Water Safety Plans: Book 3 Risk Assessment of Contaminant Intrusion into Water Distribution Systems

Water Safety Plans: Book 3

Risk Assessment of Contaminant Intrusion into Water Distribution Systems

Kalanithy Vairavamoorthy, Sunil D. Gorantiwar, Jimin Yan, Harshal M. Galgale, M.A. Mohamed-Mansoor & S. Mohan

Water, Engineering and Development Centre Loughborough University 2006

Water, Engineering and Development Centre Loughborough University Leicestershire LE11 3TU UK

© WEDC, Loughborough University, 2006

Any part of this publication, including the illustrations (except items taken from other publications where the authors do not hold copyright) may be copied, reproduced or adapted to meet local needs, without permission from the author/s or publisher, provided the parts reproduced are distributed free, or at cost and not for commercial ends, and the source is fully acknowledged as given below. Please send copies of any materials in which text or illustrations have been used to WEDC Publications at the address given above.

> A reference copy of this publication is also available online at: http://wedc.Lboro.ac.uk/publications/index.htm

> > Vairavamoorthy, K., Gorantiwar, S. D., Yan, J. M., Galgale, H. M., Mohamed-Mansoor, M. A., and Mohan, S. (2006) *Water Safety Plans: Book 3 Risk Assessment of Contaminant Intrusion into Water Distribution Systems* WEDC, Loughborough University, UK.

> > > ISBN Paperback 1 84380 102 7

This document is an output from a project funded by the UK Department for International Development (DFID) for the benefit of low-income countries. The views expressed are not necessarily those of DFID.

Designed and produced at WEDC

About the authors

Kalanithy Vairavamoorthy

(k.vairavamoorthy@unesco-ihe.org) Currently chair for Sustainable Urban Infrastructure Systems in UNESCO, IHE, Delft, the Netherlands and previously a senior lecturer in the Water Engineering Development Centre (WEDC) at Loughborough University. He worked for South Bank University, London, from 1993 to 2002 and was head of the Water Development Research Unit within the Faculty of the Built Environment. He has an MSc degree and PhD in civil engineering from Imperial College, London. He has expertise in the design, operation and maintenance of urban water distribution systems. In particular, he has experience in researching and developing innovative solutions to water supply systems that operate under water shortage scenarios. He has also acted as a consultant on many projects for both UK water companies and overseas clients. More recently he has advised Indian water authorities on the management of intermittent water supplies, implementation of unaccounted for water action plans, leak detection and other related issues.

Sunil D. Gorantiwar

(sdgorantiwar@rediffmail.com) Associate professor and research engineer at the All India Co-ordinated Research Project on Optimisation of Groundwater Utilisation (ICAR) in the Department of Irrigation and Drainage Engineering, Mahatma Phule Agricultural University, Rahuri, India since 1985. Currently he is an academic visitor to the Water Engineering and Development Centre (WEDC), Loughborough University. He has an MTech degree in water resources development and management from IIT, Kharagpur, India and a PhD in civil engineering from Loughborough University, Loughborough, UK. He has expertise in water management of irrigation schemes in developing counties, microirrigation methods, optimum utilization of surface and groundwater, urban water related infrastructures and risk-based modelling.

Jimin Yan

(j.yan@lboro.ac.uk) A research scholar in the Water Engineering and Development Centre, Department of Civil Engineering, Loughborough University. He has an MSc degree in civil engineering from Harbin Institute of Technology (HIT), China. He has expertise in hydraulic and water quality modelling of water distribution systems, underground water asset management and unaccounted for water (UFW) management.

Harshal Galgale

(H.Galgale@lboro.ac.uk) A research scholar in the Water Engineering Development Centre, Department of Civil Engineering, Loughborough University. He has completed a MTech degree specializing in irrigation and drainage engineering at Mahatma Phule Agricultural University, Rahuri, India. After his masters he worked for a year at the National Environmental Engineering Research Institute (NEERI), Nagpur, India and Indian Agricultural Research Institute (IARI), New Delhi, India for six months. He was involved in environmental impact assessment studies using Remote Sensing and Geographical Information Systems (GIS) techniques at NEERI and in the design and development of a model for spatial prediction of crop yields on regional scales at IARI. He has expertise in the field of GIS, Remote Sensing and hydrological modelling.

