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Abstract 

 

During exercise water and electrolytes are lost in sweat.  There is a large variation in both 

sweat rate and sweat composition and as a consequence sweat electrolyte loss can be large, 

especially for sodium, the primary cation in sweat.  The loss of large amounts of sodium in 

sweat has been linked with hyponatraemia and muscle cramps.  Sodium intake is 

encouraged in some athletes and in some exercise situations, which is in direct contrast to 

guidelines aimed at the general population aimed at reducing average sodium intakes to 

2.4g of sodium per day (6g salt/day). 

 

Dietary sodium intakes have been determined by numerous methods, including weighed 

dietary records and 24h urine collections.  As dietary sodium intake in excess of basal 

requirement is primarily excreted in the urine in non-sweating individuals, and the basal 

requirement for sodium is small, 24h urine collections can provide an accurate estimate of 

dietary sodium intake.  In Chapter 3, 24h urinary sodium excretion was measured in 

eighteen subjects on 4 separate occasions.  Subjects consumed their normal diet with the 

exception of a 5g creatine supplement and 500ml of water, which was part of a separate 

investigation.  The relationship between urine sodium excretion in each 24h collection 

period was weak, but on average males excreted 200 ± 48mmol of sodium per day and 

females excreted 157 ± 33mmol of sodium per day, which is equivalent to 4.6g and 3.6g of 

sodium, respectively.  This is in excess of the current recommended intake. 

 

In chapter 4, the variation in sodium excretion was determined in eight subjects who 

consumed the same diet for 5 consecutive days.  Despite the similar intake of sodium each 

day, a day to day variation in sodium excretion of 13% was still observed.  This was not 

related to either sodium intake or potassium intake. 

 

In chapter 5, nine subjects consumed their normal diet for 5 consecutive days but weighed 

and recorded all food and drink consumed.  During this period, 24h urine samples were 

also collected.  No strenuous exercise was permitted apart from an exercise task on day 4.  

This involved intermittent cycling in the heat until 2% body mass (BM) was lost.  Sweat 

was collected from four absorbent patches placed on the back, chest, forearm and thigh.  

Sweat sodium concentration was adjusted to account for the 35% over-estimation using 

this regional collection method.  Subjects lost 1.51 ± 0.19L of sweat and 66 ± 16mmol 

(range 32 – 86mmol) of sodium.  There was no difference in sodium balance between each 
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24h period due to a significant decrease in urine sodium excretion on the day of exercise 

(day 4).   

 

In chapter 6, the effect of prior exercise on sweat composition during a second exercise 

bout completed later that same day was determined.  Eight healthy males cycled for 40 

minutes in the heat on one or two occasions.  A period of 5h elapsed between exercise 

bouts when two exercise sessions were performed.  Sweat was collected using a whole 

body washdown method and by 4 absorbent patches placed on the back, chest, forearm and 

thigh.  The main finding was that prior exercise did not affect sweat rate or sweat sodium, 

potassium and chloride concentrations in the second exercise bout when using the whole 

body washdown method. 

 

Chapter 7 determined the effects of two exercise sessions completed on the same day on 

electrolyte balance.  Nine subjects followed their normal dietary behaviour but weighed 

and recorded all food and drink consumed during 5 consecutive days.  During this period 

24h urine samples were also collected.  No strenuous exercise was permitted during this 

period apart from two exercise tasks on day 4.  During exercise sweat was collected using 

a whole body washdown technique.  Sweat rate and sweat sodium, potassium and chloride 

concentrations during the second exercise bout were found to be similar to the first 

exercise bout.  Subjects lost 2.64L (range 1.80 – 3.48L) of sweat and 138 ± 106mmol of 

sodium (range 32 – 287mmol).  Sodium balance was not significantly affected on the day 

of exercise, but urine sodium was lower than dietary sodium intake on the day of exercise 

(Day 4) and the day following exercise (day 5), indicating significant sodium conservation 

by the kidney.  In contrast, no change in sodium intake was observed. 

 

In chapter 8, the effect of skimmed milk and a sports drink in restoring fluid balance was 

examined following exercise-induced dehydration.  Seven physically active males cycled 

intermittently in the heat until 2% BM was lost.  During a 1h rehydration period a sports 

drink (23mmol Na
+
/L) or skimmed milk (32mmol Na

+
/L) was consumed in a volume 

equivalent to 150% of BM loss.  Fluid balance at the end of the 3h recovery period tended 

to be more positive when milk was consumed.  Despite this, no difference in exercise 

capacity in the heat was observed.  
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This thesis shows that exercise did not increase sodium intake, but this may be due to the 

already high dietary sodium intake of individuals.  Sodium balance was maintained in the 

majority of individuals due to a significant conservation of sodium by the kidneys.  When 

sweat sodium losses are large, urine sodium conservation may not be sufficient to prevent 

a negative sodium balance.  When no food is consumed in the acute period post-exercise, 

the higher sodium content of skimmed milk than a sports drink may be partly responsible 

for the increased retention of the ingested fluid.  But this did not enhance subsequent 

performance in the heat. 

 

Key words: Fluid balance, electrolyte balance, hydration, sodium, potassium, sweat, 

exercise 
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intake; (B) oscillations in potassium balance and potassium intake; (C) 

oscillations in chloride balance and chloride intake.  Electrolyte intake is 

based on the 5-Day average and oscillations in electrolyte excretion on the 

4-Day average. 

 

Figure 4.9 The relationship between potassium intake and (A) oscillations in sodium 

excretion, (B) oscillations in chloride excretion and (C) between sodium 

intake and oscillations in potassium excretion.  Electrolyte intake is based 

on the 5-Day average and oscillations in electrolyte balance are based on the 

4-Day average. 
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Figure 5.1 Schematic of the study period.  Body mass (BM), dietary collection period 

(D), 24h urine collection (U) and exercise (Ex). 

 

Figure 5.2 Dietary intake and urine excretion of sodium (A), potassium (B) and 

chloride (C) during each 24h period.  All Values are mean ± SD. * denotes 

significant difference between dietary intake and urine excretion.  

 

Figure 5.3 Sodium (A), potassium (B) and chloride (C) balance over each 24h period.  

Values are calculated from urinary electrolyte excretion, dietary electrolyte 

intake and sweat electrolyte loss.  Values are mean ± SD.  

 

Figure 6.1 Schematic of schedule for both (A) SINGLE and (B) MULTIPLE exercise 

sessions.  Body mass (BM), urine collection (U), breakfast (B), lunch (L) 

and whole body washdown procedure (WBW). 

 

Figure 6.2 Sweat electrolyte composition (A) and total sweat electrolyte losses (B) 

obtained from whole body washdown method. 
a
 denotes significantly 

different from trial MULTI-AM, 
b
 denotes significantly different from 

MULTI-PM. 

 

Figure 6.3 Sweat electrolyte composition (A) and total sweat electrolyte losses (B) 

obtained from regional collection methods. 
a
 denotes significantly different 

from trial MULTI-AM. 

 

Figure 6.4 Regional (back, chest, forearm and thigh) sweat electrolyte concentrations. 
a
 

denotes significantly different from the back, 
b
 denotes significantly 

different from the chest, 
c
 denotes significantly different from the arm, 

d
 

denotes significantly different from the thigh (P<0.05). 

 

Figure 6.5 The relationship between whole body sweat rate and sweat electrolyte 

concentrations obtained from the regional (A, C, E) and whole body (B, D, 

F) sweat collection techniques. 

 

Figure 6.6 Fluid intakes during the morning, afternoon and entire study period. * 

denotes significant difference between trials (P<0.05). 

 

Figure 7.1 Schematic of the study period.  Body mass (BM), dietary collection period 

(D), 24h urine collection (U) and whole body washdown procedure 

(WBW).  Each 24h urine collection started the morning of one day and was 

terminated on the morning the following day. 

 

Figure 7.2 Dietary intake and urine excretion of sodium (A), potassium (B) and 

chloride (C) during each 24h period.  All Values are mean ± SD. * denotes 

significant difference between dietary intake and urine excretion. 
a
 denotes 

urine electrolyte excretion significantly different from day 1, 
b
 denotes urine 

electrolyte excretion significantly different from day 3. 

 

Figure 7.3 Sodium (A), Potassium (B) and Chloride (C) balance over each 24h period.  

Values are calculated from urinary excretion, dietary intake and sweat loss.  

Values are mean ± SD. 
a
 denotes significantly different from day 1 (P<0.05) 
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Figure 8.1 Schematic of the study period.  Drink consumption (D), blood (B), urine 

(U), questionnaire (Q) and expired air (GAS) collection and body mass 

(BM), ratings of perceived exertion (RPE), thermal comfort (TC), heart rate 

(HR), skin temperature (Tsk) and rectal temperature (Tre) measurements. 

 

Figure 8.2 Urine volume (mL) over the duration of the experiment. The pre-exercise 

sample has been omitted. Points are mean ± SD. 
b
 denotes trial CHO-E 

significantly different (P<0.05) from post-exercise. 
c
 denotes trial M 

significantly different (P<0.05) from post-exercise.  

 

Figure 8.3 Urine osmolality over the duration of the experiment. 
a
 denotes CHO-E 

significantly different from M (P<0.05). 
c
 denotes trial M significantly 

different (P <0.05) from pre-exercise.  

 

Figure 8.4 Whole body net fluid balance over the duration of the experiment. 
a
 denotes 

CHO-E significantly different from M (P<0.05). 
b
 denotes trial CHO-E 

significantly different (P <0.05) from pre-exercise. 
c
 denotes trial M 

significantly different (P <0.05) from pre-exercise.  

 

Figure 8.5 Whole body net sodium (A), potassium (B) and chloride (C) balance over 

the duration of the experiment. 
a
 denotes trial M significantly different from 

trial CHO-E (P <0.05),
b
 denotes trial CHO-E significantly different from 

pre-exercise (P <0.05),
c
 denotes trial M significantly different from pre-

exercise (P <0.05). 

 

Figure 8.6 Serum osmolality (mosmol/kg) over the duration of the experiment.  Values 

are mean ± SD. 
 a

 denotes trial CHO-E significantly different from trial M 

(P<0.05), 
b
 denotes trial CHO-E significantly different from pre-exercise 

value (P <0.05), 
c
 denotes trial M significantly different from pre-exercise 

value (P <0.05). 

 

Figure 8.7 Changes in plasma volume over the duration of the experiment relative to 

the post-exercise time point. Values are mean ± SD. 
b
 denotes trial CHO-E 

significantly different from post-exercise value (P <0.05), 
c
 denotes trial M 

significantly different from post-exercise value (P <0.05). 

 

Figure 8.8 Blood glucose (mmol/L) over the duration of the experiment.  Values are 

mean ± SD. 
 a

 denotes trial CHO-E significantly different from trial M 

(P<0.05), 
b
 denotes trial CHO-E significantly different from pre-exercise (P 

<0.05), 
c
 denotes trial M significantly different from pre-exercise (P <0.05). 

 

Figure 8.9 Perceived drink characteristics (A).  Values are mean ± SD or median 

where appropriate.  
a
 denotes CHO-E significantly different from M 

(P<0.05).  Subjective feelings of thirst (B), fullness (C), bloatedness (D), 

hunger (E), mouth feel (F), tiredness (G), alertness (H), ability to 

concentrate (I) and headache (J). Values are mean ± SD. 
a
 denotes CHO-E 

significantly different from M (P<0.05).   

 

Figure 8.10 Exercise time to exhaustion for each individual on trial CHO-E and trial M. 
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Figure 9.1 The percentage contribution of food types to average daily sodium intake 

(Henderson et al, 2003). 
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1.1 Sodium in the human body - Overview 

The adult human body (70kg) contains approximately 4000mmol of sodium (Forbes & 

Lewis, 1956), but will vary between individuals due to differences in body composition.  

The analytical method employed will also affect the values obtained as isotopic dilution 

methods underestimate total body sodium levels (Forbes & Perly, 1951) compared to those 

obtained using dissection techniques.  Nevertheless, total body sodium remains relatively 

constant throughout adult life (Ellis et al, 1976).  Sodium is primarily located in the 

extracellular fluid compartment and in bone (Edelman et al, 1954).  The sodium content of 

bone is reported to be ~1500-2000mmol for a 70kg adult (Edelman et al, 1954).  

Approximately 45% of bone sodium is exchangeable (Edelman et al, 1954), with the 

remaining 55% forming a non-exchangeable sodium pool.  In total approximately 70% 

(~2870mmol) of the sodium within the body is exchangeable (Hubbard et al, 1990). 

 

Sodium plays an integral part in the determination of the membrane potential of cells and 

the active transport of substances across cell membranes but as the predominant cation in 

the extracellular fluid compartment it plays a pertinent role in fluid balance and this will be 

the focus of the present thesis. 

 

1.2 Body water 

Water accounts for between 50–70% of an individual’s body mass (BM).  This is largely 

dictated by an individual’s body composition as muscle comprises 70-80% water and 

adipose tissue approximately 10% water (ACSM, 2007).  For the average 70kg male, total 

body water is approximately 42 litres (L) (Sawka et al, 2005; Institute of Medicine, 2004).  

Body water is distributed between the intracellular and extracellular fluid compartments, 

which account for about 65% (28L) and 35% (14L) of total body water, respectively.  The 

extracellular fluid compartment is further sub-divided into interstitial fluid (11L) and 

plasma (3L) (Table 1.1; Institute of Medicine, 2004).   

 

Table 1.1 Distribution of fluid between body compartments of a 70kg male. 

(Source: Institute of Medicine, 2004). 

 

Fluid Compartment Volume (litres) 

Total Body Water 42 

Intracellular Fluid Compartment 28 

Extracellular Fluid Compartment 14 

    Of which Interstitial Fluid 11 

    Of which Plasma 3 
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Despite the large quantities of water present within the human body, relatively small 

deficits (~2% BM) in fluid balance have been reported to affect health, cognition and 

athletic performance (Institute of Medicine, 2004; ACSM, 2007).  Therefore the daily 

variation in body water is tightly regulated, fluctuating at rest by approximately 0.22% in 

temperate and 0.48% in warm environments (Sawka et al, 2005).  Euhydration is defined 

as the normal body water content which takes into account these daily fluctuations.  

Hyperhydration and hypohydration refer to a body water content above or below normal 

body water content, respectively (ACSM, 2007).  

 

Water is lost from the body via respiration, the skin (insensible cutaneous losses and 

sweating), in tears, urine and in faeces.  The water lost during respiration is due to the 

humidification of the inspired air and consequently the magnitude of water loss is 

influenced by environmental temperature, humidity and by ventilation volume.  This 

avenue of water loss typically accounts for 320mL/day (Maughan & Nadel, 2000).   

Insensible cutaneous water loss is also influenced by the humidity and temperature of the 

environment, but is typically associated with a water loss of approximately 530mL/day. 

The loss of water in faeces is small (eg 100mL/day), but the loss of water in urine (eg 

1400mL/day) is usually much greater than other avenues of water loss.  As will be 

discussed later, sweat losses are highly variable both between and within individuals as 

sweat losses are dictated by environmental conditions, the clothing worn, the duration and 

intensity of exercise and many host factors.  Sweat rates typically range between 

0.29litres/hour (L/h) and 2.60L/h during exercise, (ACSM, 2007) but for some individuals, 

sweat rates can exceed 3L/h.  Sweating can therefore also represent a large avenue of water 

loss and poses a great threat to the maintenance of fluid balance.  To balance these losses, 

water is replenished through food and fluid intake and as a by-product of metabolism.  The 

amount of water available as a by-product of metabolism is similar in magnitude to that 

lost during respiration (eg ~300mL).  Water intake through drinking is influenced by a 

multitude of factors including drink temperature, flavour, texture, availability, social 

factors and by thirst (Passe, 2001).   

 

1.3 Regulation of fluid balance 

Thirst is an adequate stimulator of fluid intake under resting conditions as fluid balance is 

maintained from day to day by the consumption of normal food and fluid intake 

(Greenleaf, 1992; Casa et al, 2000).  But, thirst is not a sensitive indicator of hydration 
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status during exercise as individuals allowed ad libitum access to fluids typically do not 

replace all the sweat losses incurred during exercise (Greenleaf, 1992).  However, some 

individuals can also overdrink (Hew-Butler et al, 2008).  Thirst is stimulated by 

hypovolaemia and hyperosmolality due to the resultant increase in the circulating 

hormones, vasopressin, aldosterone and angiotensin II (Greenleaf, 1992).  Changes in 

plasma volume and plasma osmolality are also implicated in the control of urine 

production. 

 

Plasma osmolality is maintained within a narrow range (280-292 mosmol/kg) by 

osmoreceptors located in the supra-optic and paraventricular areas of the anterior 

hypothalamus (Lote, 1994).  A small increase in plasma osmolality will stimulate the 

release of vasopressin from the posterior pituitary gland into the circulation.  For every 

1mosmol/kg rise in plasma osmolality there is a 0.41pmol/L increase in plasma 

vasopressin concentration, provided plasma osmolality is above the threshold for 

vasopressin release (~285mosmol/kg) (Baylis, 1987).  Vasopressin increases the 

permeability of the collecting ducts in the kidney, allowing water to be reabsorbed which 

results in the formation of a more concentrated urine.  Vasopressin secretion is also 

stimulated by a decrease in blood volume, although a decrease in blood volume of 8-10% 

is required before a change in plasma vasopressin concentration is seen (Baylis, 1987). 

 

The renin-angiotensin system can also influence fluid and electrolyte balance.  Renin is an 

enzyme that is synthesised and stored in the juxtaglomerular apparatus of the kidney (Lote, 

1994).  It is released into the circulation when the body sodium content and consequently 

blood volume decline.  In response to a fall in blood volume, baroreceptors trigger an 

increased sympathetic nerve activity to the arterioles of the kidney which stimulates the 

release of renin from granular cells.  A decrease in renal perfusion pressure and a decline 

in the delivery of sodium to the macula densa can further stimulate the release of renin 

(Lote, 1994).  Subsequently renin acts on the protein, angiotensinogen, causing a cascade 

effect and conversion to Angiotensin II.  Angiotensin II has a number of actions including 

the stimulation of thirst, vasopressin release, increased proximal tubular sodium 

reabsorption, vasoconstriction and the release of the hormone aldosterone from the zona 

glomerulosa of the adrenal cortex.  Aldosterone increases distal tubular sodium 

reabsorption and through osmosis can increase the reabsorption of water when in the 



Chapter 1 

 

Page | 5  

presence of vasopressin.  In this way the body can respond to situations of fluid and 

electrolyte loss. 

 

There are also systems that respond to fluid excess.  Atrial natriuretic factor (ANF) is a 

hormone that is released by cells of the heart atria (cardiocytes) in response to a stretching 

of the atrial walls caused by elevated blood pressure and blood volume (Lote, 1994).  ANF 

inhibits sodium reabsorption, inhibits the secretion of aldosterone and renin and causes 

vasodilation of afferent arterioles which increases glomerular filtration rate.  This results in 

the excretion of water and sodium. 

 

1.4 Dietary electrolyte intake 

Dietary surveys report a wide range of sodium intakes (Gregory et al, 1990; Henderson et 

al, 2003).  In a recent UK-based survey (Henderson et al, 2003), the average dietary 

sodium and potassium intakes according to a 7-day weighed food diary were 144 ± 

44mmol and 86 ± 17mmol for males and 100 ± 30mmol and 68 ± 19mmol for females.  

There are several methods of assessing sodium intake in addition to weighed food records 

which include: food diaries, 24h recalls, food frequency questionnaires, duplicate portion 

analysis and urine collections.  Each method is associated with problems (Bingham, 1987), 

but most notable is the inability to accurately assess the discretionary salt use of an 

individual (Caggiula et al, 1985; Clark & Mossholder, 1986; Henderson et al, 2003).  

Although 73% of individuals added salt at the table or during cooking (Henderson et al, 

2003), discretionary salt typically contributes 15-20% to total sodium intake.  The primary 

contributor to sodium intake is manufactured or processed foods (65-70%) with the 

remainder (15%) being found naturally in some food items (SACN, 2003). 

 

As the amount of ingested sodium above basal requirements is excreted primarily in the 

urine, 24h urinary sodium excretion can provide a good estimate of sodium intake in non-

sweating individuals (Holbrook et al, 1984; Taseveska et al, 2006).  Although potassium 

losses in faeces are greater than sodium, amounting to between 5–15mmol/day, urine 

potassium excretion can also provide a good estimate of potassium intake (Holbrook et al, 

1984; Taseveska et al, 2006).  According to the collection of a single 24h urine sample, 

sodium and potassium intakes of the British population were 187 ± 86mmol and 81 ± 

33mmol for males and 138 ± 66mmol and 67 ± 30mmol for females (Henderson et al, 

2003).  The discrepancy between weighed food intakes and urine collections was attributed 
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to the discretionary salt intake of individuals.  Whilst urine electrolyte excretion can 

provide an objective measure of dietary electrolyte intake, one-off 24h urine collections 

have been criticised by some (Sowers & Stumbo, 1986; Liu & Stamler, 1984; Caggiula et 

al, 1985; Dyer et al, 1997) although not all (Kesteloot & Joossens, 1990), as a measure of 

an individual’s habitual intake due to the large day to day variation in electrolyte excretion.   

 

1.5 Body electrolyte losses  

Whilst urine provides the primary avenue for sodium loss in many individuals, other 

avenues of water loss are also generally associated with the loss of electrolytes, although in 

most cases this is minimal.  The loss of water during respiration is accompanied by no 

significant loss of electrolytes (Comar & Bronner, 1960) and faecal sodium losses amount 

to only between 0.8 – 8.2mmol/d (Cummings et al, 1976; Dole et al, 1950; Arn & Reimer, 

1950).  Electrolytes can also be lost via the skin, but insensible losses of sodium (0.09 to 

2.59mmol/day), potassium (0.08 to 2.69mmol/day) and chloride (0.29 to 1.71mmol/day) 

are small (Dahl et al, 1955).  In contrast, the loss of water and minerals through sweating 

can be large in some situations or in some individuals. 

 

Typically during exercise there is some increase in core body temperature.  Whilst this 

may be beneficial for reducing muscle stiffness and the viscosity of blood and synovial 

fluid (Bishop, 2003), at high temperatures there are well documented detrimental effects to 

health and performance (Gonzalez-Alonso et al, 1999; Nielsen et al, 1993).  Sweating is 

the normal physiological response to an elevation in body temperature and acts in concert 

with other mechanisms of heat loss to help maintain homeostasis.  As a consequence of 

sweating, both water and minerals are lost in sweat.  Sweat contains many components 

including sodium, potassium, calcium, magnesium, chloride, bicarbonate, phosphate and 

sulphate (Table 1.2).   

 

Table 1.2 Sweat, plasma and intracellular water electrolyte concentrations (mmol/L) 

(Source: Maughan & Nadel, 2000). 
 

 Sweat 

(mmol/L) 

Plasma 

(mmol/L) 

Intracellular Water 

(mmol/L) 

Sodium  20 - 80 130 – 155 10 

Potassium  4 - 8 3.2 – 5.5 150 

Chloride 20 - 60 96 - 110 8 

Calcium  0 - 1 2.1 – 2.9 0 

Magnesium <0.2 0.7 – 1.5 15 

Bicarbonate 0 - 35 23 – 28 10 

Phosphate 0.1 – 0.2 0.7 – 1.6 65 

Sulphate 0.1 – 2.0 0.3 – 0.9 10 
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1.6 Sweat gland structure and function 

Three distinguishable types of sweat gland have been identified in humans; the apocrine, 

apoeccrine and eccrine sweat glands.  Apocrine glands produce a milky, protein-rich fluid 

only intermittently which is considered un-important to fluid and electrolyte balance (Sato 

et al, 1987).   The apoeccrine glands vary in size between and within individuals but tend 

to be larger than eccrine glands when fully developed (Sato et al, 1987).  Morphologically 

similar to the eccrine sweat gland, apoeccrine glands are capable of producing large 

amounts of clear fluid, which although more prolific than that from the eccrine sweat 

gland, is similar in composition (Sato & Sato, 1987).  However, because apoeccrine glands 

are restricted to the axillae regions of the body, it is eccrine sweat glands that have the 

largest role in fluid and electrolyte excretion and thermoregulation (Sato et al, 1987).  As a 

consequence, studies have focussed on eccrine sweat glands.  Approximately 2-3million 

eccrine sweat glands are located over the body surface, which vary in density and size 

depending on the body region (Sato & Sato, 1983).  The eccrine gland can be separated 

into two distinct sections, the secretory coil and the reabsorptive duct.  Located in the 

dermis, the secretory coil is composed of 3 cell types (myoepithelial cells, clear or 

agranular cells and dark or granular cells).  The clear cells exhibit high Na-K ATPase 

activity and mitochondrial density, suggesting they are the primary site of fluid and 

mineral excretion.  The dark cells are involved in the secretion of glycoproteins (Yanagawa 

et al, 1986), but relatively little information is known regarding their other roles.  

Myoepithelial cells are located in the outer layer of the secretory coil and provide structural 

support to the secretory epithelium (Sato et al, 1979).  The sweat duct is composed of 2 

cell types; the luminal cells provide support for the duct and house both sodium and 

chloride channels which allow the basal ductal cells, which contain a large number of 

mitochondria, to carry out sodium reabsorption. 

 

1.7 Sweat electrolyte losses in sport 

Despite the reabsorption of sodium as it traverses through the sweat duct, sodium remains 

the predominant electrolyte present in sweat (Table 1.2).   Table 1.3 shows the sweat and 

electrolyte losses of individuals participating in a range of sports.  Maughan et al (2004) 

monitored sweat and electrolyte losses in 24 professional football players training for 90 

minutes in an ambient temperature of 24-29°C.  Players on average lost 2.03L of sweat and 

99mmol (2.3g) of sodium.  Shirreffs et al (2005) reported average sweat losses of 2.19L 

and sweat sodium losses of 67mmol (1.5g) during a 90 minute training session completed 
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in an ambient temperature of 32°C.  This was the second of two exercise sessions that the 

professional footballers completed on the same day.  Stofan et al (2005) determined sweat 

electrolyte losses of American Football players during two-a-day exercise sessions.  

Players performed exercise in full pads in an ambient temperature of between 22-30°C.  

Sweat losses during both the morning (2.5h) and evening (2.5h) practice were similar, 

amounting to approximately 7.94L and 452mmol (10.4g) of sodium for a group of 

individuals prone to muscle cramps for the entire day.   

 

The loss of large volumes of sweat is not restricted solely to exercise in warm conditions.  

Several studies have shown sweat and electrolyte losses to be substantial even when 

exercise takes place in cool conditions (Maughan et al, 2005; 2007; Palmer & Spriet, 

2008).  Maughan et al (2005) reported the sweat loss of 17 professional footballers during 

a 90 minute training session in cool conditions (5°C, 81% RH).  Players lost on average 

1.69L of sweat and 73mmol (~1.7g) of sodium.  Palmer & Spriet (2008) reported ice 

hockey players, training in full protective clothing to also lose substantial amounts of sweat 

(1.8L/h) and sodium (98mmol or 2.26g).  This was largely attributed to the additional 

clothing worn (Palmer & Spriet, 2008; Maughan et al, 2005).   

 

A consistent finding is the wide variation in sweat sodium losses between individuals.  For 

some individuals training sessions that evoke large sweat losses may predispose them to an 

increased risk of muscle cramps (Stofan et al, 2005), hyponatraemia (Montain et al, 2006) 

or leave them in negative sodium balance (Godek et al, 2005). 
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Table 1.3 Sweat sodium and potassium losses during various sports. 
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Table 1.3 (continued) 
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Table 1.3 (continued) 
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1.8 Factors affecting sweat composition 

Electrolyte losses are governed by both the amount and composition of the sweat lost.  

Given that both these factors demonstrate wide variation between individuals it is 

unsurprising that total electrolyte losses can vary substantially.  Sweat composition itself is 

influenced by a number of factors including the collection method, the inducing stimulus, 

sweat rate, heat acclimation, training status, hydration, age, gender, genetics and diet. 

 

1.8.1 Sweat collection techniques 

A variety of sweat collection techniques have been utilised to assess sweat composition.  

The use of an absorbent cotton suit allows whole body sweat to be collected (Allsopp et al, 

1998; Palacios et al, 2003b), but is restricted to situations of rest rather than exercise due to 

the inability to quantify the amount of sweat dripping or evaporating from exposed areas of 

skin.  Other whole body techniques include enclosing the body in a close fitting bag 

(Vellar et al, 1968) and variations of a washdown technique (Dill et al, 1938; Shirreffs & 

Maughan, 1997).  In the study of Dill et al (1938), subjects washed in distilled water before 

walking in the heat (43°C and 10% RH).  Due to the air movement over the skin and low 

humidity of the environment, sweat was assumed to be completely evaporated from the 

skin surface.  After exercise, subjects washed with 5 litres of distilled water and the 

composition of this washdown water was analysed for electrolytes.  By taking into account 

body weight changes during exercise, sweat electrolyte losses could be ascertained.  More 

recently, Shirreffs & Maughan (1997) reported details of a washdown technique that is 

reproducible and valid during exercise, although it is limited to the laboratory setting. 

 

Regional sweat collection techniques are both convenient and easy to use inside and 

outside the laboratory.  Some studies simply scraped sweat from the skin surface (Boysen 

et al, 1984), but this method is hampered by the potential contamination by skin cells and 

from the inevitable evaporation that occurs on the skin surface leading to a concentrating 

effect on the sample collected (Boysen et al, 1984).  The use of an enclosed bag, capsule or 

gauze pad (Consolazio et al, 1966; Costa et al, 1969; Dill et al, 1938, Brisson et al, 1991; 

Boysen et al, 1984; Hayden et al, 2004; Palacios et al, 2003a,b; Shirreffs & Maughan, 

1997; Patterson et al, 2000; Ladell, 1948) eliminates the problem of sweat evaporation 

from the skin surface, but in doing so may alter both sweat composition and sweat rate.  

The use of a ventilated capsule (Barrueto et al, 1959) overcomes the problems associated 

with the enclosed sweat collection methods, but like all regional techniques cannot account 
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for the regional differences in both sweat rate and composition (Havenith et al, 2008; Costa 

et al, 1969; Patterson et al, 2000).  Patterson et al (2000) reported large variations in sweat 

rate and composition between skin regions using sweat patches placed on 11 skin sites 

(forehead, chest, scapula, lower back, abdomen, upper arm, forearm, hand, thigh, calf and 

foot) during 90 minutes of exercise in temperate conditions (20˚C and 50% RH).  For 

example, sweat sodium concentrations were 57mmol/L from patches placed on the 

forehead but 24mmol/L from those on the foot.  Costa et al (1969) used 3 sweat collection 

methods (arm bag, gauze pads and whole body washdown) during 40 minutes of 

intermittent cycling in a temperate environment (24.5°C).  Comparisons made between the 

3 collection techniques revealed total sweat sodium losses obtained by the gauze pads to be 

higher than those obtained using an enclosed bag on the arm, which in turn was higher than 

those obtained by the whole body collection procedure.  The overestimation of sodium 

and/or chloride losses using regional techniques is a consistent finding (Patterson et al, 

2000; Shirreffs & Maughan, 1997; Palacios et al, 2003a; Van Heyningen & Weiner, 1952; 

Stofan et al, 2002a; Dill et al, 1967).  It would seem that the regional sweat patch technique 

overestimates whole body sweat sodium concentration by approximately 30-40% 

(Shirreffs et al, 2006). 

 

Although the between-individual differences in sweat composition are largely attributed to 

differences in sweat gland function (reabsorptive and secretory capacity), the regional 

differences in sweating observed within an individual are primarily determined by 

differences in the number of active sweat glands in different regions of the body (Sato & 

Dobson 1970a).  This could be at least partly responsible for the over-estimation of sweat 

sodium concentration by regional sweat collection techniques, but other factors are also 

postulated.  The most common suggestions include an alteration in sweat composition 

through the restriction of evaporation, leading to a higher skin temperature and humidity at 

the regional collection site (Nadel et al, 1971; Robinson et al, 1950a; Weiner & van 

Heyningen, 1952) and/or a leaching of electrolytes from the stratum corneum (Weschler, 

2008). 

 

Robinson et al (1950a) determined the effect of skin temperature on the chloride 

concentration of sweat obtained from the hand and forearm.  Both the left and right 

hand/forearm were enclosed in two separate gloves, each maintained at different 

temperatures during walking exercise in the heat.  They reported that the hotter hand (by at 
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least 1.5°C) always produced a higher sweat chloride concentration.  Whilst this may in 

part be attributed to an increased sweat rate (Nadel et al, 1971), as discussed later, it has 

also been attributed to a direct effect of skin temperature on the sweat gland itself (Collins 

& Weiner, 1962; Robinson et al 1950a; Weiner & van Heyningen, 1952).  Alternatively, 

Weschler (2008) suggests a leaching of sodium from the stratum corneum to be a 

contributing factor to the elevated sweat sodium concentrations.  Nevertheless, despite the 

overestimation, sweat sodium concentration from regional techniques correlates well with 

whole body values for sweat sodium concentration (Ladell, 1948; Patterson et al, 2000). 

 

1.8.2 Method of sweat stimulation 

As sodium and chloride are the main electrolytes found in sweat, it is likely that the water 

content of sweat is derived from the extracellular fluid compartment (Costill et al, 1976; 

Nose et al, 1988b).  Costill et al (1976) reported a decrease of 13.7% in plasma volume and 

6.5% in intracellular volume in 8 men dehydrated by 5.8% BM during exercise in the heat 

(39.5°C and 25% RH).  But, in terms of absolute fluid losses, both intracellular and 

extracellular compartments contributed equally.  Nose et al (1988b) dehydrated subjects by 

2.3% of BM through intermittent exercise in the heat (36°C and 30% RH).  Fluid was lost 

from both intracellular and extracellular fluid compartments, but plasma water loss relative 

to total body water loss was approximately 60% higher than the theoretically expected 

values, if body water was lost proportionately from each compartment.  They also reported 

a strong relationship between changes in extracellular fluid volume and sweat sodium 

concentration (r = 0.80) and changes in intracellular volume to correlate with changes in 

plasma osmolality.  It would appear that the movement of water from the intracellular 

compartment compensates for the loss of plasma water in an attempt to defend plasma 

volume. 

 

The method by which sweat loss is achieved may also influence the distribution of water 

losses from body fluid compartments.  Both thermal (Kozlowski & Saltin, 1964; Melin et 

al, 2001; Caldwell et al, 1984) and diuretic (Caldwell et al, 1984) induced dehydration 

results in a greater loss of plasma volume than exercise-induced dehydration.  Despite 

these differences, sweat composition seems little affected when sweating is evoked by 

thermal exposure or exercise in cool, temperate or hot conditions (Verde et al, 1982), 

although a tendency for lower sweat sodium and chloride concentrations has been reported 

during exercise compared to thermal exposure by other investigators (Kozlowski & Saltin, 

1964). 
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1.8.3 Sweat rate  

Sweat rate and composition are intimately linked, with the majority of investigators 

reporting increases in sweat sodium concentration with increases in sweat rate (Schwartz & 

Thaysen, 1956; Cage & Dobson, 1965; Allan & Wilson, 1971).  In contrast, sweat 

potassium concentration is largely unaffected by sweat rate (Schwartz & Thaysen, 1956; 

Verde et al, 1982).  The relationship between sweat sodium concentration and sweat rate is 

linked to the ability of the sweat duct to reabsorb sodium during the passage of sweat from 

the secretory coil through the sweat duct before being expelled at the skin surface.  A 

maximal capacity for sodium reabsorption exists, above which further increases in sweat 

rate result in a linear increase in sweat sodium concentration (Schwartz & Thaysen, 1956; 

Shamsuddin et al, 2005; Buono et al, 2007). 

 

1.8.4 Heat acclimation 

Heat acclimation usually (Nadel et al, 1974; Mitchell et al, 1976) but not always 

(Armstrong et al, 1993; Armstrong et al, 1987) results in an increase in sweat rate.  An 

increase in sweat rate is largely dependent upon whether acclimation takes place in hot-

humid heat rather than a hot-dry heat.  Although sweat rate can increase with acclimation, 

a concomitant fall in sweat sodium concentration is observed (Allan & Wilson, 1971; 

Buono et al, 2007), which at first appears to contradict the previous discussion.  Allan & 

Wilson (1971) thermally stressed 3 subjects by hot-water immersion during which a weak 

salt solution was consumed to prevent a salt deficit.  An enclosed capsule placed on the 

subject’s scapula collected sweat.  Allan & Wilson (1971) reported that at the same sweat 

rate, sweat sodium concentration is lower in heat-acclimated individuals, with this 

difference being greater at the higher sweat rates.  More recently, Buono et al (2007) 

reported the conservation of sodium by heat acclimation is similar over a range of sweat 

rates.  The decline in sweat sodium concentration was attributed to an increased sodium 

reabsorption capacity of the sweat duct after acclimation, possibly via the action of 

aldosterone.  Some investigators report that a reduction in sweat sodium concentration with 

acclimation is apparent only with salt deficiency (McCance, 1938; Robinson et al, 1950b; 

Smiles & Robinson, 1971).  This would accentuate the aldosterone response, but it has 

been demonstrated that a salt deficit is not necessary for this to occur (Allan & Wilson, 

1971; Davies et al, 1981).  Plasma aldosterone concentration is known to increase in 

response to exercise in the heat (Francesconi et al, 1983; Kirby & Convertino, 1986), but 

this increase is attenuated after acclimation (Kirby & Convertino, 1986).  Nevertheless, 
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despite an elevated sweat rate and lower circulating aldosterone concentration, total 

sodium excretion was reduced by 59% after a 10 day heat acclimation protocol (Kirby & 

Convertino, 1986).  This was attributed to an increased sensitivity of the eccrine sweat 

gland to aldosterone (Kirby & Convertino, 1986). 

 

1.8.5 Training 

Highly-trained endurance athletes display similar characteristics (increased sweating 

sensitivity and decreased sweating threshold) to those of partially heat-acclimated 

individuals (Piwonka et al, 1965; Gisolfi & Robinson, 1969; Henane et al, 1977).  Highly-

trained athletes are also reported to have higher sweat rates than sedentary individuals 

(Henane et al, 1977; Buono & Sjoholm, 1988).  Buono & Sjoholm (1988) determined the 

secretory activity of sweat glands in both sedentary and trained subjects in response to 

pilocarpine iontophoresis.  Both trained males and females exhibited sweat rates greater 

than their sedentary counterparts.  Whilst no difference in sweat gland density was 

apparent between the trained and untrained states, trained individuals secreted significantly 

more sweat per gland.   

 

Several studies have looked at changes in thermoregulatory function before and after a 

physical training programme (Nadel et al, 1974; Henane et al, 1977; Gisolfi & Robinson, 

1969).  Gisolfi & Robinson (1969) reported a 7.3% increase in sweat rates of 5 physically 

active men who underwent interval training for 5h per week for 6 weeks.  Similarly, 

Henane et al (1977) reported a 28% increase in sweat rates of sedentary men after a 3 

month training programme.  The difference in magnitude in sweat rate responses between 

the two studies may be attributable to differences in training programme duration and 

baseline fitness of subjects.  As mentioned briefly, the purported mechanisms underlying 

the effects of physical training on sweat rate include an increased sweating sensitivity 

(Piwonka et al, 1965; Roberts et al, 1977; Shvartz et al, 1977; Nadel et al, 1974; Henane et 

al, 1977; Gisolfi & Robinson, 1969) and/or decreased sweating threshold temperature 

(Roberts et al, 1977). 

 

Several investigators have reported sweat rate to be significantly correlated with VO2max 

(ml/kg/min) (Buono & Sjoholm, 1988; Henane et al, 1977; Greenhaff & Clough, 1989), 

but two studies that involved trained individuals reported different responses to the heat 

between swimmers and either runners (Piwonka et al, 1965) or skiers (Henane et al, 1977) 
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despite similar VO2max values.  In one case the sweating response of swimmers was 

similar to that of sedentary individuals (Piwonka et al, 1965).  Henane et al (1977) 

suggested that the differing levels of hyperthermia experienced during training between 

skiers and swimmers was fundamental to the differing sweat outputs seen between the two 

groups.  However, Collins et al (1966) have previously suggested that the increased 

sweating capacity, in this case that accompanied heat acclimation, was as a result of 

increased sweat gland activity not elevated body temperature.  Indeed, it seems that 

repetitive stressing of the sweat gland is fundamental to the changes reported to occur with 

training (Piwonka et al, 1965; Nadel et al, 1974).  Although there is a large variation 

between individuals in the size, and in the secretory and re-absorptive capacities of the 

human sweat gland (Sato & Sato, 1983; Sato & Dobson, 1970a), trained individuals have 

larger sweat glands and therefore a greater capacity for sweating than untrained 

individuals, which was again attributed to the repeated stimulation of sweating during 

training. 

 

In contrast to the large number of studies addressing the issue of sweat rate and training, 

few studies have examined differences in sweat composition between trained and untrained 

individuals.  The study of Sato & Dobson (1970a) examined regional and individual 

variations in the function of the eccrine sweat gland and they reported a positive 

relationship between mean sweat rate and sweat sodium excretion.  The slope of this 

relationship decreased with physical training, suggesting improved sodium reabsorption in 

the sweat duct.  However, Kozlowski & Saltin (1964) reported no effect of training status 

on sweat composition. 

 

1.8.6 Hydration 

A number of studies have investigated the effects of dehydration and/or water ingestion on 

both sweat rate and composition.  Most studies report a decline in sweat rate with 

dehydration (Montain et al, 1995; Ellis et al, 1954; Pearcy et al, 1956; Robinson et al, 

1956; Cage et al, 1970), and this appears to be in a dose response manner (Montain et al, 

1995; Ellis et al, 1954; Cage et al, 1970).  Sweat is hypotonic to plasma and therefore 

hypohydration induces a hyperosmotic hypovolaemic condition.   Plasma hyperosmolality 

increases the temperature at which sweating begins (Fortney et al, 1984; Sawka et al, 1989; 

Montain et al, 1995) whilst hypovolaemia reduces sweating sensitivity (Fortney et al, 

1981; Montain et al, 1995). 
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Plasma aldosterone levels increase in response to exercise in the heat and this increase is of 

greater magnitude when hypohydrated (Francesconi et al, 1983; Morgan et al, 2004).  

