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Abstract 

 

The IL-6 system is key in the development of chronic low-grade inflammation. It 

is known to be upregulated in response to acute exercise and lowered at rest 

after exercise training. IL-6 has both anti- and pro-inflammatory properties and 

moderation of this cytokine could alleviate chronic low-grade inflammation 

which is associated with obesity and Type 2 diabetes mellitus (T2DM). This 

thesis investigated the interplay between inflammation, glycaemic control and 

high intensity intermittent training (HIIT) - an exercise regimen that has been 

shown to yield many health benefits. 

There was a greater increase in IL-6 after an acute bout of HIIT than continuous 

moderate intensity exercise, where external work was matched (Chapter 4). 

Although sIL-6R and the IL-6/sIL-6R complex were both significantly increased 

after acute exercise there were no differences between HIIT and moderate 

intensity exercise. In response to 2 weeks HIIT there was a significant reduction 

in IL-6 and increase in IL-6R in adipose tissue in overweight and obese males 

(Chapter 5). It was also determined that IL-6R present in adipose tissue is at 

least partly composed of the membrane-bound IL-6R isoform (Chapter 6). 

Reductions in circulating sIL-6R, the IL-6/sIL-6R complex, MCP-1 and 

adiponectin, as well as a decrease in waist circumference and increase in peak 

oxygen uptake during exercise were also induced after 2 weeks HIIT (Chapter 

5). Young adults with T2DM (< 40 y) displayed elevated levels of inflammatory 

proteins in comparison to lean controls, however there were no significant 

differences in comparison to obese controls (Chapter 7). 

In conclusion, the findings of this thesis demonstrate that acute and repeated 

bouts of HIIT have positive effects on the inflammatory profile in the circulation 

and adipose tissue, particularly in relation to the IL-6 system. It should be 

determined if HIIT is an achievable mode of exercise for patient populations, 

including T2DM patients, in order to downregulate the inflammatory profile. 

Keywords: IL-6; inflammation; high intensity intermittent training; obesity; Type 

2 diabetes mellitus 
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INTRODUCTION  
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Physical activity is related to health, with a positive dose-response relationship 

existing between the amount of physical activity completed and the health 

benefits incurred (Blair et al. 2001), and physical inactivity is classed as the 

fourth leading risk factor for global mortality. Physical activity is a key 

determinant of energy expenditure and is therefore fundamental to energy 

balance and weight control. An imbalance in this energy equation has led to a 

prevalence of obesity which is increasing at an alarming rate, particularly in 

Western countries, with over 60% of the population in England overweight and 

approximately 25% obese in 2009 (Statistics on Obesity, Physical Activity and 

Diet: England, 2011). Obesity is a risk factor for many chronic diseases 

including cardiovascular disease (CVD), cancer and Type 2 diabetes mellitus 

(T2DM) which are the largest cause of death in the world, representing 63% of 

all deaths worldwide (World Health Organisation, Global status report on non-

communicable diseases 2010). The prevalence of T2DM in particular is rapidly 

increasing and is expected to increase from 171 million in 2000 to 366 million 

people in 2030 worldwide (Wild et al. 2004), and physical inactivity is estimated 

to be the main cause of 27% of diabetes cases. In addition the age of diagnosis 

of T2DM is decreasing (Koopman et al. 2005), which is likely due to the 

increasing prevalence of obesity.  

Exercise is a subcategory of physical activity that is planned, structured and 

repetitive and participation in exercise can decrease the risk of chronic 

diseases, including CVD and T2DM (Oguma and Shinoda-Tagawa 2004; 

Laaksonen et al. 2005; Sundquist et al. 2005). These diseases are also 

underpinned by chronic low-grade inflammation (Pradhan et al. 2001; Vasan et 

al. 2003; Berg and Scherer 2005) which has been defined as a 2-4 fold 

increase in circulating inflammatory and anti-inflammatory proteins, including 

cytokines, acute-phase proteins and chemokines (Bruunsgaard 2005).  

