to that for a base moving with a mean square velocity
of V̄ 2

b along each axis. The magnitude of the resulting energy flux at the base is then
given by

J (r, 0) =

(
2

π

)1/2

2ρG

[
2V̄ 2

b

(
T

m
+ V̄ 2

b

)1/2

− (1 − eb)

(
T

m
+ V̄ 2

b

)3/2
]
. (2.41)

The sidewall (B3, figure 1) is treated in a similar fashion to the base, such that

J (r, R) =

(
2

π

)1/2

2ρG

[
2V̄ 2

w

(
T

m
+ V̄ 2

w

)1/2

− (1 − ew)

(
T

m
+ V̄ 2

w

)3/2
]
, (2.42)

where V̄ 2
w is the out of plane mean squared velocity component of the wall. Since there

is no significant horizontal motion associated with the sidewalls in our experiments,
we set V̄ 2

w equal to zero. The quantities eb and ew represent the particle–base and
particle–wall coefficients of restitution, respectively. At higher altitudes, collisions
become increasingly infrequent and so in the limit z → ∞ the heat flux through the
upper boundary tends to zero. Experimentally, one observes the packing fraction at
large heights to decay exponentially with z so the above requirement is also a good
approximation for a container of finite height provided it is sufficiently tall. Therefore,
for the boundary B2, we write

J (r, L) = 0. (2.43)

Here, L is chosen to be 30 particle diameters, in line with the height of the
experimental cell (§ 4).

The base, sidewall and upper boundaries are impenetrable. Moreover, the walls are
assumed to be smooth with negligible frictional forces, and therefore, the tangential
stress at the wall vanishes. Hence, we employ the impenetrable boundary conditions,
with slip, to specify the conditions for u and v on these boundaries (Getling 1998)

n · u = 0, (2.44a)

t · K = 0, (2.44b)

where u is the velocity vector, n is the outward normal vector on the boundary, t
represents a tangential vector in directions orthogonal to n, and K is the viscous
boundary force per unit area given by

K =

(
−P I + µ( ∇ u + ( ∇ u)T) +

(
2µ

3
− λ

)
( ∇ u) I

)
n, (2.44c)

where I represents the identity or unit diagonal matrix.

3. Numerical solution method
The Navier–Stokes-like equations ((2.3)–(2.5)) along with the boundary conditions

((2.40a)–(2.44c)) were solved numerically as a steady-state problem using a
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commercially available finite-element (FE) package, COMSOL Multiphysics (version
3.2), interfaced with MATLAB (version 6.5). The mass and momentum conservation
equations (2.3) and (2.4) were implemented in ‘Non-Isothermal mode’ in the Chemical
Engineering–Momentum balance module. The energy equation (2.5) was implemented
in ‘Convection and Conduction mode’ in the Chemical Engineering–Energy balance
module. The equation of state (2.39) was implemented as an algebraic equation
using the general form in the PDE module. These equations were solved using a
triangular mesh with different mesh qualities such as (i) 200 elements, 30 boundary
elements and 1293 degrees of freedom, (ii) 438 elements, 44 boundary elements and
1842 degrees of freedom, (iii) 682 elements, 56 boundary elements and 4263 degrees
of freedom, (iv) 1456 elements, 82 boundary elements and 8985 degrees of freedom.
It was observed that the numerical error was small (<1 %) with mesh quality (ii)
and any refinements above it (meshes (iii) and (iv)). Hence, the mesh quality (ii)
was chosen to compute the numerical results presented in this paper. A stationary
nonlinear solver was used with a generalized mean residual (GMRES) linear system
solver and incomplete LU preconditioner with a drop tolerance of 10−6. We also used
the ‘Elimination’ constraint handling method and ‘Orthonormal’ null-space function
to obtain a solution. Using a previously obtained solution as an initial estimate,
results for any set of parameters (e.g. different N or A0 values) can be obtained by
iteration until convergence to a relative error of the order of 10−9 is reached.