However, the effects on sweat composition seem counter-intuitive.  An elevated 

aldosterone concentration would be expected to reduce sweat sodium concentration due to 

its well known sodium conserving action on the sweat gland, but some studies report 

dehydration to increase sweat sodium and/or chloride concentrations (Morgan et al, 2004; 

Cage et al, 1970; Robinson et al, 1956), although others report no differences in sweat 

composition (Cage et al, 1970; Barnett & Maughan, 1996).  Cage et al (1970) studied 14 

heat-acclimated subjects exposed to the heat (43°C, 50% RH).  Fluid ingestion ranged 

between 1 and 3L during the 90 minute exposure and appeared to lower sweat sodium 

concentration in 4 out of 10 subjects, but 3 subjects showed higher sweat sodium 

concentrations and 3 had no change.  Sweat chloride and potassium concentrations also 

showed great variation in response to fluid ingestion.  The inconsistent nature of these 

findings led the authors to conclude that water ingestion does not affect sweat composition 

in a manner that cannot be explained by a change in sweat rate.  However, Robinson et al 

(1956) reported a higher sweat chloride concentration in subjects who demonstrated lower 

sweat rates compared to the hydrated state.  Similarly, Morgan et al (2004) reported that 

when no fluid was ingested during 2h of moderate exercise in hot humid conditions (38°C, 

60% RH), forearm sweat sodium and chloride concentrations increased by approximately 

10mmol/L and 4mmol/L, respectively.  This occurred despite no differences in sweat rate.  

It has been suggested that the increased sodium concentration of the primary sweat, due to 

the increased serum sodium concentration may have caused the elevated sweat sodium 

concentration in the dehydrated state.  However, the increase in serum sodium 

concentration (3mmol/L) seemed too small in magnitude to be responsible for the increase 

in sweat sodium concentration (10mmol/L) (Morgan et al, 2004). 

 

1.8.7 Age 

The effect of age on sweat rate has been repeatedly studied, with pre-pubertal children 

reported to have lower (Wagner et al, 1972; Meyer et al, 1992), or similar (Drinkwater et 

al, 1977) sweat rates to adults.  A reduction in sweat rate has also been observed amongst 

elderly individuals (over the age of 60y) compared to younger adults (Davies, 1979; 

Tankersley et al ,1991; Armstrong & Kenney, 1993; Anderson & Kenney, 1987; Wagner et 

al, 1972; Kenney & Fowler, 1988).  It has been suggested that the mechanism responsible 

for the age-related decline in sweat rate is not a difference in the number of active sweat 
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glands, but instead a decline in the amount of sweat secreted per sweat gland (Anderson & 

Kenney, 1987; Kenney & Fowler, 1988). 

 

Meyer et al (1992) reported sweat sodium concentrations to be higher in adult men (58 ± 

25mmol/L) than pre-pubescent boys (aged 9y; 35 ± 20mmol/L), but not pubescent boys 

(aged 11y; 40 ± 20mmol/L) in response to cycling exercise in the heat (40˚C, 20% RH).  

They suggested that the increased sweat sodium concentration observed in young adults 

was possibly the result of an increased sweat rate, although only a weak correlation 

between sweat rate and sweat sodium concentration was observed (r = 0.15).  Lobeck & 

Huebner (1962) also reported an increase in sweat sodium concentration with age until the 

age of 20y, beyond which no further increase was observed.  This increase was not related 

to changes in sweat rate but since plasma aldosterone concentrations were similar between 

pre and post pubescent boys before and after exercise (Falk et al, 1991), an alteration in the 

sensitivity of the sweat duct to aldosterone may occur (Meyer et al, 1992). 

 

1.8.8 Gender 

Whether there are gender differences in the sweating response to exercise remains a source 

of contention.  Field studies suggest that women generally have lower sweat rates than 

males (Burke & Hawley, 1997; Broad et al, 1996; Soo & Naughton, 2007; Hazelhurst & 

Claassen, 2006; Shirreffs et al, 2006) although these are not always statistically significant 

(Cox et al, 2002).  Yet inconsistencies are reported in laboratory-based studies.  

Confounding factors contributing to the debate in the literature include the environmental 

conditions of the study, aerobic capacity, degree of acclimation and body composition of 

subjects and phase of the menstrual cycle.   

 

Males typically have a higher aerobic capacity than females (Avellini et al, 1980a,b; 

Buono & Sjoholm, 1988) and because sweat rate is closely related to absolute exercise 

intensity (Saltin & Hermansen, 1966; Greenhaff & Clough, 1989), males would be 

expected to have higher sweat rates than females.  Some authors report the higher sweat 

rates in males to persist (Avellini et al, 1980a; Frye & Kamon, 1981) although others 

report the gender differences in sweat rate to disappear (Avellini et al, 1980b; Buono & 

Sjoholm, 1988) when aerobic capacity is taken into account.  
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Gender differences are suggested to be accounted for by the disparity in acclimation status 

between subjects (Fox et al, 1969).  Indeed, heat acclimation eliminated the gender 

differences seen in the un-acclimated state during 3h of exercise at 30% VO2max in 48°C 

(Frye & Kamon, 1981).  However, others (Avellini et al, 1980a; Wyndham et al, 1965) 

report contradictory findings, suggesting acclimation to accentuate the gender differences 

in sweat rate.  This occurred despite the fact that aerobic capacity, surface area:mass, and 

menstrual cycle was controlled for (Avellini et al, 1980a).  It is most likely that the cause 

of these discrepancies is the different environmental conditions of the studies. 

 

Exposure to hot-humid conditions is consistently associated with higher sweat rates in 

males than females (Morimoto et al, 1967; Shapiro et al, 1980; Avellini et al, 1980a), but 

in hot-dry environments no significant differences between males and females have been 

reported (Morimoto et al, 1967; Shapiro et al, 1980; Avellini et al, 1980b).  The 

mechanism responsible for this is linked to skin wettedness and the improved feedback 

present in female subjects suggestive of an enhanced sweating efficiency (Frye & Kamon, 

1983). 

 

Meyer et al (1992) compared both sweat composition and rate between genders during 

cycling exercise (50% VO2peak) in the heat (40°C and 20% RH).  They observed men to 

have a higher sweat sodium concentration than women, although this reached significance 

only in adulthood (58 ± 25mmol/L and 35 ± 20mmol/L, respectively).  This is in 

agreement with some (Lobeck & Huebner, 1962), but others have reported no differences 

(Brown & Dobson, 1967; Shirreffs et al, 2006) or higher sweat chloride concentrations in 

women (Morimoto et al, 1967).  

 

Thermoregulatory function in eumenorrheic women varies depending on the phase of the 

menstrual cycle, with the hormone progesterone being largely implicated in these changes.  

Body temperature is elevated during the luteal phase of the cycle, which coincides with an 

increase in progesterone levels.  Although some investigators have reported no significant 

differences in sweat rate between the follicular and luteal phases of the menstrual cycle 

(Inoue et al, 2005; Avellini et al, 1980a; Frye & Kamon, 1981, Pivarnik et al, 1992), there 

was a tendency for sweat rates to be higher during the luteal phase in some investigations 

(Avellini et al, 1980a; Garcia et al, 2006).  Lieberman (1966) determined the effects of the 

menstrual cycle on sweat electrolyte concentration in 57 healthy females over a 4 month 
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period.  Sweat sodium concentration followed a cyclic pattern in 50% of women, which 

increased during the luteal phase and then fell 3-5 days prior to menses.  Similar findings 

have been reported by others (Palacios et al, 2003a) and it appears that these cyclic 

fluctuations coincide with the rise and fall of progesterone, which is known to inhibit the 

actions of aldosterone (Lieberman, 1966).   

 

1.8.9 Diet 

Studies during heat acclimatisation report sweat sodium concentration to decrease during 

salt deficiency and to increase during a period of salt excess (McCance, 1938; Robinson et 

al, 1950b; Robinson et al, 1956; Armstrong et al, 1985b; Sigal & Dobson, 1968), but Costa 

et al (1969) were the first to report a relationship between dietary sodium intake and sweat 

sodium concentration that was not dependent on the presence of a salt deficiency.  Costa et 

al (1969) fed 12 acclimatised males a diet providing either 244 mmol (5.6g) of sodium or 

148 mmol (3.4g) of sodium per day for 6 weeks.  On 4 separate occasions during this 6 

week period subjects exercised for 40 minutes in 24.5˚C.  Sweat was collected using an 

enclosed arm bag, 3 sweat patches positioned on the arm, back and chest, and via a whole 

body washdown procedure.  Sweat rate was not different between diets, but all sweat 

collection procedures revealed sweat sodium concentration to be higher on the high sodium 

diet.  Interestingly, the difference in sweat sodium concentration between diets was the 

same ratio as the differences in sodium intake between the diets.  More recently Allsopp et 

al (1998) reported that men fed either a high-sodium diet (348mmol/d) or a moderate-

sodium diet (174mmol/d) for 4 consecutive days had a significantly higher sweat sodium 

loss (79mmol and 64mmol, respectively) than those consuming a low-sodium (66mmol/d) 

diet (54mmol). 

 

1.9 Sodium deficiency 

McCance (1936) determined the effects of salt deficiency in 4 human subjects through a 

combination of ingesting a low-sodium diet (40-70mg/d) and sweating.  A severe salt 

deficiency was gradually developed over approximately 7 days and was maintained for 

approximately 3-4 days, before repletion over a 24h – 7 day period began.  Profuse 

sweating was achieved by exposure to the heat for approximately 2h/d.  For one individual, 

sweat sodium loss over the entire period of salt depletion was 18g and resulted in a net 

negative sodium balance of 22.5g when urine losses were taken into account.  Salt 

deficiency was accompanied by a loss of appetite, nausea, muscle cramps, negative 
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nitrogen balance, excessive fatigue and general feelings of exhaustion but it is the effects 

on fluid balance that will be the focus of the present discussion.  During the study period, 

water was allowed ad libitum and generally resulted in a urine volume of at least 

1500mL/d.  This was deemed sufficient evidence to indicate that individuals were not 

dehydrated during the experimental period due to inadequate fluid intake.  However, 

during the early stages (days 1-4) of salt deficiency the loss in sodium was closely 

followed by a loss in body mass.  The loss of approximately 3.4g (~147mmol) of sodium 

resulted in the loss of approximately 1kg in body mass.  This is approximately the amount 

of sodium present in 1 litre of plasma or extracellular fluid and therefore the loss in body 

mass was attributed to the loss of water from the extracellular fluid compartment.  After 

approximately 4 days the decline in body mass ceased, but abnormalities in water 

regulation began.  At this point, despite the ingestion of large volumes of water, diuresis 

would not develop until many hours later.  Body mass returned to normal after 

approximately 6 days of salt ingestion. 

 

1.10 Effects of dehydration on performance 

Montain & Coyle (1992) determined the effect of different rates of fluid ingestion on 

cardiovascular and thermoregulatory responses during exercise.  Eight cyclists, cycled at 

approximately 65% VO2max for 2h in a hot environment (33°C, 50% RH).  In separate 

trials they ingested a carbohydrate-electrolyte sports drink at a rate that would result in a 

dehydration of 1.1%, 2.3%, 3.4% and 4.2% BM by the end of exercise.  Total fluid intake 

on each trial was ~2380mL (large), ~1423mL (medium), ~583mL (small) and 0mL (no 

fluid).  The elevation in rectal temperature was proportional to the degree of dehydration 

incurred. Rectal temperature was 0.8°C higher on the no fluid trial than when a large 

volume of fluid was consumed.  Similarly, the increase in heart rate, and the decline in 

stroke volume and forearm blood flow were all proportional to the degree of dehydration 

incurred.  Whilst there are detrimental effects to cardiovascular and thermoregulatory 

function with dehydration and these detrimental effects occur in a graded manner 

proportional to the extent of dehydration, it appears that the effects of dehydration on 

endurance performance depend to some extent on the environmental conditions present.  

There is a general consensus that when endurance exercise occurs in temperate conditions 

(20-21°C), a body mass loss approximately 2% BM will not significantly decrease 

performance (Cheuvront et al, 2003; McConell et al, 1999), but will be detrimental to 
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endurance performance in the heat (Cheuvront et al, 2003; Below et al, 1995; Walsh et al, 

1994). 

 

McConell et al (1999) determined the effect of fluid ingestion on heart rate, rectal 

temperature and performance during exercise in temperate conditions (21°C, 41% RH).  

Eight males cycled for 45 minutes at 80% VO2max whilst consuming either a volume of 

water that replaced 100% of sweat loss, 50% of sweat loss or no fluid.  Immediately 

following the 45 minute bout of exercise, subjects completed a 15 minute time trial.  As a 

result of exercise and fluid ingestion, subjects lost 1.9% BM (no fluid), 1.0% BM and 0% 

BM.  No differences in heart rate, rectal temperature or performance were observed.  

Below et al (1995) determined the effects of fluid ingestion during 1h cycle exercise (50 

minutes at 80% VO2max + 10min performance ride) in the heat (31°C, 54% RH).  Eight 

males ingested either a large (~1330mL) or small (~200mL) volume of water which 

resulted in dehydration of 0.5% BM and 2.0% BM, respectively.  Performance was 

improved by approximately 6% when the large volume of water was consumed and this 

was accompanied by a lower rectal temperature and heart rate. 

 

1.11 Fluid and electrolyte intake before exercise 

As dehydration can be detrimental to performance and athletes typically consume fluids at 

a rate below sweat rate during exercise, strategies that promote hyperhydration prior to 

exercise have been investigated.  One hyperhydration strategy involves the ingestion of a 

solution with a high sodium content (Harrison et al, 1976; Coles & Luetkemeier, 2005; 

Sims et al, 2007; Nielsen et al, 1971; Greenleaf & Brock, 1980). 

 

Hyperhydration with solutions containing sodium before exercise result in an expanded 

plasma volume compared to drinks with a low-sodium content (Coles & Luetkemeier, 

2005; Sims et al, 2007; Greenleaf & Brock, 1980).  Some (Sims et al, 2007) but not all 

(Coles & Luetkemeier, 2005) investigators report this to attenuate the cardiovascular drift 

during exercise.  The effects on the thermoregulatory system are also unclear.  Nielsen et al 

(1971) determined the effects of hyperhydration with water and a sodium chloride solution 

(342mmol Na
+
/L) on thermoregulatory responses during 60 minutes of exercise at ~50% 

VO2max in temperate conditions (20°C).  Rectal temperature was reported to plateau in all 

trials after approximately 30 minutes of exercise, but the plateau in rectal temperature was 

0.4°C higher than the control trial when hyperhydrated with the sodium chloride solution 
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and 0.5°C below the control trial when hyperhydrated with water.  As a strong positive 

relationship was observed between plasma osmolality and rectal temperature, the higher 

rectal temperature with sodium chloride ingestion was attributed to the elevated plasma 

osmolality.  It has since been shown that an increase in plasma osmolality will increase the 

sweating threshold and the threshold for peripheral vasodilation (Fortney et al 1984).  

Consequently, this has raised concerns about hyperhydration with salt solutions (Coyle & 

Montain, 1993). 

 

Coles & Luetkemeier (2005) investigated whether sodium loading would increase plasma 

volume and improve cycling time trial performance.  Fourteen males (with a VO2max of 

~50ml/kg/min) ingested 10mL/kg (~800mL) of a high sodium (164mmol Na
+
/L) or 

placebo (no sodium) solution over a 30 minute period followed by a 15 minute 

equilibration period before exercise.  Exercise involved 45 minutes of cycling at 70% 

VO2max in 22°C, followed immediately by a 15 minute time trial.  Plasma volume was 

3.1% higher than baseline at the start of exercise when the sodium solution was consumed 

but had declined by 4.7% on the placebo trial.  Interestingly, at the onset of the time trial, 

no differences in plasma volume were observed, yet a significant improvement in 

performance was seen on the sodium trial.  Despite a higher serum osmolality with sodium 

loading, no differences in sweat loss or rectal temperature were observed between trials.  

Sims et al (2007) investigated whether the ingestion of a sodium solution would induce 

hypervolaemia and enhance exercise capacity in the heat.  Eight males (with VO2max of 

57ml/kg/min) ingested 10mL/kg (~757mL) of either a high-sodium (164mmol Na
+
/L) or 

low-sodium (10mmol Na
+
/L) solution, 45 minutes before running to exhaustion at 70% 

VO2max in the heat (32°C, 50% RH).  They reported a significant improvement in exercise 

capacity, with 7 out of 8 subjects running for longer on the high-sodium trial.  There were 

no differences in serum osmolality between trials, but neither were there differences in 

plasma volume between trials at the start of exercise.  Not all studies report benefits from 

plasma volume expansion prior to exercise on performance (Warburton et al, 1999, 2000; 

Watt et al, 2000).  As endurance training results in an expansion in plasma volume, 

investigators have reported that endurance athletes will not benefit as much, if at all, from 

plasma volume expansion as those individuals with a low aerobic fitness as endurance-

trained athletes already possess a high blood volume (Coles & Luetkemeier, 2005; Watt et 

al, 2000; Warburton et al, 1999).   
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1.12  Fluid and electrolyte intake during exercise 

It is currently recommended that fluid intake during exercise should be sufficient to limit 

dehydration to no more than 2% BM (ACSM, 2007).  Recommendations for electrolyte 

replacement have proven more difficult to formulate due to the aforementioned wide 

variation in sweat composition and losses between individuals.  Current guidelines suggest 

that there is no conclusive evidence to ingest magnesium, calcium or potassium during 

exercise (Coyle, 2004).  In contrast, there is a general consensus that the inclusion of 

sodium in drinks consumed during exercise will confer some benefit and is considered 

especially important if exercise is prolonged (>2h) or when high sodium losses (>3-4g) are 

expected (Coyle, 2004; ACSM, 2009).  The inclusion of sodium is justified because 

sodium is the predominant electrolyte in sweat (Table 1.2), improves drink palatability 

(Passe et al, 2006; Wemple et al, 1997), maintains the drive to drink (Wemple et al, 1997; 

Dill et al, 1973), maintains extracellular volume (Criswell et al, 1992, Sanders et al, 2001) 

and may attenuate the decline in serum sodium concentration that is seen when plain water 

is consumed at rates equal to or greater than sweat loss (Vrijens & Rehrer, 1999; 

Twerenbold et al, 2003).   

 

Although the presence of sodium in the small intestine is important for water absorption, 

there is evidence that the inclusion of sodium in a drink consumed at rest (Gisolfi et al, 

1995; Jeukendrup et al, 2009) or during exercise (Gisolfi et al, 2001) is not necessary as 

the intestinal secretion of sodium into the intestinal lumen is sufficient to promote water 

and solute absorption.   Gisolfi et al (1995) reported that the addition of sodium (0, 25 or 

50mmol/L) to a 6% carbohydrate solution did not affect water absorption in the jejunum at 

rest.  Similarly, Gisolfi et al (2001) reported that the ingestion of a 6% carbohydrate 

solution containing either 0, 20 or 50mmol/L of sodium did not alter water absorption in 

the duodenum or jejunum during cycling exercise at 65% VO2peak in temperate conditions 

(22°C and 40% relative humidity).  However, the inclusion of sodium in a drink may 

reduce the rate at which endogenous sodium is secreted into the intestinal lumen and hence 

may also attenuate the efflux of water entering the lumen (Gisolfi et al, 2001; Leiper, 

1998).  As a result of this inconclusive evidence, it is hard to justify the inclusion of 

sodium in a drink to be consumed during exercise based solely upon on water absorption. 
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1.12.1 Sodium intake and performance 

Pitts et al (1944) investigated whether the addition of sodium chloride to water, consumed 

at a rate equal to sweat loss during exercise would be advantageous to performance.  Six 

heat-acclimatised men who were receiving adequate amounts of dietary salt (although the 

amount of which was not specified) marched in the heat (37.8°C, 35% RH) for anywhere 

between 1-6h.  They reported that because the benefits of consuming water (only) on heart 

rate, rectal temperature and performance were so striking compared to when no fluid was 

consumed, that the addition of sodium chloride was no more or less beneficial than water 

alone.  More recently, Hew-Butler et al (2006) determined whether sodium 

supplementation could improve ironman performance.  Four hundred and thirteen 

triathletes were split into a placebo, sodium or control (no supplementation) group.  

Subjects receiving sodium supplements were asked to consume 1-4 salt capsules per hour 

which resulted in an average sodium intake of 156 ± 88mmol during the race.  This is 

equivalent to 6.8 ± 3.8g of sodium.  They reported no difference in performance between 

placebo (762min), sodium supplementation (758min) and control (741min) groups.  

However, athletes were allowed ad libitum access to food and fluid during the race which 

was not measured and therefore the true differences in sodium intake cannot be 

ascertained.  Similarly, Speedy et al (2002) reported no effect of sodium supplementation 

(6.34g, range 4.09 – 9.13g) on ironman performance, but food and fluid intake were also 

not measured.  Twerenbold et al (2003) investigated the effect of different drink sodium 

concentrations on endurance performance.  Thirteen endurance runners completed three, 

4h runs on an outdoor track.  During each run they ingested either water, a high-sodium 

(30mmol/L) or low-sodium (18mmol/L) drink at a rate of 1 L/h.  Although no significant 

differences were reported between the high-sodium (39.91km), low-sodium (42.03km) and 

water trials (40.55km), subjects ran slower on their first trial than trials 2 and 3, indicating 

a learning effect.  Additionally, the environmental temperature varied between trials (5.3 – 

19°C) which may have also influenced performance (Galloway & Maughan, 1997). 

 

1.12.2 Hyponatraemia 

Hyponatraemia is defined as a serum sodium concentration below 135mmol/L (Hew-

Butler et al, 2008).  Mild hyponatraemia (131-134mmol/L) is generally asymptomatic, but 

moderate hyponatraemia (126 – 130mmol/L) can result in bloating, malaise, headache, 

nausea, vomiting and fatigue.  Severe hyponatraemia (<126mmol/L) can result in a coma, 

seizures and even death (Sallis, 2008).  Hyponatraemia has been reported in endurance 
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events, such as the marathon (Kipps et al, in press; Almond et al, 2005) and ironman 

triathlon (Wharam et al, 2006; Speedy et al, 1999).  The primary cause of symptomatic 

hyponatraemia is the excess consumption of fluids resulting in a positive fluid balance, but 

other factors purported to be involved in the aetiology of hyponatraemia include the loss of 

sodium in sweat (Hew-Butler et al, 2008; Montain et al, 2006). 

 

The loss of sodium may either act to stimulate vasopressin release due to the hypovolaemia 

that accompanies the loss of sodium and water in sweat or directly via the loss of sodium 

itself reducing the pool of exchangeable sodium (Montain et al, 2006).  In the situation of 

fluid overload, the presence of vasopressin is considered inappropriate as even small 

amounts can markedly influence kidney function and it is therefore termed Syndrome of 

Inappropriate Anti-Diuretic Hormone (SIADH).  Montain et al (2006) used a mathematical 

model to predict the effects of various hydration regimens, sweat rates, running speeds and 

sweat sodium concentrations in the pathogenesis of hyponatraemia.  They reported that 

individuals who lost large amounts of sodium in sweat could finish ultraendurance exercise 

hyponatraemic even in the absence of body weight gain.  There has also been interest as to 

whether solutions containing sodium attenuate the decline in serum sodium concentrations 

or even prevent hyponatraemia (Sanders et al, 1999, 2001; Barr et al, 1991; Stofan et al, 

2006; Twerenbold et al, 2003; Speedy et al, 2002; Hew-Butler et al, 2006; Baker et al, 

2008). 

 

In the study of Barr et al (1991), 8 cyclists rode intermittently (13 minutes cycling and 2 

minutes rest) for 6h at 55% VO2max in the heat (30°C and 50% RH).  Subjects ingested 

either water or a solution containing 25mmol/L of sodium at a rate equal to sweat loss.  No 

differences between drinks were reported for performance, RPE, heart rate, rectal 

temperature or plasma sodium concentration, but plasma volume tended to be better 

maintained when sodium was ingested.  They suggested the reason why no difference in 

serum sodium concentration was observed between trials, despite approximately 170mmol 

of more sodium being consumed when the sodium solution was ingested, was due to the 

significant increase in urine sodium excretion and the possible concealment of a change by 

the changes in plasma volume.  Nevertheless, the presence of sodium in a drink 

(25mmol/L) was not sufficient to prevent a decline in serum sodium concentration when 

fluid was ingested at a rate close to sweat rate.  However, other investigators report 
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contradictory findings (Vrijens & Rehrer, 1999; Stofan et al, 2006; Twerenbold et al, 2003; 

Baker et al, 2008; Montain et al, 2006).   

 

In the study of Vrijens & Rehrer (1999), 10 cyclists completed 3h cycling at 55% VO2max 

in the heat (34°C, 65% RH) whilst ingesting either a sports drink (18mmol Na
+
/L) or water 

at a rate equivalent to sweat loss.  The decline in serum sodium concentration was 

significantly less when the sports drink (-0.86mmol/L/h) rather than when water (-

2.48mmol/L/h) was consumed.  Only one subject was considered hyponatraemic and this 

occurred on the water trial.  Stofan et al (2006) reported that the addition of electrolytes 

(including 36mmol/L of sodium) to a 6% carbohydrate drink consumed during 3h cycle 

exercise at 55% VO2peak in the heat (28.3°C WBGT) at a rate equal to sweat loss, 

attenuated the decline in serum sodium concentration.  In the study of Baker et al (2008), 8 

subjects with no prior history of exercise-associated hyponatraemia performed 2h of 

intermittent running exercise at 70% VO2max followed by a run to exhaustion at 85% 

VO2max, both of which took place in the heat (30°C, 40% RH).  Subjects consumed a 6% 

carbohydrate solution during exercise which contained 3 different sodium concentrations 

(0, 18 and 30mmol/L).  The volume ingested varied in such a way that subjects either 

gained body mass (+1.8% BM), maintained BM (-0.1% BM) or lost BM (-2.1% BM and -

3.4% BM).  They reported that the addition of sodium to drinks consumed at a rate equal to 

or greater than sweat loss attenuated the decline in serum sodium concentration.  Although 

this attenuation did not reach significance, the decline in serum sodium concentration was 

related to the sodium content of the drinks consumed, with the greatest attenuation 

observed when the highest sodium concentration was consumed.  The general consensus is 

that the addition of sodium to drinks ingested during exercise at a rate equal to or greater 

than sweat loss will attenuate the decline in serum sodium concentration, but will not 

prevent hyponatraemia (Montain et al, 2006; Hew-Butler et al, 2008). 

 

1.12.3 Cramp 

The association between heat cramps and sweat sodium losses has been largely 

observational due to the inherent problem of inducing muscle cramps within the 

laboratory.  Nevertheless several investigators have reported cramp-prone individuals to 

lose large amounts of sodium in sweat (Talbott & Michelsen, 1933; Ladell, 1949; 

Bergeron, 1996; Stofan et al, 2001; Stofan et al, 2005).  This association is further 

strengthened by findings that the ingestion of salt can alleviate signs and symptoms of 
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cramping (Brockbank, 1929; Talbott & Michelsen, 1933; Bergeron, 1996; Bergeron, 

2007).  Early investigations report the occurrence of heat cramps in miners (Brockbank, 

1929) and construction workers (Talbott & Michelsen, 1933).  Talbott & Michelsen (1933) 

described 5 construction workers of the Hoover Dam who suffered from heat cramps.  

They reported that heat cramps occurred when the loss of salt in sweat was not replaced 

and that symptoms were rapidly ameliorated after IV administration of saline.  Indeed in 

all 5 cases, subjects were symptom free within 6h after initiating this treatment.   The 

amelioration of symptoms is also reported when salt is ingested orally.  Bergeron (1996) 

described a male tennis player who had a history of muscle cramps.  These muscle cramps 

persisted despite the ingestion of calcium, magnesium or potassium supplements which are 

suggested as possible remedies for muscle cramping (O’Toole et al, 1993; Bergeron, 

2003).  During a tennis match which took place during a training session in the heat 

(31.6°C, 62% RH), sweat sodium losses of 162mmol were reported.  These losses were 

similar to, or higher than, his typical daily sodium intake (87 – 174mmol/day).  It was 

recommended that he increase his sodium intake to 261-348mmol (6 – 8g/d).  During the 

following 9 months, no heat cramps were reported during competition or training.  Stofan 

et al (2005) investigated whether cramp-prone American Football players lost more fluid 

and sodium in sweat than teammates who did not cramp.  Sweat composition was assessed 

using a forearm sweat patch during two, ~2.5h training sessions.  In the first training 

session of the day, cramp-prone players tended (P=0.063) to have a higher sweat sodium 

concentration (56mmol/L) than non-crampers (22mmol/L) and this was also found in the 

second training session (54mmol/L and 29mmol/L, respectively; P=0.063).  Although 

sweat loss was not different between groups, total sweat sodium losses tended to be higher 

in the group of cramp-prone players.  Over the entire day, sweat sodium losses were 10.4g 

for crampers and 4.9g of sodium for non-crampers. 

 

It is suggested that the excessive loss of sodium and water in sweat results in a decreased 

extracellular volume and the mechanical deformation of nerve endings.  These motor-nerve 

endings become hyperexcitable and spontaneously discharge leading to heat cramps 

(Bergeron, 1996).  The ingestion of salt-containing solutions may therefore attenuate the 

perturbations in extracellular volume and composition and therefore the prevalence of heat 

cramps.  Current recommendations are to consume 3g of salt in 500mL of a sports drink 

(Bergeron, 2007) within a 5-10 minute time period.  This is approximately equivalent to 

50% of the current upper limit (UL) for sodium (Institute of Medicine, 2004).  Cramp-



Chapter 1 

 

Page | 30  

prone individuals are also advised to increase their dietary salt intake to help prevent heat 

cramps from re-occurring (Bergeron, 1996; Eichner, 2007). 

 

1.12.4 Drink palatability 

The indiscriminate use of large amounts of sodium during exercise is not always 

encouraged as this can lead to a reduced drink palatability (Passe et al, 2006; Wemple et al, 

1997) and consequently fluid intake.  Passe et al (2006) determined the palatability of a 6% 

carbohydrate solution which contained 5 different concentrations of sodium (0, 18, 30, 40, 

60mmol/L) at rest and during exercise.  They reported that ad libitum fluid intake tended 

(P=0.058) to be greater when a solution contained 30mmol/L of sodium than a sodium-free 

solution.  As athletes typically ingest an amount of fluid equivalent to ~50% of sweat 

losses, an increased palatability and therefore fluid intake would be important to delay the 

onset of dehydration.  Therefore commercially available sports drinks are carefully 

designed to meet a balance between efficacy and palatability.  Current recommendations 

suggest sports drinks should contain 22-30mmol/L (0.5-0.7g/L) of sodium (ACSM, 2009).  

Given that these sodium concentrations lie at the bottom of the range of sweat sodium 

concentrations (20-80mmol/L) (Table 1.1) and that fluids are consumed at rates below 

sweat rate, sweat sodium losses are not entirely replaced during exercise (Maughan et al, 

2004; 2005; Shirreffs et al, 2005; Palmer & Spriet, 2008).  For example, Shirreffs et al 

(2005) reported football players to replace 23% (range 0-62%) of the sodium lost in sweat 

during a 90 minute training session.  The importance of sodium replacement after exercise 

has therefore been studied extensively. 

 

1.13 Fluid and electrolyte intake after exercise 

1.13.1 Effect of drink composition  

The ingestion of plain water following exercise results in a fall in plasma osmolality and 

sodium concentration.  This leads to a decline in plasma vasopressin concentration and 

subsequently stimulates urine production and reduces the drive to drink (Nose et al, 

1988a), both of which are detrimental to the rehydration process.  In contrast, the addition 

of sodium chloride to plain water increases intake and reduces urine output (Wemple et al, 

1997).  Wemple et al (1997) had 6 individuals dehydrate by 3.0% BM by exercising in the 

heat.  During the following 3h rehydration period, subjects had ad libitum access to either 

water, a 6% CHO-E solution (containing 25mmol Na
+
/L) or a 6% CHO-E solution 
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(containing 50mmol Na
+
/L).  Fluid intake was significantly greater when the CHO-E 

solution containing 25mmol/L of sodium was ingested than water alone.   

 

The importance of sodium in rehydration drinks has been reported by others (Shirreffs et 

al, 1996; Mitchell et al, 2000) and has been systematically investigated in several studies 

(Maughan and Leiper, 1995; Shirreffs and Maughan, 1998; Merson et al, 2008).  Maughan 

and Leiper (1995) reported that when a volume equal to 150% of BM loss was ingested 

following exercise-induced dehydration, the amount of fluid retained was inversely related 

to the drink’s sodium concentration.  Shirreffs & Maughan (1998) had 6 individuals 

dehydrate by 1.9% BM by intermittent cycle exercise in the heat (34°C, 60-70% RH).  

During the 1h rehydration period, subjects ingested 4 drinks containing 0, 25, 50 or 

100mmol/L of sodium, in a volume equal to 150% of body mass loss.  Urine volume was 

also found to be inversely related to the amount of sodium ingested.  However, the positive 

relationship between urine volume and sodium intake is not always reported (Mitchell et 

al, 2000).  Mitchell et al (2000) reported that the ingestion of a 50mmol/L sodium solution 

was no more beneficial than a 25mmol/L solution in restoring fluid balance after exercise-

induced dehydration.  The reason for this discrepancy is likely due to the shorter 

monitoring period in the study of Mitchell et al (2000) (3h) compared to the other 

investigations (6-7h) (Maughan and Leiper, 1995; Shirreffs and Maughan, 1998).  This is 

likely too short for any changes in urine volume between drinks to have been observed. 

 

In some situations sodium may not be the only electrolyte that can improve fluid retention.  

The ingestion of a drink containing primarily potassium may favour intracellular 

rehydration compared to solutions with either a low electrolyte content or that contain 

primarily sodium (Maughan et al, 1994; Nielsen et al, 1986; Shirreffs et al, 2007a) and this 

may also be beneficial for rehydration.  Maughan et al (1994) reported that the addition of 

either potassium (25mmol/L) or sodium (60mmol/L) to a rehydration drink proved equally 

effective in retaining fluid although their effects were not additive when ingested in a 

volume equal to BM loss.  However, it would seem that drinks which contain primarily 

potassium may not promote the recovery of fluid balance as favourably as sodium when 

fluid is given in amounts equal to 150% of BM loss (Shirreffs et al, 2007a).  Shirreffs et al 

(2007a) determined the effectiveness of 4 commonly used beverages in restoring fluid 

balance after exercise-induced dehydration of 1.9% BM.  These included a carbonated 

water/apple juice mixture (8 mmol Na
+
/L and 30mmol K

+
/L), a sports drink (23mmol 
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Na
+
/L and 6mmol K

+
/L) and 2 brands of mineral water (0-1mmol Na

+
/L and 0mmol K

+
/L). 

At the end of the 4h recovery period, subjects were considered euhydrated when a sports 

drink was consumed, but hypohydrated when water and the carbonated water/apple juice 

mixture were consumed. 

 

1.13.2 Effect of drink volume 

For complete fluid restoration following dehydration, a volume greater than sweat loss 

must be consumed due to the on-going obligatory urine, faecal and respiratory losses that 

persist despite individuals being in a body water deficit (Shirreffs et al, 1996; Mitchell et 

al, 2000).  Shirreffs et al (1996) reported that 150% of BM loss needs to be consumed if 

fluid balance is to be fully restored, and maintained, during the ensuing hours after 

rehydration has ceased.  In some circumstances, the consumption of fluid equivalent to 

120% of BM loss may be sufficient if the rehydration period is extended from 1 to 3h 

(Kovacs et al, 2002) as the perturbations to plasma volume and sodium concentration are 

reduced. 

 

1.13.3 Effect of food ingestion 

The addition of sodium to fluids ingested after exercise is not the only delivery method that 

has been investigated.   The efficacy of food ingestion during the rehydration period has 

also been reported (Ray et al, 1998; Maughan et al, 1996).  Ray et al (1998) administered 

350mL of either water, CHO-E (containing 16mmol Na
+
/L), chicken broth (110mmol 

Na
+
/L) or soup (334mmol Na

+
/L) followed by water ingestion at a rate equivalent to sweat 

loss to subjects who had dehydrated by 2.5% BM.  Despite the small volume of test drinks 

given, subjects excreted significantly less urine on the chicken broth and soup trials than 

water.  This was attributed to the higher sodium intake during the chicken broth and soup 

trials.  Maughan et al (1996) had 8 subjects cycle intermittently in the heat until they were 

dehydrated by 2.1% BM.  Subjects were then fed either a carbohydrate-electrolyte drink 

(containing 21mmol/L of sodium) or a standardised meal plus fluid, so that water intake 

corresponded to 150% of BM loss in both trials.  Cumulative urine volume was lower 

when the meal was consumed and as a result individuals were considered euhydrated at the 

end of the 6h recovery period but in negative fluid balance when only the sports drink was 

consumed.  Again these findings were attributed to the higher electrolyte content of the test 

meal (63mmol of sodium and 21mmol of potassium) than was provided by the 

carbohydrate-electrolyte drink (42mmol of sodium and 7mmol of potassium).  The 

consumption of food also stimulates fluid intake (Szlyk et al, 1990) and there appears a 
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general consensus that athletes seem capable of replacing sweat losses with normal food 

and fluid intake when the interval between exercise bouts is more than 24 h (Casa et al, 

2000).  When repeated exercise sessions are scheduled on the same day or the fluid deficit 

is large, the importance of re-establishing fluid and electrolyte balance is accentuated and 

more aggressive rehydration strategies may need to be undertaken (Kovacs et al, 2002). 

 

Takamata et al (1994) showed that despite ad libitum access to water, individuals who 

refrained from consuming sodium during the same 23h post-exercise time period failed to 

return to euhydration.  In a more recent study Godek et al (2005) determined whether 

American Football players exposed to multiple exercise sessions each day could replace 

the fluid losses incurred.  They found that players failed to replace sweat losses incurred 

each day as indicated by changes in BM and the specific gravity of urine samples, despite 

the provision of fluids.  Although dietary sodium intake and 24h urine sodium excretion 

were not measured and therefore sodium balance could not be calculated, they found that 

despite educating the players on the importance of salting their food, urine sodium 

concentrations were depressed throughout the 8-day study period.  This occurred despite 

an estimated salt intake of 8-11g per day.  For some individuals urine sodium was 

undetectable in a number of samples which they suggested to indicate a negative sodium 

balance.  

 

1.14 Aims of this thesis 

The aims of this thesis are to: 

1. Determine current sodium, potassium and chloride intakes of healthy recreationally 

active individuals (Chapters 3, 4, 5 and 7). 

2. Determine whether exercise affects sodium intake (Chapters 5 and 7). 

3. Determine whether exercise affects urine sodium excretion (Chapters 5 and 7). 

4. Determine whether exercise affects sodium balance (Chapters 5 and 7). 

5. Determine whether exercise affects dietary potassium intake, urine potassium excretion 

and potassium balance (Chapters 5 and 7). 

6. Determine whether prior exercise alters sweat electrolyte composition during a second 

exercise session later that same day (Chapters 6 and 7). 

7. Determine whether the high electrolyte content of milk is effective in restoring fluid 

balance post-exercise (Chapter 8). 

8. Identify whether there are specific situations or individuals that may require an 

increased sodium intake (Chapters 5, 6, 7 and 8). 
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2.1 Introduction 

This chapter will describe the experimental, analytical and statistical procedures that were 

implemented in the following chapters of this thesis.  Any deviation from the methods 

described here will be detailed in that specific chapter. 

 

2.2 Ethical approval 

All studies reported in this thesis were approved by the Loughborough University Ethical 

Advisory Committee and carried out in the physiology laboratories at Loughborough 

University.  All volunteers were informed of the purpose and procedures involved in each 

study, including the potential risks and nature of the exercise tasks (in chapters 4, 6, 7 and 

8).  Each subject gave their full written and verbal consent and completed a health screen 

questionnaire prior to the start of each experiment.  By doing so they agreed to participate 

in the study on the understanding that they had the right to withdraw at any time. 

 

2.3 Subjects 

Volunteers were recruited for all studies by word of mouth, email, posters or in person 

from the staff and student population at Loughborough University.  All were considered 

healthy and recreationally active and aged between 18 and 35 years of age.  Subjects were 

not acclimatised to the heat. 

 

2.4 Preliminary trials 

2.4.1 Familiarisation 

No familiarisation trial was completed in chapters 4, 6 and 7 as blood samples were not 

required in the aforementioned chapters, nor was the exercise task used as an indicator of 

performance. 

 

2.4.2 Anthropometry 

In chapters 3, 4 and 8, body mass (BM) was measured to the nearest 0.01kg (CFW-150K, 

Adam Equipment Co Ltd, Milton Keynes, UK).  In chapters 5, 6 and 7, BM was measured 

to the nearest 0.02kg (AFW-120K, Adam Equipment Co Ltd, Milton Keynes, UK).  Height 

was measured to the nearest 0.5cm using a stadiometer.  In chapter 3, body mass index 

(BMI) was calculated using the formula (BM in kg) / (Height in m)
2
.  Skinfold 

measurements were taken on the right hand side of the body at 4 sites (biceps, triceps, 
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subscapular, suprailiac) in triplicate using Harpenden Skinfold Callipers.  Body fat was 

then estimated according to the method of Durnin & Rahaman (1974).   

