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Abstract  
The Economic Level of Leakage is a systematic way for a water utility to estimate the 
optimum leakage level below which the costs of reducing leakage further exceed the 
benefits of saving water. The concept can be adapted to include the economic costs 
of social and environmental externalities. The paper presents an approach for 
estimating the economic costs of greenhouse gas emissions and incorporating these 
in the ELL calculation. This is applied in the city of Zaragoza in Spain, with initial 
estimates of ELL and externality costs calculated using data from water supply 
records and measurements in a study area, together with empirical relationships from 
the literature.  
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Introduction 
Climate change is now widely recognised as caused by increased concentrations of 
greenhouse gases in the earth’s atmosphere that absorb infrared radiation. In 
particular, concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide 
(N2O) have increased over the last century as the result of emissions from fossil fuels 
and industrial processes (IPCC 2007). Climate change has an impact on water 
resources and water supply systems, through changes in the magnitude and 
variability of temperature and rainfall, and the frequency and severity of extreme 
weather events. In addition, water supply systems themselves contribute to climate 
change through greenhouse gas emissions from the use of energy.  

One of the costs of producing water is the amount of energy used during the 
pumping, treatment and distribution process, and these costs apply to water lost in 
leakage in the same way as they do to water delivered to consumers. This energy 
demand is growing as it becomes necessary to develop more energy-intensive water 
sources for expanding cities and/or to meet higher service quality levels. Desalination 
is an example of a high energy water source which is becoming more widely used. 

The growth in energy use has a number of important implications, including an 
increase in energy costs for business and government, the increased emissions of 
greenhouse gases from electricity generation and the additional strain on the existing 
power grid to meet the higher electricity demand.  

After staff costs, energy consumption is generally the second most important 
operating expense in water utilities, and this might be more critical in developing 
countries. Increasing attention is being paid to the potential savings through 
increasing efficiency. For example, the Alliance to Save Energy (2005) estimated that 
water leakage in Brazil resulted in energy consumption of 3.5 billion kWh per year, 
costing the water sector US$ 230 million per year.  

The concept of Economic Level of Leakage 
Leakage control can be expensive, and water utilities need to achieve an economic 
balance between the costs of leakage control and the benefits there from. The 
Economic Level of Leakage (ELL) is the leakage level at which the marginal cost of 
reducing leakage is equal to the benefit gained from further leakage reductions, that 
is the leakage level which minimises the total of the present value cost of leakage 
management and the present value cost of the water lost through leakage (OFWAT 



2008). As shown in Figure 1, reducing leakage below the ELL would cost more than 
the benefits of the leak reduction.  

 
Figure 1:Economic Level of Leakage Calculation 

 
The graph in Figure 1 shows present value costs of leakage management and 

water lost through leakage, varying with the leakage level (Ml/day). The cost of lost 
water refers to the costs of actually producing and distributing water of an acceptable 
quality. The costs of leakage management are those associated with detecting and 
repairing the leaks. The leakage detection and repair cost increases when the 
leakage level decreases since is easier to detect bigger leaks, and the effect of 
detection and repair is greater for bigger leaks. The graph also shows background 
leakage as an asymptote – this is the sum of all the leakages in all fittings in the 
network which are too small to be detected. The background leakage is a function of 
the leakage detection methods employed by the utility.  

The ELL may be calculated on the basis of the financial costs to the utility, which 
demonstrates the value to the utility of reducing the leakage of water that has been 
treated and pumped incurring the cost of energy and chemical bills etc. Alternatively 
ELL may be calculated on the basis of economic costs to society, which take account 
of the financial costs to the utility AND externalities like social and environmental 
impacts.  

OFWAT (2008) has produced guidance for the UK water industry on the process of 
including externalities in this model of ELL. It defines an externality as "any positive 
or negative impact arising from an activity that is not normally considered in the 
decision of the agent (in this case the Water Service Provider) undertaking the 
activity".  

These externalities arise because the positive impacts or the avoidance of negative 
impacts have a value but there is no obvious market price (or cost) which reflects 
third parties' willingness to pay. These externalities include social and ecological 
variables. However the inclusion of carbon valuation in this field is recent, to take 
account of the cost of climate change and emissions of greenhouse gases.  