M.A. Mohamed-Mansoor

(M.A.Mohamed-Mansoor@lboro.ac.uk) A research scholar in Water Engineering and Development Centre, Department of Civil Engineering, Loughborough University. He has completed Master of Science in Civil Engineering from South Bank University, London. After this, he worked with the Water Development Research Unit at South Bank. His areas of specialization are water supply management, water distribution system modelling and performance assessment of water distribution systems.

Professor S. Mohan

(smohan@iitm.ac.in) The Head, Department of Civil Engineering at Indian Institute of Technology Madras, Chennai, India. He has an ME degree and a PhD in Civil Engineering from Indian Institute of Sciences, Bangalore, India. His research interests include Environmental System Analysis, Water Quality Modelling, Water and Waste Water Treatment, Water Resources System Analysis, Irrigation Water Management, Evolutionary Computation. He has led and participated in several research and consultancy projects in these areas both nationally (in India) and internationally.

Acknowledgements

The financial support of the UK Department for International Development (DFID) is gratefully acknowledged. The authors would also like to thank those who have contributed to the development of these guidelines.

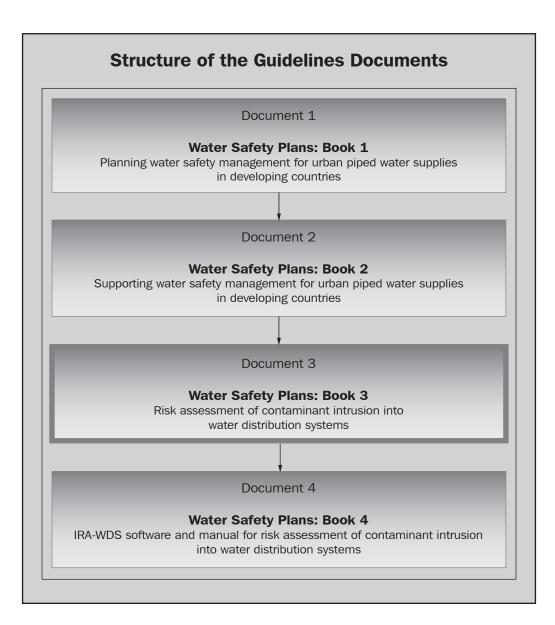
KAKTOS Consult, Hyderabad, India India Institute of Technology (IIT), Chennai, India Guntur Municipal Corporation, Municipal Corporation of Hyderabad, India Public Health Engineering Department of Guntur, India

Finally, the authors wish to acknowledge Dr Guy Howard, DFID, Bangladesh and Dr Sam Godfrey, UNICEF, India for their intellectual input; Ian Smout, Director, WEDC for his constructive suggestions and Rod Shaw, Sue Plummer and Karen Betts of the WEDC Publications Office.

Who should read this book

This book has been written specifically for practitioners involved in the operation, maintenance and management of piped water distribution systems in urban areas of developing countries. These practitioners include engineers, planners, managers, and water professionals involved in the monitoring, control and rehabilitation of water distribution networks.

The book explains in detail how to evaluate the risk of deterioration of the water distribution network of a water supply system. It begins with the conceptualization of risk evaluation and its three different components (hazard, vulnerability and risk). The book further elaborates on each of these three components, explains the methodologies used to estimate the components, and presents the background to the mathematical models. Finally, the book explains how these components are integrated to form a GIS-based decision support system for risk evaluation. The book is designed to help practitioners understand the concept of risk evaluation and supports the 'Manual' of the IRA-WDS software, a GIS-based decision support system for risk evaluation.


How to use this book

The IRA-WDS software is developed for the evaluation of risk to piped water distribution systems in urban areas of developing countries. The user of this software needs to know about the consideration of different factors, data type and requirement, which may vary from one region to another. The user can understand the concept of evaluation from this book and decide upon the importance of the different factors involved and associated data collection.