 

2.5 Pre-trial standardisation 

No pre-trial standardisation was carried out in chapters 3, 4, 5 and 7, because the aim of 

these experiments was to study the volunteers in normal, everyday circumstances and 

therefore any restrictions on activity or diet were carefully avoided.  In chapters 6 and 8, 

subjects were asked to keep a diary of their dietary and exercise patterns for the 48h period 

preceding the first experimental trial and were asked to replicate this behaviour prior to the 

second trial.  Subjects were asked to refrain from strenuous exercise and alcohol intake 

during the 24h period before each trial.  In a further attempt to standardise the state of 

hydration and electrolyte balance prior to each trial, subjects arrived in the laboratory after 

an overnight fast, only having consumed 500mL of water 1.5h beforehand.   

 

2.6 Urine collection and analysis 

2.6.1 24 h urine collection 

Twenty-four hour urine collections were made in chapters 3, 4, 5 and 7.  On the first day of 

collection the subject’s first pass of urine was not collected but instead they made a note of 

the time this was done.  They now had an empty bladder which started the collection 

period.  From then on, all urine was collected into a plastic container; the volume measured 

using a 500mL measuring cylinder, a 5mL sample retained for analysis and the time 

recorded.  The remaining urine was flushed down the toilet and the cylinder rinsed with 

water.  This was repeated for all subsequent voids.  The 24h urine collection was 

completed by going to the toilet at the same time the next morning.  Participants were 

encouraged to make this as close to 24h as possible.  This process was continued for all 5 

days.  The multiple samples that made up each 24h collection were returned to the 

laboratory daily. 

 

2.6.2 Laboratory-based urine collection 

In chapters 6 and 8, subjects urinated at specific time points during the trial, details of 

which are given in each chapter.  On each occasion they were asked to empty their bladder 

as completely as possible with the entire volume collected and a 5mL sample retained for 

subsequent analysis.  
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2.6.3 Urine analysis 

The total volume of each urine sample was measured using a 500mL measuring cylinder 

and a 5mL sample retained in a small container for analysis.  Upon the return of each 24h 

urine collection to the laboratory in chapters 5 and 7, samples were centrifuged at 1500g 

for 15 minutes, before 1.5mL was dispensed into a small container and immediately frozen 

at -20°C for creatinine analysis.  The remaining 3.5mL of each sample was stored at 4°C 

and later analysed for sodium and potassium by flame photometry (Clinical flame 

photometer 410C, Corning, Halstead, UK), chloride by coulometric titration (Jenway Ltd, 

Dunmow, UK) and osmolality by freezing point depression (Osmomat 030, Gonotec 

GmbH, Gonotec, Berlin, Germany).  Creatinine was analysed using the kinetic 

colorimetric method (Fixed rate) Jaffe reaction without de-proteinisation (Jaffé, 1886).  In 

chapters 3, 4, 6 and 8, urine samples were not centrifuged as creatine was not measured, 

but urine electrolytes were analysed using the techniques described above.  Samples were 

analysed in duplicate and the equipment was calibrated before, during and after sample 

analysis within the physiology laboratory at Loughborough University to enhance the 

accuracy of each technique.   

 

2.7 Sweat collection and analysis 

2.7.1 Regional collection 

Regional sweat collection took place in chapters 4, 6 and 8.  Sweat patches consisted of a 

transparent dressing (5cm x 7cm) which enclosed an absorbent pad with dimensions, 

2.5cm x 4cm (Tegaderm, 3M, Loughborough, UK).  To determine the extent of any 

electrolyte contamination of sweat patches, de-ionised water was added to 5 sweat patches.  

The values obtained for sodium and potassium were 1 ± 1 mmol/L and 0.1 ± 0.1 mmol/L, 

respectively.  When a sodium chloride solution of known concentration (50 mmol/L) was 

added to 5 sweat patches, values obtained for sodium were 52 ± 1 mmol/L.  Five sterile 

syringes (that are used to extract samples of sweat from the absorbent pads) were found to 

be free from contamination of sodium (0 ± 0mmol/L) and potassium (0 ± 0mmol/L). 

 

In chapters 4 and 6, sweat patches were placed at 4 sites on the right-hand side of the body 

before exercise.  These skin sites were the scapula (over the spine of the scapula and ~7cm 

lateral from the vertebral column), chest (superior to the nipple), forearm (mid-dorsal) and 

thigh (mid-ventral) (Patterson et al, 2000).  Before patch application the skin was cleaned 

with distilled, de-ionised water to remove any residual sweat or cosmetic products that may 
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have been present.  Upon the cessation of the third exercise bout, patches were removed 

using tweezers and placed into a 10mL sterile syringe.  A sample was immediately 

extracted into a small container and stored for later analysis.  A similar procedure was 

followed in chapter 8 except with two absorbent patches.  Both patches were placed on the 

subject’s scapula at the onset of exercise.  One was removed after approximately 1% BM 

had been lost and the other upon the cessation of the final exercise bout.  Electrolyte 

analysis was carried out as described for urine except for sweat patches obtained in chapter 

6, which were analysed by ion chromatography (DX-80 Ion Analyser, Dionex).  Estimates 

of whole body sweat electrolyte composition were made by taking the average electrolyte 

concentration at each regional sweat collection site.   

 

2.7.2 Whole body sweat collection 

In chapters 6 and 7 a whole body washdown technique (Shirreffs & Maughan, 1997) was 

implemented.  Subjects were asked to shower with water and soap before rinsing with 4 

litres of distilled water which had been divided into 4 sports drink bottles.  The latter took 

place in a stainless steel tray.  Subjects then dried themselves with a pre-washed towel and 

put on a pair of overshoes and a pre-washed gown before entering the environmental 

chamber which was maintained at approximately 35°C and 60% relative humidity (RH).  

Nude BM (with the exception of overshoes) was measured before subjects entered a 

polyethylene bag which contained the cycle ergometer (Monark) and pre-washed shorts.  

The polyethylene bag was stretched over a plastic frame so that it did not touch the 

subject’s skin.  Subjects commenced the dehydration procedure which involved 

intermittent exercise on a cycle ergometer at an intensity which corresponded to ~2 W/kg 

BM.  Exercise periods of 10 minutes were separated by 5 minutes of rest, during which 

subjects remained inside the bag.  This pattern continued until 40 minutes of exercise was 

completed.  Upon cessation of exercise, subjects washed themselves with 4 litres of 20 

mmol/L ammonium sulphate solution.  A further 1 litre of ammonium sulphate solution 

(20mmol/L)  was used to wash down the bike and bag before the bag contents were mixed 

and duplicate samples obtained for analysis.  After a shower, final nude BM was obtained. 

 

To determine the extent of any electrolyte contamination during the washdown procedure, 

the bike, plastic frame, polyethylene bag and shorts were all assembled and then washed 

with 5 litres of de-ionised water without any subject present.  This protocol was carried out 

on two occasions.  The values indicated the procedure to be free from contamination of 
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sodium (0 ± 0mmol/L) and potassium (0 ± 0mmol/L).  To assess the recovery of 

electrolytes, the assembly procedure was repeated as previously described.  One litre of a 

solution containing 50mmol of sodium chloride and 5mmol of potassium chloride was 

added, followed by an additional 5 litres of an ammonium sulphate solution (20mmol/L).  

This protocol was carried out on two occasions.  The values obtained for sodium and 

potassium were 49.4 ± 1.9mmol/L and 4.2 ± 0.1mmol/L, respectively.  This process was 

again repeated but in the presence of a subject who had previously undergone the shower 

and washdown procedure.  The total duration of time between the start of the washdown 

procedure to obtaining a sample was approximately 11-12 minutes.  During this time the 

polyethylene bag contents were mixed and duplicate samples were taken from the bottom 

of the bag for analysis.  This protocol was carried out on four occasions.  The values 

obtained for sodium and potassium were 52 ± 3mmol/L and 4.5 ± 0.3mmol/L, respectively.  

Whole body sweat samples were analysed by ion chromatography (DX-80 Ion Analyser, 

Dionex).  

 

2.8 Dietary analysis 

In chapters 6 and 8, subjects standardised their diet for the 48h period preceding each trial 

using household measures as descriptors of the food consumed, but no dietary analysis was 

undertaken on this data.  In chapters 4, 5 and 7, subjects were asked to weigh (to the 

nearest 1g) and record all food and drink consumed during 5 consecutive days using food 

scales (Ohaus LS2000, New Jersey, USA).  In chapters 4 and 7, subjects consumed their 

normal diet under free-living conditions which varied from day to day.  In chapter 4, 

subjects were asked to consume the same amount and type of food each day.  In all cases 

their diet was analysed for energy, protein, carbohydrate, fat, fibre, sodium, potassium and 

chloride using specialist dietary software (Compeat Pro 5.8.0).  The validity of this 

software was checked by comparing 30 named products to current food labels.  The dietary 

analysis software was found to overestimate sodium values by 41 ± 60mg/serving (2 ± 

3mmol/serving), but this was not statistically significant (P=0.673).  The amount of herbs, 

spices and discretionary salt used in chapter 5 was determined by the use of household 

measures (for example 1 tsp, ½ tsp).  In chapters 4 and 7, discretionary salt use was 

assessed by using a saltshaker which was provided on day 1 and measured to the nearest 

1mg (Mettler Toledo AG245, UK) in the laboratory before and after its use. 
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2.9 Blood collection, sampling and analysis 

Blood samples were taken only in chapter 8.  The details of blood collection and analysis 

can be found in that specific chapter. 

 

2.10 Coefficients of variation 

The coefficient of variation [(SD/Mean)*100] for the analytical procedures implemented in 

this thesis was calculated from 30 random samples of each assay (Table 2.1). 

 

Table 2.1 Mean, standard deviation and coefficient of variation of duplicate samples 

using the analytical procedures administered during experimental chapters 

in this thesis. 

 

Assay Method Mean (SD) CV (%) 

    

Urine Na
+
 Flame Photometry 104 ± 48 mmol/L 0.7 

Urine K
+
 Flame Photometry 57 ± 30 mmol/L 1.1 

Urine Cl
-
 Coulometric Titration 84 ± 56 mmol/L 1.4 

Urine Osmolality Freezing Point Depression 480 ± 285 mosmol/kg 0.4 

Urine Creatinine Jaffe Method 94 ± 59 mg/dL 1.4 

    

Sweat Na
+
 Flame Photometry 60 ± 19 mmol/L 1.1 

Washdown Solution (Na
+
) Ion Chromatography 51 ± 35 mmol/L 3.0 

Sweat K
+
 Flame Photometry 4.8 ± 0.7 mmol/L 1.8 

Washdown Solution (K
+
) Ion Chromatography 5.1 ± 1.3 mmol/L 2.6 

Sweat Cl
-
 Coulometric Titration 54 ± 20 mmol/L 1.8 

Washdown Solution (Cl
-
) Ion Chromatography 49 ± 34 mmol/L 2.3 

    

Serum Na
+
 Flame Photometry 140 ± 2 mmol/L 0.9 

Serum K
+
 Flame Photometry 6.4 ± 0.8 mmol/L 1.9 

Serum Cl
-
 Coulometric Titration 104 ± 3 mmol/L 0.8 

Serum Osmolality Freezing Point Depression 281 ± 5 mosmol/kg 0.3 

Blood Glucose GOD-PAP (Randox) 4.8 ± 0.2 mmol/L 1.2 

Haemoglobin Cynamethemoglobin 14.9 ± 0.8  g/100mL 0.7 

Haematocrit Microcentrifugation 44 ± 2 % 0.4 
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2.11 Statistical analysis 

The statistical procedures employed in this thesis are detailed in the methods section of 

each experimental chapter.  In summary, data was initially tested for normality.  Data were 

then analysed by repeated measures ANOVA followed by paired t-tests with Holm-

Bonferroni adjustment for multiple comparisons or Freidman’s Test followed by Wilcoxon 

tests when found not to be normally distributed. Correlations were assessed using 

Pearson’s correlation or Spearman’s Rank when found to be not normally distributed.  

Data are expressed as mean ± SD or median (range) when found not to be normally 

distributed.  In some circumstances a range has been reported regardless of the distribution 

of data as it was deemed to provide further useful information.  Statistical significance was 

set at P<0.05.  Statistical analysis was performed using SPSS 16.0. 
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3.1 Introduction 

Humans can survive on extremely low-sodium diets (Oliver et al, 1975) as obligatory 

urine, skin and faecal sodium losses are very small (1.7 to 8.0mmol of sodium per day; 

Dahl, 1958; Dahl et al, 1955; Dole et al, 1950).  Nevertheless, dietary surveys report a 

wide range of sodium intakes well in excess of these values (Gregory et al, 1990; 

Henderson et al, 2003).  In a recent UK-based survey (Henderson et al, 2003), the average 

dietary sodium and potassium intakes according to a 7-day weighed food diary were 144 ± 

44mmol and 86 ± 17mmol for males and 100 ± 30mmol and 68 ± 19mmol for females.  As 

the amount of sodium above basal requirements is excreted primarily in the urine, urinary 

sodium excretion can provide a good measure of intake in non-sweating individuals 

(Holbrook et al, 1984; Taseveska et al, 2006).  Although potassium losses in faeces are 

greater than sodium, amounting to between 5–15mmol/day, urine potassium excretion can 

also provide a good measure of potassium intake (Holbrook et al, 1984; Taseveska et al, 

2006).  In the same UK-based survey as discussed previously (Henderson et al, 2003), the 

sodium and potassium intakes according to the collection of a single 24h urine sample 

were 187 ± 86mmol and 81 ± 33mmol for males and 138 ± 66mmol and 67 ± 30mmol for 

females (Henderson et al, 2003).  The discrepancy between methods for sodium intake was 

attributed to the ability of urine collections to account for discretionary salt use.  However, 

whilst urine sodium and potassium collections can provide an objective measure of dietary 

sodium and potassium intake, one-off 24h urine collections have been criticised by some 

(Sowers & Stumbo, 1986; Liu & Stamler, 1984; Caggiula et al, 1985; Dyer et al, 1997) 

although not all (Kesteloot & Joossens, 1990), as a measure of an individual’s habitual 

intake due to the large day to day variation in urine electrolyte excretion.   

 

In 2004, the Food Standards Agency in the UK launched a campaign aimed at reducing the 

average salt intake of the British population to 6g/day (2.4g/d of sodium).  Since the survey 

of Henderson et al (2003) is based on data collected between 2000/01, the first aim of this 

study was to determine the daily excretion of sodium and potassium in a population of 

healthy subjects and to compare this to data collected previously (Henderson et al, 2003).  

The second aim was to determine the variation in urinary electrolyte excretion between 

multiple 24h urine collections. 
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3.2 Method 

3.2.1 Subjects 

Eighteen healthy volunteers (10 female, 8 male) participated in this study, which had 

received prior approval from the Loughborough University Ethical Advisory Committee 

(R05-P39).  All subjects were informed about the experimental procedures and associated 

risks before their written consent was obtained.  Their physical characteristics are shown in 

Table 3.1. 

 

Table 3.1 Physical characteristics of individuals.  Values are mean ± SD. *denotes 

significant difference between males and females (P<0.05). 

 

 Males Females 

Body Mass (kg) 80.3 ± 15.5* 62.9 ± 10.6 

Height (cm) 176 ± 7* 164 ± 7 

BMI (kg/m
2
) 26 ± 4 23 ± 3 

Age (y) 23 ± 1 25 ± 4 

 

3.2.2 Experimental protocol 

The data presented here were collected as part of a study looking at the contamination of 

dietary supplements (Judkins et al, 2006).  As a consequence, subjects reported to the 

laboratory each morning where they ingested 5g of creatine dissolved in 500mL of water, 

daily for 5 consecutive days.  After supplement ingestion individuals were free to leave the 

laboratory and carry on with their normal daily activities.  During one 5-day period, the 

creatine supplement was spiked with 10μg of 19-norandrostenedione (SPIKED), but not 

during a separate 5-day period (CONTROL).  Figure 3.1 shows a schematic representation 

of the study protocol.  A 5-day period of creatine supplementation was followed by a 

minimum 48h washout period and then creatine supplementation proceeded during a 

further 5-day period in the same manner.  The order of supplement ingestion was 

randomised and administered in a crossover design.  Body mass was measured at the 

beginning and end of the study period (CFW-150K, Adam Equipment Co Ltd, Milton 

Keynes, UK).   

 

3.2.3 Urine collection 

Twenty four hour urine collections were made on days 1 and 5 of each 5-day period.  This 

corresponded to a Monday (day 1) and Friday (day 5) of each week.  The 24h urine 

collection procedures are described fully in chapter 2. 
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Figure 3.1 Schematic of the study period.  24h urine collection (U), first void of urine 

(AM) and creatine ingestion (Cr). Each 24h urine collection started the 

morning of one day and was terminated the morning on the following day, 

to account for the lag in electrolyte excretion. 

 

 

3.2.4 Dietary intake 

Apart from the ingestion of creatine (5g), water (500mL) and during the SPIKED trial 

10μg of 19-norandrostenedione on the morning of days 1-5, volunteers consumed their 

normal diets, but did not weigh or record their food intake. 

 

3.2.5 Physical activity 

During the collection period, volunteers were free to continue their normal exercise 

patterns. 

 

3.2.6 Sample analysis 

Urine samples were analysed for sodium and potassium.  Completeness of each 24h 

urinary collection was self-reported by individuals.  All analytical procedures are described 

fully in Chapter 2. 

 

3.2.7 Statistical analysis 

All data were tested for normality of distribution.  Data were then analysed by repeated 

measures ANOVA followed by paired t-tests with Holm-Bonferroni adjustment for 

multiple comparisons or Freidman’s Test followed by Wilcoxon tests when found not to be 

normally distributed.  Gender differences were analysed by independent T-tests where 

appropriate.  Pearson’s correlation was used to assess relationships between variables.  

Data are expressed as mean ± SD.  Statistical significance was set at P<0.05.  

Day 1 Day 2 Day 4 Day 3 Day 5 Day 6 

U5 

Day 1 Day 2 Day 4 Day 3 Day 5 Day 6 

AM 
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U5 

Day 1 Day 2 Day 4 Day 3 Day 5 Day 6 
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3.3 Results 

3.3.1  Subject characteristics and body mass changes 

Males were heavier (P=0.01) and taller (P=0.03) than females and tended to be younger 

(P=0.073) and have a higher BMI (P=0.083) (Table 3.1).  There was an increase (P<0.05) 

in body mass over the entire study period for both males (0.46kg [range -0.05 to 1.78kg]) 

and females (0.48kg [range 0.05 to 0.77kg]). 

 

3.3.2 Duration of urine collection 

Subjects reported 64 out of 72 collections to be complete.  Only collections reported to be 

complete were included in data analysis.  There were no differences (P=0.863) in the 

duration of each day’s urine collection which on average was 23.9h (range 20.0 – 27.3h) 

(Table 3.2).  All urine data for each collection period were adjusted to 24h, with this value 

being used in all subsequent analysis.  The within-individual CV for the duration of urine 

collection was 4% (range 1 – 10%). 

 

Table 3.2 The duration of each day’s urine collection. Values are median (range). 

 SPIKED CONTROL 

 Day 1 Day 5 Day 1 Day 5 

Duration of  

Collection (h) 

23.7 

(20.0 – 24.7) 

24.0 

(21.5 – 25.5) 

24.3 

(22.0 – 25.8) 

23.9 

(22.0 – 27.3) 

 

3.3.3 Urine volume & electrolyte excretion 

Urine volume, and sodium and potassium excretion during each 24h period are shown in 

Figure 3.2.  There was no significant difference in the volume of urine excreted between 

each 24h collection period (P=0.131).  Urine volume was not significantly different 

between males and females in any 24h collection period (P=0.164), but when expressed as 

the average daily urine volume over the 4 collection periods, urine volume tended to be 

greater for females (2443 ± 702mL) than males (1921 ± 513mL; P=0.098).   

 

There was no significant difference in the amount of sodium excreted in the urine between 

each 24h collection period (P=0.107).  Urine sodium excretion was significantly higher for 

males than females on day 1spiked (P=0.009), but not during any other 24h collection period.  

When expressed as the average daily urine sodium excretion over the 4 collection periods, 

urine sodium excretion was significantly higher in males (200 ± 48mmol) than females 

(157 ± 33mmol; P=0.035).   
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There was no significant difference in the amount of potassium excreted in the urine 

between each 24h collection period (P=0.767).  There were no gender differences in urine 

potassium excretion during any 24h collection period (P=0.668), neither was there a 

difference in the average urine potassium excretion over the 4 collection periods between 

males (114 ± 32mmol) and females (103 ± 20mmol; P=0.379).   

 

The average urine volume, sodium and potassium excretion from all 24h urine collections 

for males and females combined was 2220 ± 854ml, 176  ± 68mmol and 106  ± 27, 

respectively. 

 

The coefficients of variation (CV) for urine volume (18 ± 8% vs 23 ± 11%; P=0.271), 

urine sodium (31 ± 14% vs 30 ± 13%; P=0.817) and urine potassium (15 ± 7% vs 17 ± 9%; 

P=0.742) excretion were not different between males and females, respectively.  Table 3.3 

shows the CV for urine volume and electrolyte excretion when the values for males and 

females were pooled into one data set.  All subsequent analysis was carried out on pooled 

data from males and females. 

 

Table 3.3 The within-individual CV (%) in urine excretion for day 1 (from trial 

SPIKED and trial CONTROL), day 5 (from trial SPIKED and trial 

CONTROL), trial SPIKED (day 1 and 5), trial CONTROL (day 1 and 5) 

and over all days. 

 

 Day 1 Day 5 SPIKED CONTROL All Days 

Urine Volume 17 ± 12 18 ± 16 22 ± 14 21 ± 16 21 ± 10 

Urine Sodium 23 ± 19 28 ± 20 16 ± 13 38 ± 24 30 ± 13 

Urine Potassium  12 ± 9 16 ± 15 13 ± 9 13 ± 11 16 ± 8 
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A      B 

  

C      D 

  

E      F 

  

 

 

Figure 3.2 Urine Volume (A), sodium (C) and potassium (E) excreted during each 24h 

collection period.  Gender comparisons are shown for urine volume (B), 

sodium (D) and potassium (F) during each 24h collection period. *denotes 

significant difference between males and females (P<0.05). 
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3.3.4 Relationship in the excretion of urine parameters between each 24h collection 

The relationship of urine volume excretion between each 24h period was moderate to 

strong (Table 3.4), but was not strengthened if 24h urine collections were collected in the 

same week (r = 0.40 and r = 0.68) or on the same day of different weeks (r = 0.63 and r = 

0.71).  The relationship of urine sodium excretion between each 24h period was weak to 

moderate (Table 3.4), but was not strengthened if 24h collections were collected in the 

same week (r = 0.00 and r = 0.42) or on the same day of different weeks (r = 0.11 and r = 

0.43).  The relationship of urine potassium excretion between each 24h period was 

moderate (Table 3.4), but was not strengthened if 24h collections were collected in the 

same week (r = 0.45 and r = 0.70) or on the same day of different weeks (r = 0.50 and r = 

0.55). 

 

Table 3.4 The relationship of urine volume or urine electrolyte excretion between 

each 24h period.  Values are correlation coefficients. *denotes significant 

relationship (P<0.05). 

 

 Urine Vol 

(Day 1spiked) 

Urine Vol  

(Day 5spiked) 

Urine Vol  

(Day 1control) 

Urine Vol 

(Day 5control) 

Urine Vol  (Day 1spiked)  0.40 0.71* 0.78* 

Urine Vol  (Day 5spiked)   0.80* 0.63* 

Urine Vol  (Day 1control)    0.68* 

Urine Vol  (Day 5control)     

 Urine Na
+
 

(Day 1spiked) 

Urine Na
+
  

(Day 5spiked) 

Urine Na
+
  

(Day 1control) 

Urine Na
+
 

(Day 5control) 

Urine Na
+
 (Day 1spiked)  0.42 0.43 0.54* 

Urine Na
+ 

(Day 5spiked)   0.35 0.11 

Urine Na
+
 (Day 1control)    0.00 

Urine Na
+
 (Day 5control)     

 Urine K
+
 

(Day 1spiked) 

Urine K
+
  

(Day 5spiked) 

Urine K
+
  

(Day 1control) 

Urine K
+
 

(Day 5control) 

Urine K
+
 (Day 1spiked)  0.70* 0.55* 0.37 

Urine K
+ 

(Day 5spiked)   0.75* 0.50 

Urine K
+
 (Day 1control)    0.45 

Urine K
+
 (Day 5control)     

     

 

3.3.5 Relationship between urine volume and urine electrolyte excretion 

Urine sodium excretion was unrelated to urine volume during each 24h collection period or 

when each was expressed as the average excretion over the study period (Table 3.5).  The 

relationship between urine potassium excretion and urine volume showed great variation 

between collection periods, but this relationship was moderate and significant when 

expressed as the average excretion over the study period (Table 3.5). 
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Table 3.5 The relationship between urine volume and urine electrolyte excretion.  

Values are correlation coefficients.  *denotes significant relationship 

(P<0.05). 

 

 SPIKED CONTROL All Day 

Average  Day 1 Day 5 Day 1 Day 5 

Urine Volume & Sodium  0.09 0.07 -0.22 0.24 -0.08 

Urine Volume & Potassium  0.45 0.74* 0.60* 0.21 0.54* 

 

3.3.6 Relationship between urine sodium and potassium excretion. 

On day 5spiked, the relationship between sodium and potassium excretion was moderate and 

significant, but during all other 24h collection periods and when data was expressed as the 

average over all 4 days, the relationship between sodium and potassium excretion was 

weak (Table 3.6). 

 

Table 3.6 The relationship between urine sodium and urine potassium excretion.  

Values are correlation coefficients. *denotes significant relationship 

(P<0.05). 

 

 SPIKED CONTROL All Day 

Average  Day 1 Day 5 Day 1 Day 5 

Urine Sodium & Potassium 0.21 0.51* 0.28 0.27 0.37 

 

3.4 Discussion 

This study found that 6 males and 9 females excreted more sodium in the urine than the 

average male and female in the UK (Henderson et al, 2003).  Although there was no 

significant difference in urine sodium excretion between days, there was no relationship 

between the amount of sodium excreted in each 24h urine collection which suggests that a 

single 24h urine collection is not representative of an individual’s habitual sodium intake. 

 

3.4.1 Body mass 

There was a small, but significant increase in body mass during the study period.  Body 

mass measurements were separated by a minimum of 2 weeks and therefore it is possible 

that the gain in body weight was the result of an imbalance between energy intake and 

energy expenditure.  Nevertheless, given that subjects were not asked to eat/refrain from 

specific food types or to weigh and record food intake, disruption to their normal eating 

patterns would be expected to be minimal and therefore the data presented here are 

assumed to be representative of their normal dietary intake.  Several studies have reported 

that a rapid creatine loading protocol (20g creatine/day for 5-6 days) results in a body mass 
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increase of 0.5 to 1.0kg (Hultman et al, 1996).  This is due to the retention of fluid, as urine 

volume declines during this corresponding period (Hultman et al, 1996).  Although the 

gain in body mass was not as great in the current study, subjects ingested only 5g of 

creatine per day which increases muscle creatine levels more gradually (Hultman et al, 

1996) and would be expected to result in less fluid retention.  No differences in urine 

volume were observed in this study between the first and fifth day of each 5-day period 

which is similar to the findings of Hultman et al (1996).  They reported urine volume to 

return to normal after 3 days of creatine supplementation, despite the higher creatine intake 

(20g/day) than in the current study (5g/day).   

 

3.4.2 Sodium  

On average subjects excreted 176mmol of sodium per day, with males (200 ± 48mmol) 

excreting significantly more sodium than females (157 ± 33mmol).  In total 6 males and 9 

females excreted more sodium than the average reported urine sodium excretion for males 

(187mmol/day) and females (138mmol/day) in the UK (Henderson et al, 2003).  Sodium is 

found in a vast array of foods, but is found in large quantities in processed foods 

(Henderson et al, 2003).  Despite targets set by the government directed at food 

manufacturers to reduce the amount of salt added during food processing, there is a trend 

for an increased sodium intake (Gregory et al, 1990; Henderson et al, 2003) in the British 

population.  This trend could still be persisting, but it must be considered that subjects 

were not asked to record their dietary intake and therefore because of the positive 

relationship between sodium intake and energy intake that has been reported (Bingham et 

al, 1994; Holbrook et al, 1984; Pietinen, 1982), the higher sodium intake of subjects may 

solely be due to a higher energy intake, rather than a preference for salty foods. 

 

Although no significant difference was found in the amount of sodium excreted in the 

urine between each 24h period, the relationship of sodium excretion between separate 24h 

collections was weak and there appeared to be no improvement in the relationship when 

collections were made in the same week (eg Day 1control and Day 5control) or on the same 

days of the week (eg Day 1spiked and Day 1control).  The wide daily variation in sodium 

excretion within individuals has led to a criticism by some (Sowers & Stumbo, 1986; Liu 

& Stamler, 1984; Caggiula et al, 1985; Dyer et al, 1997) although not all (Kesteloot & 

Joosens, 1990) of the ability of a single 24h urine collection to accurately estimate an 

individual’s habitual sodium intake.  The within-individual variation in sodium excretion 
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was 30% in the current study, which is at the lower end of the range reported in the 

literature (30 - 43%; Day et al, 2001; Caggiula et al, 1985; Bingham et al, 1988; Sowers & 

Stumbo, 1986; Knuiman et al, 1988).  Whilst the variation in urine sodium excretion may 

reflect a variation in sodium intake, urine sodium excretion can also be influenced by 

several other factors including potassium intake (Van Buren et al, 1992), fibre intake 

(Cummings et al, 1976) and losses of sodium through sweating (Holbrook et al, 1984; 

Consolazio et al, 1963).  In the current study there was only a weak relationship between 

potassium excretion and sodium excretion.  Previously, Van Buren et al (1992) have 

reported the oral administration of potassium salts to cause an immediate increase in 

potassium and sodium excretion.  Despite this acute effect, sodium excretion returned to 

normal levels quickly and resulted in no significant increase in cumulative sodium 

excretion over the 8h monitoring period, which is considerably shorter than the 24h 

monitoring period in the current study.   

 

Although a large proportion of dietary sodium is excreted in the urine, some investigators 

have reported a seasonal variation in the percentage of dietary sodium being excreted in the 

urine.  A lower percentage of dietary sodium is excreted in the urine during the summer 

months and this is attributed to the loss of sodium in sweat (Holbrook et al, 1984; James et 

al, 1987).  Sweat sodium losses can be large and influence the amount of sodium present in 

the urine (Consolazio et al, 1963; Robinson et al, 1955; Godek et al, 2005; Lichton 1957).  

Lichton (1957) exposed one heat-acclimated subject to the heat on 48 separate occasions.   

Each 1h exposure to the heat involved cycling exercise.  It was concluded that the sweat 

glands have priority over the kidneys in the demand for salt and therefore urine sodium 

excretion is reduced due to the loss of sodium in sweat.  Subjects in the current study were 

not restricted in their daily activities, nor were these recorded, so it cannot be ruled out that 

sweat losses contributed to the day to day variation in urine sodium excretion. 

 

Whilst the completeness of 24h urine collections or alterations in the duration of each 

collection are potential factors responsible for a variation in urine sodium excretion, 

incomplete urine collections were omitted from analysis and all urine collections were 

corrected to 24h.  Although creatinine has been used as a marker of completeness, it is not 

without its limitations (Bingham & Cummings, 1985; Flynn et al, 1990).  Flynn et al 

(1990) found the self-reporting method to be more accurate than creatinine in assessing the 

completeness of urine collections and taken in combination with the similar duration of 
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each collection seen in the current study, subject self-report was deemed to be an adequate 

method in the determination of completeness. 

 

3.4.3 Potassium 

Subjects excreted on average 106 mmol of potassium per day.  All 8 males and 10 females 

excreted more potassium than the average reported urine potassium excretion for males (81 

mmol/d) and females (67 mmol/d) in the UK (Henderson et al, 2003).  This supports the 

notion for a growing trend for higher potassium intakes (Henderson et al, 2003).  However, 

because a relationship between potassium and energy intake has been reported (Bingham et 

al, 1994; Holbrook et al, 1984; Pietinen 1982), the higher potassium intakes found in this 

study may be due to an increased energy intake, although this is purely speculative as 

energy intake was not measured. 

 

The amount of potassium excreted in the urine was similar between each 24h collection 

period and the relationship of potassium excretion between each 24h collection was 

moderate.  Nevertheless, their appeared to be no improvement in the relationship if 

collections were made in the same week (eg Day 1control and Day 5control) or on the same 

days of the week (eg Day 1spiked and Day 1control).  The strength of these relationships was 

stronger than those seen for urine sodium, possibly due to the lower day to day variation in 

potassium excretion (16%).  This is also lower than those previously reported by other 

investigators (19%; Taseveska et al, 2006; Day et al, 2001; Willett 1990).  Urine potassium 

excretion is suggested to provide an accurate measure of potassium intake (Taseveska et al, 

2006), but the use of 24h urine potassium excretion as a marker of potassium intake has 

been questioned because faecal potassium excretion is greater and more variable than 

sodium (Cummings et al, 1976).  Although faecal potassium excretion was not measured in 

the present study, it usually amounts to 5 to 15mmol per day (Cummings et al, 1976; Arn 

& Reimer, 1950; Mickelson et al, 1977), but is influenced by the fibre content of the diet 

(Cummings et al, 1976; Taseveska et al, 2006).  However, fibre intake and therefore 

variation in fibre intake was not measured in this study, so the contribution to the variation 

in urine potassium excretion is unknown. 

 

Sweat potassium losses have been suggested to result in a reduced percentage of dietary 

potassium being excreted in the urine during summer months (Holbrook et al, 1984), and 

as a consequence the loss of potassium in sweat may have also been responsible for some 
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of the variation in potassium excretion.  However, in contrast to sodium, potassium is lost 

in relatively small amounts in sweat (Maughan & Nadel, 2000), especially when 

considered relative to urine losses, and it is therefore likely only to have a small effect. 

 

3.4.4 Conclusion 

The average amount of sodium and potassium excreted in the urine was greater in this 

study than those reported in a recent survey of the British population (Henderson et al, 

2003).  Although no significant differences were found in the amount of sodium excreted 

between each 24h collection period, a lack of correlation between 24h collections supports 

the suggestion that a one-off 24h urine collection is not representative of an individual’s 

habitual sodium intake.  The variation in potassium excretion was smaller than sodium and 

resulted in moderate correlations in urine potassium between 24h collection periods.  
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4.1 Introduction 

The wide daily variation in sodium intake both between and within individuals has led to a 

criticism by some (Sowers & Stumbo, 1986; Liu & Stamler, 1984; Caggiula et al, 1985; 

Dyer et al, 1997) although not all (Kesteloot & Joosens, 1990) of the accuracy of one-off 

dietary collections in attempting to determine an individual’s habitual sodium intake.    

 

Sodium is found in a wide variety of everyday food items but is especially prevalent in 

manufactured foods (Henderson et al, 2003; James et al, 1987).  The main reasons why salt 

is added to processed foods are for flavour, texture and preservation (SACN, 2003).  

Several methods have previously been used to assess the sodium, potassium and chloride 

intakes of individuals.  These include weighed food records (Day et al, 2001; Gregory et al, 

1990; Henderson et al, 2003), 24h recalls (Leiba et al, 2005; Espeland et al, 2001), food 

frequency questionnaires (Day et al, 2001; McKeown et al, 2001), duplicate portion 

analysis (Schacter et al, 1980; Clark & Mossholder, 1986) and urine collections (Holbrook 

et al, 1984; Clark & Mossholder, 1986; Henderson et al, 2003).  Each method is associated 

with problems (Bingham, 1987), but most notable is the inability to accurately assess the 

discretionary salt use of an individual (Caggiula et al, 1985; Clark & Mossholder, 1986).  

Urine sodium and potassium excretion can provide an objective estimate of an individual’s 

intake of these electrolytes from food and drink and can account for discretionary salt use, 

thus overcoming some of the problems with the other dietary methods.  However, in 

addition to being directly affected by dietary sodium intake, urine sodium excretion is also 

affected by several other factors including sweat sodium loss (Lichton, 1957), potassium 

intake (Mickelson et al, 1977; van Buren et al, 1992) and hydration status (Ladd, 1951).  

The loss of sodium in sweat will lower the amount of dietary sodium excreted in the urine 

(Lichton, 1957), whereas an increase in potassium intake will increase urine sodium 

excretion (van Buren et al, 1992).  As a result even when sodium intake is kept constant, 

the day to day variation in sodium excretion may still persist (Baldwin, 1960).  Baldwin et 

al (1960) reported the magnitude of the day to day variation in sodium excretion to be 

related to dietary sodium intake, with those individuals who consume larger but constant 

amounts of sodium to have a greater variation.   

 

The aim of this study was to determine the variation in electrolyte excretion whilst 

individuals were consuming constant self-selected diets. 
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4.2 Method 

4.2.1 Subjects 

Eight healthy male volunteers participated in this study, which had received prior approval 

from the Loughborough University Ethical Advisory Committee (R07-P20).  All subjects 

were informed about the experimental procedures and associated risks before their written 

consent was obtained.  Their physical characteristics (mean ± SD) were: age 21 ± 2y, 

height 1.76 ± 0.07m, body mass 77.5 ± 13.9kg and body fat 16 ± 3%. 

 

4.2.2 Experimental protocol 

Subjects reported to the laboratory at least one day prior to the commencement of the study 

period when they were given the equipment for dietary and urinary collections and a 

detailed briefing of the collection procedures.  In addition, the logbooks provided 

contained written instructions about the dietary and urine collection process.  Figure 4.1 

shows a schematic representation of the study protocol.  On the morning of day 1, subjects 

arrived in the laboratory and nude body mass (BM) was measured (AFW-120K, Adam 

Equipment Co Ltd, Milton Keynes, UK).  Subjects returned to the laboratory each day only 

to return urine samples and on the morning of day 6, when a final BM was obtained. 

 

Figure 4.1 Schematic of the study period.  Body mass (BM), dietary (D) and urine (U) 

collections.  Each 24h urine collection started on the morning of one day 

and was terminated on the morning of the following day. 

 

 

4.2.3 Dietary monitoring 

On day 1 of the collection period subjects were asked to consume a diet considered to be 

consistent with their normal dietary behaviour and to weigh all food and drink ingested.  

The food and corresponding amounts consumed on day 1 were then to be ingested on each 

of the remaining 4 days.  The amount of discretionary salt used on day 1 was given to the 

subject in a small container on each of the remaining days.  This was to be consumed with 

Day 1 Day 2 Day 4Day 3 Day 5

D1 D2 D3 D4 D5

Day 6

U1 U2 U3 U4 U5

BM BM

Day 1 Day 2 Day 4Day 3 Day 5

D1 D2 D3 D4 D5

Day 6

U1 U2 U3 U4 U5

BM BM
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the same meal each day.  Water was allowed ad libitum during the 5-day period.  The 

dietary collection procedures are described fully in Chapter 2. 

 

4.2.4 Urine collection  

During the same 5-day period and on the morning of day 6, subjects were asked to collect 

all urine passed.  On the first day of collection, the first pass of urine was collected, but 

was not included in any calculations apart from the assessment of hydration status.  The 

24h urine collection procedures are described fully in chapter 2.  

 

4.2.5 Physical activity 

During the study, subjects were asked to refrain from any strenuous exercise that would 

incur sweat loss. 

 

4.2.6 Sample analysis 

Urine samples were analysed for sodium, potassium, chloride and osmolality.  

Completeness of each 24h urinary collection was reported by subjects each day and 

assessed by creatinine analysis based upon the Jaffe method (Jaffé, 1886).  Weighed food 

intakes were analysed using Compeat Pro 5.8.0 Software.  All analytical procedures are 

described fully in Chapter 2. 

 

4.2.7 Statistical analysis 

All data were tested for normality of distribution.  As urine electrolyte excretion can 

provide an accurate estimate of electrolyte intake in non-sweating individuals (Holbrook et 

al, 1984), electrolyte intake assessed by weighed food diaries and 24h urine excretion were 

subject to a two-factor repeated measures ANOVA, followed by paired t-tests with Holm-

Bonferroni adjustment for multiple comparisons.  Other data were analysed by one-factor 

repeated measures ANOVA followed by paired t-tests with Holm-Bonferroni adjustment 

for multiple comparisons or Freidman’s Test followed by Wilcoxon tests when found not 

to be normally distributed.  Correlations were assessed using Pearson’s correlation or 

Spearman’s Rank when found not to be normally distributed.  Parametric data are 

expressed as mean ± SD and non-parametric data as median (range).  In some 

circumstances a range has been reported regardless of the distribution of data as it was 

deemed to provide further useful information.  Statistical significance was set at P<0.05. 
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4.3 Results 

4.3.1 Body mass 

Subjects lost 0.64kg (-3.18 to +0.03kg) in BM between the morning of day 1 and day 6 

(Table 4.1).  The coefficient of variation (CV) in BM between days 1 and 6 was 1.2 ± 0.8% 

(range 0.0 to 2.1%). 

 

Table 4.1 BM on the first (day 1) and last day (day 6) of the study period.  Values are 

median (range). * denotes significantly different from day 1 (P<0.05). 

 

 Day 1 Day 6 

Body Mass (kg)  
73.24 

(64.39 – 109.64) 

72.60* 

(64.09 – 106.46) 

 

4.3.2 Duration of urine collection 

There were no significant differences in the duration of each day’s urine collection (Table 

4.2; P>0.05), but all urine data for each collection period were adjusted to 24h, with this 

value being used in all subsequent analysis.  The median duration of each urine collection 

over the 5-day period was 24.00h (23.00 – 25.00h).  The within-individual CV for the 

duration of each urine collection was 1 ± 1%. 

 

Table 4.2 The duration of each day’s urine collection. Values are median (range). 