Incorporating the economic costs of carbon emissions in the ELL model can be 
considered in 5 stages: 

1. Identification of energy externalities in water supply and leakage 
management activities. 

2. Data collection and assessment of emissions in water supply and leakage 
management activities. 



3. Evaluation of the carbon externalities in the water supply and leakage 
management activities  

4. Inclusion of values of carbon externalities in the economic analysis.  

5. Post-analysis monitoring.  

Tables 1 and 2 show identified carbon externalities in various activities or 
interventions for water supply and leakage management, together with data to be 
collected to enable assessment of emissions per unit of intervention (e.g. per Ml of 
water supplied or saved). 

Table 1: Carbon Externalities in the Cost of Water Supply (adapted from OFWAT, 2008) 
 

Source of Emissions Intervention and Data Required 

 Abstraction Treatment Distribution 

Fuel Use Quantity of each 
fuel used 

Quantity of each 
fuel used 

Quantity of each 
fuel used 

Energy Use (including 
consumption in offices 
and data centres) 

Quantity of each 
energy source 
used 

Quantity of each 
energy source 
used 

Quantity of each 
energy source 
used 

Water treatment – 
ozonation 

 Volume treated 
by ozone 

 

Water treatment – 
disposal of residues 

 Quantity of waste 
a) recycled  
b) land filled 

 

 
Table 2: Carbon Externalities in the Cost of Leakage Management (adapted from OFWAT, 2008) 
 

Source of 
Emissions 

Intervention and Data Required 

 Asset 
Replacement 

Active 
Leakage 
Control - 
Detection 

Active 
Leakage 
Control - 
Repair 

Repair 
Reported 
Leaks 

Pressure 
Management 

Fuel /energy 
use - 
transportation 

Quantity of 
each fuel 
used 

Quantity 
of each 
fuel used 

Quantity 
of each 
fuel used 

Quantity 
of each 
fuel used 

Quantity used 
for pumping 
optimisation 

Fuel / energy 
use - 
worksites 

Quantity of 
each energy 
source used 

negligible Quantity 
of each 
energy 
source 
used 

Quantity 
of each 
energy 
source 
used 

negligible 

Traffic 
diversion / 
disruption 

Measure of 
diversion / 
disruption 

negligible Measure 
of 
diversion / 
disruption 

Measure 
of 
diversion / 
disruption 

negligible 

Materials 
consumption 

Quantity of 
materials 
used 

negligible Quantity 
of 
materials 
used 

Quantity 
of 
materials 
used 

Quantity of 
materials 
used 

 



Pressure management is particularly interesting, as a reduction in pressure 
reduces the leakage rates and the frequency of bursts as a leakage management 
measure, but in addition it reduces energy consumption and leakage/consumption in 
users’ premises, all of which have both direct financial costs and externalities.  

Energy and pressure management has gained a lot of research attention, from 
optimizing the pumping schemes to developing new control technologies. Table 3 
shows an example of payback periods for different approaches to pressure 
management. 

Table 3: Typical payback periods for pressure management technologies and practices (Alliance 
to Save Energy, 2005) 
 

Function Typical Payback Period 
(years) 

Avoid the unnecessary operation of pumping 
equipment 

0 – 1  

To optimize the electromechanical efficiencies of the 
pumping systems  

0.5 – 1.5 

Control of pressure and output in the networks 1.5 – 3  

Use of highly efficient motors  2 – 3  

 

Valuation of the emissions requires converting volumes of emissions of various 
greenhouse gases into CO2 equivalent, and then the application of a shadow price or 
externality value to convert the quantity of CO2 emissions to a monetary equivalent. 
The appropriate value for this shadow price has been a matter of debate in recent 
years. Current UK guidance is to use a non-traded price of carbon of £51 per tonne 
CO2 equivalent for 2009 (DECC 2009). At 2009 exchange rates, this is equivalent to 
€57 per tonne CO2 equivalent, which is the figure adopted in this paper. 

Research on ELL in the City of Zaragoza 
Research on the ELL is being undertaken through the EU-funded SWITCH project 
whose overall objective is to apply Integrated Urban Water Resource Management 
concepts for achievement of effective and sustainable urban water schemes in the 
‘city of tomorrow (i.e. projected 30-50 years from now)’.  