The cytokine, interleukin-6 (IL-6) is central to the inflammatory process and is 

known to have anti- as well as pro-inflammatory properties, and has the ability 

to antagonise the effects of tumor necrosis factor-α (TNF-α) (Starkie et al. 

2003), a known pro-inflammatory cytokine that can induce insulin resistance 

(Hotamisligil et al. 1993). Figure 1.1 illustrates the pro- and anti-inflammatory 
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cascade that occurs during sepsis. This differs from the cytokine cascade that 

occurs with exercise which is only anti-inflammatory (Petersen and Pedersen 

2005). This anti-inflammatory response to exercise is at least partly due to the 

exponential release of IL-6 from skeletal muscle, which is released into the 

circulation. This elevation in IL-6 drives the anti-inflammatory cascade by 

inhibiting pro-inflammatory cytokines TNF-α and IL-1, due to an increase in the 

production of the antagonistic TNF-α receptors (Ostrowski et al. 1999) and IL-1 

receptor antagonist (Steensberg et al. 2003) and stimulating production of the 

anti-inflammatory cytokine IL-10 (Steensberg et al. 2003). There has been 

much debate on the “good” and “bad” effects of IL-6 (Mooney 2007; Pedersen 

and Febbraio 2007). Whilst it is thought that IL-6 has the ability to induce insulin 

resistance in the liver (Klover et al. 2003), there is strong evidence that acute 

elevations of IL-6 can have positive effects, including increasing glucose 

transport and fatty acid oxidation in skeletal muscle (Carey et al. 2006). IL-6 is 

also thought to play a central role in the resolution of inflamed tissue during 

acute inflammation by inducing the expression of TNF-α receptor (TNF-R) and 

IL-1 receptor antagonist (IL-1ra) and therefore antagonising the functions of the 

pro-inflammatory cytokines IL-1 and TNF-α (Schindler et al. 1990; Tilg et al. 

1994).  
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Figure 1.1 The cytokine cascade during sepsis and exercise. In sepsis (A), the cytokine 

cascade within the first few hours consists of TNF-α, IL-1, IL-6, IL-1ra, TNF-R and IL-10. The 

cytokine response to acute exercise (B) does not include TNF-α and IL-1 but does show a 

marked increase in IL-6, which is followed by IL-1ra, TNF-R and IL-10. Increased C-reactive 

protein (CRP) levels do not appear until 8–12 h later. Taken from Petersen and Pedersen 

(2005). 

 

The acute increase in IL-6 found after a single bout of exercise (Keller et al. 

2005a; Gray et al. 2009b; Robson-Ansley et al. 2009) is related to exercise 

intensity (Helge et al. 2003; Ostrowski et al. 2000), however, the biological 

activity of IL-6 is dependent on binding to its receptors, IL-6 receptor (IL-6R) 

and glycoprotein 130 (gp130). A soluble form of IL-6R exists, sIL-6R, which 

allows IL-6 signalling to occur in tissues lacking membrane-bound IL-6R, a 

process termed trans-signalling (Rose-John and Heinrich 1994). Recent studies 

have shown that sIL-6R is also elevated after exercise (Gray et al. 2009b; 

Robson-Ansley et al. 2009), although it is unclear whether sIL-6R release is 

related to exercise intensity.  

In contrast to an acute anti-inflammatory response after a single bout of 

exercise, exercise training has been shown to aid the reduction of basal 

inflammatory proteins in a number of studies, however other studies have failed 

to see an effect of chronic exercise training on inflammatory proteins 

(Adamopoulos et al. 2002; Balducci et al. 2010b; Church et al. 2010; Gray et al. 