 Day 1 Day 2 Day 3 Day 4 Day 5 

Duration of  

Collection (h) 

24.00 

(23.92-24.25) 

24.00 

(24.00-24.08) 

24.00 

(23.00-24.67) 

24.00 

(23.75-25.00) 

24.00 

(23.83-24.50) 

 

4.3.3 Completeness of urine collection 

Two subjects reported a failure to collect one complete 24h collection.  There were no 

significant differences (P>0.05) in the amount of creatinine excreted during each 24h 

collection period regardless of whether the missed collections were included or excluded 

(Table 4.3) in data analysis.  The CV for urinary creatinine excretion for the two subjects 

with incomplete collections was 9% and 20%.  The incomplete collections have been 

omitted from the data reported here.  The average amount of creatinine excreted in the 

urine each day over the 5-day period was 1900 ± 283mg.  The within-individual CV for 

urinary creatinine excretion was 9 ± 5%.   

 

Table 4.3 Urine creatinine excretion during each 24h period. Values are mean ± SD.  

 Day 1 Day 2 Day 3 Day 4 Day 5 

Urine Creatinine (mg) 1838 ± 201 1862 ± 306 2018 ± 261 1867 ± 355 1912 ± 302 
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4.3.4 Dietary intake and urine excretion 

Urine volume, nutrient intake and urine electrolyte excretion during each 24h period are 

shown in Table 4.4, Table 4.5 and Figure 4.2, respectively.  There were no significant 

differences (P>0.05) in energy, carbohydrate, protein, fat, fibre or fluid intake between 

days.  The CV’s for nutrient intakes are shown in Table 4.6.   

 

Urine sodium excretion and dietary sodium intake did not change significantly over time 

(P=0.209; Figure 4.2).  There was a tendency (P=0.082) for urine sodium excretion to 

exceed dietary sodium intake on day 1, but urine sodium was similar (P>0.05) to dietary 

sodium intake on days 2, 3, 4 and 5.  The mean sodium intake and urine sodium excretion 

over the last 4 days of the study were 170 ± 23mmol/d and 184 ± 41mmol/d, respectively.  

One subject was a discretionary salt user.  The amount of sodium added at the table 

(11.7mmol/d) represented 7% of their total sodium intake.   

 

Dietary potassium intake and urinary potassium excretion did not change significantly over 

time (P=0.218; Figure 4.2).  Urine potassium excretion was similar to dietary potassium 

intake in all 24h collection periods (P=0.423).  The mean potassium intake and urine 

potassium excretion over the last 4 days of the study were 108 ± 39mmol/d and 93 ± 

26mmol/d, respectively.   

 

Dietary chloride intake and urinary chloride excretion did not change significantly over 

time (P=0.235; Figure 4.2).  Urine chloride excretion was similar to dietary chloride intake  

in all collection periods (P=0.271).   The mean chloride intake and urine chloride excretion 

over the last 4 days of the study were 160 ± 21mmol/d and 151 ± 46mmol/d, respectively.    

 

The CV for urine sodium excretion was 23% over all days but tended to decline over the 

study period (P=0.062) (Table 4.6).  Similarly, the CV for urine chloride excretion tended 

to decline as the study progressed (P=0.060), but the CV for urine potassium excretion was 

little affected (P=0.795). 
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Table 4.6 The within-individual CV (%) in nutrient intake and urine electrolyte 

excretion over all experimental days (5 Day), days 2, 3, 4 & 5 (4 Day), days 

3, 4 & 5 (3 Day) and days 4 & 5 (2 Day) 

 

 Dietary Intake Urine Excretion 

 5 Day  

Average 

5 Day 

Average 

4 Day 

Average 

3 Day 

Average 

2 Day 

Average 

Water 7 ± 7 ---- ---- ---- ---- 

Energy 1 ± 1 ---- ---- ---- ---- 

Carbohydrate 2 ± 2 ---- ---- ---- ---- 

Protein 3 ± 4 ---- ---- ---- ---- 

Fat 2 ± 1 ---- ---- ---- ---- 

Fibre 2 ± 2 ---- ---- ---- ---- 

Sodium 2 ± 2 23 ± 13 13 ± 5 11 ± 6 9 ± 7 

Potassium 2 ± 1 13 ± 6 12 ± 5 13 ± 6 12 ± 6 

Chloride 1 ± 2 26 ± 14 16 ± 7 13 ± 8 10 ± 7 
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A 

 

B 

 

C 

 

 

Figure 4.2 Dietary intake and urine excretion of sodium (A), potassium (B) and 

chloride (C) during each 24h period.  All Values are mean ± SD. 
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4.3.5 Relationship between energy intake and electrolyte intake 

The relationship between sodium intake and energy intake was weak and non-significant 

when each was expressed as the 5-day average (r = 0.20; P=0.630).  The relationship 

between potassium intake and energy intake was strong and tended to be significant when 

expressed over all 5 days (r = 0.71; P=0.051).  The relationship between chloride intake 

and energy intake was weak and non-significant when expressed over all 5 days (r = 0.30; 

P=0.466).  The subject who ingested the highest amount of sodium and chloride consumed 

the second least amount of energy.  When this subject was removed, the relationship 

between sodium intake and energy intake over the 5 days improved but remained non-

significant (r = 0.64; P=0.124).  Similarly, the relationship between chloride intake and 

energy intake over the 5 days was improved (r = 0.54; P=0.213), but the relationship 

between energy intake and potassium intake was little affected (r = 0.64; P=0.119).  The 

sodium and potassium density of diets were 1.6 ± 0.4g (68mmol)/1000kcal and 1.6 ± 0.5g 

(41mmol)/1000kcal, respectively.  

 

5.3.6 Relationship between electrolyte intake and electrolyte excretion 

Figure 4.3 shows the relationships between the mean electrolyte intake and electrolyte 

excretion over the 5-day period for sodium, potassium and chloride.  The relationship 

between dietary sodium intake and urine sodium excretion showed great variation between 

each 24h period, but when each was expressed as an average over the 5-day period, a 

moderate, positive relationship was observed (r = 0.66; P=0.075) (Figure 4.3).  The 

relationship between chloride intake and urine chloride excretion was weak and non-

significant during all 24h collection periods and when expressed as an average over the 5-

day period (r = 0.30; P=0.472) (Figure 4.3).  There was a strong positive relationship 

between potassium intake and urine potassium excretion during each 24h period which 

reached significance on days 2, 3 and 5 and when expressed as an average over the 5-day 

study period (r = 0.82; P=0.014) (Figure 4.3). 
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A 

 

B 

 

C 

 

 

Figure 4.3 The relationship between (A) dietary sodium intake and urine sodium 

excretion, (B) dietary potassium intake and urine potassium excretion, (C) 

dietary chloride intake and urine chloride excretion.  Values represent the 

average electrolyte intake and excretion over all 5 experimental days. 
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5.3.7 Electrolyte balance 

Electrolyte balance was estimated from dietary electrolyte intake and urinary electrolyte 

excretion.  Dermal and faecal electrolyte losses were assumed to be similar between days 

but were not included in the balance calculations reported here.  There were no significant 

differences in sodium balance (P=0.217), potassium balance (P=0.296) or chloride balance 

(P=0.210) over the 5 days (Figure 4.4).  The mean electrolyte balance over the last 4 days 

of the study period was -12 ± 29mmol for sodium, 16 ± 25mmol for potassium and 11 ± 

41mmol for chloride.  Individual’s daily electrolyte balance (calculated in relation to the 

mean electrolyte balance from the last 4 days of the study) is shown in figures 4.5, 4.6 and 

4.7.  Fluctuations in balance for most individuals appeared sinusoidal in nature, although 

the frequency and amplitude varied between subjects and the electrolyte studied. 

   A 

 
   B 

 
   C 

 
Figure 4.4 Sodium, potassium and chloride balance during the 5-day period.  Values 

are calculated from dietary and urinary analysis. 
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A       B 

  
C       D 

 
E       F 

 
G       H 

 
 

Figure 4.5  Variation in sodium balance from the mean sodium balance of individuals 

calculated from days 2, 3, 4 and 5. (A) Subject 1, (B) Subject 2, (C) Subject 

3, (D) Subject 4, (E) Subject 5, (F) Subject 6, (G) Subject 7, (H) Subject 8. 
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A      B 

 
 

C      D 

  
 

E      F 

  
 

G      H 

  
 

Figure 4.6  Variation in potassium balance from the mean potassium balance of 

individuals calculated from days 2, 3, 4 and 5. (A) Subject 1, (B) Subject 2, 

(C) Subject 3, (D) Subject 4, (E) Subject 5, (F) Subject 6, (G) Subject 7, (H) 

Subject 8. 
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A       B 

  
 

C       D 

  
 

E       F 

  
 

G       H 

  
 

Figure 4.7  Variation in chloride balance from the mean chloride balance of individuals 

calculated from days 2, 3, 4 and 5. (A) Subject 1, (B) Subject 2, (C) Subject 

3, (D) Subject 4, (E) Subject 5, (F) Subject 6, (G) Subject 7, (H) Subject 8. 
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4.3.8 Relationship between oscillations in electrolyte excretion and electrolyte intake 

The standard deviation in individual’s daily urine electrolyte excretion between days 2, 3, 

4 and 5 was determined to indicate the magnitude of the oscillations in electrolyte 

excretion.  The relationship between the oscillations in urine sodium excretion and dietary 

sodium intake was weak (r = 0.38; P=0.353) (Figure 4.8).  The oscillations in urine 

potassium excretion were moderately related to dietary potassium intake (r = 0.55; P = 

0.162) (Figure 4.8).  The relationship between the oscillations in urine chloride excretion 

and dietary chloride intake was moderate (r = 0.59; P=0.125) (Figure 4.8). 

 

A 

 
   B 

 
   C 

 
Figure 4.8 The relationship between (A) oscillations in sodium excretion and sodium 

intake; (B) oscillations in potassium balance and potassium intake; (C) 

oscillations in chloride balance and chloride intake.  Electrolyte intake is 

based on the 5-Day average and oscillations in electrolyte excretion on the 

4-Day average. 
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4.3.9 Relationship between oscillations in sodium and chloride excretion with 

potassium intake and the relationship between oscillations in potassium excretion 

with sodium intake 

 

The within-individual oscillations in urine sodium (r = -0.25; P=0.551) and chloride (r = -

0.15; P=0.722) excretion were not significantly related to dietary potassium intake (Figure 

4.9).  Oscillations in potassium excretion were not related to sodium intake (r = 0.34; 

P=0.407). 

  A 

 
  B 

 
C 

 
Figure 4.9 The relationship between potassium intake and (A) oscillations in sodium 

excretion, (B) oscillations in chloride excretion and (C) between sodium 

intake and oscillations in potassium excretion.  Electrolyte intake is based 

on the 5-Day average and oscillations in electrolyte balance are based on the 

4-Day average. 
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4.3.10 Hydration status 

There was no difference (P=0.618) in the osmolality of the first pass of urine between days 

(Table 4.7). The average urine osmolality of the first void was 691 ± 227mosmol/kg. 

 

Table 4.7 Urine Osmolality (mosmol/kg) of the first void from each day.  Values are 

mean ± SD. 

 

 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

Urine Osmolality 

(First Void) 
704 ± 287 627 ± 176 651 ± 275 705 ± 189 746 ± 214 714 ± 255 

 

 

4.3.11 Relationships between sodium, potassium and chloride excretion. 

The relationship between urine sodium and urine potassium excretion was significant on 

day 1 (P<0.05) but not significant on any of the remaining days or when expressed as the 

average excretion over the 5-day study period (P=0.413).  The relationship between urine 

chloride and urine potassium excretion was significant on day 1 (P<0.05) but did not reach 

significance over the remaining days or when expressed as the average excretion over the 

5-day study period (P=0.888).  The positive relationship between urine sodium and urine 

chloride excretion was strong and significant in every 24h period and when expressed as 

the average excretion over the 5-day study period (P<0.001) (Table 4.8). 

 

Table 4.8 Correlation coefficients between electrolytes excreted in the urine. *denotes 

significant relationship (P<0.05). 

 

 Day 1 Day 2 Day 3 Day 4 Day 5 All 

Days 

4 Day 

Average 

Urine Na
+
 & K

+
 0.90* 0.57 0.15 0.05 -0.14 0.34 0.16 

Urine Na
+
 & Cl

-
 0.96* 0.86* 0.99* 0.97* 0.95* 0.95* 0.95* 

Urine K
+
 & Cl

-
 0.78* 0.28 0.13 -0.15 -0.33 0.06 -0.06 

 

 

4.3.12 Relationship between urine volume and urine electrolyte excretion 

The relationship between urine volume and urine chloride excretion and between urine 

volume and urine sodium excretion was not significant (P>0.05). The relationship between 

urine volume and urine potassium was moderate but not significant (Table 4.9). 
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Table 4.9 Correlation coefficients between urine volume and urine electrolytes during 

each 24h period and the average over all days and 4 days (days 2, 3, 4, 5). 

 

 Day 1 Day 2 Day 3 Day 4 Day 5 All 

Days 

4 Day 

Average 

Urine Vol & Urine Na
+
 0.61 0.02 -0.63 -0.08 -0.06 0.01 -0.32 

Urine Vol & Urine K
+
 0.75 0.51 0.25 0.32 0.64 0.42 0.36 

Urine Vol & Urine Cl
-
 0.51 -0.02 -0.58 -0.18 -0.23 -0.17 -0.42 

 

4.4 Discussion 

This study investigated the variation in electrolyte excretion whilst consuming the same 

diet for 5 consecutive days.  Despite the ingestion of similar amounts of sodium, potassium 

and chloride each day, the within-individual variation in urine sodium, potassium and 

chloride excretion was 23%, 13% and 26%, respectively.  Although one specific factor 

could not primarily account for this variation, at least part of the variation may be due to a 

lag in electrolyte excretion following a change in diet. 

 

4.4.1  Body mass 

Subjects were asked to consume their normal diet on day 1 and to repeat this on each of the 

following 4 days.  As a consequence they lost on average 0.62 kg over the 5-day period.  

The variation in BM between day 1 and day 6 was 1.2 ± 0.8% (range 0 to 2.1%).  Previous 

investigators have reported that an individuals’ euhydrated BM may fluctuate daily by 

~1% (Casa et al, 2000; Cheuvront et al, 2004).  Therefore at least part of the variation for 

some individuals in the current study was due to factors other than body water, especially 

considering the similar osmolality of morning urine samples that were obtained on each 

day.  It has been reported that the within-subject variation in daily energy intake can vary 

greatly (14 - 43%), with mean values of 23% (Acheson et al, 1980; Bingham, 1987; Nelson 

et al, 1989).  Therefore asking an individual to self-select a diet that will meet their energy 

needs for an extended period may lead to an inappropriate amount of energy being 

consumed.  Consequently, it could be argued that individuals did not consume their normal 

diet during the study period, the consequences of which are discussed later. 

 

4.4.2 Sodium & chloride 

On average subjects consumed 171 mmol of sodium per day, with only 2 individuals 

consuming more than the average reported sodium intake (187 mmol) for males in the UK 

(Henderson et al, 2003). Although the sodium density of diets in the current study 

(1.6g/1000kcal) were lower than those estimated from data presented by Henderson et al 
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(2003) (1.9g/1000kcal),  they were higher than those seen in chapter 5 of this thesis 

(1.2g/1000kcal).  The relationship between energy intake and sodium intake was weak in 

this study and although strengthened when one outlier was removed, the relationship did 

not reach significance.  Given that sodium is found in a vast array of foods and in large 

quantities particularly in processed foods (Henderson et al, 2003), individual eating habits 

could predispose some to choose high-sodium products that are not accompanied by a 

high-energy content, as witnessed here.  It is also possible that although subjects were 

encouraged to follow their normal dietary habits, the requirement to eat the same foods 

each day, may have inadvertently caused an alteration in behaviour, detracting from their 

normal eating habits, in favour of foods more convenient for this purpose.  Examination of 

the food diaries revealed that processed foods were consumed in by all subjects.  However, 

one would speculate that individuals would choose their favourite foods and hence still be 

representative of the diet they would normally consume. 

 

There was a tendency for urine sodium excretion to exceed dietary sodium intake on day 1, 

but not during any other 24h period.  It is possible that the elevated urine sodium excretion 

on day 1 was either due to a carry-over effect from the previous day’s intake or a lag in 

excretion following a change in diet.  The 5-day study period in the current study started 

on a Monday and finished on the Friday of the same week.  Given that the intake of 

nutrients varies between weekdays and weekends (Acheson et al, 1980), an altered eating 

pattern and daily routine on the days preceding the trial may have inadvertently affected 

urine variables on day 1.  Previously, Watson et al (1970) have reported that a sodium load 

even when ingested late in the day is largely excreted in the first morning void the next 

day.  Others have also suggested that a 24h urine collection be obtained between the 

morning of one day and the morning of the following day in order to account for the lag 

between sodium ingestion and excretion (Schacter et al, 1980).  Nevertheless, some 

investigators have reported similar conflicting results between dietary sodium intake and 

urine sodium excretion on the first day of collection, leading them to either ignore the first 

day of collection (Sowers & Stumbo, 1986) or to start dietary collection the day before 

urinary collection (Pietinen, 1982).  Other studies have reported that when subjects 

abruptly reduce their sodium intake, a lag in sodium excretion of between 3 to 5 days is 

observed before urine sodium excretion is reduced and sodium balance is achieved 

(Simpson, 1988; Hollenberg et al, 1972).  Likewise, although sodium excretion is prompt 

following an increase in sodium intake (Hollenberg et al, 1972; Simpson, 1988), it may 
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still take some days before balance is achieved.  It is most likely that a change in eating 

behaviour in the current study may have led to a change in sodium intake, but the severity 

of this change is likely to have been smaller in magnitude than previous reports (Simpson, 

1988; Hollenberg et al, 1972; Leaf & Couter, 1949) because subjects were asked to follow 

their normal dietary behaviour, rather than to substantially decrease or increase the amount 

of sodium in their diet.  Consequently, this would potentially minimise any great deviation 

in sodium intake from their “norm”, resulting in a shorter lag period.  

 

The correlation between dietary sodium intake and urinary sodium excretion showed great 

variation between each 24h collection period but when the 5-day average was taken, the 

relationship was moderate and tended to be significant (r = 0.66; P=0.075).  Other studies 

have shown weaker (r = 0.26–0.42; Gregory et al, 1990; Bingham et al, 1995; Day et al, 

2001; Clark & Mossholder, 1986), similar (r = 0.61; Caggiula et al, 1985) and stronger 

correlations (r = 0.76; Holbrook et al, 1984) which may be explained by the method of 

dietary assessment, the number of collection days or the individual variation in both 

measures (Bingham et al, 1988; Caggiula et al, 1985).  The wide daily variation in sodium 

and chloride intakes both between and within individuals has led to a criticism by some 

(Sowers & Stumbo, 1986; Liu & Stamler, 1984; Caggiula et al, 1985; Dyer et al, 1997) 

although not all (Kesteloot & Joosens, 1990) of the accuracy of one-off urine collections to 

determine an individual’s habitual sodium intake.  Despite ingesting the same food each 

day, urine sodium excretion did fluctuate in the current study.  The CV for urine sodium 

excretion over all 5 days was 23%, but was reduced to 13% when expressed over the last 4 

days of the study period, which is considerably lower than the reported within-individual 

variations for urine sodium excretion in the literature for individuals consuming ad libitum 

diets (35 - 43%; Knuiman et al, 1988; Day et al, 2001; Caggiula et al, 1985).   Therefore, 

whilst placing individuals on a constant sodium intake and restricting their physical 

activity levels reduces the daily variation in sodium excretion, it cannot completely remove 

it.  Others have also reported a variation in sodium excretion whilst on constant sodium 

intakes (Baldwin et al, 1960).   Baldwin et al (1960) reported the amplitude of the observed 

daily oscillations in sodium excretion to be related to sodium intake (r = 0.82), which 

orientated itself around a balance point.  In the current study, the relationship between 

oscillations in sodium excretion and sodium intake was only weak (r = 0.38), but this may 

partly be due to the homogenous nature of sodium intakes.  Sodium intakes ranged 

between 138 to 208 mmol in this study compared to 87 to 299 mmol reported by Baldwin 
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et al (1960).  Several other factors have been suggested to influence these daily oscillations 

including the amount of potassium ingested (Mickelson et al, 1977; Van Buren et al, 

1992), level of hydration (Ladd, 1951) and the delay in equilibration following a change in 

intake (Leaf & Couter, 1949; Hollenberg et al, 1972).  Nevertheless, only weak 

correlations were observed between oscillations in urine sodium excretion and potassium 

intake (r = -0.25) and urine volume was not related to urine sodium excretion (r = -0.32).  

Van Buren et al (1992) have reported the oral administration of potassium salts to cause an 

immediate increase in potassium and sodium excretion.  Despite this acute effect, sodium 

excretion returned to normal levels quickly and resulted in no significant increase in 

cumulative sodium excretion over the 8h monitoring period, which is considerably shorter 

than the 24h monitoring period in the current study.   

 

Although other avenues of sodium loss were not measured (skin, faeces) in the current 

study, faecal sodium excretion is considered negligible (Allsopp et al, 1998; Baldwin et al, 

1960), and is not responsible for the fluctuations in sodium excretion (Baldwin et al, 1960).  

Insensible losses of sodium via the skin are also small (Dahl, 1958) and considering the 

current study was undertaken during the months of November and December in the UK, 

insensible sodium losses were assumed not to be a contributing factor to the variation in 

urine sodium excretion.  Similarly, subjects were asked to refrain from strenuous physical 

activity in an attempt to minimise any losses of sodium in sweat.  A potential source of 

variation is due to incomplete urine collections and/or alterations in the duration of each 

collection.  In this study no differences were reported in the duration of each day’s urine 

collection, with a CV of 1 ± 1% between collections.  Nevertheless, all urine variables 

were corrected to a 24h period.  The completeness of collection was determined by both 

subject self-report and urine creatinine excretion.  Two individuals reported one 

incomplete 24h urine collection and these collections were omitted from further analysis.   

The CV for creatinine excretion was 9 ± 5% when these two incomplete collections were 

removed.   Many investigators have reported a large within-individual variation for urine 

creatinine (Garde et al, 2004; Greenblatt et al, 1976; Vestergaard & Leverett, 1958; Ricos 

et al, 1994; Curtis & Fogel, 1970; Webster & Garrow, 1985) as a large number of factors 

can influence urine creatinine excretion including exercise (Calles-Escandon et al, 1984) 

and the meat content of the diet (Lykken et al, 1980).  Both these factors were controlled 

for in the current study and as a result all individuals demonstrated a within-individual 

variation well within, or below, the normal range reported for collections known to be 
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complete (9-24%; Garde et al, 2004).  Although it is unclear why the daily variation in 

urine sodium excretion persists, Baldwin et al (1960) have reported these oscillations to 

diminish after a more prolonged period of monitoring, a finding replicated in the current 

study. 

 

4.4.3 Potassium 

On average subjects consumed 108mmol of potassium per day, with 6 individuals 

consuming more than the average reported potassium intake (81mmol) for males in the UK 

(Henderson et al, 2003).  The potassium density of diets in the current study 

(1.6g/1000kcal) was slightly higher than the 1.5g/1000kcal estimated from Henderson et al 

(2003), both of which were higher than previous values reported for the British population 

(1.3g/1000kcal; Gregory et al, 1990). 

 

A large number of factors can influence the amount of potassium excreted in the urine, 

including the absolute level of potassium intake (Voors et al, 1983), seasonal variation 

(Holbrook et al, 1984) and fibre intake (Cummings et al, 1976).  Consequently, the use of 

urine potassium excretion as a marker of dietary potassium intake has been questioned 

(Cummings et al, 1976).  In the current study there were no significant differences between 

dietary potassium intake and urine potassium excretion during any 24h period and the 

relationship between urine potassium excretion and dietary potassium intake was strong (r 

= 0.82).  Others have reported weaker (0.23 – 0.64; Clark & Mossholder, 1986; McKeown 

et al, 2001; Day et al, 2001; Caggiula et al, 1985; Pietinen, 1982) or similar correlations (r 

= 0.73 - 0.82; Bingham et al, 1995; Bingham et al, 1997; Holbrook et al, 1984).  Although 

the fibre content of the diet can influence faecal potassium losses (Cummings et al, 1976; 

Taseveska et al, 2006), the day to day variation in dietary fibre was small (2%) in the 

current study, and as a result may partly explain the stronger relationship between dietary 

potassium intake and urinary potassium excretion.  This, however, is purely speculative as 

faecal potassium excretion was not measured.   

 

Similar to sodium, oscillations in potassium excretion were observed for individuals.  The 

magnitude of these oscillations was moderately related to dietary potassium intake, with 

individuals who were consuming larger amounts of potassium exhibiting larger oscillations 

in excretion.  However, the within-individual variation in potassium excretion was 12%, 

which is lower than values previously reported in the literature (19%; Taseveska et al, 
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2006, Day et al, 2001; Willett, 1990).  Interestingly the variation in potassium excretion 

(12%) was similar to that of sodium excretion (13%).  Considering that sodium is lost in 

greater quantities than potassium in sweat, this suggests that the day to day variation is due 

to factors other than sweat loss. 

 

4.4.4  Conclusion 

In summary, despite consuming the same diet for 5 consecutive days, the within individual 

variation in sodium and potassium excretion was 23% and 13%, respectively.  This was 

reduced to 13% for sodium when measured over the last 4 days but remained similar for 

potassium (12%).  This is most likely due to the lag in sodium excretion following a 

change in diet, but in both cases sodium and potassium orientated itself around a balance 

point for each individual.   
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5.1 Introduction 

Sodium is needed for various processes in the body and as the principal cation in the 

extracellular fluid it is intimately linked with body water balance.  Potassium is the 

principal cation in the intracellular space and is important for nerve transmission and 

muscle function (Institute of Medicine, 2004). 

 

Obligatory urine, skin and faecal sodium losses are small (Dole et al, 1950; Dahl et al, 

1955; Dahl, 1958) amounting to between 1.7 - 8.0 mmol of sodium per day (Dahl, 1958).  

Although humans can survive on extremely low sodium diets (as evidenced by a urine 

sodium excretion of 1.0 ± 1.5mmol/24h; Oliver et al, 1975), dietary surveys report a wide 

range of sodium intakes usually well in excess of these values (Gregory et al, 1990; 

Henderson et al, 2003).  In a recent UK-based survey (Henderson et al, 2003), males were 

reported to have an average dietary sodium intake of 3.3g/d (144mmol/d) according to a 7-

day weighed food record, but this increased to 4.3g/d (187mmol/d) according to a single 

24h urine collection.  The amount of sodium above basal requirements is excreted 

primarily in the urine and therefore urinary sodium excretion can provide a good estimate 

of intake (Holbrook et al, 1984; Taseveska et al, 2006).  The difference between weighed 

food records and 24h urine collections in the above survey (Henderson et al, 2003) was 

attributed to the use of discretionary salt (salt added during cooking or at the table), which 

was not measured by the weighed food records.  However, the use of 24h urine collections 

as a measure of sodium intake is not suitable for individuals who are subjected to either 

manual labour, hot environments (Consolazio et al 1963) or exercise training (Shirreffs et 

al, 2006) as they may lose large amounts of sodium in sweat.  This is because the sweat 

glands have precedence over the kidneys for sodium and therefore urinary sodium 

excretion is reduced as a result of sweat sodium loss (Lichton, 1957).   

 

The extent of sweat electrolyte losses is dictated by the sweat electrolyte concentration and 

the volume of sweat lost.  Sodium losses in sweat can be high and can account for a large 

proportion of dietary intake.  Sweat sodium losses as high as 11.2g (486mmol) have been 

reported during 7.5h of heat exposure (Consolazio et al, 1963).  Recent studies on football 

(Maughan et al, 2004; Maughan et al, 2005; Shirreffs et al, 2005) and American football 

players (Stofan et al, 2002b) indicate that substantial electrolyte losses can occur during a 

single training session, particularly for sodium.  Sodium losses are typically around 2.0g 
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(85mmol), but can be as high as 9.9g (430mmol) during a 90-120 minute training session 

which corresponds to a salt loss of 5.0g and 25.1g, respectively.  

 

The purpose of this study was to determine the effect of intermittent moderate intensity 

exercise in the heat on fluid and electrolyte balance in subjects consuming their normal 

diet. 

 

5.2 Method 

5.2.1 Subjects 

Nine healthy male volunteers participated in this study, which had received prior approval 

from the Loughborough University Ethical Advisory Committee (R05/P137).  All subjects 

were informed about the experimental procedures and associated risks before their written 

consent was obtained.  Their physical characteristics (mean ± SD) were: age 24 ± 4y, 

height 1.79 ± 0.08m, body mass 80.3 ± 12.4kg and body fat 13 ± 3%. 

 

5.2.2 Experimental protocol 

Subjects reported to the laboratory at least one day prior to the commencement of the study 

period when they were given the equipment for dietary and urinary collections and a 

detailed briefing of the collection procedures.  In addition, the logbooks provided 

contained written instructions about the dietary and urine collection process.   Figure 5.1 

shows a schematic representation of the study protocol.   

 

Figure 5.1 Schematic of the study period.  Body mass (BM), dietary collection period 

(D), 24h urine collection (U) and exercise (Ex). 
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On the morning of day 1, subjects arrived in the laboratory and nude body mass (BM) was 

measured.  Subjects returned to the laboratory each day to return urine samples, on the 

morning of day 4 for the exercise trial and on day 6, when a final BM was obtained. 

 

5.2.3 Dietary monitoring 

Subjects were asked to follow their normal dietary behaviour, but to weigh and record all 

food and drink consumed throughout the 5-day collection period.  The dietary collection 

procedures are described fully in Chapter 2. 

 

5.2.4 Urine collection 

During this 5-day period and on the morning of day 6, subjects were asked to collect all 

urine passed except for the first void on day 1.  The 24h urine collection procedures are 

described fully in chapter 2. 

 

5.2.5 Physical activity 

During the collection period, subjects were asked to refrain from strenuous exercise that 

would incur sweat losses (apart from the exercise task on day 4).  On arrival at the 

laboratory on the morning of day 4, subjects were asked to empty their bladder as 

completely as possible.  Subjects then entered a room maintained at approximately 35˚C 

and 60-70% relative humidity (RH).  Nude BM was measured to the nearest 10g (CFW-

150K, Adam Equipment Co Ltd, Milton Keynes, UK) and then the skin was cleaned with 

distilled, de-ionised water before four absorbent patches (Tegaderm, 3M, Loughborough, 

UK) for sweat collection were placed on 4 regional skin sites (Chapter 2).   Dehydration 

was induced by intermittent exercise on a cycle ergometer (Monark) at an intensity of 161 

± 48W.  Exercise periods of 10 minutes were separated by 5 minutes of rest during which 

subjects towel dried and nude BM loss was obtained.  This pattern continued until subjects 

were dehydrated by almost 2% of BM, with the remaining BM loss achieved via the 

ongoing perspiration that followed exercise.  Upon completion of the third exercise bout, 

sweat patches were removed and placed into a 10mL syringe with a sample being 

immediately extracted into a small container for subsequent analysis.  After a shower, final 

nude BM was obtained before subjects dressed and were free to leave the laboratory and 

continue with their normal daily activities.  
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5.2.6 Sample analysis 

Urine and sweat samples were analysed for sodium, potassium, chloride and osmolality as 

described in Chapter 2.  Completeness of each 24h urinary collection was reported by 

subject self-report each day.  Weighed food intakes were analysed using Compeat Pro 

5.8.0 Software.  The regional sweat collection technique overestimates sweat sodium 

concentrations by 30-40% (Shirreffs et al 2006), therefore a 35% correction factor has been 

applied to sweat sodium and chloride concentrations.  Sweat potassium concentration is 

not consistently affected by the sweat collection method and no correction factor has been 

applied.   

 

5.2.7 Statistical analysis 

All data were tested for normality of distribution.  As urine electrolyte excretion can 

provide an accurate estimate of electrolyte intake in non-sweating individuals (Holbrook et 

al, 1984), electrolyte intake assessed by weighed food diaries and 24h urine excretion were 

subject to a two-factor repeated measures ANOVA, followed by paired t-tests with Holm-

Bonferroni adjustment for multiple comparisons.  Other data were analysed by one-factor 

repeated measures ANOVA followed by paired t-tests with Holm-Bonferroni adjustment 

for multiple comparisons or Freidman’s Test followed by Wilcoxon tests when found not 

to be normally distributed.  Correlations were assessed using Pearson’s correlation or 

Spearman’s Rank when found not to be normally distributed.  Parametric data are 

expressed as mean ± SD and non-parametric data as median (range).  In some 

circumstances a range has been reported regardless of the distribution of data as it was 

deemed to provide further useful information.  Statistical significance was set at P<0.05. 

 

5.3 Results 

5.3.1 Exercise 

The mean BM loss during the dehydration procedure was 1.51 ± 0.19kg.  This 

corresponded to a 1.9 ± 0.2% reduction of the pre-exercise BM.  The mean exercise time to 

achieve this was 49.4 ± 6.8 minutes.  Due to the intermittent nature of the exercise session, 

subjects remained in the heat chamber for 73.8 ± 13.5 minutes.  Estimated whole body 

sweat rates were 1.24 ± 0.13 Litres/hour (L/h). 
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5.3.2 Estimated whole body sweat composition and loss 

A total of 5 sweat patches out of 36 were dislodged during the trials.  These 5 sweat 

patches were not included in data analysis.  Estimated whole-body sweat composition and 

total electrolyte losses are shown in Table 5.1. 

 

Table 5.1 Estimated whole-body sweat electrolyte concentrations ([electrolyte]) and 

total electrolyte losses during exercise. 

 

 Arithmetic Calculation 

 Mean ± SD Range 

Sweat [Sodium] (mmol/L) 44 ± 11 (28 - 62) 

Sweat [Potassium] (mmol/L) 6.0 ± 1.2 (4.1 - 7.6) 

Sweat [Chloride] (mmol/L) 41 ± 15 (26 - 67) 

Total Sweat Sodium Loss (mmol) 66 ± 16 (32 - 86) 

Total Sweat Potassium Loss (mmol) 8.9 ± 1.8 (6.8 - 12.1) 

Total Sweat Chloride Loss (mmol) 62 ± 21 (29 - 97) 

 

5.3.3 Sweat composition at regional collection sites 

Sweat sodium and chloride concentrations were significantly lower on the thigh than all 

other collection sites (P<0.05) (Table 5.2).  Sweat potassium concentration was 

significantly lower on the back than the forearm (P=0.012) and tended to be lower on the 

back than the thigh (P=0.050).   

 

Table 5.2 Sweat electrolyte concentrations ([electrolyte]) at each regional collection 

site. 
a
 denotes significantly different to the forearm, 

b
 denotes significantly 

different from the thigh. 

 

 [Sodium] (mmol/L) [Potassium] (mmol/L) [Chloride] (mmol/L) 

 Mean ± SD Range Mean ± SD Range Mean ± SD Range 

Back 46 ± 12
b
 (28 – 68) 4.8 ± 0.9

a
 (3.7 – 6.0) 45 ± 16

b
 (27 – 77) 

Chest 48 ± 12
b
 (27 – 64) 6.2 ± 1.7 (3.5 – 9.9) 45 ± 16

b
 (27 – 70) 

Forearm 42 ± 11
b
 (29 – 63) 7.4 ± 1.8 (5.1 – 9.0) 37 ± 15

b
 (24 – 66) 

Thigh 37 ± 9 (27 – 53) 6.0 ± 1.4 (4.0 – 7.6) 32 ± 12 (20 – 57) 

 

4.3.4 Relationship between sweat rate & sweat composition 

Sweat sodium, potassium and chloride concentrations were not related (P>0.05) to whole 

body sweat rate at any collection site (Table 5.3).   Similarly, estimated whole body sweat 

sodium, potassium and chloride concentrations were not related to whole body sweat rate 

(Table 4.3). 
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Table 5.3  The relationship between whole body sweat rate and regional sweat 

composition at each collection site and estimated whole body (WB) sweat 

composition.  Values are correlation coefficients. 

 

 Back Chest Forearm Thigh WB 

Sweat Rate & [Na
+
] 0.01 -0.13 0.27 0.07 0.03 

Sweat Rate & [K
+
] -0.18 -0.02 0.43 0.34 0.31 

Sweat Rate & [Cl
-
] -0.13 -0.22 0.25 0.22 0.13 

 

5.3.5 Hydration status 

There was no difference (P=0.325) in the osmolality of the first pass of urine between days 

(Table 5.4).  Individuals have been categorised as hypohydrated (>900mosmol/kg) and 

euhydrated (<700mosmol/kg) (Cheuvront & Sawka 2005; Shirreffs & Maughan 1998a).  

The average osmolality of the first void of urine each day was 692 ± 199mosmol/kg.  

 

Table 5.4 Osmolality of the first void of each day.  Values are mean ± SD and (range). 

 

 Day 2 Day 3 Day 4 Day 5 Day 6 

Urine Osmolality 

(First Void) 

725 ± 229 

(399 – 1082) 

586 ± 157 

(335 – 797) 

639 ± 160 

(408 – 917) 

696 ± 249 

(327 – 1025) 

752 ± 189 

(404 - 1004) 

>900mosomol/kg 2 0 1 3 2 

700-900mosmol/kg 3 3 2 1 4 

<700mosmol/kg 4 6 6 5 3 

 

5.3.6 Body mass 

Subjects BM remained stable (P>0.05) between the morning of day 1 (80.28 ± 12.43kg) 

and day 6 (80.29 ± 12.52kg).  The coefficient of variation (CV) in BM between days 1, 4 

and 6 was 0.6 ± 0.3% (range 0.2 to 1.1%). 

 

5.3.7 Duration of urine collection 

Subjects reported 42 out of 45 24h urine collections to be complete.  The 3 incomplete 

collections were omitted from further analysis.  There were no significant differences 

(P=0.110) in the duration of each day’s urine collection (Table 5.5) but all urine data for 

each collection period were adjusted to 24h, with this value being used in all subsequent 

analysis.  The average duration of each urine collection over the 5-day period was 24.00h 

(22.50 – 26.33).  The CV for the duration of urine collection was 2 % (0 - 4%).  

 

Table 5.5 Duration of each day’s urine collection.  Values are median (range). 

 
 Day 1 Day 2 Day 3 Day 4 Day 5 

Duration of 

Collection (h) 

24.00 

(22.58 - 24.58) 

23.98 

(23.42 - 24.50) 

24.00 

(22.50 - 24.42) 

24.08 

(23.72 - 25.52) 

24.00  

(23.92 - 26.33) 
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5.3.8 Dietary intake and urine excretion 

Nutrient intake and electrolyte excretion during each 24h period are shown in Table 5.6, 

Table 5.7 and Figure 5.2.  There were no significant differences (P>0.05) in energy, 

carbohydrate, protein, fat or fibre intake between days.  A significantly (P<0.05) greater 

amount of fluid was consumed on day 4 than on day 3 and day 5 and the amount of fluid 

consumed on day 4 tended to be greater than on day 2 (P=0.072).  The CV’s for nutrient 

intakes and urine excretion are shown in Table 5.8.   

 

Dietary sodium intake and urinary sodium excretion did not change significantly over time 

(P=0.530; Figure 5.2).  There was a tendency (P=0.069) for urine sodium excretion to 

exceed dietary sodium intake on day 1, but urine sodium excretion was similar (P>0.05) to 

dietary sodium intake on days 2, 3 and 5.  On day 4 (the day of exercise) the amount of 

sodium excreted in the urine (122 ± 30mmol) was significantly less than dietary sodium 

intake (181 ± 89mmol; P=0.021).   

 

Dietary potassium intake and urinary potassium excretion did not change significantly over 

time (P=0.698; Figure 5.2).  Urine potassium excretion was similar to dietary potassium 

intake in all 24h collection periods (P=0.805) and was little affected on the day of exercise.  

On day 4, the amount of potassium consumed in the diet and excreted in the urine was 139 

± 61mmol and 112 ± 20mmol, respectively. 

 

Dietary chloride intake and urinary chloride excretion did not change significantly over 

time (P=0.575; Figure 5.2).  Urine chloride excretion was similar to dietary chloride intake 

in all collection periods except for day 4, when the amount of chloride excreted in the urine 

(96 ± 36mmol) was significantly less than chloride intake (186 ± 103mmol; P=0.010).   

 

The mean dietary sodium, potassium and chloride intake over the 5-day period was 172 ± 

78mmol, 131 ± 52mmol and 162 ± 81mmol, respectively. 
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Table 5.8 The CV (%) in nutrient intake and urine excretion over all experimental 

days (All Days) and days 1, 2 and 3 (3 Days). 

 

 Dietary Intake Urine Excretion 

 All Days 3 Days All Days 3 Days 

Water 23 ± 70 10 ± 50 ---- ---- 

Energy 19 ± 80 12 ± 50 ---- ---- 

Carbohydrate 22 ± 11 15 ± 70 ---- ---- 

Protein 26 ± 12 26 ± 14 ---- ---- 

Fat 29 ± 10 19 ± 10 ---- ---- 

Fibre 25 ± 12 23 ± 15 ---- ---- 

Sodium 34 ± 16 21 ± 80 34 ± 13 22 ± 90 

Potassium 24 ± 90 18 ± 11 21 ± 11 17 ± 15 

Chloride 38 ± 14 20 ± 70 37 ± 14 21 ± 14 
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A 

 

B 

 

C 

 

 

Figure 5.2 Dietary intake and urine excretion of sodium (A), potassium (B) and 

chloride (C) during each 24h period.  All Values are mean ± SD. * denotes 

significant difference between dietary intake and urine excretion.  
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5.3.9 Electrolyte balance 

Electrolyte balance was estimated from dietary electrolyte intake, urinary electrolyte 

excretion and sweat electrolyte loss (during the exercise trial).  There were no significant 

differences in net sodium (P=0.370), potassium (P=0.176) or chloride (P=0.158) balance 

between any 24h period (Figure 5.3).  The mean sodium, potassium and chloride balance 

over the last 4 days of the study period was -4 ± 68mmol, 5 ± 54mmol and 18 ± 67mmol, 

respectively. 