It should be noted that combining this book with Book 1 provides the decisionmaker with a valuable tool to assess the overall risk of contaminant intrusion into a water supply system. It is also important to consider this book in relation to Book 2, as it is imperative that the institutions and authorities responsible for water management have the capacity to use and implement IRA-WDS, and also to recognize the importance of developing an integrated approach to water management.

How does this book fit into the overall guidelines?

This book is Document 3 in the guidelines series developed for Project KaR R8029 *Improved Risk Assessment and Management for Piped Urban Water Supplies*. This book presents the background to the mathematical models used in the development of IRA-WDS software. IRA-WDS is a GIS-based software that estimates the risk of contaminant intrusion into water distribution systems from sewers and surface foul water bodies. It should be noted that combining this book with Book 1 provides the decision-maker with a valuable tool for assessing the overall risk of contaminant intrusion into a water supply system. It is also important to consider this book in relation to Book 2, as it is imperative that the institutions and authorities responsible for water management have the capacity to use and implement IRA-WDS, and also to recognize the importance of developing an integrated approach to water management.

CONTENTS

About	t the authors	v
Ackno	owledgements	vii
Who s	should read this book	viii
How t	to use this book?	ix
How d	loes this book fit into the overall guidelines?	X
Conte	nts	xi
List of	f boxes	XV
List of	f tables	xvi
List of	f figures	xix
Chaj	pter 1: Overview	1
1.1	Introduction	3
1.2	Why IRA-WDS?	8
1.3	IRA-WDS and its components	8
1.3	3.1 Contaminant ingress model	9
1.3	B.2 Pipe condition assessment model	12
1.3	3.3 Risk assessment model	13
1.3	3.4 GIS integration	14
1.4	How to Interpret the Results?	14
1.5	Capacity of Institutions to Use IRA-WDS	15
1.5	5.1 Undertaking an organizational and institutional review	15
1.5	5.2 Commitment from managers and operational staff	16
1.6	Summary	16
Cha	pter 2: Contaminant Ingress Model	17
2.1	Introduction	19
2.2	Background	22
2.3	Contaminant Zone Model	23

2.	3.1 Estimation of the contaminant zone due to pollution sources	24
2.	3.2 Identification of the section of water distribution pipes in	28
	A contaminant zone	
2.4	Contaminant Seepage Model	33
2.	4.1 The contaminant transport model for unsaturated flow	34
2.	4.2 Contaminant transport model for saturated flow	43
2.5	Contaminant Loading	46
2.6	Implementation of the Contaminant Ingress Model in IRA-WDS	47
2.7	Conclusions	51
Cha	pter 3: Pipe Condition Assessment Model	53
3.1	Introduction	55
3.2	Background	63
3.3	Pipe Condition Assessment	64
3.4	Fuzzy Composite Programming	66
	4.1 Method	66
	4.2 Fuzzy set theory	68
	4.3 Balance factors	69
	4.4 Weights	70
3.5	Application to Pipe Condition Assessment5.1Basic pipe deterioration indicators	70
		72 73
		73
	L	75 76
	5.4 Weights and balance factors5.5 The effect of pipe material	76
	5.6 The Normalization effect of pipe material	70
	5.7 Final composite fuzzy number using FCP Normalization	78
	5.8 Ranking Final composite fuzzy number using FCP	81
3.6	Implementation of Pipe Condition Assessment Model in IRA-WDS	82
3.7	Application	83
3.7.	1 Hierarchical composite structure	83
3.7.	2 Values of basic indicators	84
3.7.	3 Membership functions	85
3.7.	4 Weights and balance factors	85
3.7.	5 Normalization	85
3.7.	6 Results	86
3.8	Conclusions	87