4. Experimental details
For comparison of the numerical results with experiment, we used the PEPT

technique. A 145 mm diameter polymethyl methacrylate (PMMA) cylindrical cell
(height 300 mm) containing one layer of particles (700 glass beads) each with a
diameter of 5 mm was vibrated, thus fluidizing the granular beds. The coefficients
of restitution were measured using high-speed photography as being 0.91 ± 0.02 for
a glass–glass collision (particle–particle, particle–base) and 0.68 ± 0.04 for a glass–
PMMA collision (particle–wall). The cylinder was attached to a Ling dynamic systems
vibrator, which vibrated the system at a frequency of 50 Hz and amplitude of up
to 1.54 mm with a sinusoidal waveform (figure 2). PEPT involves labelling a single
tracer particle with radioactive nuclei. These nuclei decay by positron emission, and
the positrons emitted rapidly annihilate with a local electron, producing two gamma
rays travelling in opposite directions. These gamma rays are detected by two position
sensitive gamma ray detectors placed either side of the system and an accurate location
can be determined from detection of a small number of back-to-back pairs (figure 2).
Coincident detection of two gamma rays in a pair of position-sensitive detectors
defines a line passing close to the point of emission. However, a number of events are
used to correct for scattering within the system. Through triangulation of successive
location events, the position of a tracer particle can be located. As the tracer particle
used here was identical to all the others, apart from its radioactivity, the trajectory
obtained is representative of all the particles, and can be used to calculate the system
distributions (Wildman et al. 2000; Wildman et al. 2001a, b).

The experimental details regarding this technique, its application to the
measurement of granular flows and the data analysis procedure used to calculate
the granular temperature and the packing fraction have been discussed previously
and the reader is directed to references (Wildman et al. 2000, 2001a,b, 2002, 2005)
for more details. The same procedure is employed here, with the extension of the
measurements to variation in both the z and r directions.
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Dimensionless variable Dimensional relationship

T ∗ T/mgd
P ∗ P πd2/6mg
u∗ u/

√
(gd)

V ∗
b Vb/

√
(gd)

V ∗
v Vv/

√
(gd)

z∗ z/d
r∗ r/d
Ω∗ Ω/

√
(g/d)

A0∗ A0/d

Table 1. Relationship between the dimensional and dimensionless variables.

5. Results and discussion
5.1. Validation of the model

For the purpose of providing a partial validation of the numerical results, the
predictions of granular temperature and packing fraction profiles were compared
against the previously validated 1D results obtained from an inviscid model
(Viswanathan et al. 2006), which were, in turn, shown to be in excellent agreement with
the results of Martin et al. (2005), for the case of elastic sidewalls. The calculations
are presented in non-dimensional units with conversions provided in table 1. Figure 3
shows a comparison between the calculated non-dimensional granular temperature
and packing fraction fields from the inviscid model obtained by Viswanathan et al.
(2006), and the two models described in the previous section (along the line r∗ =0) for
various N values when the non-dimensional root-mean-square base velocity V ∗

b = 1.54
and the particle–wall restitution coefficient is set to unity. In this limit, the magnitudes
of the mean non-dimensional velocity fields were of the order of 10−6 and so one
would expect an excellent agreement between the models near the base. In figure 3(a),
when the dimensionless granular temperature is plotted as a function of height, the
granular temperatures decay asymptotically, until about 4σ , where the temperature in
the Garzo–Dufty model reaches a minimum and then increases. Similarly, the packing
fraction predictions are compared in figure 3(b) and as expected show a small ‘hump’
near the base for relatively large values of N. The difference between the results of the
models at z∗ < 4σ was around (<0.5 %) in T ∗ and in η, indicating excellent agreement
between the two.