2009a; Oberbach et al. 2008; Thompson et al. 2010; Zoppini et al. 2006). 
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Adipose tissue is one of the main sources of many of the proteins associated 

with inflammation and its resolution, with elevated circulating levels common in 

obesity due to excess adiposity. Despite this, there is no research investigating 

the effects of exercise training on inflammation in adipose tissue. Much of the 

literature has investigated the effects of low to moderate intensity exercise (less 

than 6 metabolic equivalent of task (METs)) on health, in line with the public 

health recommendations stating that adults should accumulate 30 min of 

moderate exercise 5 days per week (Chief Medical Officers, 2004). These 

recommendations were recently updated, with the new guidelines 

recommending 150 min of moderate, or 75 min vigorous exercise per week (or 

a combination), with an aim to do some physical activity every day, and in 

addition to include muscle strengthening exercises twice per week (Chief 

Medical Officers, 2011). In line with the new physical activity recommendations, 

there are numerous publications supporting a higher intensity of exercise 

(Tremblay et al. 1990; O'Donovan et al. 2005; Swain and Franklin 2006; Tjønna 

et al. 2008). 

High intensity intermittent exercise enables individuals to exercise at a higher 

intensity than they could maintain during continuous exercise due to exercise 

intervals separated by rest periods or low intensity exercise. There are different 

modes of intermittent exercise, with one protocol, high intensity intermittent 

training (HIIT), finding a 36% increase in fat oxidation during exercise after a 2 

week training period (Talanian et al. 2007). Additionally, high intensity 

intermittent exercise has induced improvements in some health factors after 3-4 

months training in chronic disease states such as the metabolic syndrome and 

CVD, including improved endothelial function and insulin signalling, to a greater 

extent than continuous moderate intensity exercise with equal energy 

expenditure (Wisløff et al. 2007; Tjønna et al. 2008). As not all studies have 

reported a positive effect of exercise training on chronic low-grade inflammation 

it is possible that the differences reported between studies could be due to the 

exercise intensity and that high intensity exercise may be required to induce a 

reduction in inflammation. Since high intensity intermittent exercise has been 

shown to have some additional health benefits in comparison to traditional 
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moderate intensity exercise it could also be an appropriate mode of exercise to 

reduce basal inflammatory proteins in the circulation and in adipose tissue. 

Aims of thesis: 

 to establish whether a single bout of HIIT or continuous moderate 

intensity exercise elicits the greatest response of the IL-6 system; 

 to determine if short-term exercise training can reduce inflammatory 

proteins in adipose tissue and the circulation in overweight and obese 

men; 

 to develop a method to detect membrane-bound IL-6R in adipose tissue 

and determine if these isoforms are altered after a period of short-term 

exercise training;  

 to phenotype the inflammatory, glycaemic and lipid profiles, and peak 

oxygen uptake during exercise in young adults with T2DM (< 40 y), in 

comparison to age-matched lean and obese individuals. 
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2.1 Acute exercise and the IL-6 system 

A large number of studies have looked at the acute effects of exercise on the 

pleiotropic cytokine IL-6 over the last 20 years (For review see Fischer 2006). 

IL-6 has been described as both a pro- and anti-inflammatory protein (Pedersen 

and Febbraio 2007), and has been identified in carcinoma cells, T and B cells, 

endothelial cells, adipocytes and skeletal muscle (Yasukawa et al. 1987; Hirano 

et al. 1987; Jirik et al. 1989; Mohamed-Ali et al. 1997; Hiscock et al. 2004; 

Keller et al. 2005b).  

Research has shown that endurance and resistance exercise result in an acute 

increase in IL-6 (Fischer 2006; Izquierdo et al. 2009). The stimulated increase 

in IL-6 through exercise is transient and peaks at the end of exercise or shortly 

thereafter, before rapidly decreasing back to baseline levels (Keller et al. 

2005a; Gray et al. 2009b; Robson-Ansley et al. 2009), with a similar response 

seen in both young and older adults (Sacheck et al. 2006). 