Ch	apter	4: Risk Assessment Model	91
4.1	Intro	duction	93
4.2	Back	ground	94
4.3	Meth	odology	94
	4.3.1	Hazard assessment	95
	4.3.2	Vulnerability assessment	95
	4.3.3	Weight assignment	97
	4.3.4	Multi-criteria evaluation method for risk assessment	97
4.4	Conc	lusions	98
Ch	apter	5: Integration of the Model with GIS	101
5.1	Intro	duction	103
5.2	Why	GIS?	103
5.3	Geog	raphic Information System and Risk Assessment	103
5.4	Tool	Used for Integration	104
5.5	Stren	igth of GIS in Risk Assessment	104
	5.5.1	State of the art	105
	5.5.2	Integration of environmental modelling and GIS	105
5.6		odology in Developing IRA-WDS	108
	5.6.1	Data collection	109
		Preparation of maps	110
	5.6.3	1	116
	5.6.4	Integration with GIS and generation of output	116
5.7	IRA-	WDS User Interface	117
	5.7.1	Components of interface	118
5.8	IRA-	WDS Extension	120
Ch	apter	6: Example Application of Model (IRA-WDS)	125
6.1	Intro	duction	127
6.2	Case	Study – Guntur	127
6.3	The S	Study Area	128
	6.3.1	Water supply distribution system	129
	6.3.2	Underground sewer system	129
	6.3.3	Open drainage system	129
	6.3.4	Surface foul water bodies	130
	6.3.5	General observations in the study area	130
6.4	Data	Collection and Database Preparation	131

	6.4.1	Data collection	131
	6.4.2	Compass survey	131
	6.4.3	Levelling survey	131
	6.4.4	Network surveys	131
	6.4.5	Data preparation	136
6.5	Mode	Application	147
	6.5.1	Contaminant ingress model	147
	6.5.2	Pipe condition assessment model	150
	6.5.3	Risk assessment model	156
6.6	Concl	uding Remarks	159
	ference pendix A		161 169
	pendix H		176
Apj	pendix (C: Pipe Condition Assessment Indicators	184
Apj	pendix I	D: Questionnaires for Pipe Condition Assessment	191
Apj	pendix H	E: Questionnaires for Risk Assessment	198
Apj	pendix I	F: Water Quality Model	201

List of boxes

No.	Title	Page No.
Box 1.1.	Characteristics of typical water distribution systems in developing countries	4
Box 1.2.	Pollution sources	5
Box 1.3.	Interaction of water distribution systems and pollution sources	6

List of tables

No.

Title

Page No.

Table 1.1.	Data requirement for contaminant ingress model	11
Table 1.2.	Data requirement for pipe condition assessment model	12
Table 1.3.	Data requirement for risk assessment model	13
Table 2.1.	Type of pollution source and its properties	20
Table 2.2.	Soil properties	21
Table 2.3.	Contaminant properties	21
Table 2.4.	Properties of pipes of water distribution network	21
Table 2.5.	Typical values of different input parameters for different soil types (Meyer et al. 1997)	41
Table 2.6.	Typical values of seepage/leakage rate from canals of different types of lining	42
Table 2.7.	Example to demonstrate the estimation of contaminant concentration at water distribution pipe due to sewer pipe	49
Table 2.8.	Relative contaminant concentration in soil due to sewer pipe (for data presented in Table 2.7)	50
Table 3.1.	Properties of water distribution network	56
Table 3.2.	Properties of different pipe materials	57
Table 3.3.	Membership functions	58
Table 3.4.	Soil data	60
Table 3.5.	Groundwater table	60
Table 3.6.	Pressure	61
Table 3.7.	Balance factors for different groups of indicators	61
Table 3.8.	Weights for different indicators	62
Table 3.9.	Pipe Condition Assessment Indicators	72
Table 3.10.	The indicators that are influenced by the pipe material and the corresponding measure	77
Table 3.11.	The typical values of pipe material corrosion resistance, impact strength and maximum pressure	77
Table 3.12.	Different criteria used for the normalization of the indicators	79
Table 3.13.	Different criteria used for the normalization of the pipe material attributes/measures	81
Table 3.14.	Values of first-level indicators for application example	84

