14 Appendix

14.1 Geometric formulas

Geometric formulas								
rectangle	A = a x b							
rectangular prism	$A = 2x (a \times b + a \times c + b \times c)$	$V = a \times b \times c$						
trapezium	$A = \frac{a+c}{2} \times h$							
trapeziform prism		$V = \frac{h}{3} \times h (a \times b + c \times d + \sqrt{a \times b \times c \times d})$						
circle	$A = \pi \times r^2$	$C = 2 \times \pi \times r$						
cylinder	A (mantle) = $2 \times \pi \times r \times h$	$V = \pi \times r^2 \times h$						
sphere (ball)	$A = 4 \times \pi \times r^2$	$V = \frac{4}{3} \times \pi \times r^3$						
spherical segment	$A = 2 \times \pi \times r \times h$	$V = \pi \times h^2 \times (r - \frac{h}{3})$						
cone	A (mantle) = $\pi \times r \times s$	$V = \pi \times r^2 \times \frac{h}{3}$						
law of pythagoras	$a^2 + b^2 = c^2$	sides of 90° triangle: 3 / 4 / 5						
tangent a / b		tan 45° = 1						
		tan 30° = 0.577						
		tan 60° = 1.732						

Table 45: Geometric formulas

14.2 Energy requirement and cost of pumping

	А	В	С	D	Е	F	G	Н	I	
1		Energy requirement and cost of pumping								
2	flow rate	main flow h/d	flow rate per hour	pump high	assumed head loss	efficiency of pump	required power of pump	cost of energy	annual energy cost	
3	m³/d	h	m³/h	m	m	η	kw	ECU/kWh	ECU	
4	26	10	2.6	10	3	0.5	0.18	0.15	100.85	

Table 46: Energy requirement and cost of pumping

C4 = A4 / B4 G4 = 9.81 x (D4 + E4) x C4 / F4 / 3600 I4 = B4 x G4 x 365 x H

14.3 Sedimentation and flotation

The performance of a domestic-wastewater settler is sufficient when the effluent contains less than 0.2ml/l settleable sludge after a 2h jar test.

The general formula for calculating the surface area for floatation and sedimentation tanks is:

Water surface [m²] = water volume [m³/h] / slowest settling (floatation) velocity [m/h].

Settling and floatation velocity can be calculated by observing the settling process in a glass cylinder. The formula is:

Settling (floatation) velocity [m/h] = height of cylinder [m] / settling (floatation) time [h]

Flocculent sludge has a settling velocity between 0.5 and 3 m/h.

The velocity in a sand trap should not exceed 0.3 m/s [1000 m/h].

The minimum cross section area is then:

Area $[m^2]$ = flow $[m^3/s] / 0.3$ [m/s], or Area $[m^2]$ = flow $[m^3/h] / 1000$ [m/h]

in settling tests of domestic wastewater

Appendix 1:

Removal rates

The above graph shows the results of settling tests in a jar test under batch conditions (SS = settleable solids, TS = total solids; COD is measured as $CODKMnO_4$). The curve might be different in through-flow settlers. The more turbulent the flow, the lesser the removal rate of settleable solids; however, BOD- and COD-removal rates increase with more complete mixing of old and new wastewater.

14.4 Flow in partly filled round pipes

	А	В	С	D	Е	F	G	Н	- 1	J
1	Flow in partly filled round pipes									
2	pipe	flow height	flow area	moisted area/m	hydraulic radius	slope	rough ness	flow speed	flow	
3	chosen	given	calcul.	calcul.	calcul.	chosen	estimat.	calcul.	calcul.	calcul.
4	d	h/d	А	U	rhy	S	rf	V	Q	Q
5	m	m/m	m²	m	m	%		m/s	l/s	m³/h
6	0.1	0.15	0.00074	0.080	0.0093	1.0%	0.35	0.21	0.153	0.55
7	0.1	0.25	0.00154	0.105	0.0147	1.0%	0.35	0.31	0.478	1.72
8	0.1	0.35	0.00245	0.127	0.0194	1.0%	0.35	0.40	0.969	3.49
9	0.1	0.50	0.00393	0.157	0.0250	1.0%	0.35	0.49	1.932	6.96
10	0.1	0.75	0.00632	0.210	0.0302	1.0%	0.35	0.58	3.641	13.11

Table 47: Flow in partly filled round pipes

Formulas of spreadsheet for "flow in partly filled pipes" (after Kutter's short formula)

 $C6 = 0.295 \times (A6/2) \land 2$

All figures – as here 0.295 – are geometrical constants, referring to the flow height in relation to the diameter of the pipe.