Zaragoza is one of the partner cities for the SWITCH project, and is a 
demonstration city for the demand management work package of the project. 
Zaragoza, situated in the central area of the River Ebro basin, is the capital of Aragón 
region in North-eastern Spain. Water supply is provided by the Municipality, through 
its Infrastructure Department (with the involvement of other departments), rather than 
by a separate utility. 

Research field work started in Zaragoza in October 2008, since when District Meter 
Areas have been set up, flow and pressure loggers installed and the DMAs have 
been calibrated. Data collection has proved more difficult than expected due to the 
spread of responsibilities across departments of the Municipality. Preliminary 
estimates are presented in this paper, based on the limited information collected to 
date. The analysis relates to the situation in 2009. 

Estimation of ELL in the City of Zaragoza 
The volume of Non Revenue Water in Zaragoza is estimated as approximately 21 
million m3 per year (34%), as shown in Table 4. About half the estimated losses 
occur in the distribution network. 
 



Table 4: Estimated Water Supply Volumes in Zaragoza, 2008 (Zaragoza Municipality 2009) 

 
Item 
 

Annual Volume 
m3x106/yr 

Treated Water delivered to distributions system 61.09 

Metered delivery to customers 39.69 

Non Metered Consumptions 1 to 2 

Metering errors 4 to 5 

Losses in treatment plant and tanks 0,5 to 1,5 

Losses in private installations (e.g. inside the house or the 
network inside a university...) 

3 to 4 

Losses in distribution network 9 to 12 
 
To develop an estimated Economic Level of Leakage, physical losses can be 
analysed in the following categories using the Bursts and Background Estimates 
(BABE) methodology and empirical relationships developed by the IWA Water Loss 
Task Force: 

1. Trunk mains and service reservoir leakage 

2. Real losses from reported bursts 

3. Background leakage 

4. Unreported real losses 

These are considered in turn below. 
 

Trunk mains and service reservoir leakage 
Leakage form trunk mains and service reservoirs is estimated from data on the water 
distribution system infrastructure in Zaragoza, taking account of the age of the pipes 
using empirical figures from Lambert (2009), as shown in Table 5. 
 
Table 5: Calculation of Trunk Mains and Service Reservoirs Leakage 
 

Infrastructure 
Component 

Length or 
Volume 

Mains and Service Reservoirs Leakage 

Leakage Allowance 
(Lambert 2009) 

Mains and Service 
Reservoirs Leakage 

m3/km/day 
% of 

storage/day 
m3x103/yr 

Trunk Mains (km) 238.61 3.26  283.92 

Service 
Reservoirs (m3) 

275,510  0.1 100.8 

Total    384.72 

 
Real losses from reported bursts 

The volume of real losses from reported bursts in distribution mains and service 
connections is estimated using data on the number of reported bursts in Zaragoza in 
2009, and the average system pressure of 36m, together with empirical relationships 
developed by Lambert et al (1999) as shown in Table 6. 
 
 



Table 6: Calculation of Reported Burst Volume of Leaks  

Infrastructure 
Component 

Number of 
Reported Bursts

Reported Burst Volume 

Volume per event (m3) 
(Lambert et al, 1999) 

Reported 
Burst Volume 

@ 50m 
pressure 

@ 36m 
pressure 

m3x103/yr 

Mains 302 1440 1,190.19 359.44 

Service 
Connections 

360 576 
476.07 171.39 

Total    530.82 
 

Estimated Background leakage 
The Unavoidable Background Leakage is estimated from data on the water 
distribution system infrastructure and pressure, using empirical relationships 
presented by Lambert et al (1999) as shown in Table 7. This represents the minimum 
level of background leakage that could be achieved at this pressure for an average 
condition of the pipes (ICF = 1.0) and is used here in the ELL estimate. In practice 
however the Unavoidable Background Leakage depends on the water loss strategies 
in use. 
 