Table 3.15.	Best and worst indicators value, weights and balance factors	86
Table 3.16.	Final pipe condition indicator values	87
Table 3.17.	An example of the output from a successful run of the pipe condition assessment model part of IRA-WDS	90
Table 4.1.	Weights for different indicators	93
Table 6.1.	Major land use classes found in Guntur (Zone VIII)	140
Table 6.2.	Attributes included in the link shape files for water distribution system for contaminant ingress model.	142
Table 6.3.	Attributes included in the node shape files for water distribution system for contaminant ingress model.	142
Table 6.4.	Attributes included in the link shape files for water distribution system for pipe condition assessment model.	142
Table 6.5.	Attributes included in the node shape files for water distribution system for pipe condition assessment model.	143
Table 6.6.	Attributes included in the link shape files for sewer system	144
Table 6.7.	Attributes included in the node shape files for sewer system.	144
Table 6.8.	Attributes included in the link shape files for canal/open drain system	145
Table 6.9.	Attributes included in the node shape files for canal/open drain system.	146
Table 6.10.	Attributes included in the link shape files for surface foul water bodies	147
Table 6.11.	Attributes included in the node shape files for foul water bodies.	147
Table 6.12.	Results obtained from the contaminant ingress model for Guntur (Zone VIII)	149
Table 6.13.	Hazard group classification	150
Table 6.14.	Pipe condition assessment indicators used for the study	151
Table 6.15.	Typical output from the pipe condition assessment model for Guntur (Zone VIII)	154
Table 6.16.	Water pipe condition groups	155
Table 6.17.	Risk factors for risk assessment	156
Table 6.18.	Typical output from the risk assessment model for Guntur (Zone VIII)	158
Table 6.19.	Risk assessment groups	159
Table 6.20.	A comparison among risk, hazard and vulnerability	159

Table A.1.	Example to demonstrate the estimation of contaminant concentration at water distribution pipe due to lined canal/ditch	170
Table A.2.	Relative contaminant concentration in soil due to lined canal/ditch (for data presented in Table A.1)	171
Table A.3.	Example to demonstrate the estimation of contaminant concentration at water distribution pipe due to unlined canal/drain	172
Table A.4.	Relative contaminant concentration in soil due to unlined canal/drain (for data presented in Table A.3)	173
Table A.5.	Example to demonstrate the estimation of contaminant concentration at water distribution pipe due to surface foul water body	174
Table A.6.	Relative contaminant concentration in soil due to surface foul water body (for data presented in Table A.5)	175
Table B.1.	Scales for pair-wise comparisons	178
Table B.2.	The judgement matrix for the factors	179
Table B.3.	The judgement matrix for the factors	181
Table B.4.	RCI values for different values of n	181
Table C.1.	Typical values of Hazen-William coefficient of friction (C) for different types of pipe material	184
Table C.2.	Typical values minimum and maximum diameters for different types of pipe material.	185
Table C.3 (a).	Soil corrosivity for different types of soils.	188
Table C.3 (b).	Typical range of soil resistivity for different degrees of soil corrosivity	188
Table F.1.	Fields to be added in the GIS Attribute table for Network Analysis using EPANET (for the feature class for Nodes)	205
Table F.2.	Fields to be added in the GIS Attribute table for Network Analysis using EPANET (for the feature class for Links)	206
Table F.3.	Unit System used in EPANET 2.0	207
Table F.4.	Questionnaire for field survey of study area – zone VIII of Guntur City	213
Table F.5.	Probabilities of base events	229
Table F.6.	Calculation of risk involved in water distribution network of zone VIII of Guntur	231
Table F.7.	Ranking of component failures based on risk	232
Table F.8.	Results of sensitivity analysis for the failure events	233
Table F.9.	Combined results from risk and sensitivity analysis	233

List of figures

Title

No.

Page No.