   A 

 
   B 

 
   C 

 
 

Figure 5.3 Sodium (A), potassium (B) and chloride (C) balance over each 24h period.  

Values are calculated from urinary electrolyte excretion, dietary electrolyte 

intake and sweat electrolyte loss.  Values are mean ± SD.  
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4.3.10 Relationship between electrolyte intake and electrolyte excretion 

Fluid intake was positively related (P<0.05) to urine volume on days 1, 2, 4 and 5 (Table 

5.9).  Dietary sodium intake was positively related (P<0.05) to urine sodium excretion on 

days 4 and 5, and when expressed over the 5-day period, the relationship was moderate and 

tended to be significant (P=0.067).  Dietary chloride intake was positively related to urine 

chloride excretion on days 4 and 5 (P<0.05) and when expressed over the 5-day period 

(P=0.011).  Potassium intake was unrelated (P>0.05) to urine potassium excretion during 

all 24h periods.  When expressed as the average intake and excretion over 5 days, the 

relationship was moderate but not significant (P=0.123)  

 

Table 5.9 The relationship between dietary water intake and urine volume, dietary 

sodium intake and urine sodium, dietary potassium intake and urine 

potassium and dietary chloride intake and urine chloride excretion in each 

24h period, the 3 Day Average (days 1, 2, 3) and the 5 day Average (all 

experimental days). Values are correlation coefficients. *denotes significant 

relationship (P<0.05). 

 
 

Day 1 Day 2 Day 3 Day 4 Day 5 

5 Day 

Average 

3 Day 

Average 

Water intake & urine volume 0.84* 0.87* 0.40 0.98* 0.87* 0.94* 0.84* 

Na
+
 intake & urine Na

+
 0.25 0.32 0.45 0.75* 0.86* 0.63 0.36 

K
+
 intake & urine K

+
 0.34 0.37 -0.06 0.58 0.30 0.55 0.41 

Cl
-
 intake & urine Cl

-
 0.32 0.63 0.60 0.71* 0.81* 0.79* 0.53 

 

 

5.3.11 Relationship between energy intake and electrolyte intake 

Dietary sodium intake was positively related (P<0.05) to energy intake on days 3, 4 and 5 

and this relationship persisted when calculated over all 5 days (P=0.016) (Table 5.10).  No 

significant relationship between potassium intake and energy intake was observed, 

although the relationship tended to reach significance on days 4 (P=0.071) and 5 (P=0.088) 

(Table 5.10).  When expressed over the 5-day study period, the relationship between 

potassium intake and energy intake was moderate (P=0.180).  Chloride intake was 

positively (P<0.05) related to energy intake on days 3, 4 and 5 and this relationship 

persisted when calculated over all 5 experimental days (P=0.036) (Table 5.10).  The 

average sodium and potassium densities of the diets were 1.2g (52mmol)/1000kcal and 

1.6g (41mmol)/1000kcal, respectively.  
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Table 5.10 The relationship between dietary energy intake (kcal) and dietary electrolyte 

intake (mmol) during each 24h period, the 3 Day Average (days 1, 2, 3) and 

5 Day Average (days 1, 2, 3, 4, 5). Values are correlation coefficients. 

*denotes a significant relationship (P<0.05). 

 
 

Day 1 Day 2 Day 3 Day 4 Day 5 

5 Day  

Average 

3 Day 

Average 

Energy & Na
+
 Intake 0.22 0.47 0.78* 0.90* 0.92* 0.77* 0.62 

Energy & K
+
 Intake 0.09 -0.12 0.28 0.63 0.60 0.49 0.12 

Energy & Cl
-
 Intake 0.19 0.41 0.79* 0.83* 0.67* 0.70* 0.56 

 

5.3.12  Relationship between electrolyte intake and sweat electrolyte loss 

The total amount of sodium, potassium and chloride lost in sweat was unrelated to the 

dietary intake of these electrolytes on the days preceding exercise (Table 5.11).  Similarly, 

no relationship was observed between dietary electrolyte intake and sweat electrolyte loss 

for sodium, potassium or chloride on day 4.  The relationship between the total volume of 

sweat lost during exercise and the volume of fluid consumed during the same day was 

moderate and approached significance (P=0.071).  The sweat electrolyte losses incurred 

during the exercise bout on day 4 accounted for 43 ± 21% (range 17 – 89%), 8 ± 4% (range 

3-16%) and 40 ± 18% (range 14-68%) of the dietary sodium, potassium and chloride 

intake for that day, respectively. 

 

Table 5.11 The relationship between dietary electrolyte intake (mmol) and estimated 

whole body sweat electrolyte loss (mmol).  Dietary values are the means of 

days 1, 2 and 3 (3 Day Average), day 3 and day 4.  Values are correlation 

coefficients. 

 

 3 Day 

Average 

Day 3 Day 4 

Dietary Na
+
 Intake & Sweat Na

+
 Loss 0.34 -0.14 0.01 

Dietary K
+
 Intake & Sweat K

+
 Loss -0.31 -0.01 -0.18 

Dietary Cl
-
 Intake & Sweat Cl

-
 Loss 0.25 0.18 0.10 

Dietary Fluid Intake & Sweat Loss --- --- 0.63 

 

5.4 Discussion 

This study investigated the effect of a single session of moderate intensity, intermittent 

exercise in the heat on electrolyte balance in individuals who were consuming their normal 

self-selected diet for 5 consecutive days.  Despite the loss of sodium and chloride in sweat 

during exercise, no significant differences in sodium or chloride balance were seen due to 

the conservation of urine sodium and chloride by the kidney on the day of exercise.  Sweat 

potassium losses were of much smaller magnitude than sodium and chloride and as a result 

urine potassium excretion and potassium balance were unaffected by exercise. 
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5.4.1 Sodium and chloride 

The magnitude of sweat sodium losses can vary greatly between individuals due to the 

large variation in sweat composition and sweat rate.  In this study individuals lost between 

32 and 86mmol (0.7 – 2.0g) of sodium in sweat during exercise, representing between 17 

and 89% of dietary sodium intake for that day.  There is a consensus that regional sweat 

collection techniques overestimate sweat sodium concentrations obtained using whole 

body collection methods (Patterson et al, 2000; Shirreffs & Maughan, 1997; Palacios et al, 

2003; Van Heyningen & Weiner, 1952; Stofan et al, 2002a) and therefore sweat sodium 

concentrations were adjusted to account for this 30-40% overestimation (Shirreffs et al, 

2006).  The overestimation may be due to the suggested regional differences in sweat rate 

and composition (Costa et al, 1969; Patterson et al, 2000; Lemon et al, 1986; Havenith et 

al, 2008), the formation of an artificial environment beneath the sweat patch (Van 

Heyningen & Weiner, 1952; Shirreffs et al, 2006) or the leaching of electrolytes from the 

stratum corneum (Weschler, 2008).  In the current study, regional differences in sweat 

composition were found, as sweat sodium and chloride concentrations were lower on the 

thigh compared to all other collection sites.  Nevertheless, estimated whole body sweat 

sodium concentrations obtained from regional collection techniques correlate well with 

whole body sweat sodium concentrations obtained by whole-body washdown methods 

(Ladell, 1948; Patterson et al, 2000).  

  

An important question that has been posed (Stofan et al, 2005) is whether high sodium 

intakes drive sweat sodium concentration or whether sweat sodium losses drive sodium 

intake.  Those that report a relationship between dietary sodium intake and sweat sodium 

concentration have typically imposed a salt deficiency on subjects (Robinson et al 1950b; 

Armstrong et al 1985; McCance 1938), but other investigators have reported a similar 

effect in the absence of a salt deficiency (Costa et al 1969; Allsopp et al 1998). In the 

current study no relationship was found between dietary sodium intake and sweat sodium 

loss, but it is possible that the dietary collection period was too short to gain an accurate 

representation of an individual’s sodium intake, considering that greater than 8 days 

collection is needed to do so (Liu & Stamler 1984; Sowers & Stumbo 1986). 

 

On average subjects consumed 171mmol of sodium per day during the first 3 days of the 

trial and 172mmol over all 5 days.  Although these values are lower than those in a recent 

survey of the UK population (187mmol/day; Henderson et al, 2003), 4 individuals in the 
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current study consumed more sodium than the UK average.  As the energy intake of 

individuals in the current study (3188kcal/day) was higher than the UK average 

(2323kcal/day), the sodium densities of diets in the current study (1.2g Na
+
/1000kcal) were 

lower than those of the UK population (1.9g Na
+
/1000kcal) (Henderson et al, 2003). 

 

A sodium appetite has previously been reported by others following exercise (Takamata et 

al, 1994; Leshem et al, 1999), but the sodium intake on the day of exercise in the current 

study was not different to that on any other day.  Furthermore there was no relationship 

between the amount of sodium lost in sweat and dietary sodium intake on day 4, 

suggesting individuals did not show a preference for salty foods following exercise.    

Instead there was evidence of significant sodium conservation by the kidneys in response 

to the sweat sodium losses imposed by the exercise task on day 4.   Lichton (1957) has 

previously described a competition between the sweat glands and kidneys for salt during 

exercise.  It was concluded that the sweat gland has precedence over the kidney for 

sodium, with any remaining sodium being available for excretion in the urine.  This finding 

is further supported by the current study.  The kidneys can respond quickly in response to 

sweat sodium and chloride losses incurred, with some reports showing this to occur within 

1 or 2h of exercise (Robinson et al, 1955).  On day 4 urine sodium excretion was 

significantly lower than dietary sodium intake on average by 60mmol which could account 

for the majority of the sweat sodium losses and the maintenance of sodium balance.  

Although faecal and insensible sodium losses were not accounted for in this study, they 

were assumed to be negligible and consistent between days (Allsopp et al, 1998; Dahl et al 

1955).   

 

In non-sweating individuals, it is suggested that urine sodium excretion can provide an 

objective marker of dietary sodium intake (Holbrook et al, 1984) as urine excretion 

represents the main avenue of sodium loss from the body.   However, the correlation 

between dietary sodium intake and urinary sodium excretion was weak (r = 0.36) and non-

significant when calculated over the first 3 days.  Surprisingly the relationship was stronger 

when calculated over all 5 experimental days despite the sweat losses incurred on day 4.  

Other studies have reported similar (r = 0.26-0.42; Gregory et al, 1990; Clark & 

Mossholder, 1986; Bingham et al, 1995; Day et al, 2001), weaker (r = 0.05; Sowers & 

Stumbo, 1986) and stronger (r = 0.48-0.76; Clark & Mossholder, 1986; Holbrook et al, 

1984; McKeown et al, 2001; Caggiula et al, 1985; Pietinen, 1982) correlations between 
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sodium intake and urine sodium excretion in free-living individuals.  The weak 

correlations may be partly explained by the high day to day variation in both sodium intake 

and excretion (Sowers & Stumbo, 1986; Caggiula et al, 1985; Knuiman et al, 1988, Liu et 

al, 1979), and the contradictory findings in the literature may be explained by differences 

in the number of days of collection, dietary assessment method or a lack of detailed 

calculation of discretionary salt use.  Stronger correlations are generally reported when 

duplicate portion analysis is implemented (Clark & Mossholder, 1986; Holbrook et al, 

1984), when an accurate assessment of discretionary salt use was made (Clark & 

Mossholder, 1986; Caggiula et al, 1985) or when an increased number of collection days 

were included (Clark & Mossholder, 1986; McKeown et al, 2001).    Nevertheless, despite 

the increased subject burden of keeping a weighed dietary record, this method is frequently 

reported to be better than a food frequency questionnaire, food diary and 24h recall 

methods (Bingham et al, 1995; Porrini et al, 1995; McKeown et al, 2001).  A potential 

source of variability is due to incomplete urine collections or alterations in the duration of 

each collection.  In this study, the completeness of collection was verified by subject self-

report, with three subjects reporting one incomplete collection.  Although creatinine has 

been used as a marker of completeness, it is not without its limitations (Bingham & 

Cummings, 1985; Flynn et al, 1990) and is reported to vary as a result of diet (Jacobsen et 

al, 1979) and exercise (Calles-Escandon et al, 1984).  Flynn et al (1990) found the self-

reporting method to be more accurate than creatinine in assessing the completeness of 

collection and taken in combination with the similar duration of each collection seen in this 

study, was deemed to be an adequate method in the determination of completeness. 

 

Although sweat sodium and chloride losses did not exceed dietary sodium and chloride 

intake in the current study, if a longer, more intense and/or second exercise bout was 

scheduled for later that same day, sweat losses may be of sufficient magnitude to exceed 

dietary intake in some individuals.  Similarly, if dietary salt intake was reduced, as has 

been recently recommended to 6g per day (SACN, 2003) (equivalent to 2.3g or 103 mmol 

of sodium), sweat sodium losses would account for a greater proportion of dietary intake, if 

not exceed it.  This may place some individuals at an increased risk of muscle cramps (Dill 

et al, 1938; Stofan et al, 2005) and possibly hyponatraemia (Montain et al, 2006).   
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5.4.2 Potassium 

In contrast to sodium, potassium is lost in relatively small amounts in sweat, especially 

when considered relative to urine potassium losses.  Sweat potassium concentrations seem 

largely unaffected by differences in sweat rate (Schwartz & Thaysen, 1956; Verde et al, 

1982) and the findings of the current study support this.  Regional differences in sweat 

composition were observed as sweat potassium concentration was lower on the back than 

the arm and the thigh, a finding that has been reported previously (Patterson et al, 2000; 

Maughan et al, 2004) and may be attributable to regional differences in sweat gland 

function and density (Sato & Dobson, 1970).  Subjects in this study lost between 7 and 

12mmol of potassium in sweat, equivalent to between 3 and 16% of their dietary potassium 

intake on day 4 and were too small to cause any significant alteration in potassium balance 

on the day of exercise.  Unlike sodium there is no consensus as to whether regional 

collection techniques provide accurate estimates of whole body electrolyte composition, 

with some studies reporting regional techniques to underestimate (Shirreffs & Maughan, 

1997) or overestimate (Patterson et al, 2000) potassium concentrations.  However, these 

differences (± 2mmol/L) would be small relative to the potassium intake of individuals in 

the current study. 

 

Although one study has reported large sweat potassium losses during exercise of up to 44% 

of dietary potassium intake (Consolazio et al, 1963) others report values similar to those in 

the current study (Costill et al, 1982).  The discrepancy between these two studies can be 

primarily explained by the different durations of exercise or heat exposures (7.5h and 2h, 

respectively).  As sweat potassium concentration is unrelated to dietary potassium intake 

(Malhotra et al, 1981; Costill et al, 1982), does not fall as exercise duration increases 

(Montain et al, 2007) or change as a result of heat acclimation (Chinevere et al, 2008); if 

the duration of exercise was increased or a second exercise bout was scheduled for later 

that same day, the percentage of dietary potassium lost in sweat would increase, provided 

there is not a compensatory increase in potassium intake. 

 

On average subjects consumed 133mmol of potassium per day during the first 3 days and 

131mmol per day over the entire 5 day study period.  Eight individuals consumed more 

than the average reported potassium intake (81mmol) for males in the UK (Henderson et 

al, 2003).  The higher values in the current study may be partly explained by a positive 

relationship between potassium intake and energy intake.  Although the relationship did 
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not reach significance in this study, a positive relationship has been reported previously 

(Holbrook et al, 1984; Bingham et al, 1994; Pietinen, 1982).  The potassium density of 

diets in the current study (1.6g/1000kcal) is slightly higher than the 1.5g/1000kcal 

estimated from Henderson et al (2003), both being higher than other values previously 

reported in the literature (1.3 - 1.4g/1000kcal; Holbrook et al, 1984; Gregory et al, 1990).  

This supports the notion of a growing trend for higher potassium intakes as previously 

reported by Henderson et al (2003). 

 

Although urine potassium excretion is suggested to provide an accurate estimate of 

potassium intake (Taseveska et al, 2006), only a weak and non-significant relationship was 

observed between dietary potassium intake and urine potassium excretion (r = 0.41) in the 

current study.  Others have reported similar (r = 0.36-0.40; Gregory et al, 1990; Day et al, 

2001; Leiba et al, 2005), lower (r = 0.23; Clark & Mossholder, 1986) and stronger 

correlations (r = 0.46-0.82; Pietinen, 1982; Clark & Mossholder ,1986; Bingham et al, 

1995; Bingham et al, 1997; Holbrook et al, 1984; Caggiula et al, 1985; McKeown et al, 

2001).  Stronger correlations are generally reported when duplicate portion analysis is 

implemented (Clark & Mossholder, 1986; Holbrook et al, 1984), or when an increased 

number of collection days were included (Caggiula et al, 1985; Bingham et al, 1997; 

Bingham et al, 1995; McKeown et al, 2001; Clark & Mossholder, 1986).  There are several 

factors that can influence the amount of potassium excreted, including the absolute level of 

potassium intake (Voors et al, 1983) and dietary fibre intake (Cummings et al, 1976; 

Taseveska et al 2006).  Faecal potassium excretion is greater and more variable than 

sodium (Cummings et al, 1976) and although not measured in the present study, it usually 

amounts to between 5 to 15mmol/d (Dempsey et al, 1958; Cummings et al, 1976; Arn & 

Reimer, 1950; Mickelson et al, 1977).  Considering the day to day variation in dietary fibre 

intake was 25% in the current study, it may partly explain the weak relationship between 

dietary and urinary potassium. 

 

5.4.3 Hydration status 

Cheuvront et al (2004) have previously shown that an individuals’ euhydrated BM can 

fluctuate daily by up to 1.1%.  The variation in BM between days 1, 4 and 6 of the current 

study was 0.6% (range 0.2 to 1.1%) indicating that individuals were in a similar state of 

hydration at these times.  This was supported by the finding that there were no differences 

in the osmolality of urine samples obtained from the first void of each morning.  Other 
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investigators have reported urine indices of hydration status indicate individuals fail to 

fully replace sweat losses during daily two-a-day exercise sessions in American football 

players (Stover et al, 2006; Godek et al, 2005).  It is likely that because one, not two, 

exercise sessions took place and that this single exercise session took place on the morning 

of day 4 in the current study, individuals had sufficient time and access to foods and fluids 

to replace the sweat losses incurred (Casa et al, 2005). 

 

5.4.4 Conclusion 

A single bout of exercise in the heat resulted in the loss of 66mmol (1.5g sodium) of 

sodium in sweat, but this was not sufficient to exceed dietary sodium intake for any 

individual. The maintenance of sodium balance was largely attributable to a decline in 

urine sodium excretion compared to dietary sodium intake on the day of exercise.  Sweat 

potassium losses were 8.9mmol (0.3g potassium) and represented only 8% of dietary 

potassium intake.  Consequently dietary potassium intake, urine potassium excretion and 

potassium balance were unaltered by exercise. 
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6.1 Introduction 

Several field studies report large amounts of sodium can be lost in sweat during a single 

60-120 minute training session (Palmer & Spriet, 2008; Stofan et al, 2002, 2005; Shirreffs 

et al, 2006).  If two exercise sessions were scheduled for the same day, sweat sodium 

losses could be very high.  Given that large sweat sodium losses have been linked to 

muscle cramps (Stofan et al, 2005) and hyponatraemia (Montain et al, 2006), further study 

appears warranted.   

 

There is only limited data on the impact of two-a-day exercise sessions on sweat 

composition.  Stofan et al (2005) reported similar sweat sodium concentrations between 

the first and second training sessions of the day in a group of cramp-prone American 

Football players (57mmol/L and 52mmol/L, respectively).  Similar sweat sodium 

concentrations were also observed in both training sessions in a separate group of 

American Football players that were not cramp-prone (22mmol/L and 30mmol/L, 

respectively).  However, no statistical analysis was performed on the data to confirm this 

finding.  Shirreffs et al (2005) reported similar sweat sodium concentrations in one group 

of football players completing their second training session of the day as those obtained 

from players from other clubs who only participated in one training session (Maughan et al 

2004, 2005).  However, Palmer & Spriet (2008) reported that sweat sodium concentrations 

obtained from a group of ice hockey players in the second of two training sessions were 

lower than a separate group of players who were tested during the first session of the day.  

But, these inter-individual comparisons cannot be used to determine whether or not sweat 

composition was altered by the first exercise session because of the large variation in sweat 

sodium concentrations between individuals.  In the above investigations training sessions 

were separated by 5.5h (Stofan et al, 2005), 8.5h (Shirreffs et al, 2005) or was not stated 

(Palmer & Spriet, 2008).   

 

Previously, investigators have reported a decline in sweat sodium concentration in subjects 

exposed to the heat approximately 5-12h after an aldosterone injection (Sato & Dobson, 

1970b; Collins, 1966).  Plasma aldosterone concentration increases in response to exercise 

in the heat (Francesconi et al, 1983; Kirby & Convertino, 1986; Morgan et al, 2004), and 

this increase is of greater magnitude when an individual is dehydrated (Francesconi et al, 

1983; Morgan et al, 2004). Robinson et al (1955) reported that individuals who were 
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exposed to prolonged work (3-4h) in the heat (45-46°C) showed evidence of a decline in 

sweat sodium concentrations approximately 4-5h after previous exercise-heat exposure.   

 

In the aforementioned studies (Stofan et al, 2005; Shirreffs et al, 2005, 2006; Palmer & 

Spriet, 2008; Sato & Dobson, 1970b; Collins, 1966; Robinson et al, 1955) regional sweat 

collection techniques were implemented.  Whilst sweat composition ascertained from 

regional sweat collection techniques correlate well with the more time-consuming whole 

body washdown method (Patterson et al, 2000), they consistently overestimate total 

sodium and chloride losses (Dill et al, 1967; Van Heynigen & Weiner, 1952; Consolazio et 

al, 1966; Shirreffs & Maughan, 1997; Patterson et al, 2000).  As there are regional 

differences in sweat gland function (Sato & Dobson, 1970a) and sweat composition 

(Patterson et al, 2000; Costa et al, 1969), assessment of whole body sweat composition 

may allow a more accurate assessment of the effects of prior exercise to be made. 

 

The aim of this study was to investigate the impact of prior exercise on sweat composition 

and loss during a second bout of exercise completed later that same day. 

 

6.2 Method 

6.2.1 Subjects 

Eight physically active male volunteers participated in this study, which had received prior 

approval from the Loughborough University Ethical Advisory Committee (R07-P1).  All 

subjects were informed of the experimental procedures and associated risks before their 

written consent was obtained. Their physical characteristics (mean ± SD) were: age 25 ± 

4y, height 1.80 ± 0.08m and body mass 77.4 ± 10.2kg. 

 

6.2.2 Pre-trial standardisation 

In an attempt to standardise the state of hydration prior to each trial, subjects kept a diary 

of their dietary and exercise regimens in the 48h period preceding the first experimental 

trial and were asked to replicate their behaviour prior to the second trial.  Subjects were 

asked to refrain from strenuous exercise and alcohol intake during the 24h period 

immediately preceding each trial.  All experimental trials began in the morning following 

an overnight fast and the consumption of 500mL of water 1.5h before arrival in the 

laboratory.    
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A 

 

 

 

 

B 

 

 

 

 

Figure 6.1 Schematic of schedule for both (A) SINGLE and (B) MULTIPLE exercise 

sessions.  Body mass (BM), urine collection (U), breakfast (B), lunch (L) 

and whole body washdown procedure (WBW). 

 

6.2.3 Experimental protocol 

Figure 6.1 shows a schematic representation of the study protocol.  Subjects completed 

either one (SINGLE-PM) or two (MULTI-AM and MULTI-PM) exercise sessions on one 

day in a randomised, crossover design.  Trials were separated by 7 days.  On arrival at the 

laboratory, subjects were asked to empty their bladder as completely as possible with the 

entire volume collected and a sample retained for subsequent analysis.  Nude body mass 

(BM) was measured to the nearest 20g (AFW-120K, Adam Equipment Co Ltd, Milton 

Keynes, UK), before a standardised breakfast was consumed.  Individuals weighed their 

desired breakfast portion on trial one and this amount was then given on trial two.  

Following 1.5h of rest on the two-a-day trial, subjects provided another urine sample and 

then commenced the whole body washdown procedure which is described fully in Chapter 

2.  Four absorbent patches (Tegaderm, 3M, Loughborough, UK) for sweat collection were 

also positioned on the subject’s scapula, chest, forearm and thigh.  Dehydration was 

induced by intermittent exercise on a cycle ergometer at an intensity which corresponded 

to 153 ± 15W.  Exercise periods of 10 minutes were separated by 5 minutes of rest, during 

which subjects remained inside the bag.  This pattern continued until 40 minutes of 

exercise was completed.  After 30 minutes of exercise, sweat patches were carefully 

removed with tweezers and a sample extracted using a 10mL syringe into a small container 

for subsequent analysis.  Upon the completion of exercise subjects showered and a final 

nude BM was obtained before subjects dressed and returned to a comfortable environment 
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within 15 minutes of the completion of exercise.  Over the following 30 minutes, subjects 

consumed a pre-prepared, standardised lunch consisting of sandwiches, cereal bars and 

fruit squash (Table 6.5).  Subjects were then free to leave the laboratory.  Approximately 

4.5h following the cessation of exercise, subjects returned to the laboratory.  They were 

asked to provide a urine sample, before completing the same washdown procedures as 

those carried out in the morning.  Similarly, the exercise task and sweat collection methods 

were repeated as per the morning session with the onset of exercise occurring 5h after the 

cessation of the morning session.  Upon the completion of exercise and the washdown 

procedure, subjects were free to leave the laboratory and continue with their normal daily 

activities. 

 

When only one exercise session was to be completed, subjects followed the same schedule 

as has been previously described except that after the breakfast meal was consumed, 

subjects were free to leave the laboratory.  Subjects returned to the laboratory to consume 

lunch and then for the afternoon exercise session (SINGLE-PM).  On one, and two-a-day 

trials, subjects were allowed to consume water ad libitum during the resting period but the 

amount was recorded by weighing a sports drink bottle before and after its use. 

 

6.2.4 Sample analysis 

The total volume of each urine sample was measured using 500mL measuring cylinder and 

each sample was analysed for sodium, potassium and chloride.  Whole body and regional 

sweat samples were analysed by ion chromatography (DX-80 Ion Analyser, Dionex).  

Dietary food intake were analysed using Compeat Pro 5.8.0 Software.  All analytical 

procedures are described fully in Chapter 2. 

 

6.2.5 Statistical analysis 

All data were tested for normality of distribution.  Data were analysed by repeated 

measures ANOVA followed by paired t-tests with Holm-Bonferroni adjustment for 

multiple comparisons or Freidman’s Test followed by Wilcoxon tests when found not to be 

normally distributed.  Correlations were assessed using Pearson’s correlation or 

Spearman’s Rank when found not to be normally distributed.  Parametric data are 

expressed as mean ± SD and non-parametric data as median (range).  In some 

circumstances a range has been reported regardless of the distribution of data as it was 

deemed to provide further useful information.  Statistical significance was set at P<0.05.   
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6.3 Results 

6.3.1 Exercise 

Despite subjects completing each trial at the same (P>0.05) workload, temperature, 

humidity and duration (Table 6.1) there was a tendency (P=0.082) for sweat loss during 

exercise to be lower on trial SINGLE-PM (1.26 ± 0.26L) than MULTI-AM (1.36 ± 0.29L) 

and MULTI-PM (1.36 ± 0.28L).  The percentage dehydration was similar between trials 

(Table 6.2). 

 

Table 6.1 Ambient temperature and humidity inside (Bag) and outside (Room) of the 

large polyethylene bag and the workload during each exercise trial 

 

 Trial 

 MULTI-AM MULTI-PM SINGLE-PM 

Room Temperature (°C) 34.9 ± 0.4 34.9 ± 0.4 34.9 ± 0.4 

Room Relative Humidity (%) 59 ± 2 58 ± 2 59 ± 2 

Bag Temperature (°C) 34.8 ± 0.4 34.8 ± 0.4 34.8 ± 0.4 

Bag Relative Humidity (%) 65 ± 4 65 ± 4 65 ± 4 

Workload (watts) 152 ± 16 152 ± 16 154 ± 14 

 

 

Table 6.2 Sweat loss and % dehydration during exercise. 

 

 Trial 

 MULTI-AM MULTI-PM SINGLE-PM 

Sweat Loss (L) 1.36 ± 0.29 

(0.99–1.89) 

1.36 ± 0.28 

(0.94–1.82) 

1.26 ± 0.26 

(0.89–1.78) 

Dehydration (%BM) 1.8 

(1.3–2.1) 

1.8 

(1.3–2.0) 

1.7 

(1.3–1.8) 
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6.3.2 Whole body sweat collection 

Whole body sweat sodium concentration was significantly higher on trial MULTI-AM 

(P=0.046) and trial MULTI-PM (P=0.048) than trial SINGLE-PM, but there was no 

difference in whole body sweat sodium concentration between trials MULTI-AM and 

MULTI-PM (P=0.914) (Figure 6.2).  Whole body sweat sodium loss tended to be higher 

on trial MULTI-AM (59mmol [20-268]; P=0.078) and trial MULTI-PM (58mmol [24-

262]; P=0.069) than trial SINGLE-PM (42mmol [range 13–183]), but there was no 

difference in whole body sweat sodium loss between trials MULTI-AM and MULTI-PM 

(P=0.625) (Figure 6.2).    

 

There were no differences in whole body sweat potassium concentration (P=0.304) or 

whole body sweat potassium losses (P=0.285) between any trial (Figure 6.2).  Whole body 

sweat potassium losses on trials MULTI-AM, MULTI-PM and SINGLE-PM were 

7.3mmol [3.3-12.5], 8.0mmol [3.0-12.9] and 4.9mmol [3.3-11.6], respectively (Figure 6.2). 

 

Whole body sweat chloride concentration tended to be higher on trial MULTI-AM 

(P=0.069) and trial MULTI-PM (P=0.062) than trial SINGLE-PM, but there was no 

difference in whole body sweat chloride concentration between trial MULTI-AM and 

MULTI-PM (P=0.922) (Figure 6.2).  Whole body sweat chloride losses tended to be higher 

on trial MULTI-AM (55mmol [20-265]; P=0.078) and trial MULTI-PM (56mmol [22-

257]; P=0.078) than trial SINGLE-PM (41mmol [15-176]), but there was no difference in 

whole body sweat chloride losses between trials MULTI-AM and MULTI-PM (P=0.430) 

(Figure 6.2).   

 

A      B 

  
Figure 6.2 Sweat electrolyte composition (A) and total sweat electrolyte losses (B) 

obtained from whole body washdown method. 
a
 denotes significantly 

different from trial MULTI-AM, 
b
 denotes significantly different from 

MULTI-PM. 
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6.3.3 Regional sweat collection 

Regional sweat sodium concentration was significantly higher on trial MULTI-AM than 

trial SINGLE-PM (P=0.038) and trial MULTI-PM (P=0.045) (Figure 6.3).  There was a 

tendency for regional sweat sodium concentration to be higher on trial MULTI-PM than 

SINGLE-PM (P=0.106).  Sweat sodium losses on trial MULTI-AM (88 ± 56mmol) were 

significantly higher than SINGLE-PM (68 ± 44mmol; P=0.026) and tended to be higher 

than MULTI-PM (78 ± 48mmol; P=0.094).  Total sweat sodium losses tended to be higher 

on MULTI-PM than SINGLE-PM (P=0.078) (Figure 6.3).   

 

There were no significant differences in regional sweat potassium concentration (P=0.512) 

or total sweat potassium losses (P=0.295) between trials (Figure 6.3).  Total sweat 

potassium losses on trials MULTI-AM, MULTI-PM and SINGLE-PM were 7.0 ± 

1.6mmol, 6.6 ± 1.4mmol and 6.3 ± 1.2mmol, respectively. 

 

Regional sweat chloride concentration on trial MULTI-AM was significantly higher than 

trial MULTI-PM (P=0.045) and trial SINGLE-PM (P=0.045).  There was also a tendency 

for regional sweat chloride concentration to be higher on trial MULTI-PM than SINGLE-

PM (P=0.086) (Figure 6.3).  Sweat chloride losses were significantly higher on MULTI-

AM (81 ± 56mmol) than SINGLE-PM (62 ± 44mmol; P=0.027), and tended to be higher 

on MULTI-AM than MULTI-PM (71 ± 48mmol; P=0.076).  Sweat chloride losses also 

tended to be higher on MULTI-PM than SINGLE-PM (P=0.064) (Figure 6.3).   

 

      

  

Figure 6.3 Sweat electrolyte composition (A) and total sweat electrolyte losses (B) 

obtained from regional collection methods. 
a
 denotes significantly different 

from trial MULTI-AM. 
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6.3.4 Sweat composition at regional collection sites 

A repeated measures ANOVA revealed a significant regional site effect (P=0.002), a trial 

effect (P=0.015) but no interaction effect (P=0.278) for sweat electrolyte composition.  

Therefore the data from each trial was pooled (n=24) to assess regional differences in 

sweat composition.  Sweat sodium and chloride concentrations were significantly lower on 

the thigh than all other collection sites (P<0.05) and were significantly lower on the back 

and forearm than the chest (P<0.05; Figure 6.4).  Sweat potassium concentration was 

significantly lower on the back than all other collection sites (P<0.05). 

 

 

 

Figure 6.4 Regional (back, chest, forearm and thigh) sweat electrolyte concentrations. 
a
 

denotes significantly different from the back, 
b
 denotes significantly 

different from the chest, 
c
 denotes significantly different from the arm, 

d
 

denotes significantly different from the thigh (P<0.05). 
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6.3.5 Relationship between sweat rate & sweat composition 

Regional sweat sodium (r = 0.13; P=0.555) and chloride (r = 0.15; P=0.493) concentrations 

were unrelated to sweat rate, but sweat potassium concentration tended to be negatively 

related to sweat rate (r = -0.37; P=0.079) (Figure 6.5).  Sweat electrolyte concentrations 

obtained from the whole body washdown technique showed sweat sodium (r = 0.36; 

P=0.081) and chloride (r = 0.40; P=0.053) concentration tended to be positively related to 

sweat rate.  The relationship between sweat potassium concentration and sweat rate was 

significant (r = 0.90; P<0.001) (Figure 6.5). 

 

A       B 

  
C       D 

  
E       F 

  
 

Figure 6.5 The relationship between whole body sweat rate and sweat electrolyte 

concentrations obtained from the regional (A, C, E) and whole body (B, D, 

F) sweat collection techniques. 
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6.3.6 Relationship between regional and whole body washdown techniques 

The regional sweat collection technique produced significantly higher values for sweat 

sodium concentration (P=0.010) and tended to produce higher values for sweat chloride 

concentration (P=0.079) than the whole body washdown technique (Table 6.3).  There 

were no differences in sweat potassium concentrations between the collection techniques 

(P=0.403; Table 6.3).  There was a strong correlation between the sweat sodium 

concentration measured by each technique (r = 0.90; P<0.001).  Similarly there was a 

strong correlation between the sweat chloride concentration measured by each technique (r 

= 0.88; P<0.001).  The correlation between sweat potassium concentration measured by 

each technique was weak and non-significant (r = -0.20; P=0.341) 

 

Table 6.3  Sweat electrolyte composition from the regional sweat collection technique 

and whole body washdown technique. Values are mean ± SD and median 

(range). 
*
 denotes significant difference between techniques. 

 

 Sweat Electrolyte Concentration 

 Sodium Potassium Chloride 

Whole Body Washdown 43 (11 – 144) 4.9 ± 1.3 40 (12 – 141) 

Regional Sweat Patches 58 ± 29* 5.0 ± 0.9 53 ± 30 

 

 

6.3.7 Dietary intake 

Table 6.4 reports the nutrient composition of the test meals provided at breakfast and lunch 

during each trial.  The sweat electrolyte losses incurred during SINGLE-PM according to 

the whole body washdown technique accounted for 39% (range 13-155%), 20 ± 7% and 

38% (14-149%) of the dietary sodium, potassium and chloride intake consumed in the 

laboratory, respectively.  When two exercise sessions took place (MULTI-AM and 

MULTI-PM), the percentage of dietary sodium, potassium and chloride lost in sweat were 

112% (range 42-450%), 48 ± 19% and 107% (42-441%), respectively. 

 

Fluid intake was calculated based on ad libitum water intake and the water content of foods 

consumed at each meal.  Subjects consumed significantly more fluid during the morning of 

the SINGLE session compared to when MULTIPLE exercise sessions took place.  Subjects 

consumed a significantly greater amount of fluid in the rest period between lunch and the 

afternoon exercise session on the MULTIPLE trial (2216 ± 634mL) than the SINGLE trial 

(1256 ± 321mL) (Figure 6.6).  As a result there was a tendency (P=0.078) for more fluid to 

be consumed on the MULTIPLE trial (2822 ± 670mL) than the SINGLE trial (2297 ± 
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465mL) over the entire study period.  The amount of fluid consumed between MULTI-AM 

and MULTI-PM represented 167 ± 50% of BM lost during MULTI-AM. 

 

Table 6.4 Energy, carbohydrate, protein, fat and electrolyte (sodium, potassium, 

chloride) content of breakfast, lunch and the total consumed during the 

study period. 

 

Nutrient Breakfast Lunch Total 

Energy (kcal) 432 ± 87 1166 1598 ± 87 

Carbohydrate (g) 86 ± 20 157 243 ± 20 

Protein (g) 15 ± 3 37 53 ± 3 

Fat (g) 6 ± 1 48 53 ± 1 

Sodium (mg) 742 ± 118 1786 2528 ± 118 

Potassium (mg) 716 ± 161 444 1160 ± 161 

Chloride (mg) 1191 ± 182 2729 3920 ± 182 

Sodium (mmol) 32 ± 5 78  110 ± 5 

Potassium (mmol) 18 ± 4 11 30 ± 4 

Chloride (mmol) 34 ± 5 77 111 ± 5 

 

 

 

 

 

Figure 6.6 Fluid intakes during the morning, afternoon and entire study period. * 

denotes significant difference between trials (P<0.05). 
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6.3.8 Hydration status and urine variables 

There was no difference in the osmolality of pre-exercise urine samples (P=0.454) or pre-

exercise BM (P=0.526) between trials (Table 6.5).  There were no differences in the 

sodium (P=0.986), chloride (P=0.920) or potassium (P=0.980) concentrations of pre-

exercise urine samples between trials (Table 6.5). 

 

Table 6.5 Pre-exercise urine osmolality and body mass.  Values are mean ± SD or 

median (range). 

 
 MULTI-AM MULTI-PM SINGLE-PM 

Pre-exercise urine Osmolality (mosmol/kg) 313 (146 – 624) 230 (56 – 762) 259 (102-682) 

Pre-exercise body mass (kg) 77.51 ± 10.16 77.27 ± 9.78 77.69 ± 10.18 

Pre-exercise Urine Sodium (mmol/L) 70 ± 42 66 ± 56 69 ± 40 

Pre-exercise Urine Potassium (mmol/L) 38 ± 15 41 ± 34 41 ± 29 

Pre-exercise Urine Chloride (mmol/L) 56 ± 35 54 ± 55 48 ± 41 

 

6.4 Discussion 

It has been established that some individuals can lose large amounts of sodium in sweat 

during a typical training session (Stofan et al, 2002, 2005; Palmer & Spriet, 2008; Shirreffs 

et al, 2006) and this may account for a large proportion of dietary sodium intake (Chapter 

5).  If a second exercise session is scheduled for later the same day, the extent of sweat 

electrolyte losses will be increased, but it is currently unclear as to whether the sweat 

losses incurred during the second exercise bout are affected by prior exercise.  The main 

finding of the current study was that sweat sodium and potassium concentrations obtained 

by the whole body washdown technique remained unchanged in the second of two exercise 

bouts undertaken on the same day.    

 

Previously, Stofan et al (2005) reported similar sweat sodium concentrations during both 

morning and afternoon practices in two groups of American Football players, but this was 

not the focus of the study and as a consequence no statistics were reported on the data.  

Other investigators have reported that aldosterone, administered intravenously, did not 

reduce sweat sodium concentration until a period of at least 5-12h had elapsed (Sato & 

Dobson, 1970b; Collins, 1966).  In one of a series of experiments, Robinson et al (1955) 

exposed subjects to 3-4h of exercise-heat exposure (45-46°C).  After a 4-5h rest period in 

cool conditions, subjects returned to the heat for a further exercise session. They reported 

sweat sodium concentration to be lower in the second exercise session, but further 

reductions were seen the following day.  Therefore, whilst exercise in the heat increases 

plasma aldosterone concentration (Francesconi et al, 1983; Kirby & Convertino, 1986; 
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Morgan et al 2004) and this increase is of greater magnitude in individuals who are 

dehydrated (Francesconi et al, 1983; Morgan et al, 2004), it is possible that the 5h time 

period that elapsed between exercise sessions in the current study was too short for 

aldosterone to exert a significant effect on sweat sodium concentrations.  Alternatively, 

several other factors may be responsible for the absence of changes in sweat sodium 

concentration including the method of sweat collection, the foods and fluids provided, 

sweat rate and circadian rhythm. 

 

In the current study, regional and whole body sweat collection techniques were 

contradictory in determining the effect of prior exercise on sweat sodium concentration.  

Using the regional sweat patch technique, sweat sodium concentration on trial MULTI-PM 

was significantly lower than on trial MULTI-AM, whereas sweat sodium concentrations 

were similar on trial MULTI-AM and MULTI-PM using the whole body washdown 

technique.   This may indicate that the effect of exercise on sweat sodium concentration 

was different depending on the region of the body that sweat was collected.   