 $D6 = 1.591 \times (A6 / 2)$ $C8 = 0.98 \times (A8 / 2) ^ 2$ E6 = C6 / D6 $D8 = 2,532 \times (A8 / 2)$ $H6 = (100 \times SQRT (E6) / (G6 + SQRT (E6))) \times SQRT (E6 \times F6)$ E8 = C8 / D8 $16 = C6 \times H6 \times 1000$ $H8 = (100 \times SQRT (E8) / (G8 + SQRT (E8))) \times$ SQRT(E8 x F8) $J6 = 16 \times 3.6$ $C7 = 0.614 \times (A7 / 2) ^ 2$ 18 = C8 x H8 x 1000 $D7 = 2.094 \times (A7 / 2)$ $J8 = 18 \times 3.6$ E7 = C7 / D7 $C9 = 1.571 \times (A9 / 2) ^2$ $H7 = (100 \times SQRT (E7) / (G7 + SQRT (E7))) \times$ $D9 = 3.142 \times (A9 / 2)$ SQRT (E7 x F7) E9 = C9 / D9 $17 = C7 \times H7 \times 1000$ $H9 = (100 \times SQRT (E9) / (G9 + SQRT (E9))) \times$ SQRT (E9 x F9) $J7 = 17 \times 3,6$

 $19 = C9 \times H9 \times 1000$ $J9 = 19 \times 3.6$

 $C10 = 2.528 \times (A10 / 2) ^ 2$

 $D10 = 4.19 \times (A10 / 2)$

E10 = C10 / D10

H10 = (100 x SQRT (E10) / (G10 + SQRT (E10))) x SQRT (E10 x F10)

 $110 = C10 \times H10 \times 1000$

 $J10 = 110 \times 3.6$

14.5 Conversion factors of US-units

Conversion factors of US-units								
item	US-unit	SI-unit	US/SI-unit	SI/US-unit				
length	length in		2.540	0.394				
	ft (12in)		0.305	3.281				
	yd (3ft)		0.914	1.094				
	mi (1,760yd)		1.609	0.621				
area	in²	cm²	6.452	0.155				
	ft²	m²	0.093	10.764				
	yd²	m²	0.836	1.196				
	acre	hectar (10,000m²)	0.405	2.471				
	mi²	km²	2.590	0.386				
volume	in ³	cm³	16.387	0.061				
	ft ³	liter	28.317	0.035				
	ft ³	m³	0.0283	35.314				
	gallon	litre	3.785	0.264				
	yd ³ (202gal)	m³	0.765	1.308				
	acre-foot	m³	1.2335	0.811				
force / mass	lb	N	4.448	0.225				
	oz	g	28.350	0.035				
	lb (16oz)	kg (1,000kg)	0.454	2.205				
	ton (short) (2,000lb)	t (1,000kg)	0.907	1.102				
	ton (long) (2,240lb)	t (1,000kg)	1.016	0.984				
pressure	in H₂O	Pa (N/m²)	204.88	0.005				
	Ib/in²	kPa (kN/m²)	6.895	0.145				
	Ib/in²	Pa (N/m²)	47.88	0.021				
flow rate	gal/min	l/s (86.4m³/d)	0.0631	15.850				
	gal/d	l/s	0.0000438	22,825				
	gal/min (1,440gal/d)	m³/d (0.0116l/s)	0.00379	264				
energy + power	Btu hp-h kWh Ws hp	kW MJ KJ KJ	1.055 2.685 3,600 1,000 0.746	0.948 0.373 0.00028 0.001 1.341				
temperature	°F	°C	0.56(°F-32)	1.8(°C)+32				
	°F	K	0.56(°F+460)	1.8(°K)-460				

Table 48: Conversion factors of US-units