Table 7: Calculation of Unavoidable Background Leakage at current pressure 

Infrastructure 
Component 

Length 
or 

Number 

Unavoidable Background Leakage (UBL) 

@ 50m pressure @ 36m pressure 

l/km/hr 
(Lambert 

et al 
1999) 

l/conn/hr 
(Lambert 

et al 
1999) 

m3/day m3/day m3x103/yr 

Mains (km) 1,235.02 20  592.8 362.2 132.19 

Service 
Connections 

21,530  1,25 750 458.2 144.03 

Total    1342.8 820.4 276.26 

 

In Zaragoza the residential areas are mainly apartment buildings. The number of 
connections (21,530) is used in this UBL calculation, rather than the number of 
customer properties (320,178), following Lambert and McKenzie (2002):  

"Where several registered customers or individually occupied premises share a 
physical connection or tapping off the main, e.g. apartment buildings, this will still be 
regarded as one connection for the purposes of the applicable PI [Performance 
Indicator], irrespective of the configuration and number of customers or premises." 

Unreported Real Losses 
The introduction of active leakage control methods will reduce the volume of 
unreported real losses from mains and service connections. The economic limit 
(where the cost of intervention exceeds the cost of saved water) is estimated using 
the method and equations presented by Lambert and Lalonde (2005), together with 
estimates of the cost of intervention and rate of rise in Zaragoza as described below. 
This gives the Economic Unreported Real Losses (EURL). 
 



The Variable Cost of lost water in 2009 (CV) is taken as €0.734 per m3 after 
consultation with water supply managers in Zaragoza. Research with leak control 
staff using noise loggers in the Actur area of the city, gave an estimated cost of 
intervention (CI) of €410 per km of mains. The Rate of Rise (RR) was estimated from 
two water balances for one DMA. This equated to 49 litres/connection/day/year or 
1,057 m3/day/yr for the city as a whole. This estimate was used in the absence of 
data from the rest of the city, though the pipe system in Actur is relatively new and in 
good condition compared with other parts of the city, so this rate of rise may be an 
underestimate. 

The Economic Intervention Frequency EIF is 

years
RRCV

89.1
365*1057*734.0

1235*410*2CI2
EIF 




  

This EIF allows the definition of an Economic Percentage of the system to be 
surveyed annually (EP): 

52.88% 
1.89

100
  

EIF

100
  (%) EP   

The Economic Unreported Real Losses (EURL) can be expressed as: 

/yrm792,364
734.0

1,235*410*0.5288

CV

LmCI  EP
  )(m EURL 33 


  

This analysis shows that active leakage control survey should be carried out on 
52.88% of the system per year, to reduce unreported losses from the distribution 
mains and service connections to an economic level. This will require an Annual 
Budget for Intervention (ABI): 
 

764,267€ 1235*410*5288.0 CI  EP  ABI   

Table 8 shows that this EURL analysis is relatively insensitive to the estimated 
parameters derived from the study area. 
 
Table  8: Sensitivity of Estimates of Economic Unreported Real Losses 

 Economic Unreported Real Losses (EURL) (m3x103/yr) 
Rate of Rise 
(m3/day/yr) 

CI = €205/km CI = €410/km CI = €820/km 

1057 258 365 516 
1500 307 435 615 
2000 355 502 710 
2500 397 561 793 
3000 435 615 869 

Note: changes in the costs of water (CV) have an inverse effect on EURL to changes 
in the cost of intervention (CI), e.g. halving the cost of water has the same effect as 
doubling the cost of intervention 
 

Economic Level of Leakage 
From the above analysis, the Economic Level of Leakage for Zaragoza is estimated 
as 1,556 m3x103/yr, as shown in Table 9.  This is based on only one approach for 
active leakage detection (using noise loggers) and different approaches or 
combination of approaches will have different results for this ELL analysis.  



 
Table 9: Estimation of the Economic Level of Leakage for Zaragoza 

  Losses in m3x103/yr 
 Length 

or 
number 

Trunk 
mains and 
service 
reservoir 
leakage 

Real 
losses 
from 
reported 
bursts 

Estimated 
Backgr’nd 
leakage 

Economic 
Unreported 
Real Losses 

Total 

       
Trunk 
mains 
(km) 

238.61 283.9     

Service 
reserv-
oirs (m3) 

275,510 100.6     

Distrib- 
ution 
mains 
(km) 

1,235.02  359.4 132.2 See below  

Connect-
ions 

21,530  171.4 144.0 See below  

Total  384.5 530.8 276.2 364.8 1,556.3
 
Externality Costs of Emissions  
No data have been obtained from Zaragoza on emissions in the abstraction, 
treatment and distribution of water. For illustrative purposes in this paper, data have 
been taken from an example given in Ofwat (2008), as shown in Table 10. 
 