 

Inoue et al (1998) investigated the relationship between sweat rate and sweat sodium 

concentration in 4 different regions of the body (chest, back, forearm and thigh) during 

exercise.  A significant relationship was reported between sweat rate and sweat sodium 

concentration at each collection site, but the relationship was steeper on the limbs than the 

torso, suggesting regional differences in the ability of sweat glands to reabsorb sodium.  

One factor that was suggested to be responsible for this finding was that the sensitivity of 

the sweat glands to aldosterone was different in different regions of the body.  Kirby & 

Convertino (1986) have previously reported an increased sensitivity of sweat glands to 

aldosterone following heat exposure and because of the regional differences in sweat gland 

function (Inoue et al, 1998; Sato & Dobson, 1970a), the sensitivity of sweat glands in 

different regions of the body may be affected differently by prior exercise.  Support for this 

comes from the study of Bates & Miller (2008) who collected sweat from the upper arm 

and thigh during exercise on two consecutive days.  They reported that sweat sodium 

concentrations obtained from the upper arm were significantly lower on day 2 than day 1 

by 9mmol/L.  The decline was smaller in magnitude and did not reach significance in 

sweat obtained from the thigh (4mmol/L).  In the current study sweat was collected from 4 

skin sites (back, chest, forearm and thigh).  The average sweat sodium concentration of 

these 4 sites was taken as an indirect estimate of whole body sweat sodium concentration.  
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Statistical analysis of the data revealed that although regional differences in sweat 

composition were found, there was no interaction between exercise session and the 

collection site, indicating that all sites responded in a similar manner to exercise regardless 

of whether that session was the first or second of the day.  On close inspection the 

difference in sweat sodium concentration between MULTI-AM and MULTI-PM using the 

whole body washdown technique was 4mmol/L compared to 6mmol/L using the regional 

sweat patch technique.  Therefore the difference between techniques, although significant, 

was small.  Furthermore, no differences in total sweat sodium loss were observed between 

MULTI-AM and MULTI-PM, regardless of the sweat collection technique used. 

 

In the studies of Robinson et al (1955), subjects refrained from consuming salt during the 

recovery period and this was suggested to potentiate the decline in sweat sodium 

concentrations that were seen in the exercise sessions that took place between 4h and 22h 

later.  Indeed, other investigators have reported a period of salt deficiency is important for 

changes in sweat sodium concentration to be seen (McCance, 1938; Robinson et al, 1956).  

In the current study, food was provided at breakfast and lunch.  For 6 out of the 8 subjects, 

the lunch provided a sufficient amount of sodium to replace all the sodium lost in sweat 

during MULTI-AM.  Consequently, the replacement of sweat sodium losses may have 

masked any effect of prior exercise on sweat sodium composition.  

  

Whilst both lunch and breakfast were standardised for each individual, the amount of 

sodium ingested at lunch (78mmol) was greater than that ingested at breakfast (32mmol). 

However, this is unlikely to have altered sweat composition during the following bout of 

exercise as such acute changes in diet have not been reported to have an effect on sweat 

composition (Chapter 5; Stofan et al, 2005; Barnett & Maughan, 1996).  Stofan et al (2005) 

reported that sodium-rich foods consumed in the morning, did not affect sweat 

composition during an exercise session completed in the evening later that same day.  

Barnett & Maughan (1996) investigated the effect of fluid intake before and during 

exercise on sweat composition.  Subjects consumed either a low-sodium (4mmol/L) or 

high-sodium (40mmol/L) solution in an amount equal to sweat loss.  There was no effect 

of drink sodium concentration on sweat sodium concentration.  In Chapter 5 of this thesis, 

sweat sodium concentration was unrelated to dietary sodium intake on the day preceding 

exercise and it was unrelated to the average dietary sodium intake on the 3 days preceding 

exercise.  Furthermore, if this acute intake was to affect sweat sodium concentration, sweat 
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sodium concentration would have been higher on SINGLE-PM than MULTI-AM, but this 

was not observed.   

 

During the study period, food intake was standardised as was the time of day that exercise 

took place, but fluid intake was allowed ad libitum.  The hydration status of an individual 

has the potential to affect both sweat rate and composition (Cage et al, 1970; Morgan et al, 

2004; Montain et al, 1995; Robinson et al, 1956).  However, pre-exercise urine samples did 

not indicate individuals were hypohydrated prior to MULTI-PM.  Although urine indices 

may not accurately reflect hydration status during acute periods when individuals are 

consuming large amounts of fluid (Popowski et al, 2001; Cheuvront & Sawka, 2005), pre-

exercise body mass was similar to those obtained before MULTI-AM.  Furthermore, 

analysis of fluid intake patterns showed that individuals consumed approximately 167% of 

body mass loss incurred during MULTI-AM, which in combination with the sodium 

content of lunch, would be expected to assist in the ability of the body to retain the 

ingested fluid volume and restore fluid balance (Shirreffs et al, 1996; Ray et al, 1998; 

Maughan et al, 1996). 

 

Whilst no difference in sweat rate or sweat sodium concentration were found between 

MULTI-AM and MULTI-PM, both sweat rate and sweat sodium concentration were lower 

on trial SINGLE-PM than trial MULTI-AM and trial MULTI-PM.  The sweating threshold 

is elevated in the afternoon compared to early morning (Stephenson et al, 1984; Wenger et 

al, 1976) and this may explain the differences, albeit small, in sweat rate between trial 

SINGLE-PM and MULTI-AM.  The lower sweat rate on trial SINGLE-PM may also 

explain the lower sweat sodium concentration between trials, given the positive 

relationship between sweat rate and sweat sodium concentration (Allan & Wilson, 1971), 

although this relationship did not reach significance in the current study.  But, Collins 

(1966) reported a diurnal variation in sweat sodium composition, but not sweat potassium 

concentration that was independent of changes in sweat rate.  Sweat sodium concentration 

was 6-8mmol/L lower in the afternoon than the morning, and this could also explain the 

lower values seen on trial SINGLE-PM.  Interestingly, the lower sweat rate was not 

apparent on trial MULTI-PM and as mentioned previously, neither was a change in sweat 

composition.  Therefore whilst it was postulated that sweat sodium concentrations may be 

lower in the second of two exercise bouts due to sodium conservation, this does not seem 

to be the case, indicating that prior exercise session may alter this response in some way.  
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Kenefick et al (2009) have recently determined the effect of prior heat stress on exercise 

performance during a subsequent exercise bout in the heat.  There was no effect of prior 

heat stress on rectal temperature, heart rate or performance, but sweat rate was not 

measured.  In the current study, although subjects did not replace sweat loss during the first 

exercise bout, fluid intake, urine osmolality and body mass data indicate that fluid losses 

had been replaced during the 5h recovery period.  At present the mechanism that is 

responsible for preventing a circadian rhythm in sweating response is unclear.  

Alternatively, the differences in sweat composition and rate between SINGLE-PM and 

MULTI-AM and MULTI-PM may be attributed to the day to day variation in both these 

factors. 

 

There is little data on the day to day variation in sweat sodium concentrations.  Shirreffs & 

Maughan (1997) collected sweat using the whole body washdown technique from 5 

subjects who cycled in the heat until approximately 2% of BM was lost.  This was repeated 

on 4 occasions each separated by 7 days.  Subjects standardised their diet for the 2 days 

prior to exercise.  The intra-individual range in sweat sodium concentrations obtained was 

22 ± 5mmol/L and the coefficient of variation was between 10-23%.  In the current study 

the intra-individual range in sweat sodium concentration obtained between all 3 exercise 

sessions was 17 ± 11mmol/L.  This value was inflated by one individual, but upon their 

removal, was reduced to 13 ± 6mmol/L.  This corresponded to a CV of 18% (range 5-29%) 

for all individuals.  It is therefore possible that this day to day variation contributed to the 

changes observed between the two-a-day trial and the one-a-day trial, but may also mask 

any differences between MULTI-AM and MULTI-PM. 

 

The amount of sodium lost in sweat when one or two exercise sessions were completed on 

the same day was 42mmol (0.97g) and 117mmol (2.69g), respectively.  The loss of sodium 

in sweat during SINGLE-PM represented 39% of sodium intake for that day, but this 

increased to 112% of sodium intake when two exercise sessions (MULTI-AM and 

MULTI-PM) took place.  It should be emphasised that this refers to the intake of sodium 

from the foods and fluids consumed within the laboratory and does not take into account 

any foods ingested after the afternoon exercise session.  Although sodium balance was not 

measured in the current study, the loss of sodium in sweat has the potential to cause 

perturbations in sodium balance.  In an attempt to compensate for sweat sodium losses, 

there is a decrease in urine sodium excretion (Lichton, 1957; Robinson et al, 1955; Chapter 
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5).  In the current study, electrolyte balance throughout the day was not measured but urine 

samples obtained before MULTI-PM failed to indicate significant sodium conservation by 

the kidneys, despite the sweat sodium losses that were incurred during MULTI-AM.  

Godek et al (2005) have previously reported a decline in urine sodium concentration in 

American Football players undertaking two exercise sessions per day for 8 consecutive 

days, indicating significant sodium conservation by the kidneys.  However the decline in 

urine sodium excretion was not observed until the day following the first two-a-day 

session.  In the current study, a single urine collection was made prior to the second 

exercise bout and in the study of Godek et al (2005) the average sodium concentration of 4 

urine samples was made in order to determine the extent of sodium conservation by the 

kidneys.  These “spot check” urine collections have their limitations as they cannot assess 

sodium balance and are prone to inaccuracies especially during acute periods of sweat loss 

and drink ingestion (Popowski et al, 2001; Cheuvront & Sawka, 2005).  Further insight 

into the effects of 2-a-day exercise sessions on sodium balance would be gained if a more 

accurate assessment of intake and excretion were to be made.   

 

Sweat sodium concentrations were 32% greater with the regional collection method than 

the whole body washdown technique.  In contrast no differences were observed for sweat 

potassium concentration.  The overestimation of sweat sodium concentration by regional 

collection techniques is in accordance with other studies (Dill et al, 1967; Van Heynigen & 

Weiner, 1952; Consolazio et al, 1966; Shirreffs & Maughan, 1997; Patterson et al, 2000) 

and has been attributed to the formation of an artificial environment beneath the sweat 

patch (Van Heynigen & Weiner, 1952; Shirreffs et al, 2006), leaching of electrolytes from 

the stratum corneum (Weschler 2008) and regional differences in sweat rate and 

composition (Costa et al, 1969; Patterson et al, 2000; Lemon et al, 1986; Havenith et al, 

2008).  Nevertheless, despite the aforementioned problems associated with regional sweat 

collection methods, indirect estimates of whole body sweat sodium concentration obtained 

from regional sweat sodium concentrations are reported to correlate well with the whole 

body washdown technique (Patterson et al, 2000) and this was supported by the strong 

correlations found in the current study. 

 

In conclusion, sweat sodium concentration remains unaltered in the second of two exercise 

sessions scheduled on the same day when exercise bouts were separated by 5h.  Further 

evidence is provided to suggest that regional sweat collection techniques overestimate 
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sweat sodium concentrations obtained from the whole body washdown technique, but there 

is a strong correlation between the two collection methods. 
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7.1 Introduction 

Individual sweat electrolyte losses during exercise can vary greatly.  Recent studies have 

reported average sweat sodium losses of between 1.5 – 2.3g (67 – 99mmol) during a 90 

minute training session, but for some individuals sodium losses were as high as 3.1g 

(133mmol) (Maughan et al, 2004, 2005; Shirreffs et al, 2005).  Stofan et al (2002) have 

also reported large sweat sodium losses in American Football players during training.  For 

one individual, 9.9g of sodium was lost in a 2h training session.  Whilst the values reported 

above most likely overestimate sweat sodium losses by approximately 30-40% due to the 

regional sweat collection method that was employed (Shirreffs et al, 2006), even when this 

is corrected for, individuals would still lose substantial amounts of sodium. 

 

In some sports, athletes participate in training sessions twice a day and there may be 

situations in other sports where this occurs on an infrequent basis during the season.  It has 

been previously reported that sweat electrolyte losses during a second exercise bout were 

similar to the first exercise bout undertaken earlier that same day (Chapter 6).  Provided 

there is not a compensatory increase in sodium intake, sweat sodium losses would account 

for a greater proportion of dietary sodium intake, if not exceed it.  Those individuals prone 

to large sweat sodium losses may be predisposed to an increased risk of muscle cramps 

(Dill et al, 1938; Stofan et al, 2005) and possibly hyponatraemia (Montain et al, 2006). 

 

The sweat glands have priority over the kidneys for sodium and therefore as a result of the 

sweat sodium losses incurred during exercise, urine sodium excretion is reduced (Lichton, 

1957).  In Chapter 6, sodium balance was not measured, but Godek et al (2005) reported 

urine sodium concentrations during two-a-day practices in 10 college American Football 

players to be significantly depressed compared to baseline values during the 8 day study 

period.  In some individuals urine sodium concentrations were undetectable on a number of 

days, indicating sodium retention by the kidneys.  Whilst the authors suggested this 

indicated a negative sodium balance, urine sodium concentrations were averaged from 4 

urine collections per day and sodium intake and sweat sodium losses were not measured.    

 

In Chapter 5 of this thesis, sweat sodium losses during a single exercise session did not 

exceed sodium intake and were sufficiently offset by the conservation of sodium by the 

kidney.  Additionally, there were no differences in the urine osmolality of the first void on 

each day, indicating that individuals successfully replaced the fluid and electrolyte losses 
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incurred during the exercise bout.  The aim of this study was to determine if two exercise 

sessions on the same day, would 1) result in negative sodium balance or 2) render an 

individual hypohydrated the following day. 

 

7.2 Method 

7.2.1 Subjects 

Nine healthy male volunteers participated in this study which had received prior approval 

from the Loughborough University Ethical Advisory Committee (R08-P55).  All subjects 

were informed about the experimental procedures and associated risks before their written 

consent was obtained.  Their physical characteristics (mean ± SD) were: age 24 ± 4y, 

height 1.81 ± 0.08m, body mass 77.2 ± 7.1kg and body fat 12 ± 3%. 

 

7.2.2 Experimental protocol 

Subjects reported to the laboratory at least one day prior to the commencement of the study 

period when they were given the equipment for dietary and urinary collections and a 

detailed briefing of the collection procedures.  In addition, the logbooks provided 

contained written instructions about the dietary and urine collection process.  Figure 7.1 

shows a schematic representation of the study protocol.   

 

 

 

Figure 7.1 Schematic of the study period.  Body mass (BM), dietary collection period 

(D), 24h urine collection (U) and whole body washdown procedure 

(WBW).  Each 24h urine collection started the morning of one day and was 

terminated on the morning the following day. 
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On the morning of day 1, subjects arrived in the laboratory and nude body mass (BM) was 

measured (AFW-120K, Adam Equipment Co Ltd, Milton Keynes, UK).  Body fat was then 

estimated using Harpenden Skinfold Callipers according to the method of Durnin & 

Rahaman (1967).  Subjects were then free to leave the laboratory and continue with their 

normal daily activities but were asked to follow the instructions for the dietary and urine 

collection procedures (described below).   

 

Subjects reported to the laboratory on the morning and afternoon of day 4 for the first 

(AM) and second (PM) exercise sessions which were separated by a 5h recovery period.  

Subjects were allowed to consume their normal breakfast or lunch before arrival at the 

laboratory if they wished.  On day 6 a final nude BM was obtained. 

 

7.2.3 Dietary monitoring 

Subjects were asked to follow their normal dietary behaviour, but to weigh and record all 

food and drink consumed for 5 consecutive days using electronic scales.  The dietary 

collection procedures are described fully in Chapter 2. 

 

7.2.4 Urine collection 

During the same 5-day period and on the morning of day 6, subjects were asked to collect 

all urine passed.  On the first day of collection, the first pass of urine was collected, but 

was not included in any calculations apart from the assessment of hydration status.  The 

24h urine collection procedures are described fully in chapter 2.  

 

7.2.5 Physical activity 

During the collection period, subjects were asked to refrain from strenuous exercise that 

would provoke sweat losses (apart from the exercise sessions on day 4).  On arrival at the 

laboratory on the morning of day 4, subjects were asked to empty their bladder as 

completely as possible.  This urine sample was included in 24h collections but was also 

used as an indicator of pre-exercise hydration status.  Subjects then commenced the whole 

body washdown procedure (Shirreffs & Maughan 1997) as described in Chapter 2.   

 

Dehydration was induced by intermittent exercise on a cycle ergometer at an intensity 

which corresponded to 153 ± 12W.  Exercise periods of 10 minutes were separated by 10 

minutes of rest, during which subjects remained inside the bag.  This pattern continued 
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until 40 minutes of exercise was completed.  Heart rate (Polar Favor, Kempele, Finland), 

ambient temperature and relative humidity were recorded every 5 minutes throughout 

exercise.  Upon the completion of exercise subjects showered and a final nude BM was 

obtained before subjects dressed and returned to a comfortable environment.  Subjects 

were then free to leave the laboratory and continue with their normal daily activities.  

Approximately 4.5h following the completion of the first exercise bout, subjects returned 

to the laboratory and provided a urine sample before completing the same washdown 

procedure as that carried out in the morning.  The exercise task and sweat collection 

method were repeated in exactly the same manner as the morning session with the onset of 

exercise occurring 5h after the cessation of the morning exercise session.  After the 

completion of the afternoon session, subjects were free to leave the laboratory and continue 

with their normal daily activities. 

 

7.2.6 Sample analysis 

Urine samples were analysed for sodium, potassium, chloride, creatinine and osmolality as 

described in Chapter 2.   Sweat samples were analysed for sodium, potassium and chloride 

by ion chromatography (DX-80 Ion Analyser, Dionex).  Completeness of each 24h urinary 

collection was reported by subject self-report each day and via creatinine analysis (Jaffe 

1886).  Weighed food intakes were analysed using Compeat Pro 5.8.0 Software.   

 

7.2.7 Statistical analysis 

All data were tested for normality of distribution.  As urine electrolyte excretion can 

provide an accurate estimate of electrolyte intake in non-sweating individuals (Holbrook et 

al, 1984) electrolyte intake assessed by weighed food diaries and 24h urine excretion were 

subject to a two-factor repeated measures ANOVA, followed by paired t-tests with Holm-

Bonferroni adjustment for multiple comparisons.  Other data were analysed by one-factor 

repeated measures ANOVA followed by paired t-tests with Holm-Bonferroni adjustment 

for multiple comparisons or Freidman’s Test followed by Wilcoxon tests when found not 

to be normally distributed.  Correlations were assessed using Pearson’s correlation or 

Spearman’s Rank when found not to be normally distributed.  Parametric data are 

expressed as mean ± SD and non-parametric data as median (range).  In some 

circumstances a range has been reported regardless of the distribution of data as it was 

deemed to provide further useful information.  Statistical significance was set at P<0.05. 
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7.3 Results 

7.3.1 Exercise 

The mean BM loss during exercise was similar (P=0.555) on AM and PM (Table 7.1).  

Estimated whole body sweat rates were 1.15 Litres/hour (L/h) (0.74 – 1.54 L/h) and 1.11 

L/h (0.79 – 1.49L/h) on AM and PM, respectively.  There was no difference in whole body 

sweat sodium (P=0.969), potassium (P=0.484) or chloride (P=0.715) concentration 

between AM and PM (Table 7.1).  Similarly, there was no difference in total sweat losses 

of sodium (P=0.934), potassium (P=1.000) or chloride (P=0.539) between AM and PM 

(Table 7.1).    

 

Table 7.1 Whole body sweat loss, sweat electrolyte concentrations ([electrolyte]) and 

total electrolyte losses during AM and PM and cumulative losses for both 

exercise sessions (Total). 

 

 Exercise Session 

 AM PM Total 

Sweat Loss (L) 1.34  

(0.86-1.80) 

1.30  

(0.92-1.74) 

2.64  

(1.80-3.48) 

Dehydration (% BM) 1.7 ± 0.4 1.7 ± 0.4 ----- 

Sweat [Na
+
] (mmol/L) 48 ± 31 47 ± 25 ----- 

Sweat [K
+
] (mmol/L) 5.2 ± 1.5 5.3 ± 1.4 ----- 

Sweat [Cl
-
] (mmol/L) 46 ± 31 46 ± 26 ----- 

Sweat Na
+
 Loss (mmol) 71 ± 59 

(14 – 163) 

67 ± 47 

(18 – 129) 

138 ± 106 

(32 – 287) 

Sweat K
+
 Loss (mmol) 7.5 ± 3.9 

(3.0 – 11.8) 

7.4 ± 3.4 

(3.3 – 11.4) 

14.9 ± 7.3 

(6.7 – 23.1) 

Sweat Cl
-
 Loss (mmol) 70 ± 59 

(14 – 163) 

66 ± 48 

(18 – 129) 

135 ± 106 

(32 – 287) 

 

7.3.2 Relationship between sweat rate & sweat composition 

There were no differences in sweat or electrolyte losses between exercise bouts, therefore 

data from both the AM and PM exercise bouts were pooled (n=18) to assess the 

relationship between sweat rate and composition. Sweat sodium (r = 0.56; P=0.017), 

potassium (r = 0.69; P=0.001) and chloride (r = 0.55; P=0.017) concentrations were all 

positively related to sweat rate. 

 

7.3.3 Hydration status 

There was no difference (P=0.803) in the osmolality of the first pass of urine between days 

(Table 7.2).  The average osmolality of the first void was 480 ± 156mosmol/kg.  There was 
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no difference (P=0.766) in the osmolality of urine samples obtained immediately before 

AM (335 ± 266mosmol/kg) and PM (378 ± 235mosmol/kg).   

 

Table 7.2 Osmolality of the first void of each day.  Values are mean ± SD and (range). 

 Day 1 Day 2 Day 3 Day 4 Day 5 

Urine Osmolality 

(mosmol/kg) 

500 ± 189 486 ± 153 462 ± 122 463 ± 138 490 ± 197 

>900mosomol/kg 0 0 0 0 0 

700-900mosmol/kg 1 1 0 0 2 

<700mosmol/kg 8 8 9 9 7 

 

7.3.4 Body mass 

Subjects’ BM remained stable (P=0.496) between the morning of day 1 (77.2 ± 7.1kg) and 

day 6 (77.1 ± 7.5kg).  The coefficient of variation (CV) in BM over the study period was 

0.6 ± 0.2% (range 0.4 to 1.0%). There was no difference in pre-exercise body mass 

between trial AM (77.0 ± 7.4kg) and PM (77.1 ± 7.4kg; P = 0.662). 

 

7.3.5 Duration of urine collection 

There were no differences (P=0.850) in the duration of each day’s urine collection (Table 

7.3) but all urine data for each collection period were adjusted to 24h, with this value being 

used in all subsequent analysis.  The average duration of each urine collection over the 5-

day period was 24.00h (23.53 – 24.33h).  The CV for the duration of urine collection was 

0.1 % (0.0 – 1.0%).  

 

Table 7.3 Duration of each day’s urine collection.  Values are median (range). 

 Day 1 Day 2 Day 3 Day 4 Day 5 

Duration of 

Collection (h) 

24.00 

(23.91 - 24.17) 

24.00 

(24.00 - 24.15) 

24.00 

(23.75 - 24.10) 

24.00 

(23.92 – 24.33) 

24.00  

(23.53 – 24.17) 

 

7.3.6 Completeness of urine collections 

Two subjects reported a failure to collect one complete 24h collection.  There were no 

significant differences (P>0.05) in the amount of creatinine excreted during each 24h 

collection period when the missed collections were included (data not shown) or excluded 

(Table 7.4) in data analysis.  The CV for urinary creatinine excretion for the two subjects 

with incomplete collections was 8% and 22%.  The incomplete collections have been 

omitted from all further data reported here.  The average amount of creatinine excreted in 

the urine each day over the 5-day period was 2024 ± 339mg.  The within-individual CV for 

urinary creatinine excretion was 9 ± 5%.   
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Table 7.4   Urine creatinine excretion (mg) during each 24h period. Values are mean ± SD.  

 Day 1 Day 2 Day 3 Day 4 Day 5 

Urine 

Creatinine 
2040 ± 350 2012 ± 346 2085 ± 435 2072 ± 357 1918 ± 236 

 

7.3.7 Dietary intake and urine excretion 

Urine volume and dietary nutrient intake during each 24h period are shown in Tables 7.5 

and 7.6.  There were no significant differences (P>0.05) in energy, carbohydrate, protein, 

fat or fibre intake between days.  A significantly greater amount of fluid was consumed on 

day 4 (5492 ± 1015mL) than on day 5 (3733 ± 978mL; P=0.040).  The CV’s for nutrient 

intakes and urine excretion are shown in Table 7.7.   

 

Figure 7.2 shows the dietary electrolyte intake and urine electrolyte excretion during each 

24h period.  Dietary sodium intake did not change significantly over time, but urine 

sodium excretion was significantly lower on day 4 than day 1 (P=0.036) and day 3 

(P=0.020).  Dietary sodium intake was similar to urine sodium excretion on days 2 and 3 

(P>0.05) but on day 1 urine sodium excretion tended to be greater than dietary sodium 

intake (P=0.070).  On the day of exercise (day 4) urine sodium excretion (80 ± 35mmol) 

was significantly lower than dietary sodium intake (151 ± 52mmol; P=0.017) and on day 5 

urine sodium excretion (109 ± 42mmol) remained significantly lower than sodium intake 

(138 ± 34mmol; P=0.031). 

 

Dietary potassium intake and urinary potassium excretion did not change significantly over 

the 5-day study period (P=0.354) (Figure 7.2).  There were no differences (P>0.05) 

between urine potassium excretion and dietary potassium intake on day 3 and day 4, but 

urine potassium excretion was lower than dietary potassium intake on day 1 (P=0.016), day 

2 (P=0.049) and day 5 (P<0.001). 

 

Dietary chloride intake did not change significantly over time, but urine chloride excretion 

was significantly lower on day 4 than day 1 (P=0.020) and day 3 (P=0.020) (Figure 7.2).  

Dietary chloride intake was similar to urine chloride excretion on days 1, 2 and 3 (P>0.05) 

but on the day of exercise (day 4) urine chloride excretion (63 ± 26mmol) was significantly 

lower than dietary chloride intake (148 ± 54mmol; P=0.008).  On day 5 urine chloride 

excretion (82 ± 34mmol) remained lower than chloride intake (134 ± 30mmol; P=0.002). 
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Table 7.7 The CV (%) in nutrient intake and urine excretion over all experimental 

days (All Days) and days 1, 2 and 3 (3 Days). 

 

 Dietary Intake Urine Excretion 

 All Days 3 Days All Days 3 Days 

Water 26 ± 9 17 ± 6 ---- ---- 

Energy 19 ± 4 17 ± 8 ---- ---- 

Carbohydrate 26 ± 11 25 ± 20 ---- ---- 

Protein 22 ± 6 21 ± 10 ---- ---- 

Fat 27 ± 11 21 ± 13 ---- ---- 

Fibre 29 ± 8 31 ± 11 ---- ---- 

Sodium 25 ± 9 21 ± 12 39 ± 19 25 ± 11 

Potassium 22 ± 12 21 ± 16 22 ± 7 19 ± 9 

Chloride 25 ± 10 23 ± 12 41 ± 18 21 ± 10 
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A 

 
B 

 
C 

 
 

Figure 7.2 Dietary intake and urine excretion of sodium (A), potassium (B) and 

chloride (C) during each 24h period.  All Values are mean ± SD. * denotes 

significant difference between dietary intake and urine excretion. 
a
 denotes 

urine electrolyte excretion significantly different from day 1, 
b
 denotes urine 

electrolyte excretion significantly different from day 3. 
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7.3.8 Electrolyte balance 

Electrolyte balance was estimated from dietary electrolyte intake, urinary electrolyte 

excretion and sweat electrolyte loss.  There were no significant differences in net 

potassium (P=0.583) or chloride (P=0.058) balance between any 24h period (Figure 7.3).  

Sodium balance was more positive on day 5 (29 ± 33mmol) than day 1 (-40 ± 30mmol; 

P=0.030).  The mean electrolyte balance over the last 4 days of the study period were -4 ± 

24mmol, 19 ± 19mmol and 9 ± 24mmol for sodium, potassium and chloride, respectively. 

A 

 

   B 

 

   C 

 

 

Figure 7.3 Sodium (A), Potassium (B) and Chloride (C) balance over each 24h period.  

Values are calculated from urinary excretion, dietary intake and sweat loss.  

Values are mean ± SD. 
a
 denotes significantly different from day 1 (P<0.05) 
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7.3.9 Relationship between electrolyte intake and electrolyte excretion 

Fluid intake was positively related (P<0.05) to urine volume on days 1, 2 and 3 and tended 

to be related on day 5 (P=0.052) (Table 7.8).  Dietary sodium intake was positively related 

(P<0.05) to urine sodium excretion on days 2 and 3 and when expressed over the 5-day 

period (r = 0.67; P=0.050).  The relationship between dietary potassium intake and urine 

potassium excretion was positive (P<0.05) on days 1 and 5 and when expressed over the 5 

day study period (r = 0.71; P=0.033).  The relationship between dietary chloride intake and 

urine chloride excretion showed great variability each day, but when expressed over the 5 

day period the relationship was positive and significant (r = 0.67; P=0.049).   

 

Table 7.8 The relationship between dietary water intake and urine volume and dietary 

electrolyte intake and urine electrolyte excretion in each 24h period, the 3 

day average (days 1, 2, 3) and the 5 day average (all 5 days). Values are 

correlation coefficients. *denotes significant relationship (P<0.05). 

 
 

Day 1 Day 2 Day 3 Day 4 Day 5 
5 Day 

Average 

3 Day 

Average 

Water intake & urine volume 0.97* 0.90* 0.86* 0.22 0.66 0.92* 0.96* 

Na
+
 intake & urine Na

+
 0.39 0.70* 0.68* 0.06 0.65 0.67 0.84* 

K
+
 intake & urine K

+
 0.71* 0.27 0.61 0.20 0.95* 0.71* 0.62* 

Cl
-
 intake & urine Cl

-
 0.40 0.50 0.18 0.07 0.44 0.67* 0.82* 

 

7.3.10 Relationship between energy intake and electrolyte intake. 

Sodium intake was positively related to energy intake on day 1, but when expressed over 

all 5 days the relationship was weak (r = 0.22; P=0.564).  The relationship between 

potassium intake and energy intake was significant only on day 4.  When expressed over 

all 5 days the relationship was moderate but not significant (r = 0.51; P=0.163).  Chloride 

intake was positively related to energy intake on day 1, but when expressed over all 5 days 

the relationship was weak and non-significant (r = 0.35; P=0.350).  The average sodium 

and potassium densities of the diets were 1.2g (53mmol)/1000kcal and 1.5g 

(38mmol)/1000kcal, respectively. 

 

Table 7.9 The correlation coefficients between dietary energy intake (kcal) and 

dietary electrolyte intake (mmol) during each 24h period, the 3 Day 

Average (days 1, 2, 3) and 5 Day Average (days 1, 2, 3, 4, 5). *denotes 

significant relationship (P<0.05). 

 

 Day 1 Day 2 Day 3 Day 4 Day 5 
5 Day 

Average 

3 Day 

Average 

Energy & Na
+
 Intake 0.74* 0.34 0.45 0.56 0.33 0.22 0.27 

Energy & K
+
 Intake 0.48 0.30 0.64 0.89* 0.61 0.51 0.02 

Energy & Cl
-
 Intake 0.86* 0.48 0.46 0.58 0.17 0.35 0.35 
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7.3.11 Relationship between electrolyte intake & sweat electrolyte loss 

The total amount of sodium, potassium and chloride lost in sweat was unrelated to the 

dietary intake of these electrolytes on the days preceding exercise. (Table 7.10).  The sweat 

electrolyte losses incurred during the exercise bout on day 4 accounted for 94 ± 72% 

(range 27 – 226%), 14 ± 6% (range 5-23%) and 94 ± 71% (range 26-221%) of the dietary 

sodium, potassium and chloride intake for that day, respectively.  The relationship between 

the total volume of sweat lost during exercise and the volume of fluid consumed during the 

same day was moderate and approached significance (r = 0.67; P=0.050).  However, no 

relationship was seen on day 4 between dietary electrolyte intake and sweat electrolyte loss 

for sodium, potassium or chloride (Table 7.10).  

 

Table 7.10 The relationship between dietary electrolyte intake (mmol) and whole body 

sweat electrolyte loss (mmol).  Dietary values are the means of days 1, 2 

and 3 (3 Day Average), day 3 and day 4.  Values are correlation 

coefficients. 

 

 3 Day 

Average 

Day 3 Day 4 

Dietary Na
+
 Intake & Sweat Na

+
 Loss 0.52 -0.13 0.33 

Dietary K
+
 Intake & Sweat K

+
 Loss 0.18 -0.35 0.33 

Dietary Cl
-
 Intake & Sweat Cl

-
 Loss 0.37 -0.30 0.18 

Dietary Fluid Intake & Sweat Loss --- --- 0.67 

 

7.4 Discussion 

This study investigated the effect of two exercise sessions in the heat on electrolyte balance 

in individuals who were consuming their normal self-selected diets.  The loss of sodium in 

sweat during exercise accounted for 94% (range 27-226%) of dietary sodium intake for 

that day.  Whilst fluid losses were adequately replaced on day 4, there was evidence of 

significant urinary sodium conservation on the day of exercise and on the following day 

but no evidence of an increased sodium intake. 

 

Each exercise session involved 40 minutes of exercise, totalling 70 minutes of heat 

exposure (including rest periods) and resulted in approximately 1.3L of sweat being lost 

per exercise session.  This is not dissimilar to typical sweat losses incurred during a 

training session or competition (Burke & Hawley, 1997; Broad et al, 1996).  Therefore 

whilst the protocol was considered representative of the normal sweat losses that are 

encountered by athletes during exercise, it is acknowledged that the extent of sweat 
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electrolyte losses can vary greatly between individuals due to the large variation in sweat 

composition and rate.   

 

7.4.1 Sodium 

It was reported previously that sweat sodium losses during a single exercise session 

accounted for ~43% of dietary sodium intake (Chapter 5).  In Chapter 6, it was also shown 

that whole body sweat composition remained un-altered despite the loss of electrolytes in 

sweat during a previous exercise bout undertaken earlier that same day.  Indeed the finding 

that prior exercise had no significant effect on sweat composition was replicated in the 

present study when exercise bouts were separated by 5h.  Whilst a reduction in sweat 

sodium concentration has been reported to occur approximately 4h after a previous 

exercise bout, it may take ~22h before a significant reduction in sweat sodium 

concentration is observed (Robinson et al, 1955).  As a result of the two exercise sessions 

in the current study, cumulative sweat sodium losses amounted to 138 mmol (range 32 – 

287mmol) on day 4.  This is equivalent to 3.1g of sodium (range 0.7 – 6.6g). 

 

Sweat sodium losses could potentially be off-set by an increase in sodium intake and 

indeed other investigators have previously reported an increased sodium intake following 

exercise (Takamata et al, 1994; Leshem et al, 1999).  Individuals consumed on average 

154mmol of sodium per day during the current study, but their sodium intake on day 4 

(151mmol) was not significantly greater than that on any other day.  Furthermore there was 

no relationship between the amount of sodium lost in sweat and dietary sodium intake on 

day 4 (r = 0.33).  Taken together this would suggest individuals did not show a preference 

for salty foods following exercise which is in contrast to the studies mentioned previously 

(Takamata et al, 1994; Leshem et al, 1999).  There are several factors which may explain 

this finding.  Subjects in the current study were all university students and were 

encouraged to follow their normal daily routine.  This involved lectures and other 

commitments and therefore there may have been only a limited period of time to consume 

foods during the 5h break between exercise bouts or following the second exercise bout.  

Alternatively, just by the nature of completing two exercise bouts and the whole-body 

washdown procedure, approximately 4h of their day was spent in the laboratory where 

food and fluid intake was restricted.  These potential time demands are most likely 

experienced by other populations to a greater or lesser degree including athletes who may 

have team meetings or other responsibilities during the intervening period between training 
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sessions.  Lastly, exercise may reduce appetite especially when undertaken in the heat 

(Herman, 1993).   These factors alone or in combination may have inadvertently led to a 

reduced opportunity and/or a desire to ingest food and therefore sodium on the day of 

exercise which was sufficient to override any desire for sodium.  As a result sweat sodium 

losses represented 94% (range 27 to 226%) of dietary sodium intake for that day.    

 

Instead of a change in sodium intake, there was evidence of significant sodium 

conservation by the kidneys on both day 4 and day 5 as a consequence of the sweat sodium 

losses incurred.  Lichton (1957) previously described a competition between the kidneys 

and sweat glands for sodium.  It was concluded that the sweat gland has priority over the 

kidney for sodium and as a result urine sodium excretion is reduced.  The kidneys can 

respond quickly in response to sweat sodium losses, with some reports showing this to 

occur within 1 or 2h of exercise (Robinson et al, 1955).  On day 4 urine sodium excretion 

was significantly lower than dietary sodium intake and remained significantly lower than 

dietary sodium intake on the day following exercise (day 5).  This carry-over effect was 

not seen when one exercise session was completed (Chapter 5).  Whilst this is most likely 

explained by the extra sweat sodium losses incurred during the second exercise bout; the 

scheduling of this second bout so that it was completed in the afternoon also limits the time 

available for sodium repletion post-exercise.   Godek et al (2005) have previously reported 

urine sodium excretion to be significantly depressed the day after the first of several 2-a-

day practices in American Football players which was suggested to indicate a negative 

sodium balance.  For some individuals urine sodium concentration was undetectable.  

However, urine sodium concentration was averaged from 4 collections and dietary intake 

was not recorded.  In the current study, despite the loss of sodium in sweat, sodium balance 

was not significantly different on day 4 than any other day.  The reduction in urine sodium 

excretion potentially minimised the perturbations in sodium balance for some individuals.  

But, for 3 individuals sweat sodium losses exceeded dietary sodium intake on day 4 and 

therefore regardless of the effectiveness of urinary sodium conservation would remain in 

negative sodium balance.  The positive relationship between sweat rate and sweat sodium 

concentration found in this study and by others (Allan & Wilson, 1971), meant that the two 

individuals with the highest sweat rates, had the highest sweat sodium concentrations.  

This combination produced the largest total sweat sodium losses.  As a consequence, these 

two individuals produced urine samples with an average sodium concentration of 

22mmol/L and 9mmol/L on day 4, and 12mmol/L and 9mmol/L on day 5, thus indicating 
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considerable sodium conservation by the kidneys.  Therefore whilst there was no 

significant change in sodium balance as a group, individual responses did suggest 

significant sodium losses and negative sodium balance for some individuals.  Whilst sweat 

loss can be easily monitored in athletes by changes in body mass, the assessment of sweat 

composition requires specialist equipment (Burke, 2005) and is therefore not as easily 

accessible to athletes.  Without knowing sweat composition, it is hard to accurately 

identify individuals “at risk” of large sodium losses. 

 

It is unclear as to why cumulative sweat sodium losses (138mmol) could not be completely 

accounted for by the decrease in urinary sodium excretion on day 4 and day 5 (100mmol) 

in the current study.  Dietary intake, urine excretion and whole body sweat composition 

were measured, but dermal losses outside of the laboratory and faecal electrolyte losses 

were not as they were considered negligible and consistent between days (Allsopp et al, 

1998).  Allsopp et al (1998) have reported faecal sodium excretion to be 4-5mmol/day and 

others have reported cutaneous losses of sodium to be small (0.09 – 2.59mmol/d; Dahl et al 

1955) so there is little scope for sodium conservation by these avenues.  Alternatively, 

sweat sodium losses may have been overestimated.  Many factors can influence sweat 

composition including the method of collection.  However, it is unlikely that the whole 

body washdown technique used in this study overestimated losses as it has been 

consistently shown to be more accurate than regional techniques which are prone to 

overestimation (Patterson et al, 2000; Shirreffs & Maughan, 1997; Van Heyningen & 

Weiner, 1952).  Indeed, the whole body washdown technique has been shown to be valid 

and reproducible (Shirreffs & Maughan, 1997; Chapter 2).  At least part of this discrepancy 

may be explained by individual variation, with those individuals who lost the greatest 

amount of sodium in sweat, demonstrating renal sodium conservation on day 4 and day 5, 

which may have continued into day 6 although data was not obtained on this day.   

 

7.4.2 Potassium 

In contrast to sodium, potassium is lost in relatively small amounts in sweat.  Although 

Consolazio et al (1963) have previously reported sweat potassium losses during exercise to 

account for 44% of dietary potassium intake, this was largely due to the prolonged duration 

(7.5h) of exercise-heat exposure.  Other investigators have suggested exercise can result in 

a potassium deficiency (Knochtel et al, 1972) but this was due to the determination of a 

potassium deficiency indirectly via muscle potassium concentrations, which has since been 
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suggested as an unsuitable method (Costill et al, 1982).  Indeed given the physiological 

range of sweat potassium concentrations (4-8mmol/L) an individual in the current study 

would have needed to lose between 14-28 litres of sweat before 100% of their dietary 

potassium intake was lost.   

 

Subjects in the current study lost between 7 and 23 mmol of potassium in sweat, equivalent 

to between 5 and 23% of their dietary potassium intake on day 4.  The discrepancy 

between the current study and that of Consolazio et al (1963) could also be due to the 

different potassium intakes of individuals.   In the current study, individuals consumed 

113mmol of potassium per day during the 5-day study period.  Eight individuals consumed 

more than the average reported potassium intake (81mmol) for males in the UK 

(Henderson et al, 2003) and all individuals consumed more than the subjects in the study of 

Consolazio et al (1963) (64mmol/day).  In Chapter 5 of this thesis, potassium intake was 

also higher than the UK average and in both instances the higher potassium intake was not 

related to energy intake, but instead due to an increased potassium density of diets (1.5 – 

1.6g/1000kcal).  This supports the notion of a growing trend for higher potassium intakes 

as previously reported by Henderson et al (2003).  Indeed even on very low potassium 

diets (25mmol/day), a potassium deficiency proved difficult to induce due to a concomitant 

reduction in urinary potassium excretion (Costill et al, 1982).  Consequently it would 

appear potassium losses in sweat are far less likely than sodium to result in a negative 

balance. 