5.2. Comparison with experiment

Figures 4 and 5 (V ∗
b = 1.14 and 1.54, respectively) show the predicted granular

temperature fields and their experimental counterparts for a situation where sidewall
dissipation is turned on. In each case, the vertical cross-sections of the experimental
granular temperatures in the vertical (T ∗

z ) and horizontal directions (T ∗
r ), and the

total granular temperature (T ∗) are plotted at different radial positions. These are
compared to the results from the inviscid model from Viswanathan et al. (2006) and
the two presented in this paper. In each case, the granular temperature predicted
by the viscous model is seen to be lower than that from the inviscid model. This
suggests that despite the creation of fluctuations due to shear work being done during
the convective motion, the inclusion of viscous stress creates the conditions for more
collisional dissipation within the bulk system.
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profiles, for various values of N, between the inviscid model (Viswanathan) and the viscous
model (Jenkins) for the case V ∗

b = 1.54, e = eb = 0.91 and ew = 1.
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Figure 4. Experimental results and predictions from three hydrodynamic models for the
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and e = eb = 0.91.
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The experimental results show that the fluctuations of the z-component of velocity,
T ∗

z , decay close to the base, but there is a suggestion that at high altitudes it increases
with altitude. The results for the r-component, T ∗

r , show a small increase with height
as the energy is transferred from the z direction to the r, but then show a slow decay
with increasing height and distance from the axis. At the lower vibration amplitude
V ∗

b = 1.14, closer to the axis (figure 4a), the z-component of temperature (T ∗
z ) is seen

to be in reasonable agreement with the model of Jenkins, and that of Garzo and
Dufty, although the same degree of upturn is not seen. As has already been noted
however (Martin et al. 2005), we do not anticipate agreement at large distances from
the base. Further away from the axis, the agreement between the total temperature T ∗

and temperature predicted by the viscous model gets better (figures 4b and 4c). The
standard error associated with the granular temperature measurements is typically
below 1 at heights up until z∗ ∼ 4σ , which then grows to be in excess of 10 at
altitudes above z∗ = 18σ , suggesting that the fluctuations at upper altitudes cannot be
considered significant.

In figures 6 and 7, the packing fraction profiles obtained from the experimental data
are compared against the inviscid and the viscous model results for V ∗

b = 1.14 and
1.54, respectively. Both the theoretical predictions show a monotonically decreasing
packing fraction with height at each radial position. In the radial direction, the
experimental packing fraction values increase as the wall is approached, which may
be interpreted as being due to the relatively high grain-wall energy losses. This feature
is reproduced by both the viscous and the inviscid models for both of the amplitudes.
In all the cases, the viscous model is seen to predict higher packing fractions closer to
the base than the inviscid model for the same parameters, and both models predict a
higher packing fraction than the experimental results in the axial regions (figures 6a
and 7a). The experimental packing fraction profiles further away from the axis tend
to agree better with the results of the viscous models as the base amplitude is
increased (figures 6c and 7c). Neither the viscous nor the inviscid model predictions
from Viswanathan et al. (2006) completely capture the ‘hump’ in the packing fraction
profiles close to the base that are observed in the experimental results for both Vb

∗

values in this limit (N =700), particularly close to the wall. We observe, however,
a maximum in the packing fraction profiles closer to the base for relatively large
values of N (e.g. when N = 1050) which is evident from the 1D result shown in
figure 3(b). Also, the temperature profiles (figure 8) closer to the wall (r∗ = 11.5 to
14) show a minimum reflecting the presence of a region of enhanced dissipation.
This corresponds closely to the position of enhanced packing fraction described
above.

In general, we observe that the viscous models are able to predict the granular
temperature and packing fraction profiles reasonably well in a vibrated granular bed.
The previously published work by Viswanathan et al. (2006), which compared the
results of inviscid models from two closures based on granular kinetic theory, showed
the presence of small gradients in pressure across the radius with increase in height.
The gradients were, however, significantly less than the pressure gradients in the axial
direction of the bed. It was also noted that the effect of increasing the grain–wall
inelasticity was to increase the magnitude of the radial pressure gradient. The work
pointed out that a non-zero radial pressure gradient results in a net radial force on
any given volume element in the cell, which was not balanced by a gravitational body
force since gravity acts parallel to the z-axis, and physically one would expect such
forces to set up convection rolls. This anomalous behaviour is corrected by the use
of a full Navier–Stokes-like model developed in the current paper. The inclusion of
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Figure 6. Experimental results and predictions from three hydrodynamic models for the
vertical cross-sections of packing fraction at the dimensionless radial positions (a) r∗ = 0.72,
(b) r∗ = 5.07 and (c) r∗ = 9.42 for the case ew = 0.68, V ∗

b = 1.14, N = 700 and e = eb =0.91.
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viscosity allowed us to subsequently compare the convection rolls obtained from the
PEPT experiments with those predicted by the model.