Figure 1.1 (a).	Contaminant intrusion process into water distribution network	5
Figure 1.1 (b).	Contaminant ingress process	5
Figure 1.1 (c).	Water distribution pipe deterioration	5
Figure 1.2.	The sources of pollution	6
Figure 1.3.	Water pipes in potentially polluted area	7
Figure 1.4.	Main components of IRA-WDS	10
Figure 1.5.	Example output from IRA-WDS that shows contaminated pipes or SPCZ in water distribution system or SPCZ	11
Figure 1.6.	Example output from IRA-WDS that shows the relative condition of different pipes in a water distribution system	13
Figure 1.7.	Example output from IRA-WDS that shows relative risk map	14
Figure 2.1.	Movement of contaminated water (the shaded area) from pollution sources towards water distribution pipes	19
Figure 2.2.	Contaminant ingress model	22
Figure 2.3.	A typical scenario in which the model tries to simulate of a water distribution network being influenced by the ditch/ canal	23
Figure 2.4.	A typical scenario in which the model tries to simulate of a water distribution network being influenced by the a sewer pipe.	23
Figure 2.5.	Contaminant zone model	24
Figure 2.6.	Estimation of contaminant zone due to different pollution sources	25
Figure 2.7.	Seepage of contaminated water from ditch	25
Figure 2.8.	Characteristics of the seepage envelope due to for an unlined ditch/canal	27
Figure 2.9.	Characteristics of the seepage envelope due for a sewer pipe and a lined ditch/canal	28
Figure 2.10.	Three- dimensional view of intersection of a water distribution pipe with the a contaminant zone	29
Figure 2.11	Identification of SPCZ due to the intersection of water	29

Figure 2.11Identification of SPCZ due to the intersection of water
distribution pipe and contaminant zone formed by sewer
pipe and water distribution pipe

Figure 2.11 (b).	Identification of SPCZ due to the intersection of contaminant zone formed by open ditch and water distribution pipe	30
Figure 2.12.	2D Two-dimensional simplification of intersection of the contaminant zone with the water distribution pipe	31
Figure 2.13.	The flowchart for the methodology for obtaining the coordinates of for the section of water distribution pipes in a contaminant zone (SPCZ)	32
Figure 2.14.	Water distribution network as influenced by the pollution source of surface water body	33
Figure 2.15.	The contaminant seepage model	34
Figure 2.16.	Illustration of Green-Ampt parameters and the conceptualized water content profile, which demonstrates the sharp wetting front (USEPA 1998b)	36
Figure 2.17.	Flow net for the seepage beneath the unlined drain/canal and surface foul water bodies	45
Figure 2.18.	A flow channel of flow net	45
Figure 2.19.	The concentration profile	46
Figure 2.20.	Contaminant loading along SPCZ	46
Figure 2.21.	Contaminant seepage from leaky sewer pipe	48
Figure 2.22.	Relative contaminant concentration in soil due to sewer pipe (for data presented in Table 2.7)	51
Figure 2.23.	An example of input dialog window used for contaminant ingress model of IRA-WDS	51
Figure 2.24.	An example of the output from a successful run of the contaminant ingress model part of IRA-WDS	52
Figure 3.1.	Water distribution pipe deterioration	55
Figure 3.2.	Two representations of fuzzy number: (a) Triangular (b) Trapezoidal	69
Figure 3.3.	The flowchart for pipe condition assessment	71
Figure 3.4.	Composite structure of different pipe condition assessment indicators	74
Figure 3.5.	The flowchart for obtaining the final composite distance metric	75
Figure 3.6.	Obtaining maximum/best and minimum/worst values for indicators of different groups at Level 1	80
Figure 3.7.	Pipe condition assessment composite structure	83
Figure 3.8.	Fuzzy membership functions for corrosion resistance and pipe material	84
Figure 3.9.	Fuzzy membership function of uncertain pipe indicators	85