 

7.4.3 Hydration status 

There were no significant differences in the osmolality of urine samples obtained from the 

first void of each morning, all of which indicated individuals were not hypohydrated 

according to the cut-off criteria reported in the literature (Cheuvront & Sawka, 2005; 

Shirreffs & Maughan, 1998).  This is in contrast to other investigators who have reported 

urine parameters of hydration status to indicate American Football players fail to replace 

sweat losses during daily two-a-day exercise sessions (Godek et al, 2005).  This 

discrepancy may be due to the fact that players lost greater amounts of sweat (although 

they had free access to fluids to help off-set sweat losses) and/or the longer training session 

duration (2h 15min v 1h 10min) compared to the current study.  Nevertheless, other studies 

(Fudge et al, 2008) have reported runners can replace sweat losses incurred during two-a-

day exercise session. 
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7.4.4 Conclusion 

Two exercise bouts scheduled on the same day resulted in the loss of large amounts of 

sodium, but not potassium, in sweat.  Sweat sodium losses corresponded to 94% of dietary 

intake.  In an attempt to maintain sodium balance there was evidence of significant sodium 

conservation by the kidneys on the day of exercise and on the following day.  In contrast 

no change in sodium intake was observed.   
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8.1 Introduction 

The relationship between carbohydrate availability and fatigue during prolonged exercise 

is widely acknowledged (Coggan & Coyle, 1987), but when exercising in the heat the 

problems of both hyperthermia and dehydration become relatively more important 

(Febbraio et al, 1996; Coyle, 2004; Nielsen et al, 1993; Bilzon et al, 2002).  Current 

recommendations encourage athletes to drink at a rate that will prevent excessive 

dehydration (>2% BM) during exercise (ACSM, 2007) and although individual drinking 

practices vary, most will finish a bout of exercise in a hypohydrated state (Sawka & 

Pandolf, 1990).  Therefore, the restoration of fluid and electrolyte losses should form an 

integral part of the recovery process.  Athletes seem capable of replacing these losses with 

normal food and fluid intake when the interval between exercise bouts is more than 24h 

(Casa et al, 2000), but when repeated exercise sessions are scheduled on the same day or 

the fluid deficit is large, some athletes may fail to  re-establish fluid and electrolyte balance 

(Godek et al, 2005). 

 

Although current guidelines suggest individuals should reduce their sodium intake (SACN 

2003; Institute of Medicine 2004), there are certain situations in a sporting environment 

when sodium ingestion is recommended.  The previous experimental chapters of this thesis 

have focused on the effects of exercise on sodium intake and excretion over a 24h period, 

but this chapter will focus on fluid and electrolyte intake in an acute period post-exercise. 

 

The ingestion of plain water following exercise results in a fall in plasma osmolality and 

sodium concentration which stimulates urine production and reduces the drive to drink 

(Nose et al, 1988a), both of which will delay the rehydration process.  In contrast, the 

addition of sodium chloride to plain water increases intake and reduces urine output 

(Wemple et al, 1997).  The importance of sodium in rehydration drinks has been reported 

by others (Shirreffs et al, 1996; Mitchell et al, 2000) and has been systematically evaluated 

in several studies (Maughan and Leiper, 1995; Shirreffs and Maughan, 1998b; Merson et 

al, 2008).  Maughan and Leiper (1995) reported that when a volume equal to 150% of body 

mass (BM) loss was ingested following exercise-induced dehydration, the amount of fluid 

retained was inversely related to the drinks sodium concentration.  In some situations 

sodium may not be the only electrolyte that can improve fluid retention.  Maughan et al 

(1994) reported that the addition of either potassium (25mmol/L) or sodium (60mmol/L) to 
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a rehydration beverage proved equally effective in retaining fluid although their effects 

were not additive when ingested in a volume of fluid equal to BM loss. 

 

For complete fluid restoration following dehydration, a volume greater than sweat loss 

must be consumed due to the ongoing obligatory water losses that persist despite an 

individual being in body water deficit (Shirreffs et al, 1996; Mitchell et al, 2000).  In day to 

day situations both psychological and physiological factors govern intake and therefore the 

palatability of ingested fluids can prove a determining factor in the rehydration process.  

Whilst the addition of sodium chloride to fluids can increase volitional intake (Wemple et 

al, 1997), a high-sodium content may make a drink unpalatable (Wemple et al, 1997; 

Nadel et al, 1990).  Commercially available sports drinks are therefore designed to meet a 

balance between efficacy and palatability and typically contain around 25mmol/L of 

sodium (Shirreffs, 2003).  Investigators have reported a sports drink to have a slight 

advantage over plain water in the restoration of fluid balance (Costill & Sparks, 1973; 

Gonzalez-Alonso et al, 1992; Shirreffs et al, 2007a) and taken in combination with its 

enhanced palatability (Passe et al, 2004), may confer a distinct advantage in terms of 

rehydration. 

 

Despite the relatively high electrolyte content of milk (Shirreffs, 2003; Table 8.1), it seems 

well tolerated and is widely consumed in Europe, North America, Australia and New 

Zealand (Amanatidis, 2002).  Investigations administering milk following exercise have 

looked at muscle protein synthesis (Elliott et al, 2006; Wilkinson et al, 2007), muscle 

function (Wojcik et al, 2001), glycogen synthesis (Wojcik et al, 2001; Karp et al, 2006) 

and endurance capacity (Thomas et al, 2009; Karp et al, 2006), but until recently there was 

little information on the efficacy of milk in the restoration of fluid balance following 

exercise-induced dehydration (Shirreffs et al, 2007b).  Shirreffs et al (2007b) reported that 

following exercise-induced dehydration of 1.8% BM, the consumption of skimmed milk in 

an amount equal to 150% of BM loss, resulted in a reduced urine output over the following 

4h recovery period compared to a sports drink.  Consequently subjects remained 

euhydrated during the milk trial but were in negative fluid balance having consumed the 

sports drink.  Whilst the effects of dehydration on performance are well documented, if 

individuals commence exercise in a hypohydrated state, further decrements in performance 

may be experienced.  Even low levels of dehydration (~1.8% of BM) can impair 
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performance (Walsh et al, 1994; Armstrong et al, 1985), with detrimental effects occurring 

in a graded manner as dehydration progresses (Montain & Coyle, 1992). 

 

The purpose of this study was to determine the effectiveness of a sports drink or skimmed 

milk in restoring fluid and electrolyte balance following intermittent exercise and on 

subsequent cycling capacity in the heat. 

 

8.2 Method 

8.2.1 Subjects 

Seven physically active male volunteers participated in this study which had received prior 

approval from the Loughborough University Ethical Advisory Committee (R06-P15).  

Their physical characteristics (mean ± SD) were: age 23 ± 3y, height 1.80 ± 0.10m, body 

mass 75.6 ± 11.1kg, body fat 10 ± 2%, peak oxygen consumption (VO2peak) 58.7 ± 4.6 

ml/kg/min.   

 

8.2.2  Preliminary trials 

Subjects completed two preliminary trials.  The first was to determine peak oxygen uptake 

and the second acted as a familiarisation trial.  Peak oxygen uptake (VO2peak) was 

determined by a discontinuous, incremental exercise protocol on a cycle ergometer (Gould 

Corival 300, Groningen, Holland).  The test commenced at a workload of 100 watts (W) 

for 5 minutes.  All subsequent stages were 3 minutes in duration and subject to workload 

increments of 25 or 50W which were determined after consultation with the subject and 

depended on their performance during the previous stage.  This process continued until 

volitional exhaustion.  Heart rate (HR) (Polar Favor, Kempele, Finland) and ratings of 

perceived exertion (RPE) (Borg, 1973) were assessed during the last 30 seconds of each 

stage.  Gas samples were obtained in the last 2 minutes of the first stage and in the last 

minute of all subsequent stages.  Expired gas was collected using Douglas bags and 

analysed for oxygen and carbon dioxide (Servomex 1440, Crowborough, UK), volume 

(Harvard Apparatus Ltd, Edenbridge, UK) and temperature (Edale Instruments, Cambridge 

UK).  Oxygen uptake, carbon dioxide production and respiratory exchange ratio (RER) 

were subsequently calculated and used to determine the workload that would be 

undertaken during experimental trials.  VO2peak was deemed to be achieved if two or more 

of the following criteria were met: 1) A plateau in oxygen consumption, 2) an RER ≥ 1.15, 
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3) HR ± 10 bpm of age-predicted maximum, and 4) RPE of 19 or 20 (British Association 

of Sports & Exercise Sciences, 1997).   

 

A preliminary trial was completed approximately one week prior to the first experimental 

trial during which subjects underwent all testing procedures in an attempt to familiarise 

them with the laboratory setting and the sensation of exercising to exhaustion. The point of 

exhaustion was determined when the subject failed to maintain a cadence above 60 rpm 

despite verbal encouragement.  Blood samples were not taken from subjects already 

familiarised to this procedure. 

 

8.2.3 Pre-trial standardisation 

In an attempt to standardise the state of hydration prior to each trial, subjects kept a diary 

of their dietary and exercise regimens in the 48h period preceding the first experimental 

trial and were asked to replicate their behaviour prior to the second trial.  Subjects were 

asked to refrain from strenuous exercise and alcohol intake during the 24h period 

immediately preceding each trial.  All experimental trials began in the morning following 

an overnight fast and the consumption of 500mL of water 1.5h before arrival in the 

laboratory.    

 

8.2.4 Experimental protocol 

Figure 8.1 shows a schematic representation of the study protocol.  Upon arrival in the 

laboratory, subjects were seated in a comfortable environment (approximately 25˚C) for 15 

minutes [to control for the postural effects on blood volume (Shirreffs & Maughan, 1994)], 

before a 5mL blood sample was obtained from a superficial antecubital vein of the arm.  

Subjects were then asked to provide a urine sample and to complete a subjective feelings 

questionnaire which required them to rate their feelings of thirst, stomach fullness, 

bloatedness, hunger, mouth feel, tiredness, alertness, ability to concentrate and head 

soreness (Appendix A).  Upon entering the heat room which was maintained at 

approximately 35˚C and 65% relative humidity (RH), nude body mass (BM) was measured 

to the nearest 10g (Adam CFW150 digital scale, Milton Keynes, UK).  Two sweat patches 

(Tegaderm, 3M, Loughborough, UK) were placed on the subject’s back, with the skin 

being initially cleaned with distilled, de-ionised water.  Dehydration was induced by 

intermittent exercise on a cycle ergometer at an intensity which elicited 58 ± 4% VO2peak.  

Exercise periods of 10 minutes were separated by 5 minutes of rest, during which subjects 
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towel dried and nude BM was obtained.  This pattern continued until subjects were 

dehydrated by almost 2% BM, with the remaining BM loss achieved via the ongoing 

perspiration that followed exercise.  The first sweat patch was removed when the subject 

had lost approximately 1% BM and the other upon the completion of the last exercise bout, 

with a sample being immediately extracted for subsequent analysis in both instances.  After 

a shower, final BM was obtained before subjects dressed and returned to a comfortable 

environment within 15 minutes of the completion of exercise.  A 21-gauge butterfly 

cannula was then introduced into a superficial forearm vein and was kept in place for the 

remainder of the trial.  Following 15 minutes of seated rest a blood sample was taken, a 

urine sample obtained and a questionnaire completed.   

B
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BM BM
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Rehydration Recovery Period Exercise
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Figure 8.1 Schematic of the study period.  Drink consumption (D), blood (B), urine 

(U), questionnaire (Q) and expired air (GAS) collection and body mass 

(BM), ratings of perceived exertion (RPE), thermal comfort (TC), heart rate 

(HR), skin temperature (Tsk) and rectal temperature (Tre) measurements. 

 

Over the following 60 minutes subjects ingested either a sports drink (Powerade, The Coca 

Cola Company) (CHO-E) or skimmed milk (Tesco PLC, Cheshunt, UK) (M) in a volume 

equal to 150% of the BM loss (Table 8.1).  This was divided into 4 equal volumes with one 

given every 15 minutes.  Drinks were served between 10-12°C.  The order of 

administration of test drinks was randomised using a crossover design, and separated by a 

minimum of 7 days to avoid any training or acclimation effect (Barnett & Maughan, 1993).  

Further blood and urine samples were obtained following rehydration (0h) and at 1, 2 and 

3h.  At these time points, questionnaires were administered that did not differ in content to 

those administered before exercise, with the exception of those given at the end of the 

rehydration period which had additional questions regarding subjective perceptions of the 

test drink (How sweet, salty, bitter and pleasant did your drink taste? How refreshed do 
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you feel?).  In each case a 100mm visual analogue scale was used, anchored at each end by 

appropriate verbal cues (Appendix B). 

 

Approximately 2.5h following the rehydration period, subjects were reweighed and asked 

to position a rectal probe 10cm beyond the anal sphincter to allow rectal temperature to be 

measured.  Skin probes (YSI UK Ltd, Hampshire, UK) were then attached at four body 

sites (chest, arm, thigh, calf) and finally a heart rate monitor (Polar Favor, Kempele, 

Finland) was positioned.   

 

Table 8.1 Composition of test drinks.  Electrolyte concentrations and osmolality are 

expressed as mean ± SD. * denotes values obtained from drink labels 

 

 CHO-E M 

Energy (kcal/L) * 240 340 

Carbohydrate (g/L) * 60 50 

Fat (g/L) * 0 1 

Protein (g/L) * 0 33 

Sodium (mmol/L) 23 ± 1 32 ± 1 

Potassium (mmol/L) 1.6 ± 0.1 42 ± 0 

Chloride (mmol/L) 1 ± 0 36 ± 2 

Osmolality (mosmol/kg) 280 ± 2 278 ± 4 

 

Subjects re-entered the heat chamber at the end of the 3h recovery period which was 

maintained at 35.3 ± 0.5˚C and 63 ± 2% relative humidity during exercise.  Subjects 

mounted an electronically braked cycle ergometer (Gould Corival 300, Groningen, 

Holland) and began cycling at an intensity eliciting 62 ± 2% VO2peak.  Rectal temperature 

(Tre), skin temperatures and heart rate (HR) were recorded every 5 minutes throughout 

exercise.  Weighted mean skin temperature (Tsk) was subsequently calculated according to 

the method of Ramanathan (1964).  Ratings of perceived exertion (Borg 1973; Appendix 

C) and thermal sensation (a 21-point scale ranging from unbearably cold (-10) to 

unbearably hot (+10)) (Appendix D) were assessed by questionnaire at this time and every 

10 minutes thereafter during exercise.  Expired gas samples were collected every 15 

minutes and analysed for oxygen and carbon dioxide to allow substrate oxidation to be 

calculated.  The point of exhaustion was determined when the subject failed to maintain a 

cadence above 60 rpm despite verbal encouragement.  Immediately upon the cessation of 

exercise a blood sample was obtained.  BM was measured following exercise and sweat 

loss during exercise was determined. 
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8.2.5 Sample analysis 

Urine and sweat samples were analysed for sodium, potassium, chloride and osmolality as 

described in chapter 2.  A portion (2.5mL) of each blood sample was mixed with EDTA 

and duplicate 100µl aliquots were deproteinised immediately in 1000µl of 0.3 N perchloric 

acid.  Following centrifugation, the supernatant was analysed for blood glucose (God-PAP, 

Randox, Co. Antrim, UK, Maughan, 1982).  The remaining EDTA treated blood sample 

was used for measurements of haematocrit (in triplicate by centrifugation; Hawksley, 

Sussex, UK) and haemoglobin by the cynamethaemoglobin method.  The changes in 

plasma, blood and red cell volume were then estimated (Dill & Costill, 1974).   The 

remaining, untreated, 2.5mL of each blood sample was dispensed into a container (holding 

no anti-coagulant) and stored on ice before being centrifuged at 1500g for 15 minutes at 

4°C.  Serum samples were then separated, refrigerated and later analysed for sodium, 

potassium, chloride and osmolality. as described for urine analysis (chapter 2). 

 

8.2.6 Statistical analysis 

Data were analysed by a two-way repeated measures ANOVA followed by paired t-tests 

with Holm-Bonferroni adjustment for multiple comparisons when found to be normally 

distributed, and are expressed as mean ± SD.   Data not normally distributed are expressed 

as median (range) and were analysed by Wilcoxon tests where appropriate.  Statistical 

significance was set at P<0.05.   

 

8.3 Results 

The mean BM loss during the dehydration procedure was 1.52 ± 0.17kg during trial CHO-

E and 1.51 ± 0.16kg during trial M (P=0.735).  This corresponded to a 2.0 ± 0.1% 

reduction of the pre-exercise BM in both trials.  The mean exercise time to achieve this 

was similar (P=0.296) on trial CHO-E (36.2 ± 4.4 minutes) and trial M (37.2 ± 3.2 

minutes).  The volume of fluid ingested during the rehydration period was equivalent to 

150% of BM loss, equating to 2.28 ± 0.25L and 2.26 ± 0.24L in trial CHO-E and M 

(P=0.735), respectively. 

 

8.3.1 Pre-exercise hydration status 

Four pre-exercise urine samples had an osmolality of more than 700mosmol/kg (712, 729, 

789mosmol/kg), but only one sample was deemed to indicate a hypohydrated state (930 

mosmol/kg).  The remaining 10 pre-exercise urine samples were lower than 
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700mosmol/kg.  This, in combination with the constancy of pre-exercise BM and serum 

osmolality on trials CHO-E and M, suggest that the subjects’ hydration status was similar 

prior to each trial and could be considered euhydrated (Cheuvront et al, 2004; Cheuvront & 

Sawka, 2005; Shirreffs & Maughan, 1998a) (Table 8.2). 

 

Table 8.2 Pre-exercise body mass (kg), urine and serum osmolality (mosmol/kg). 

Values are mean ± SD. 

 

 CHO-E M P-value 

Body Mass 75.39 ± 10.17 75.13 ± 9.93 0.534 

Urine Osmolality 460 ± 326 0376 ± 242 0.558 

Serum Osmolality  279 ± 400 279 ± 30 0.916 

 

8.3.2 Urine volume 

The volume of urine excreted following rehydration varied over time (P=0.002) and tended 

to be greater on trial CHO-E than trial M (P=0.056) (Figure 8.2).  Peak urine volume 

occurred 1h following the rehydration period on trial CHO-E but was delayed until the 2h 

time-point on trial M.  Cumulative urine volume was lower on trial M than trial CHO-E at 

time-points 0, 1 and 2h after the rehydration period and tended to be lower at 3h (P=0.054) 

(Table 8.3). 

 

Figure 8.2 Urine volume (mL) over the duration of the experiment. The pre-exercise 

sample has been omitted. Points are mean ± SD. 
b
 denotes trial CHO-E 

significantly different (P<0.05) from post-exercise. 
c
 denotes trial M 

significantly different (P<0.05) from post-exercise.  
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Table 8.3 Cumulative urine volume (mL) produced during the recovery period.  Pre 

and post-exercise time points have been omitted from calculations. Values 

are mean ± SD. 
a
 denotes trial CHO-E significantly different from trial M 

(P<0.05). 

 

Time 

post-rehydration (h) 

CHO -E M 

0 032 ± 19
 a
0 45 ± 18 

1 393 ± 215
 a
 206 ± 105 

2 679 ± 297
 a
 400 ± 840 

3 861 ± 396
 a
 525 ± 118 

 

 

8.3.3 Percentage of drink retained 

The percentage of test drink retained was calculated from the cumulative urine volume 

excreted and drink volume ingested.  The percentage of test drink retained was 

significantly greater at all time points during recovery on trial M than trial CHO-E 

(P<0.05) (Table 8.4).    

 

Table  8.4 Percentage of drink retained (%). Values are mean ± SD. 
a
 denotes trial 

CHO-E significantly different from trial M (P<0.05). 

 

Time after rehydration (h) CHO-E M 

0 98.6 ± 0.8
 a
0 98.0 ± 0.8 

1 83.0 ± 8.3
 a
0 91.0 ± 4.1 

2 70.2 ± 12.5
 a
 82.3 ± 3.3 

3 62.2 ± 17.1
 a
 76.6 ± 5.8 
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8.3.4 Urine osmolality 

Urine osmolality was higher post-exercise and immediately after rehydration (0h) than pre-

exercise on trial M (P<0.05).  On trial CHO-E, urine osmolality tended to be higher 

immediately after rehydration (P=0.100) and tended to be lower 1h after rehydration 

(P=0.090) than pre-exercise.  Urine osmolality was significantly (P<0.05) higher on trial M 

than trial CHO-E at 1, 2 and 3h after the end of the rehydration period (Figure 8.3).   

 

Figure 8.3 Urine osmolality over the duration of the experiment. 
a
 denotes CHO-E 

significantly different from M (P<0.05). 
c
 denotes trial M significantly 

different (P <0.05) from pre-exercise.  
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8.3.5 Net fluid balance 

Net fluid balance was calculated relative to the pre-exercise time point taking into account 

the volume of sweat lost, drink ingested and urine excreted (Figure 8.4).  Subjects on both 

trials were in negative fluid balance following exercise and in positive fluid balance as a 

result of drink ingestion.  Subjects remained in positive fluid balance on trial M for the 

remainder of the recovery period but returned to pre-exercise values 2h after the 

rehydration period on trial CHO-E.  There was a significant difference in fluid balance 

between trials 2h after rehydration.  By the end of the 3h recovery period there was a 

tendency for fluid balance to continue to differ between trial M (191 ± 162mL) and trial 

CHO-E (-135 ± 392mL; P=0.051).  This represents a difference in net fluid balance of 326 

± 354mL or 0.4% BM.   

 

 

Figure 8.4 Whole body net fluid balance over the duration of the experiment. 
a
 denotes 

CHO-E significantly different from M (P<0.05). 
b
 denotes trial CHO-E 

significantly different (P <0.05) from pre-exercise. 
c
 denotes trial M 

significantly different (P <0.05) from pre-exercise.  
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8.3.6 Sweat composition 

There were no differences in sweat electrolyte composition between sweat patches 

removed at approximately 1% (1.01 ± 0.18%) or 2% (1.72 ± 0.09%) BM loss.  Therefore 

the sweat composition of patches removed at 1% BM loss was used in all subsequent 

calculations.  The mean sweat sodium, potassium and chloride concentrations over all trials 

were 56 ± 17mmol/L, 4.8 ± 0.5mmol/L and 47 ± 16 mmol/L, respectively.  Mean total 

sweat sodium (P=0.964), potassium (P=0.469) and chloride (P=0.688) losses did not differ 

between trials (Table 8.5). 

 

 

Table 8.5   Total sweat electrolyte losses (mmol) and electrolyte intake (mmol) from 

test drinks. Values are mean ± SD.  
a
 denotes trial M significantly different 

from trial CHO-E (P<0.05). 

 

 CHO-E M 

Sweat Na
+
 Loss 85 ± 29 85 ± 30 

Sweat K
+
 Loss 7.1 ± 1.3 7.4 ± 0.9 

Sweat Cl
-
 Loss 70 ± 26 74 ± 29 

Na
+
 intake 53 ± 6 72 ± 8 

a
 

K
+
 intake 4 ± 1 95 ± 10 

a
 

Cl
-
 intake 2 ± 0 81 ± 10 

a
 

 

 

8.3.7 Electrolyte balance 

Net sodium, potassium and chloride balance were calculated as for net fluid balance.  

Subjects were in negative sodium balance immediately following exercise in both trials, 

but remained in negative sodium balance for the entire recovery period on trial CHO-E as 

insufficient sodium was consumed to replace all sodium losses incurred with dehydration 

(Table 8.5; Figure 8.5A).  Although a significantly greater amount of sodium was 

consumed on trial M than trial CHO-E, subjects tended to remain in negative sodium 

balance (P=0.092) on trial M immediately following the end of the rehydration period.  

Due to the ongoing urinary sodium losses, subjects returned to a negative sodium balance 

1h following rehydration on trial M which persisted until the end of recovery.  The 

increased urinary sodium excretion observed on trial M (Table 8.6), meant this deficit 

amounted to 68 ± 25mmol and 68 ± 26mmol by the end of the recovery period on trials 

CHO-E and M, respectively. 
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On trial CHO-E, insufficient potassium was consumed to replace that lost in sweat (Table 

8.5) and as a result, subjects were in net negative potassium balance for the entire 

experiment.  In contrast the amount of potassium ingested on trial M was far in excess of 

sweat potassium losses (Table 8.5) and despite a greater quantity of potassium being 

excreted in the urine (Table 8.6), subjects remained in positive potassium balance 

throughout recovery (Figure 8.5B).    

 

On trial CHO-E, insufficient chloride was ingested to replace that lost in sweat (Table 8.5), 

consequently subjects were in net negative chloride balance for the entire experiment.  

Although sweat chloride losses were replaced on trial M, ongoing urinary chloride losses 

resulted in a net chloride deficit of 46 ± 24 mmol and 85 ± 24mmol by the end of the 

recovery period on trial M and CHO-E, respectively (Figure 8.5C). 

 

 

Table 8.6 Cumulative urinary electrolyte excretion (mmol). Pre and post-exercise time 

points have been omitted from calculations. Values are mean ± SD. 
a
 

denotes trial CHO-E significantly different from trial M (P<0.05). 

 

 Time after Rehydration (h) 

 0 1 2 3 

Sodium     

Trial CHO-E 3 ± 2 12 ± 5 22 ± 7 33 ± 10 

Trial M 5 ± 2 
a
 19 ± 10 

a
 39 ± 12 

a
 52 ± 17 

a
 

     

Potassium     

Trial CHO-E 3 ± 2 8 ± 4 16 ± 6 25 ± 8 

Trial M 4 ± 2 
a
 18 ± 8 

a
 39 ± 12 

a
 54 ± 15 

a
 

     

Chloride     

Trial CHO-E 2 ± 1 6 ± 4 10 ± 6 15 ± 7 

Trial M 3 ± 2 17 ± 10 
a
 39 ± 13 

a
 51 ± 17 

a
 

 

 

 

 

 

 

 

 

 



Chapter 8 

 

Page | 151  

   A 

 
   B 

 
   C 

 
 

Figure 8.5 Whole body net sodium (A), potassium (B) and chloride (C) balance over 

the duration of the experiment. 
a
 denotes trial M significantly different from 

trial CHO-E (P <0.05),
b
 denotes trial CHO-E significantly different from 

pre-exercise (P <0.05),
c
 denotes trial M significantly different from pre-

exercise (P <0.05). 
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8.3.8 Serum electrolyte concentration 

Serum sodium concentration was elevated immediately after exercise on trial M and tended 

to remain elevated at 0h (P=0.068) and 2h (P=0.096) after rehydration compared to pre-

exercise values.  On trial CHO-E, serum sodium concentration tended to increase as a 

result of exercise (P=0.068) and was elevated significantly 1h after rehydration compared 

to pre-exercise values.  But, no differences were observed between trials (P=0.804) (Table 

8.7).  A significant difference in serum chloride concentration was observed over time but 

there were no significant differences between trials (P=0.895).  Serum potassium 

concentration was significantly higher throughout the recovery period on trial M than trial 

CHO-E (P=0.030). 

 

 

Table 8.7 Serum electrolyte concentrations (mmol/L) over the duration of the 

experiment.  Values are mean ± SD. 
a
 denotes trial CHO-E significantly 

different from trial M (P<0.05), 
b
 denotes trial CHO-E significantly 

different from pre-exercise value (P <0.05), 
c
 denotes trial M significantly 

different from pre-exercise value (P <0.05). 

 

Time after 

Rehydration  

(h) 

Pre Post 0 1 2 3 Exh 

Sodium        

CHO-E 141 ± 3 144 ± 2 142 ± 1 143 ± 2 
b
 142 ± 1 142 ± 2 145 ± 1

b
 

M 141 ± 2 144 ± 2 
c
 144 ± 2 141 ± 1 142 ± 1 142 ± 2 146 ± 2

c
 

        

Potassium        

CHO-E 6.5 ± 0.7 5.9 ± 0.6 5.2 ± 0.5 5.1 ± 0.5 4.9 ± 0.5 4.6 ± 0.5 5.4 ± 0.7 

M 6.8 ± 0.9 6.2 ± 0.7 6.6 ± 0.8
 a
 6.4 ± 0.7

 a
 5.9 ± 0.7

 a
 5.2 ± 0.6

 a
 6.1 ± 0.7 

        

Chloride        

CHO-E 104 ± 2 106 ± 3 104 ± 3 105 ± 3 104 ± 2 103 ± 2 104 ± 3 

M 104 ± 4 104 ± 2 105 ± 3 105 ± 4 105 ± 3 104 ± 3 106 ± 3 
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8.3.9 Serum osmolality 

Serum osmolality increased in all trials as a result of exercise.  Serum osmolality remained 

elevated for the remainder of the study on trial M (Figure 8.6) but returned to baseline 

values 1h after the end of the rehydration period on trial CHO-E.  Serum osmolality was 

significantly lower on trial CHO-E than trial M at 0, 1 and 2h after rehydration and at 

exhaustion. 

 

Figure 8.6 Serum osmolality (mosmol/kg) over the duration of the experiment.  Values 

are mean ± SD. 
 a

 denotes trial CHO-E significantly different from trial M 

(P<0.05), 
b
 denotes trial CHO-E significantly different from pre-exercise 

value (P <0.05), 
c
 denotes trial M significantly different from pre-exercise 

value (P <0.05). 
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8.3.10 Plasma volume 

Plasma volume decreased significantly on trial M (P=0.006) but not on trial CHO-E 

(P=0.273) in response to exercise (Figure 8.7).   Immediately after rehydration plasma 

volume increased on trial M and remained elevated throughout recovery.  On trial CHO-E 

there was a tendency for plasma volume to increase immediately after the rehydration 

period (P=0.070) but the increase in plasma volume reached significance 1h later and 

remained elevated throughout recovery.  There were no differences in plasma volume 

between trials at any time-point. 

 

 

 

Figure 8.7 Changes in plasma volume over the duration of the experiment relative to 

the post-exercise time point. Values are mean ± SD. 
b
 denotes trial CHO-E 

significantly different from post-exercise value (P <0.05), 
c
 denotes trial M 

significantly different from post-exercise value (P <0.05). 
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8.3.11 Blood glucose 

Blood glucose concentrations were similar between trials at rest (P=0.342) but were higher 

immediately following rehydration on trial CHO-E (7.9 ± 1.3mmol/L) than trial M (5.0 ± 

0.5mmol/L; P=0.001) (Figure 8.8).  Blood glucose concentration was slightly elevated 

compared to pre-exercise values throughout recovery on trial M (P<0.05), but tended to 

decline during recovery on trial CHO-E reaching significance 2h after rehydration 

(P=0.044).  Blood glucose concentrations at exhaustion were similar on trial CHO-E (5.28 

± 0.36mmol/L) and trial M (5.75 ± 0.50mmol/L; P=0.109). 

 

Figure 8.8 Blood glucose (mmol/L) over the duration of the experiment.  Values are 

mean ± SD. 
 a

 denotes trial CHO-E significantly different from trial M 

(P<0.05), 
b
 denotes trial CHO-E significantly different from pre-exercise (P 

<0.05), 
c
 denotes trial M significantly different from pre-exercise (P <0.05). 

 

 

8.3.12 Subjective feelings and drink palatability 

Subjects reported drink CHO-E (71 ± 25) to be sweeter than drink M (38 ± 23; P=0.007), 

but no differences in drink saltiness (P=0.398), bitterness (P=0.823), pleasantness 

(P=0.345) or how refreshing (P=0.498) were found between trials (Figure 8.9).  Similarly, 

no significant differences between drinks were reported for subjective feelings of thirst 

(P=0.441), bloatedness (P=0.069), mouth feel (P=0.609), tiredness (P=0.396), alertness 

(P=0.077), ability to concentrate (P=0.087) or head feel (P=0.441).  However, stomach 

fullness was higher on trial M (P=0.033), whilst subjects reported feeling more hungry on 

trial CHO-E (P=0.010) (Figure 8.9). 
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A      B 

  
C      D  

    
E      F 

   
G      H 

   
 I      J 

    
 

Figure 8.9 Perceived drink characteristics (A).  Values are mean ± SD or median 

where appropriate.  
a
 denotes CHO-E significantly different from M 

(P<0.05).  Subjective feelings of thirst (B), fullness (C), bloatedness (D), 

hunger (E), mouth feel (F), tiredness (G), alertness (H), ability to 

concentrate (I) and headache (J). Values are mean ± SD. 
a
 denotes CHO-E 

significantly different from M (P<0.05).   

 



Chapter 8 

 

Page | 157  

8.3.13 Exercise capacity test 

One subject on trial M was stopped due to the obtainment of a high Tre (40.23°C).  

However, data from this subject were included in all calculations.  The mean ambient 

temperature (P=0.509) and relative humidity (P=0.188) on trial CHO-E (35.2 ± 0.4°C, 64 ± 

2% RH) and M (35.2 ± 0.5°C, 63 ± 2% RH) were the same.  The mean cycling time to 

exhaustion was similar on trial CHO-E (39.6 ± 7.3 minutes) and trial M (39.7 ± 8.1 

minutes; P=0.952) (Figure 8.10).  No trial order effect was observed (P=0.879) with 

subjects riding for 39.5 ± 7.7 minutes on trial one and 39.7 ± 7.6 minutes on trial two. 

 

Figure 8.10 Exercise time to exhaustion for each individual on trial CHO-E and trial M. 

 

Rectal temperature was higher on trial M than trial CHO-E at rest and after 5 minutes of 

exercise (Table 8.8).  There was a tendency for this to persist at the 10 minute time point 

(P=0.059) and at fatigue (P=0.055). When expressed as an overall increase in Tre, no 

differences were observed between trial CHO-E (2.48 ± 0.47°C) and M (2.41± 0.48°C; 

P=0.755).  Skin temperature increased during exercise but no differences were located 

between trials (P=0.242).  Heart rate tended to be elevated at rest on trial M (P=0.073) and 

was significantly elevated throughout exercise on trial M compared to trial CHO-E 

(P<0.05) (Table 8.8).  There were no significant differences between trials for perceived 

thermal stress (P=0.094) or ratings of perceived exertion (P=0.744).  Sweat rate was 

similar on trial M (2.72 ± 0.46 L/h) and trial CHO-E (2.56 ± 0.48 L/h; P=0.108).  No 

differences were observed between trials in VO2 obtained from gas samples after 15 

minutes of exercise, nor were there differences in RER, or estimated rates of carbohydrate 

and fat oxidation (P>0.05). 
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8.4 Discussion 

This study investigated the effectiveness of two commercially available drinks in restoring 

fluid and electrolyte balance following exercise-induced dehydration and on subsequent 

endurance capacity in the heat.   Despite subjects being in positive fluid balance on trial M, 

but not so on trial CHO-E at the end of the 3h recovery period, no difference in exercise 

time to exhaustion was observed. 

 

The ingestion of a carbohydrate-electrolyte solution has been reported to result in a more 

effective rehydration than plain water (Costill & Sparks, 1973; Gonzalez-Alonso et al, 

1992) and diet cola (Gonzalez-Alonso et al, 1992), but in both of these studies a volume 

equivalent to 100% of BM loss was ingested and as a result of ongoing urine excretion, 

subjects were in negative fluid balance throughout the recovery period regardless of the 

drink that was consumed.  In the current study a volume equal to 150% of BM loss was 

ingested, and subjects were essentially euhydrated on trial CHO-E at the end of the 3h 

recovery period.  This is in agreement with some (Shirreffs et al, 2007a), but not all 

(Maughan et al, 1996; Shirreffs et al, 2007b) investigations.  Shirreffs et al (2007a) 

reported that only when a CHO-E solution (23mmol Na
+
/L ) was consumed during the 1h 

rehydration period following exercise-induced dehydration, did subjects remain euhydrated 

throughout the 4h recovery period compared to either mineral water (0-1mmol Na
+
/L) or 

apfelschorle (8mmol Na
+
/L).  However,  Maughan et al (1996) reported that when a sports 

drink (containing 21mmol Na
+
/L) was consumed during a 1h rehydration period post-

exercise, subjects were essentially euhydrated after 2h but were in negative fluid balance at 

4h and 6h after rehydration.  It is currently unclear as to why these studies produced 

contradictory results, as the exercise task, rehydration regimen and drink composition were 

similar.  It could be that the sodium content of the CHO-E solutions consumed was on the 

borderline of what is needed to provide significant effects on fluid balance (Maughan & 

Leiper, 1995).  Maughan & Leiper (1995) reported that following exercise-induced 

dehydration, there was no significant difference in cumulative urine volume between two 

solutions containing either 2mmol/L or 26mmol/L of sodium when they were ingested in 

an amount equal to 150% of BM loss.  However, when the sodium concentration was 

increased to 52 or 100mmol/L, a significant reduction in cumulative urine excretion was 

seen.  Nevertheless, there is a general consensus that urine volume is inversely related to 

the sodium concentration of the drink that is ingested (Maughan & Leiper, 1995; Shirreffs 

& Maughan, 1998b; Merson et al, 2009).   
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Milk has a relatively high electrolyte content compared to fruit juices, soft drinks and other 

commercially available fluids (Shirreffs, 2003) which may lend itself to the rehydration 

process.  Previously, Shirreffs et al (2007b) investigated the effects of a CHO-E solution 

(containing 23mmol Na
+
/L), skimmed milk (39mmol Na

+
/L) and skimmed milk with 

added sodium (58mmol Na
+
/L) on restoring fluid balance post-exercise.  Both milk drinks 

significantly increased fluid retention and prevented subjects returning to negative fluid 

balance by the end of the 4h recovery period.  In the current study there was a tendency for 

a reduced urine excretion when subjects ingested drink M compared to CHO-E.  As a 

result subjects were in positive fluid balance at the end of the 3h recovery period on trial 

M, but not on trial CHO-E. 

 

There is a need to replace the electrolytes lost in sweat following exercise and because 

sodium is the primary cation in sweat, its replacement is a priority.  In this study sweat 

composition was measured which allowed electrolyte balance to be calculated.  Sweat 

sodium concentrations have been estimated to be between 20-80mmol/L (Verde et al, 

1982) and the values obtained in this study fall in the middle of this range.  Shirreffs and 

Maughan (1998b) suggested that for subjects to remain in positive fluid balance, the 

amount of sodium consumed needs to be greater than sweat sodium loss.  In neither trial 

was sufficient sodium consumed to replace all sweat sodium losses and in combination 

with urinary sodium excretion, subjects were in a sodium deficit throughout, yet were 

essentially euhydrated on trial CHO-E and in positive fluid balance on trial M at the end of 

the recovery period.  It is likely that the regional sweat sodium concentrations obtained in 

this study overestimated losses compared to whole body sweat collection techniques 

(Patterson et al, 2000; Shirreffs & Maughan, 1997; Chapter 6), although previously, 

Mitchell et al (2000) reported that provided a sufficient volume was ingested, rehydration 

was achieved after consuming a beverage with a sodium concentration of 25mmol/L, 

despite subjects remaining in negative sodium balance.  Potassium losses in sweat were 

small in comparison to sodium, but only on trial M was a sufficient amount of potassium 

ingested to replace these losses.  On trial M, potassium intake was ~1200% greater than 

that lost in sweat and despite an increased potassium excretion compared to trial CHO-E, 

subjects remained in positive potassium balance at the end of the study period.  
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The addition of either potassium (25mmol/L) or sodium (60mmol/L) to a rehydration drink 

has been reported to confer a similar benefit in terms of fluid retention when given in a 

volume equal to BM loss (Maughan et al, 1994), but their effects were not additive.  

However, it is likely that no further reductions in urine output were possible as subjects 

were hypohydrated throughout the study (Maughan et al, 1994).  In a subsequent 

investigation, Shirreffs et al (2007a) suggested that potassium was not as effective as 

sodium in promoting fluid retention when drinks were ingested in an amount equal to 

150% of BM loss.  However, direct comparison between this study and that cannot be 

made due to commercially-available products being administered that differed in several 

respects. 

 

Although there was a tendency for a greater volume of urine to be produced on trial CHO-

E, serum sodium concentrations were similar between trials despite a greater amount of 

sodium being ingested on trial M.  But it is possible that the rapid increase in urine sodium 

excretion following drink ingestion on trial M, concealed any potential differences in 

serum sodium concentrations at the sampling timepoints.  Serum potassium concentrations 

were unexpectedly elevated in both trials before and after exercise.  Although postural 

changes are known to influence serum potassium concentration (Shirreffs & Maughan, 

1994), it seems unlikely to be responsible due to the careful control of posture during this 

study.  During the first 2h of recovery, serum osmolality was higher on trial M than CHO-

E.  The importance in maintaining serum osmolality during rehydration has previously 

been reported (Nose et al, 1988a) and this may affect the efficacy of a drink by influencing 

the amount of fluid consumed and the amount of fluid retained. 

 

Costill and Sparks (1973) reported that the ingestion of a glucose-electrolyte beverage 

resulted in a greater recovery of plasma volume than plain water, and other investigators 

(Nose et al, 1988a; Shirreffs & Maughan, 1998b; Wemple et al, 1997) have reported a 

preferential restoration of plasma volume following the ingestion of sodium-containing 

beverages.  In contrast, the ingestion of a drink primarily containing potassium results in a 

slower rate of plasma volume recovery compared to beverages with either a low electrolyte 

content or that contain primarily sodium (Maughan et al, 1994; Nielsen et al, 1986; 

Shirreffs et al, 2007a).  This initial delay in plasma volume recovery is suggested to be due 

to a preferential restoration of the intracellular fluid compartment (Nadel et al, 1990).  