Table 10: Example of Carbon Externalities in the Cost of Water (adapted from OFWAT, 2008) 

 
For a system with total water throughput 2000 Ml/yr and leakage 1.5 Ml/d 

 Emissions/yr 

Abstraction (t CO2 /Ml) 0.09 

Treatment (t CO2 /Ml) 0.52 

Distribution (t CO2 /Ml) 0.07 

Total (t CO2 /Ml) 0.68 

 Costs 

Externality cost (€ /t CO2) €57 

Externality cost (€/Ml) €39 

Externality cost (€/ m3) €0.04 

 
If the externality cost of €0.04 /m3 in this example also applied in Zaragoza, it would 
represent about 5% of the financial cost of water. 

The externality cost of emissions from leakage control in Zaragoza is estimated 
considering the work of the leak control crew during 2009, using Zaragoza 
municipality records. 

The usual setup for leak control work involves one van and 4 persons. The value of 
emissions from the use of labour are estimated to be approximately 1 kg 



CO2e/person/hour (UKWIR, 2008). This is based on the assumptions: i) that site 
workers travel an average distance of 25 km each day from their lodgings to site and 
then back again by car or van (2 persons to a vehicle); and ii) that each labourer 
makes use of site welfare facilities (large heated portacabins). So the value of 
emissions for the leak control crew will be 32 kg CO2e per day or 6944 kg CO2e per 
year + the emission related to the distance travelled for repair.  

In 2009 a total of 7227 km were driven by various light vehicles for work on 
leakage control. Considering a value of 0.210 kg CO2/km (UKWIR 2008) we obtain 
1518 kg CO2e for the vehicle emissions for leakage control activities during 2009 in 
Zaragoza. 

During 2009 a total of 835 events all over Zaragoza involved the leak control crew, 
of which 501 were repair events. Further data on the diameter and pipe material from 
71 of these repair events, enabled the emissions from repair to be estimated as 344 
kg CO2e/m length of pipe. Data on the pipe length per repair is not currently available 
but based on information from the repair crew we assume a replacement of 2 m per 
event. This gives an average of 688 kg CO2e per repair and a total value of 344,265 
kg CO2e for all 501 repair events during 2009 in Zaragoza. 

The average of 688 kg CO2e per repair in Zaragoza is of a similar order to the 
estimate of 286 kg CO2e per repair in South Staffordshire, UK (South Staffordshire 
Water 2009).  

Table 11 summarises the externality costs of leakage control activities for one 
crew. The total is €20,105, which is less than 10% of the financial cost. The data 
show that the fuel, energy and materials use at worksites is the major source of 
emissions, not energy use by labour and transport.  

 
Table 11: Estimated Emissions from Leakage Control Activities in Zaragoza, 2009 
  

Source of 
Emissions 

Description Recorded 
data 

Rate kg CO2e Externality 
cost (€) 

Labour – 
commuting and 
welfare 

Crew of 4 217 days 32 
kgCO2/day

6944 €396

Fuel /energy use - 
transportation 

Car and 
vans 

7227 km 0.210 
kgCO2/km

1518  €87

Fuel / energy / 
materials use – 
worksites 

 501 repair 
events

344 
kgCO2/m  

pipe x 2m

344,265 

 

€19,623

Total     €20,105

 
Way Forward 
This paper has demonstrated how energy externalities can be included in the 
economic level of leakage concept, and has applied this to active leakage detection 
in Zaragoza. Initial research estimates suggest that the externalities cost is not likely 
to have a major impact on the economic level of leakage. These estimates need to 
be refined and extended to include investigations of other water loss strategies. 
These will feed into a model which is being developed within the SWITCH project to 
provide a tool for estimating ELL, taking account of energy externalities. 
 



Although the economic effect of the energy externalities in the ELL may be small, 
the issue is important and demands the generation of guidelines and 
recommendations for accounting as a reference for reduction or offset measures. 

In cities where ELL is not currently estimated, this research shows how available 
data can be compiled to improve understanding and management of water losses. 
This in itself should lead to savings of water and energy and improved performance, 
and data from water loss management activities can then be used for ELL analysis.  
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