As little as 25 min cycling at 60% peak oxygen uptake ( ̇O2peak) has been 

shown to cause an elevation in systemic IL-6 (Febbraio et al. 2003), and it has 

been reported to increase over 100-fold with prolonged exercise (Ostrowski et 

al. 1999; Nieman et al. 2005), although more modest increases are generally 

reported. Elevated IL-6 after exercise is due to an increase in IL-6 production in 

skeletal muscle which is released into the circulation (Penkowa et al. 2003; 

McKay et al. 2009), as shown by increased IL-6 mRNA expression and protein 

expression after exercise, which is returned to baseline by 24 h after exercise. 

Increased IL-6 transcription and mRNA expression in contracting skeletal 

muscle has been shown to be increased further with low glycogen availability 

(Keller et al. 2001; Steensberg et al. 2001). IL-6 can also be elevated due to 

increased intracellular calcium content that results in the activation of p38 

mitogen-activated protein kinase (MAPK) and subsequently activation of 

transcription factors that induce an increase in IL-6 production (Pedersen and 

Febbraio 2008).  

IL-6 production is dependent on exercise intensity and duration, as well as the 

mass of muscle recruited (Fischer 2006). The original data identifying an 
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intensity-dependent release of IL-6 was based on an association between 

running speed during a marathon and IL-6 concentration (Ostrowski et al. 

2000). This data has been supported by research showing that IL-6 increases 

in an intensity dependent manner during knee extensor exercises (Helge et al. 

2003). Conversely, data gathered during treadmill running at two differing 

intensities, proposed that exercise intensity was not a major factor in IL-6 

release (Tartibian et al. 2009), although IL-6 increased by 28% running at 60% 

maximal oxygen uptake ( ̇O2max) and by 44% running at 75%  ̇O2max, 

suggesting that intensity may still be relevant to IL-6 production, despite no 

significant difference between trials. This latter study would have benefited from 

using a within-sample study design as opposed to a between-sample design in 

order to compare the individual inflammatory response to exercise intensity, 

due to the large inter-individual variation in IL-6 levels (Walshe et al. 2010). 

Perhaps of more relevance to IL-6 production during exercise is duration, with 

over 50% of the variation in IL-6 being attributable to the duration of exercise 

(Fischer 2006). As previously discussed, IL-6 production during exercise occurs 

in skeletal muscle, therefore, it is also logical that some of the variation in IL-6 

production will depend on the mass of muscle recruited during exercise. Hence, 

the type of exercise as well as the intensity and duration are important factors 

for IL-6 release from skeletal muscle.  

Despite extensive research on the IL-6 response to exercise, less is known 

about the effects of exercise on IL-6R, which is fundamental to the biological 

activity of IL-6. More recently, some studies have quantified both IL-6R and IL-6 

(Keller et al. 2005a; Gray et al. 2009b; Robson-Ansley et al. 2009; Keller et al. 

2005b; Walshe et al. 2010; Gray et al. 2008; Patterson et al. 2008; Robinson et 

al. 2009; Robson-Ansley et al. 2010). In order for IL-6 to signal it must bind to 

the membrane-bound IL-6R, an 80 kDa glycoprotein, found mainly in 

leukocytes and hepatocytes (Hibi et al. 1990), or alternatively it can bind to a 

soluble version of the receptor, sIL-6R, found in plasma (Müllberg et al. 1993; 

Müller-Newen et al. 1998) (Figure 2.1). IL-6R availability is low or absent in 

many tissues including resting skeletal muscle (Keller et al. 2005b), therefore, 

IL-6 must bind to sIL-6R allowing signalling to occur in tissues deficient in IL-

6R, a process termed trans-signalling (Rose-John and Heinrich 1994). Once 
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bound, the active IL-6/IL-6R complex must bind to a secondary receptor, 

gp130, which is ubiquitously expressed on almost all cell membranes (Hibi et 

al. 1990) and allows activation signals to be transmitted (Jones et al. 2001). A 

soluble version of gp130 also exists (sgp130), but has been shown to be a 

natural antagonist of IL-6/IL-6R signalling (Jostock et al. 2001). This antagonist 

can bind to sIL-6R in the absence of IL-6, rendering sIL-6R inactive and unable 

to bind to IL-6 to induce signalling, therefore reducing the amount of sIL-6R 

available for IL-6 signalling (Gaillard et al. 1999). 