Despite potassium being the predominant electrolyte in drink M, a delay in plasma volume 
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restoration was not observed which may be due to the sodium content of milk opposing 

such an effect. 

 

Whilst the electrolyte content of a drink is a major determinant of its efficacy in terms of 

fluid retention (Shirreffs et al, 1996), a role of gastric emptying in this case cannot be 

discounted.  Recently, Evans et al (2009) determined the affect of a solutions carbohydrate 

content on the restoration of fluid balance following exercise-induced dehydration.  All 

drinks contained 25mmol/L of sodium, but the 10% glucose solution extended the duration 

of time that subjects remained euhydrated by 1h compared to a 2% glucose solution and by 

2h compared to a 0% glucose solution.  This may be due to a slower gastric emptying of 

the 10% glucose solution.  A myriad of factors influence gastric emptying including the 

volume, energy density and osmolality of the fluid ingested (Calbet & MacLean, 1997; 

Vist & Maughan, 1995).  A delay in fluid delivery could minimise the perturbations in 

blood chemistry which have a strong influence in the secretion of fluid regulatory 

hormones (Nose et al, 1988a).  Although the volume and osmolality of test drinks in the 

current study were similar, drink M had a higher energy content and this could have 

resulted in a delayed gastric emptying (Calbet & MacLean, 1997; McHugh & Moran, 

1979).  Whilst it appears that the energy content of a drink is more important than the 

macronutrient composition, some (Mahe et al, 1992) although not all investigators (Calbet 

& MacLean, 1997; McHugh & Moran, 1979; Calbet & Holst, 2004) suggest that the casein 

in milk may clot in the stomach and contribute to a slowing of gastric emptying.  In the 

current study subjects reported increased sensations of fullness on trial M, which supports, 

albeit indirectly, the suggestion that gastric emptying may have been slowed on this trial. 

 

The addition of protein to a rehydration drink may also affect fluid retention (Seifert et al, 

2006; Gisolfi et al, 1990).  Seifert et al (2006) compared the efficacy of a carbohydrate 

solution (containing 20mmol Na
+
/L), a carbohydrate plus protein solution (23mmol Na

+
/L) 

and water in the restoration of fluid balance following exercise-induced dehydration of 

2.5% BM.  The amount of fluid retained at the end of the 3h recovery period was 

significantly greater when the carbohydrate plus protein solution was consumed compared 

to when the carbohydrate-electrolyte solution or water was ingested.  As the difference in 

sodium concentration between the carbohydrate-electrolyte solution and carbohydrate plus 

protein solution was small (3mmol/L), the authors attributed the increased efficacy of the 

carbohydrate plus protein solution to the protein content of the drink.  They suggested that 
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the presence of protein improved intestinal water absorption (Gisolfi et al, 1990), rather 

than slowing gastric emptying presumably because drinks were isocaloric and the protein 

was whey, not casein. 

 

In the current study, subjects returned to the heat and cycled to exhaustion at 60% VO2max 

at the end of the recovery period.  Despite a difference in fluid balance of 326mL or 0.4% 

BM between trials, there was no difference in exercise capacity between trial M and trial 

CHO-E.  Merson et al (2008) have recently shown that following exercise-induced 

dehydration, the ingestion of a solution containing 50mmol/L of sodium resulted in 

significantly less urine production than when a sodium-free solution was consumed.  

Nevertheless, the difference in fluid balance (549mL or 0.7% BM) did not confer a 

performance benefit in the subsequent exercise task, which involved cycling at 95% 

VO2peak to exhaustion in temperate conditions (<25°C). 

 

Current recommendations encourage athletes to drink at a rate that will prevent excessive 

dehydration (>2% BM) during exercise (ACSM, 2007), as even low levels of dehydration 

may be detrimental to performance (Armstrong et al, 1985; Walsh et al, 1994), especially 

in the heat (Coyle, 2004).  But despite the difference of 0.4% BM between trials, in neither 

trial were subjects considered hypohydrated immediately prior to the exercise capacity test, 

as indicated by net fluid balance.  Furthermore, the decrement in performance reported by 

others when initiating a bout of exercise in a hypohydrated state has been attributed in 

some part to a reduction in plasma volume (Armstrong et al, 1985).  Although the water 

lost in sweat is most likely to originate from the extracellular space when exercising in the 

heat (Kozlowski & Saltin, 1964; Nose et al, 1988b), diuretic induced dehydration, as used 

by Armstrong et al (1985), results in greater reduction in plasma volume than exercise-

induced dehydration (Caldwell et al, 1984).  It is likely that a redistribution of fluid losses 

between body compartments (Nose et al, 1988b) in conjunction with differences in 

dehydration procedure and expansion of plasma volume via the rehydration regimen may 

have further negated the impact of the difference in fluid balance on performance in the 

current study. 

 

The effect of a chocolate milk drink ingested after glycogen depleting exercise is reported 

to increase subsequent exercise capacity (Karp et al, 2006; Thomas et al, 2009).  But, this 

occurred when the exercise capacity test was completed in temperate conditions (Thomas 
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et al, 2009), or the environmental conditions were not stated (Karp et al, 2006).  Other 

investigators have also reported benefits of ingesting CHO-E drinks during a 4h recovery 

period on subsequent exercise capacity (Fallowfield et al, 1995; Wong et al, 2000).  Both 

these studies also took place in temperate conditions (~20°C) and the improvement in 

performance with a CHO-E solution was attributed to the replenishment of glycogen stores 

and consequently a higher rate of carbohydrate oxidation during exercise.  In the current 

study blood glucose concentrations at exhaustion did not indicate that carbohydrate 

availability was the cause of the cessation of exercise, which is consistent with the 

suggestion that exhaustion in the heat is due to dehydration and hyperthermia (Gonzalez-

Alonso et al, 1999; Nielsen et al, 1993; Bilzon et al, 2002), despite an increased reliance on 

muscle glycogen during exercise (Jentjens et al, 2002). 

 

Time to exhaustion in hot conditions has been reported to be related to initial body 

temperature (Gonzalez-Alonso et al, 1999) and in this study rectal temperature was 

significantly lower at rest on trial CHO-E than trial M.  Although the difference in rectal 

temperature tended to persist at exhaustion, no difference in exercise time was observed.  

Trials were completed at the same time of day to control for circadian variation in rectal 

temperature (Waterhouse et al, 2004) and subjects performed the initial bout of exercise for 

the same duration and intensity.  The volume and temperature of the drinks ingested and 

the environmental conditions during recovery were also similar.  Whilst hyperosmolality is 

beneficial in terms of the rehydration process, it may have negative effects on 

thermoregulatory responses at rest and during exercise (Harrison et al, 1978; Fortney et al, 

1984).  Harrison et al (1978) reported that ingestion of a saline solution (342mmol/L) 

increased serum osmolality by ~14mosmol/kg compared to when plain water was 

consumed.  As a result, rectal temperature was ~0.3°C higher on the saline trial at rest and 

during subsequent exercise in the heat (45°C, 30% RH).  However, the difference in serum 

osmolality between trials was far smaller in the current study (2-4mosmol/kg).  It is 

possible that the mechanism responsible for the observed differences in rectal temperature 

is linked to the different macronutrient and energy content of test drinks and the effect this 

has on the thermic effect of food (Belko et al, 1986).  

 

Although the addition of sodium to plain water may increase volitional intake (Wemple et 

al, 1997), a high-sodium content may make a drink unpalatable (Nadel et al 1990; Wemple 

et al, 1997).  Commercially available sports drinks are therefore designed to meet a balance 
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between efficacy and palatability and typically contain around 25mmol/L of sodium 

(Shirreffs, 2003).  Although a fixed volume of fluid equivalent of 150% of BM loss was 

consumed during this study, no differences in drink pleasantness or saltiness were found, 

despite their differing electrolyte content.  However, the sweetness of drink CHO-E may 

enhance fluid intake after exercise in some but not all individuals (Passe, 2001).   

Considering that both the volume and composition of fluids ingested can affect the 

restoration of fluid balance (Maughan & Leiper, 1993; Shirreffs et al, 1996), the efficacy 

of drink M allows further scope in the variety of drinks recommended to be consumed after 

exercise.  This becomes especially important when the recovery time is short, the fluid 

deficit large or when access to food is not possible or practical (Casa et al, 2000).  

 

In summary, when a volume equal to 150% of BM loss was consumed following exercise-

induced dehydration of 2.0 ± 0.1% BM, subjects were essentially euhydrated on trial CHO-

E and in positive fluid balance on trial M at the end of the 3h recovery period.  This was 

achieved with only partial replacement of sweat sodium losses by both drink CHO-E and 

M and complete recovery of sweat potassium losses by drink M.  Despite the difference 

between trials in net fluid balance corresponding to approximately 0.4% BM, no difference 

in endurance capacity were observed. 
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9.1 Overview 

Dietary sodium intake has been, and still is, the topic of much debate, mainly surrounding 

its association with blood pressure and other health-related concerns (Institute of Medicine, 

2004; SACN, 2003).  In the sporting arena, exercise can result in sweat loss which gives 

rise to the loss of both water and other constituents such as sodium, chloride and potassium 

from the body.  Whilst water losses are governed by the amount of sweat lost, electrolyte 

losses are influenced by both the amount and the composition of sweat.  Both these factors 

exhibit wide variation and therefore can result in substantially different electrolyte losses 

between individuals despite completing the same exercise session.   Sodium is the primary 

cation in sweat and is therefore lost in greater quantities than potassium.  The loss of 

sodium in sweat may have detrimental effects on health and performance as it has been 

linked with hyponatraemia (Montain et al, 2006), muscle cramps (Dill et al, 1938; Stofan 

et al, 2005) and perturbations in fluid balance (Taylor et al, 1943).  Recent guidelines 

(ACSM, 2009) stipulate that the Upper Limit (2.3g (100mmol)/day) (Institute of Medicine 

2004) for sodium is too low for many athletes, due to the importance and increased 

requirement of sodium in this athletic population.  In fact the consumption of sodium is 

encouraged for some individuals (Bergeron, 1996; ACSM, 2009) and in some situations 

such as during (ACSM, 2009) and after exercise (Shirreffs and Maughan, 1998b).  This is 

in direct contrast to current dietary guidelines aimed at the general population.  The aim of 

this thesis was to address the following questions: 

 

1. What are the current sodium, potassium and chloride intakes of healthy recreationally 

active individuals ? (Chapters 3, 4, 5 and 7) 

2. Does exercise affect sodium intake? (Chapters 5 and 7) 

3. Does exercise affect urine sodium excretion? (Chapters 5 and 7) 

4. Does exercise affect sodium balance? (Chapters 5 and 7) 

5. Does exercise affect dietary potassium intake, urine potassium excretion and potassium 

balance? (Chapters 5 and 7) 

6. Does prior exercise alter sweat electrolyte composition in a second exercise session 

later that same day? (Chapters 6 and 7) 

7. Does the electrolyte content of milk enhance the recovery of fluid balance after 

exercise? (Chapter 8) 

8. Are there individuals or specific situations which may require an increased sodium 

intake? (Chapters 5, 6, 7 and 8). 
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9.2 Dietary sodium intake 

According to a recent dietary survey of the British population, the average male and female 

are consuming 11.0g and 8.1g of salt per day, respectively (Henderson et al, 2003).  This is 

equivalent to 4.3g (187mmol) and 3.2g (138mmol) of sodium per day, respectively.  

Humans can survive on extremely low sodium diets (Oliver et al, 1975) as obligatory 

urine, skin and faecal sodium losses are very small (1.7 to 8.0 mmol of sodium per day; 

Dahl, 1958; Dahl et al, 1955; Dole et al, 1950).  Therefore current salt intakes are far 

greater than requirement for most individuals.  In 2004, the Food Standards Agency in the 

UK launched a campaign aimed at reducing the average salt intake of the British 

population to 6g/day (2.4g/d of sodium).  Whilst these values are based on a significant 

improvement to the health of the population (SACN, 2003), further decreases would 

enhance health still further (He & MacGregor, 2003). In the meta-analysis of He & 

MacGregor (2003) a dose response relationship was observed between blood pressure and 

a reduction in salt intake.  A reduction in salt intake of 3g/d (from an initial salt intake of 

12g/d), would decrease (systolic/diastolic) blood pressure by 2.5/1.4mmHg, reduce stroke 

death by 12-14% and ischemic heart disease deaths by 9-10%.  This would result in a 

7,300 – 8,300 reduction in stroke deaths and 10,600 – 12,400 reduction in ischemic heart 

disease deaths per year.  If salt intake was reduced by 6g/d, blood pressure would decrease 

by 5/2.8mmHg and the deaths via strokes and ischemic heart disease would be reduced by 

23-25% and 16-19%, respectively.  

 

The assessment of dietary sodium intake has been made by food frequency questionnaire 

(Day et al, 2001; McKeown et al, 2001), food recall (Leiba et al, 2005; Espeland et al, 

2001), food diary (Day et al, 2001; Gregory et al, 1990; Henderson et al, 2003), duplicate 

portion analysis (Schacter et al, 1980; Clark & Mossholder, 1986) and urine collection 

(Holbrook et al, 1984; Clark & Mossholder, 1986).  All of these techniques have their 

advantages and disadvantages, but despite the increased subject burden of keeping a 

weighed dietary record, this method is reported to be more accurate than a food frequency 

questionnaire, food diary and 24h recall methods (Bingham et al, 1995; Porrini et al, 1995; 

McKeown et al, 2001).  The main limitation of weighed food records is their inability to 

account for discretionary salt use (Caggiula et al, 1985; Clark & Mossholder, 1986; Melse-

Boonstra, 1999; James et al, 1987).  Therefore 24h urine collections have been suggested 

to provide a more accurate estimate of sodium intake.   Sodium in excess of requirement is 
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excreted primarily in the urine and therefore 24h urine sodium collections can provide a 

good estimate of dietary sodium intake (Holbrook et al, 1984; Taseveska et al, 2006). 

 

The aim of chapter 3 was to determine the current dietary sodium intake and the day to day 

variation in sodium intake of free-living individuals by the collection of 24h urine samples.  

The main finding was that subjects consumed more sodium per day than the average 

sodium intake of the British population.  However, in chapters 4, 5 and 7 the average 

sodium intake was lower than the British average.  Nevertheless it is difficult to make 

accurate comparisons between the studies in these thesis and that of Henderson et al 

(2003), as only a single 24h urine collection was made in the UK-based survey, which may 

not be representative of an individuals habitual sodium intake. 

 

The sodium densities of diets in Chapter 5 and Chapter 7 (1.2g/1000kcal) were also lower 

than a previous survey of the British population (1.9g/1000kcal) (Henderson et al, 2003).   

Interestingly, in Chapter 4, subjects were asked to consume the same foods each day for a 

5-day period.  As a result the sodium density of diets was higher (1.6g/1000kcal).  This 

was due to an increased reliance on convenience foods during this research design.  

Despite the lower sodium densities reported in the chapters of this thesis, energy intakes 

were greater than those reported by Henderson et al (2003) and considering the positive 

relationship between sodium intake and energy intake found in Chapter 5 and by others 

(Pietinen, 1982; Holbrook et al, 1984) this may partly explain why sodium intake was only 

slightly lower than those reported by Henderson et al (2003).  However, in Chapters 5 and 

7 the relationship between energy intake and sodium intake was weak.  Consequently, 

although athletes would typically consume diets that provide more energy than the general 

public due to their higher energy requirement, it appears that an individual’s sodium intake 

can vary greatly due to the selection or avoidance of salty foods.  The avoidance of salt-

containing foods is not without consequence, as this can impose great restriction on the 

consumption of certain food groups.  Two food groups that provide substantial amounts of 

salt in the current diet are cereal products (35% of total salt intake) and meat products 

(26% of total salt intake) (Figure 9.1; Henderson et al, 2003).  The ramifications of 

avoiding these foods could be a reduction in energy, carbohydrate, fat, vitamin A, vitamin 

D, folate, iron, magnesium, calcium, zinc and copper as the aforementioned food groups 

also serve as major providers of these nutrients (Henderson et al, 2003; Morris, 1997).  As 

athletes are encouraged to follow a high carbohydrate diet (Burke et al, 2001) any 
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restrictions placed upon the major provider of carbohydrate may potentially be detrimental 

to training and competition (Achten et al, 2004; Costill et al, 1988). 

 

 

Figure 9.1 The percentage contribution of food types to average daily sodium intake 

(Henderson et al, 2003). 

 

Like most nutrients, sodium and potassium intakes demonstrate considerable day to day 

variation both between and within individuals which has led to a criticism by some 

(Sowers & Stumbo, 1986; Liu & Stamler, 1984; Caggiula et al, 1985; Dyer et al, 1997) 

although not all (Kesteloot & Joosens, 1990) of the accuracy of one-off urine collections to 

determine an individual’s habitual sodium intake.  In Chapter 3, the day to day variation in 

urine sodium excretion was evident and it appears that the variation was not consistently 

reduced in samples collected on the same day of different weeks or on different days in the 

same week.  Nevertheless, the within-individual variation in sodium excretion reported in 

Chapter 3 was at the lower end of the range reported in the literature.  This finding was 

also observed in Chapter 5 and Chapter 7 and is most likely attributable to the study period 

falling largely on weekdays given that the intake of nutrients varies between weekdays and 

weekends (Acheson et al, 1980).  In chapter 4, sodium intake was held constant, yet the 

daily fluctuations in sodium excretion persisted.  These daily oscillations in sodium 

excretion have been reported previously (Baldwin et al, 1960), the magnitude of which was 

positively related to the amount of sodium being consumed (Baldwin et al, 1960).  

However, in Chapter 4 the relationship between oscillations in urine sodium excretion and 

sodium intake was only moderate and did not reach significance, a finding most likely due 

to the homogenous nature of sodium intakes. 
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Whilst the variation in urine sodium excretion is influenced by a true variation in sodium 

intake, it may also be attributed to several other factors including potassium intake 

(Mickelson et al, 1977; Van Buren et al, 1992) and the loss of sodium in sweat (Holbrook 

et al, 1984; Consolazio et al, 1963).  Van Buren et al (1992) reported that the oral 

administration of potassium salts caused an immediate increase in potassium and sodium 

excretion.  Despite this acute effect, sodium excretion returned to normal levels quickly 

and resulted in no significant increase in cumulative sodium excretion over an 8h 

monitoring period, which is considerably shorter than the 24h monitoring period used in 

the chapters 3, 4, 5 and 7 of this thesis.  Although Mickelson et al (1977) reported that the 

replacement of sodium with a 1:1 sodium-potassium salt in a saltshaker, caused a 

significant increase in 24h urine sodium excretion,  it is unclear as to whether this was due 

to the addition of potassium or the lag in excretion following the change in sodium intake.  

There is a seasonal variation in the amount of dietary sodium excreted in the urine, with a 

decline of 7% seen in the summer compared to winter which was attributed to cutaneous 

losses of sodium (Holbrook et al, 1984).  In an exercise setting, large amounts of sodium 

can be lost in sweat (Maughan et al, 2004; Maughan et al, 2005; Shirreffs et al, 2005; 

Stofan et al, 2002; Stofan et al, 2005) and this could potentially cause large perturbations 

in sodium balance. 

 

9.3 Effect of Exercise on Urine Sodium Excretion 

Lichton (1957) described a competition between the sweat glands and kidneys for salt in an 

individual exposed to exercise at varying temperatures.  It was concluded that the sweat 

gland has precedence over the kidney for sodium, with any remaining sodium being 

available for excretion in the urine.  Consequently, urine sodium would be expected to 

decline as a result of the loss of sodium in sweat.  The kidneys can respond quickly in 

response to sweat sodium losses, with some reports showing this to occur within 1 or 2h of 

exercise (Robinson et al, 1955).  In Chapter 5, the response to a single bout of exercise 

which resulted in a sweat sodium loss of 66mmol (1.5g sodium), was a significant 

conservation of sodium by the kidneys on that same day.  In Chapter 7, two exercise 

sessions were scheduled for the same day which resulted in a cumulative sweat sodium 

loss of 138mmol (3.2g sodium).  Urine sodium was significantly depressed on both the day 

of exercise (day 4) and the day following exercise (day 5), again indicating significant 

sodium conservation by the kidneys.  For the two individuals who lost the largest amount 

of sodium in sweat, average urine sodium concentrations were 22mmol/L and 9mmol/L on 
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day 4 and 12mmol/L and 9mmol/L on day 5.  The carry-over effect when two exercise 

sessions were scheduled was most likely due to the greater magnitude of sweat sodium 

losses compared to when one session took place, but may also be partly explained by the 

second exercise session being completed in the afternoon.  This potentially reduces the 

time available for dietary consumption of sodium.  Godek et al (2005) have also reported 

urine sodium excretion to be significantly depressed the day after the first two-a-day 

practice in American Football players.  The reason why urine sodium conservation was 

seen on the same day of exercise in the current study, in addition to evidence of sodium 

conservation the following day, is most likely due to the collection of all urine samples, 

instead of the collection of only 4 urine samples in the study of Godek and colleagues. 

 

9.4 Effect of exercise on dietary sodium intake 

It is currently recommended that fluid intake during exercise should be sufficient to limit 

dehydration to no more than 2% BM (ACSM 2007).  In addition sports drinks containing 

sodium (0.5 – 0.7g/L or 22-30mmol/L) are also recommended to athletes (ACSM, 2009).  

Given that these drink sodium concentrations lie at the bottom of the range of sweat 

sodium concentrations (20-80mmol/L) (Maughan & Nadel, 2000) and that fluids are 

typically consumed at rates below sweat rate (Sawka & Pandolf, 1990), sweat sodium 

losses are not entirely replaced during exercise.  Indeed, field studies report sodium 

ingestion during exercise to replace between 0-23% of the sodium lost in sweat (Maughan 

et al, 2004; 2005; Shirreffs et al, 2005; Palmer & Spriet, 2008).   

 

The addition of sodium chloride to fluids can increase volitional intake (Wemple et al, 

1997), but a high-sodium content may make a drink unpalatable (Passe et al, 2006; 

Wemple et al, 1997; Nadel et al, 1990).  Therefore commercially available sports drinks 

are carefully designed to meet a balance between efficacy and palatability.  Recently, it has 

been shown that exercise can extend the range of sodium concentrations which appear 

palatable to the consumer (Passe et al, 2006).  A similar phenomenon has been reported to 

occur after exercise and has been termed sodium appetite (Takamata et al, 1994).  

Takamata et al (1994) investigated the effects of prolonged exercise and heat exposure on 

the palatability of several rehydration solutions that differed in their salt concentration.  

They reported evidence of a salt appetite which appeared 3h after exercise and 

strengthened over the next 20h.  Currently it is unclear as to what drives sodium appetite.  

Many mechanisms have been postulated including the actions of aldosterone (Geerling & 
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Loewy, 2008).  In chapter 5 of this thesis, subjects completed one exercise session 

involving approximately 74 minutes of heat exposure with no access to fluids during this 

period.  Exercise has been shown to stimulate the release of aldosterone and this increase is 

of greater magnitude when an individual is dehydrated (Morgan et al, 2004; Francesconi et 

al, 1983).  Nevertheless, there was no alteration in sodium intake on the day of exercise.  In 

chapter 7 of this thesis, subjects completed two exercise sessions involving a total of 120 

minutes heat exposure.  This resulted in a total sweat sodium loss of 138mmol, but again 

sodium intake did not increase on the day of exercise.   

 

Stofan et al (2005) posed the question, does sweat sodium loss drive sodium intake or does 

sodium intake drive sweat sodium loss?  Wald & Leshem (2003) reported the preference 

for sodium to increase after exercise particularly in individuals that lost the greatest 

amounts of sweat.  This is in contrast to both Chapter 5 and Chapter 7 of this thesis where 

no relationship was observed between the amount of sodium lost and the amount of sodium 

ingested on that same day.  Some have suggested a delay before sodium intake is seen, 

typically around 24h later (Takamata et al, 1994).  However, there was no significant 

increase in sodium intake on day 5 in Chapter 5 or 7.  Given the already elevated sodium 

intakes of individuals in the current study, it is most likely that the majority of individuals 

did not experience a sodium deficit that was severe, or of sufficient duration, to stimulate 

an increased sodium intake.  Alternatively, for those individuals who lost the largest 

amount of sodium, it may be that access to fluids and foods was the main limitation on 

sodium intake, but this is purely speculation. 

 

9.5 Effect of exercise on sodium balance 

In this thesis, sodium balance was calculated from sodium intake, urine sodium excretion 

and sweat sodium loss.  In chapter 4, sodium balance appeared to fluctuate around a central 

point from day to day, rather like the sinusoidal nature of water balance (Greenleaf, 1992).  

Exercise poses a risk to the maintenance of sodium balance especially for some individuals 

who lose large amounts of sodium in sweat.  Such disturbances appear manageable by 

most individuals when one exercise session is completed, as urinary sodium conservation 

provides the main mechanism by which sodium balance is maintained (Chapter 5).  When 

two exercise sessions are scheduled for the same day, sweat composition in the second 

bout of exercise is unaffected, despite the loss of sodium during exercise earlier that same 

day (Chapter 6; Chapter 7).  Although plasma aldosterone concentrations were not 
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measured in this thesis, exercise has been shown to increase plasma aldosterone 

concentration (Francesconi et al, 1983; Kirby & Convertino, 1986; Morgan et al, 2004) and 

this would theoretically result in a conservation of sodium by the sweat gland.  However, 

studies have reported a change in aldosterone concentration is not necessary to alter sweat 

composition (Allsopp et al, 1998; Morgan et al, 2004) although it may play a potentiating 

role (Allsopp et al, 1998).  Robinson et al (1955) reported that sweat sodium 

concentrations did not start to decline until 4-5h after the first exercise bout but this decline 

in sweat sodium concentration did not reach significance until the following day (~22h), 

which is considerably longer than the 5h time period between exercise sessions in chapter 

6 and 7 of this thesis.  Despite the large cumulative loss of sodium in sweat during two-a-

day exercise, sodium balance was not significantly affected in Chapter 7.  Nevertheless, 

some individuals were in negative sodium balance.  The consequences of these large un-

replaced sodium losses could be muscle cramps (Stofan et al, 2005), hyponatraemia 

(Montain et al, 2006) or a contracted extracellular volume (Sanders et al, 2001).  Although 

no subject in this thesis suffered from muscle cramps during the exercise tasks performed 

in Chapters 4, 6, 7 or 8, it would seem wise to offset these losses due to the potentially 

serious consequences of hyponatraemia and the detrimental effects of a reduction in 

plasma volume (Armstrong et al, 1985a).  Body mass changes during an exercise bout are 

relatively simple to measure (Maughan et al, 2007) and allow estimates of sweat loss to be 

made.  The assessment of sweat composition is also relatively simple to measure, but 

requires specialist laboratory equipment for analysis (Burke, 2005).  The benefits of 

acquiring information on sweat composition and sweat loss will allow a nutrition strategy 

to be tailored to an individual’s requirement and allow individuals at risk of large sweat 

sodium losses to be identified. 

 

9.6 Effect of exercise on potassium balance 

The concentration of potassium (4-8mmol/L) in sweat is lower than sodium (20-

80mmol/L) (Maughan & Nadel, 2000), consequently sweat potassium losses are smaller in 

magnitude than sweat sodium losses.  Despite this there has been some concern as to 

whether large sweat potassium losses could place an individual in negative potassium 

balance (Consolazio et al, 1963; Knochtel et al, 1972).  Consolazio et al (1963) reported 

large losses of potassium in sweat during exercise, in some cases equivalent to 44% of 

dietary potassium intake.  However, this was largely due to the prolonged duration of the 

exercise-heat exposure (7.5h).  Other investigators have suggested that exercise resulted in 
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a potassium deficiency (Knochtel et al, 1972) but this was due to the indirect determination 

of potassium deficiency via muscle potassium concentrations which has since been 

suggested as an un-suitable method (Costill et al, 1982).  In Chapter 5, subjects lost 

between 7 and 12mmol of potassium in sweat during exercise, equivalent to between 3 and 

16% of dietary potassium intake for that day.  These losses were too small to cause any 

significant alteration in potassium excretion, intake, or balance on the day of exercise.  In 

Chapter 7, two exercise sessions were scheduled on the same day which resulted in 

subjects losing between 7 and 23mmol of potassium in sweat, equivalent to between 5 and 

23% of dietary potassium intake.  There was also no effect of exercise on potassium 

excretion or intake.  At least part of the discrepancy between the findings of this thesis and 

that of Consolazio et al (1963) may be attributed to the different lengths of heat exposures, 

but also to differences in dietary potassium intake.  A consistent finding of this thesis was 

the higher than average potassium intakes of individuals.  In Chapter 5, individuals 

consumed 131mmol per day and in chapter 7, 113mmol per day.  In total 17 (out of 18) 

individuals in these chapters consumed more than the average reported intake (86mmol) 

for males in the UK, all of whom consumed more than those in the study of Consolazio 

and colleagues (64mmol/day).  In both Chapter 4 and 7, potassium intake was un-related to 

energy intake, but instead was due to the increased potassium density of the diets.  This 

supports the notion of a growing trend for higher potassium intakes as previously reported 

by Henderson et al (2003) and it may be that this pattern is continuing.  Even on very low 

potassium diets (25mmol/day), a potassium deficiency proved difficult to induce due to a 

concomitant reduction in the amount of dietary potassium excreted in the urine (Costill et 

al, 1982).  Consequently it would appear potassium losses in sweat are far less likely than 

sodium to result in a negative balance. 

 

In Chapter 8, the efficacy of milk as a rehydration drink was investigated.  Milk has a 

relatively high-sodium (32mmol/L) and potassium (42mmol/L) content compared to fruit 

juices, soft drinks and most other commercially available fluids (Shirreffs, 2003) which 

may lend itself to the rehydration process.  It has previously been reported that the addition 

of either potassium (25mmol/L) or sodium (60mmol/L) to a rehydration drink confers a 

similar benefit in terms of fluid retention when given in a volume equal to BM loss 

(Maughan et al, 1994), but their effects were not additive.  However, it is likely that no 

further reductions in urine output were possible as subjects were hypohydrated throughout 

the study (Maughan et al, 1994).  In a recent study, skimmed milk was shown to be more 
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effective than both water and a sports drink in replacing the fluid losses incurred during 

exercise-induced dehydration (Shirreffs et al, 2007b).  In Chapter 8 there was also a 

tendency for a reduced urine excretion when subjects ingested skimmed milk compared to 

CHO-E drink.  Whilst it is not possible to discern if potassium was primarily responsible 

for the beneficial effect on fluid restoration, Shirreffs et al (2007a) suggest that potassium 

is not as effective as sodium in aiding fluid retention when drinks are ingested in an 

amount equal to 150% of BM loss.    However, direct comparison between Shirreffs et al 

(2007a) and Chapter 8 cannot be made due to commercially-available products being 

administered that differed in several respects.  The ingestion of a drink primarily 

containing potassium results in a slower rate of plasma volume recovery compared to 

beverages with either a low electrolyte content or that contain primarily sodium (Maughan 

et al, 1994; Nielsen et al, 1986; Shirreffs et al, 2007a).  This initial delay in plasma volume 

recovery has been suggested to be due to a preferential restoration of the intracellular fluid 

compartment.  Despite potassium being the predominant electrolyte in milk, a delay in 

plasma volume restoration was not observed which may be due to the sodium content of 

milk opposing such an effect.  Considering sodium is the primary cation lost in sweat, its 

inclusion in drinks helps replenish sweat losses, prevents the decline in serum sodium 

concentration and maintains the drive to drink (Nose et al, 1988a). It therefore appears that 

sodium should remain the primary cation present in a rehydration drink, although the 

addition of potassium does not appear to impede the rehydration process. 

 

9.7 Effect of exercise on hydration status 

Current guidelines encourage athletes to drink at a rate that will prevent excessive 

dehydration (>2% BM) during exercise (ACSM, 2007).  Although individual drinking 

practices vary, most will finish a bout of exercise in a hypohydrated state (Sawka & 

Pandolf, 1990).  Therefore, restoration of fluid and electrolyte losses should form an 

integral part of the recovery process.  Casa et al (2000) report athletes to be capable of 

replacing these losses with normal food and fluid intake when the interval between 

exercise bouts is more than 24 h, but when repeated exercise sessions are scheduled on the 

same day or the fluid deficit is large, athletes may fail to fully replace fluid losses (Godek 

et al, 2005).   

 

In Chapter 5, one exercise session was undertaken on the morning of day 4 which resulted 

in a sweat loss equivalent to 1.51 litres, equivalent to 1.9% BM.  The first void the 
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following day (day 5) indicated that all subjects had consumed enough fluid to replace 

these losses as no individual was considered dehydrated according to the cut-off criteria 

reported in the literature (Cheuvront & Sawka, 2005; Shirreffs & Maughan, 1998a).  In 

Chapter 7, two exercise sessions were completed on day 4 which resulted in a cumulative 

sweat loss of 2.64 litres.  There were no significant differences in the osmolality of urine 

samples obtained from the first void each morning, all of which indicated individuals were 

not hypohydrated.  This is in contrast to other investigators who have reported urine 

parameters of hydration status to indicate American Football players fail to replace sweat 

losses during daily two-a-day exercise sessions (Godek et al, 2005).  This discrepancy may 

be due to the fact that players lost greater amounts of sweat (although they had free access 

to fluids to help off-set sweat losses) and/or the longer training session duration (2h 15min 

v 1h 10min) compared to the current study.  In contrast, other investigators (Fudge et al 

2008) have reported runners to successfully replace the sweat losses incurred during two-a-

day exercise sessions.  Interestingly, Godek et al (2005) also suggest that urine indicators 

of hydration status may not be suitable for determining hydration status in American 

Football players due to their large body size and findings of a persistently elevated urine 

specific gravity in this population. 

 

In Chapter 6, two exercise sessions were also scheduled on the same day, separated by a 5h 

recovery period.  Food was provided during the recovery period and fluid was allowed ad 

libitum.  Urine samples obtained before the second exercise bout indicated individuals 

were not hypohydrated.  In some situations, such as periods of acute rehydration, urine 

indices may not be an appropriate indicator of hydration status (Popowski et al, 2001; 

Cheuvront & Sawka, 2005).  Therefore in conjunction with urine indices, fluid intake was 

monitored and indicated that 167% of sweat loss had been ingested during the intervening 

5h recovery period between exercise sessions.  Considering the volume consumed and the 

favourable effects of this prolonged type of drinking regimen, as opposed to a shorter 

rehydration period, it may lend itself to a more complete restoration of fluid balance 

(Kovacs et al, 2002).  Although only water was permitted, this was ingested in 

combination with a standardised lunch.    The ingestion of sodium, via the foods provided, 

may have also proven beneficial for fluid retention and maintaining the drive to drink (Ray 

et al, 1998; Maughan et al, 1996; Nose et al, 1988a).   

 



Chapter 9 

 

Page | 178  

A considerable amount of research has looked at post-exercise rehydration and the 

importance of sodium in rehydration drinks has been reported by many investigators 

(Shirreffs et al, 1996; Wemple et al, 1997; Mitchell et al, 2000) and has been 

systematically evaluated in several studies (Maughan and Leiper, 1995; Shirreffs and 

Maughan, 1998b; Merson et al, 2008).  Maughan and Leiper (1995) reported that when a 

volume equal to 150% of body mass (BM) loss was ingested following exercise-induced 

dehydration, the amount of fluid retained was inversely related to the drinks sodium 

concentration.   Milk has a relatively high sodium content compared to other commercially 

available fluids (Shirreffs, 2003).  In a recent study, skimmed milk was shown to be more 

effective than both water and a sports drink in replacing fluid losses incurred during 

exercise-induced dehydration (Shirreffs et al, 2007b).  In Chapter 8, the effectiveness of a 

sports drink and skimmed milk in restoring fluid and electrolyte balance and endurance 

capacity was investigated.  There was a tendency for a reduced urine excretion with milk 

compared to a sports drink, during the 4h recovery period.  This resulted in a difference in 

fluid balance between trials of 326mL or 0.4% BM at the onset of the endurance capacity 

test.  Despite this, no benefits in endurance capacity were observed, possibly as a result of 

the lack of sensitivity in the endurance capacity test employed (Jeukendrup et al, 1996) or 

the similar alterations in plasma volume observed between drinks.  Nevertheless, skimmed 

milk was well tolerated and therefore it seems appropriate to recommend that milk is added 

to the list of products that are suitable for ingestion during the recovery period after 

exercise. 

 

9.9 Conclusions 

1. The healthy individuals that participated in the studies within this thesis ingested less 

sodium than the average sodium intake reported for the UK.   

2. The lower sodium intake occurred despite a higher energy intake of individuals.  

3. The healthy individuals that participated in the studies within this thesis consumed 

more potassium than the average potassium intake reported for the UK. 

4. The increased potassium intake may reflect the increased energy intake of individuals 

but may also reflect the higher potassium density of diets. 

5. Sweat potassium losses during single and multiple exercise sessions did not exceed 

dietary intake for any individual.   

6. Urine potassium excretion, dietary potassium intake and net potassium balance were 

not significantly affected by either single and multiple exercise sessions 
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7. A single exercise session results in a significant decline in urine sodium excretion on 

the day of exercise which helps to maintain sodium balance.   

8. When two exercise sessions were scheduled, a reduced urine sodium excretion was 

again the main mechanism by which perturbations in sodium balance were minimised 

and sodium balance was maintained.  Unlike when the single exercise session was 

completed, urine sodium conservation persisted during the day following exercise most 

likely due to the extent of sodium losses and/or the timing of the second session later in 

the day. 

9. Sodium intake was unaffected by the exercise-induced sodium losses incurred when 

one or two-a-day exercise sessions were completed.  This may be due to the already 

high sodium intakes of individuals meaning that sodium deficits were not as severe or 

prolonged as other studies.  Alternatively it may in part be due to a reduced 

availability/accessibility to foods during the exercise task and intervening recovery 

period. 

10. Prior exercise and the associated loss of sodium in sweat did not alter sweat 

composition during a second exercise bout undertaken later that same day.  The 

repercussions of this mean that sweat sodium losses can be large when repeated 

exercise sessions are scheduled. 

11. Sweat sodium concentrations and losses demonstrate wide variation between 

individuals. 

12. Sweat sodium concentration was not related to dietary sodium intake 

13. The ingestion of skimmed milk tended to improve rehydration compared to a sports 

drink during the acute recovery period post-exercise when no food was consumed, but 

did not affect subsequent endurance capacity in the heat.  However it is not possible to 

discern if the beneficial effects upon fluid retention were attributable to its relatively 

high sodium or potassium content or to an effect on gastric emptying. 

14. Due to the high sodium intake of most individuals, there is no need to advise all 

individuals participating in exercise to consume large amounts of sodium.  Indeed this 

would be unwise considering the health implications of such recommendations.  

However, the provision of sodium after exercise has been shown to help replenish fluid 

balance and there may be some individuals who lose large amounts of sodium in sweat, 

especially when multiple exercise sessions are completed.   

15. Without knowledge of both sweat loss and sweat composition it is not possible to 

accurately identify individuals at risk of large sodium losses.  However, high sweat 
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rates may be used as a crude indicator for identifying individuals at risk of high sweat 

sodium losses. 
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Subjective Feelings Questionnaire 

 

Subject Number :_______Trial Number :________ Date:___________ 
 

 

How thirsty do you feel now? 

 

 

not at all thirsty        very thirsty 

 

How full does your stomach feel now? 

 

 

not at all full        very full 

 

How bloated do you feel now? 

 

 

not at all bloated       very bloated 

 

How hungry do you feel now? 

 

 

not at all hungry       very hungry 

 

How does your mouth feel now? 

 

 

 

not at all pleasant       very pleasant 

 

How tired do you feel now? 

 

 

not at all tired        very tired 

 

How alert do you feel now? 

 

 

not at all alert        very alert 

 

How well can you concentrate just now? 

 

 

not at all well        very well 

 

How does your head feel now? 

 

 

not at all sore        very sore 
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Subjective Feelings Questionnaire 

 

Subject Number :_______Trial Number :________ Date:___________ 
 
 

 

 

How sweet did your drink taste? 

 

 

not at all sweet        very sweet 

 

 

 

How salty did your drink taste? 

 

 

not at all salty        very salty 

 

 

 

How bitter did your drink taste? 

 

 

not at all bitter        very bitter 

 

 

 

How pleasant did your drink taste? 

 

 

not at all pleasant       very pleasant 

 

 

 

How refreshed do you feel now? 

 

 

not at all refreshed       very refreshed 

 

 

 

 

 

 

 

 



Appendix C 

 

Page | 221  

 

 

 

 

 

Appendix C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix C 

 

Page | 222  

RATINGS OF PERCEIVED EXERTION 

 

 

 

6 

 

7  Very, very light 

 

8 

 

9  Very Light 

 

10 

 

11  Fairly Light 

 

12 

 

13  Somewhat hard 

 

14 

 

15  Hard 

 

16 

 

17  Very Hard 

 

18 

 

19  Very, very hard 

 

20 
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THERMAL SENSATION SCALE 

 

 

 

-10  COLD, IMPOSSIBLE TO BEAR 

 

-9 

 

-8  VERY COLD, SHIVERING HARD 

 

-7 

 

-6  COLD, LIGHT SHIVERING 

 

-5 

 

-4  MOST AREAS OF BODY FEEL COLD 

 

-3 

 

-2  SOME AREAS OF BODY FEEL COLD 

 

-1 

 

0  NEUTRAL 

 

1 

 

2  SOME AREAS OF BODY FEEL WARM 

 

3 

 

4  SOME AREAS OF BODY FEEL HOT 

 

5 

 

6  MOST AREAS OF BODY FEEL HOT 

 

7 

 

8  VERY HOT, UNCOMFORTABLE 

 

9 

 

10  HEAT IMPOSSIBLE TO BEAR 
 

 