	(traffic load, pipe location, soil corrosivity and bedding condition and joint method)	
Figure 3.10.	Fuzzy numbers representing water pipe condition	87
Figure 3.11.	Example of input dialog window for PCA in IRA-WDS	88
Figure 3.12.	An example of the output from a successful run of the pipe condition assessment model part of IRA-WDS	89
Figure 4.1.	The linkage of contaminant ingress and pipe condition assessment models with the risk assessment model	96
Figure 4.2.	Flow chart for risk assessment of contaminant intrusion into WDS	98
Figure 4.3.	An examples of the input dialog window of the risk assessment model part of IRA-WDS	100
Figure 4.4.	An example of the output from a successful run of the risk assessment model part of IRA-WDS	100
Figure 5.1.	Digitization of real-world network	111
Figure 5.2.	Digitization of thematic maps	112
Figure 5.3.	Water distribution network	114
Figure 5.4.	Sewer distribution network	114
Figure 5.5.	Canal distribution network	115
Figure 5.6.	Surface foul water body theme	115
Figure 5.7.	Representation of the scenario (by overlaying themes)	118
Figure 5.8.	Integration of different developed models with GIS	118
Figure 5.9.	Overview of IRA-WDS	119
Figure 5.10.	Overview of Contaminant Ingress Model of IRA-WDS	121
Figure 5.11.	Overview of Pipe Condition Assessment Model of IRA- WDS	122
Figure 5.12.	Overview of Risk Assessment Model of IRA-WDS	123
Figure 6.1.	Location of Guntur in Andhra Pradesh, India	128
Figure 6.2.	Water distribution network of Guntur (Zone VIII)	132
Figure 6.3.	Sewer network of Guntur (Zone VIII)	133
Figure 6.4.	Canal/open drain network of Guntur (Zone VIII)	134
Figure 6.5.	Foul water body polygon network of Guntur (Zone VIII)	135
Figure 6.6.	Contour map of Guntur (Zone VIII)	137
Figure 6.7.	Land use/land cover map of Guntur (Zone VIII)	138
Figure 6.8.	The ward map of Guntur (Zone VIII)	139
Figure 6.9.	Water distribution network model for zone VIII of Guntur	141
Figure 6.10.	Sewer network model for zone VIII of Guntur	143

Figure 6.11.	Canal/open drain network model for zone VIII of Guntur	145
Figure 6.12.	Surface foul water bodies network model for zone VIII of Guntur	146
Figure 6.13.	SPCZ map for Guntur (Zone VIII)	148
Figure 6.14.	Hazard map for Guntur (Zone VIII)	148
Figure 6.15.	Composite structure of pipe condition assessment indicators for case study area	152
Figure 6.16.	Membership functions used for the study	153
Figure 6.17.	Results obtained from the pipe condition assessment model for Guntur (Zone VIII)	155
Figure 6.18.	Results obtained from the risk assessment model for Guntur (Zone VIII)	157
Figure A.1.	Contaminant seepage from open canal	169
Figure A.2.	Contaminant seepage from surface foul water body	169
Figure A.3.	Relative contaminant concentration in soil due to lined canal/ditch (for data presented in Table A.1)	171
Figure A.4.	Relative contaminant concentration in soil due to unlined canal/drain (for data presented in Table A.3)	173
Figure A.5.	Relative contaminant concentration in soil due to surface foul water body (for data presented in Table A.5)	175
Figure B.1.	The procedure for obtaining the relative weights for each factor	177
Figure B.2.	Establishing the hierarchy of the problem in PCA/RA models	178
Figure F.1.	Various Phases of Methodology	203
Figure F.2.	Menu for simulating water quality model (network analysis model; EPANET 2.0)	208
Figure F.3.	Dialog for retrieving data from appropriate fields of selected themes	209
Figure F.4.	Dialog box for choosing the type of analysis	209
Figure F.5.	Dialog for choosing the analysis options	210
Figure F.6.	Message box, on successfully creating the input file	210
Figure F.7.	Dialog box for viewing the input file created	211
Figure F.8.	Menu for Risk Assessment	215
Figure F.9.	Dialog for fault tree analysis	215
Figure F.10.	Dialog for risk statistics	216
Figure F.11.	Population density map for zone VIII of Guntur (ward- based)	219

Figure F.12.	Results of water quality simulations after one hour for node 534	220
Figure F.13.	Results of water quality simulations after one hour for nodes 589 and 487	221
Figure F.14.	Affected areas due to contamination at node 534	222
Figure F.15.	Affected areas at due to contamination at nodes 589 and 487	223
Figure F.16.	Retrieving statistics of for contaminated nodes	224
Figure F.17.	Contaminant intruded node and affected nodes after one hour of water flow	225
Figure F.18.	A possible path of water from tank to various nodes through the contaminant affected node	226
Figure F.19.	Alternative path for water flow to various nodes, bypassing the contaminant affected node	227
Figure F.20.	Fault tree for contamination in water distribution system	228