Figures 9 and 10 compare the dimensionless mean velocity fields from the viscous
models and the experiments in the (r∗, z∗) plane for the V ∗

b values discussed above.
An asymmetric toroidal convection roll is clearly present in both, where the particles
flow, on average, up at the centre and down at the sidewall. For the lower vibration
amplitude, the model results (figure 9a and 9c) predict the ‘eye’ of the convection roll
to be at r∗, z∗ coordinates ∼ (10.2, 3.2) whereas the experimental results (figure 9b)
show that the roll is centred at ∼ (10.1, 4.2). When the amplitude of vibration is
increased (figure 10) the bed expands and the roll is seen to be centred at a larger
height compared to that predicted with V ∗

b =1.14 in figure 9. The centre of the
roll predicted by the viscous models (figures 10a and 10c) is ∼ (10, 4.4) and by the
experimental result (figure 10b) is ∼ (10, 6.2). This shows that the model is able to
capture the qualitative features of the convection rolls reasonably well and there is
qualitative agreement (in the convection speed) with the experimental results for both
vibration amplitudes. The molecular dynamic simulation performed by Talbot & Viot
(2002) for similar parameters showed a good comparison with the PEPT data similar
to the agreement that is provided by the hydrodynamic viscous model results. Talbot &
Viot (2002) also performed simulations that demonstrated that the convection rolls of
the form observed experimentally can be attributed to wall dissipation. We performed
a similar test within our model where the particle–particle coefficient of restitution (e)
was set to unity and all the other parameters remained unchanged, and a further test
with elastic particle–base collisions. In both cases, the convection rolls are observed
(not shown), again demonstrating the role of the wall inelasticity in driving the
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Figure 9. Comparison of dimensionless mean velocity fields predicted by (a) the viscous
(Jenkins) model (b) experiment and (c) the viscous (G–D) model for V ∗

b = 1.14, with ew = 0.68,
N =700 and e = eb = 0.91.

convection in our system. There are indications that multiple rolls or rolls persistent
in the azimuthal direction may become apparent (Sunthar & Kumaran 2001), but an
investigation of these phenomena is out of the scope of this paper.

Figures 11 and 12 show the radial cross-sections of the r- and z-components of
the mean velocity field at different heights for V ∗

b = 1.14 and 1.54, respectively. At
relatively lower altitudes, there is a qualitative agreement between the models and
the experimental results. We find, however, that the agreement is less good at higher
altitudes of the bed. The experimental results show a greater magnitude of the mean
velocity fields at larger heights whereas the models predict that the mean velocities
are near to zero. From the equations for bulk and shear viscosities ((2.15), (2.16) and
(2.23), (2.24)), one would expect the expressions to tend to a constant at relatively
large altitudes as in this region, the number of particles is low, and the differences
between the experiment and the model are largest at the highest altitudes, but the
data here are sparse and there is an expectation that the continuum approach might
fail here in any case due to the infrequent inter-particle collisions. Also, one must
note that, experimentally, the difference in the granular temperatures in different
directions cannot be neglected when compared to the model predictions, suggesting
that temperature anisotropy should be incorporated to produce a more complete
description of the system.

The PEPT experimental data used here from the previously published results
(Wildman et al. 2001a, b) have provided evidence to suggest that the convection rolls
were caused by buoyancy effects initiated by the enhanced dissipation at the sidewall.
As pointed out in § 5.1, numerical solutions were obtained with a particle-sidewall
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coefficient of restitution eb =1, with other parameters unchanged, in order to highlight
the influence of the sidewall on convection rolls. No convection was apparent, with the
magnitude of the velocity vectors of the order of 10−6, as mentioned above. However
it should be noted that the MD simulations from Talbot & Viot (2002) showed
the presence of some convection in the opposite direction with weak magnitudes of
velocity vectors for a similar situation, whereas such a feature is not observed here.

In figure 13, the dimensionless angular velocity (Ω∗) (i.e. one half of the vorticity)
at the centre of the convection roll obtained from the model is plotted against
the dimensionless amplitude (A∗

0) for various values of N. The magnitude of the
angular velocity is seen to decrease with amplitude and appears to approach zero
asymptotically for all values of N investigated. This is quite different to the behaviour
seen experimentally, where no dependence on amplitude could be observed within the
parameter ranges available, but the general trend with N is captured by the simulation,
with absolute agreement becoming closer with increasing N. The convection rolls are
primarily driven by the higher density of material at the wall compared to that in
the bulk, which leads to a circulating flow. To investigate this further, we show in
figure 14, differences between packing fraction at the wall (ηwall) and that at the
axial region (ηaxial) as a function of altitude for two different amplitudes (A∗

0 = 0.228,
and A∗

0 = 0.548) and for various values of N , 350 (figure 14a), 700 (figure 14b), 1050
(figure 14c). These figures demonstrate that the increase in vibration amplitude results
in a decrease in the packing fraction difference. It is also observed that increasing
the dimensionless base amplitude decreases the radial (r∗, figure 15a) and increases
the axial (z∗, figure 15b) positions of the centre of the convection roll. Bearing in
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mind the fact that convection is controlled by the dissipation in the region near the
wall, it appears that there are several possible causes for the discrepancies between
experiment and theory. Firstly, it has already been recognized that there exists a
Knudsen layer near a boundary that penetrates several mean free paths into the
bulk (Galvin, Hrenya & Wildman 2007) the absolute size of which depends on
the degree of excitation, and within which the forms of the constitutive relations
for bulk properties are not always appropriate. Secondly, the model assumes a
coefficient of restitution that is velocity-independent. In reality, one anticipates that
the coefficient of restitution will reduce with increasing collisional velocities. In terms
of the vibrated bed, we would expect more vigorous particle–wall collisions as the
amplitude is increased, thus leading to a lower effective coefficient of restitution than
that employed, resulting in higher kinetic energy dissipation, higher densities and
more convection than predicted, i.e. one would anticipate that the dependence of the
angular velocity on the amplitude would be weaker than that predicted.

In spite of the highlighted differences, the agreement between experiment and
the model is reasonable, considering the simplifications in a number of potentially
important ways (for example, assumptions of isotropic temperature distributions,
no rotational motion, etc.). Modifications and improvements to the model could, in
principle, be incorporated within the overall solution method outlined in this paper
with the introduction of spin granular temperature and particle friction.
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6. Conclusions
Viscous hydrodynamic equations resulting from kinetic theory have been solved

using the finite-element method in a three-dimensional vibrated monodisperse
granular bed and compared to the results of Viswanathan et al. (2006) and
experimental results obtained using PEPT. The granular temperature and the packing
fraction profiles from the viscous model agree reasonably well with previously
obtained inviscid model results and experimental measurements at low altitudes,
although it is noted that the large differences in the granular temperatures in different
directions are not accounted for in these models. The results of our analysis show
reasonable correspondence with experimental results (Wildman et al. 2001a) and MD
studies (Talbot & Viot 2002) of convection in vibro-fluidized granular beds. The
velocities of the convection rolls, although small compared to the magnitude of the
velocity fluctuations (∼5 %), are broadly in agreement with the experimental results
from Wildman et al. (2001a) at relatively low altitudes, but there are discrepancies
between the two which may be attributable to the presence of a Knudsen layer
and anisotropy in the stress tensor, both of which phenomena require a Burnett-
level description (Hrenya 2008, Sela & Goldhirsch 1998). In addition, our analysis
provides an opportunity for comparison between two different constitutive relations.
It was observed that the predicted density profiles for both models were close to
one another. There were differences in both the granular temperature and the mean
velocity distributions at higher altitudes where the density was lower, but this is
a region where the applicability of both models becomes difficult to justify in any
case. The Jenkins model provided a closer overall agreement with the experimentally
observed total granular temperature profiles, whereas the Garzo–Dufty model tended
to match the vertical temperature component better. In the comparison with the
experimental mean velocity distributions, neither model was consistently better than
the other over the range of experimental parameters studied here.
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