 

 

Figure 2.1. Schematic representation of: A. the membrane-bound IL-6/IL-R/gp130 

complex and B. the IL-6/sIL-6R complex. Adapted from Paonessa et al. 1995. 

 

Where there is some evidence to show that sIL-6R is increased after exercise 

(Sacheck et al. 2006; Gray et al. 2008; Gray et al. 2009b; Robson-Ansley et al. 

2009), others have found no effect of exercise on sIL-6R in plasma (Keller et al. 

2005a; Keller et al. 2005b; Patterson et al. 2008; Robinson et al. 2009). Unlike 
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IL-6, sIL-6R may not peak until several hours after the cessation of exercise 

(Keller et al. 2005a; Robson-Ansley et al. 2009) and sampling time could be an 

important issue. 

The first study to investigate sIL-6R during exercise involved 3 h cycling at 60% 

of maximum power output and did not find any significant change in sIL-6R 

after exercise, however the sample size was very small (N = 6), and there was 

a mean increase of sIL-6R of ~9% post-exercise (Keller et al. 2005a). In the 

same study IL-6R mRNA and protein expression in skeletal muscle were 

significantly increased at 3 and 6 h post-exercise. This finding has been 

supported by another study where IL-6R mRNA expression in skeletal muscle 

was found to increase approximately 5-fold, 4 h after 300 knee extensions to 

maximal effort (McKay et al. 2009). The elevation was short lived and IL-6R 

mRNA expression had returned to baseline levels by 24 h post-exercise. Other 

researchers have found that acute exercise does induce an increase in sIL-6R ( 

Gray et al. 2008; Gray et al. 2009b; Robson-Ansley et al. 2009). Gray et al. 

(2008; 2009b) found sIL-6R to increase immediately post-exercise after cycling 

to volitional exhaustion (96% lactate threshold or 68%  ̇O2max) and after 1 h 

cycling at 90% lactate threshold (63%  ̇O2peak). Findings by (Robson-Ansley et 

al. 2009) also reported an elevation in sIL-6R the morning after prolonged 

cycling during a mountain bike event. In addition to these studies, a single bout 

of muscle damaging eccentric exercise resulted in a significant reduction in sIL-

6R at 48 and 72 h post-exercise (Robson-Ansley et al. 2010). The only other 

time point to be sampled in this study was at 24 h post-exercise, where sIL-6R 

was not significantly different to pre-exercise.  

The differences reported in sIL-6R after exercise may be due to the timing of 

the blood sampling, and it is not clear when sIL-6R peaks in response to an 

acute bout of exercise which may vary depending on the nature of the exercise. 

As previously discussed, IL-6 production is dependent on exercise duration, 

intensity and mode or exercise, however, the effect of exercise intensity and 

duration on sIL-6R has not been determined. 

Soluble IL-6R is produced by 2 different mechanisms; proteolytic cleavage, 

which is the shedding/cleavage of membrane-bound IL-6R (PC-sIL-6R) 
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(Müllberg et al. 1993), by enzymes of the ADAM family (a disintegrin and 

metalloprotease), including ADAM17 (Matthews et al. 2003), or secondly by 

differential mRNA splicing (DS-sIL-6R), which results from the deletion of 94 

base pairs corresponding to the transmembrane domain of IL-6R (Horiuchi et 

al. 1994) (Figure 2.2). This deletion of the transmembrane domain results in a 

reading frameshift leading to a unique COOH-terminal sequence. Soluble IL-6R 

produced by shedding occurs rapidly, approximately 30-120 min after 

stimulation, whereas sIL-6R produced by differential mRNA splicing is much 

slower and has been found to occur between 6 and 24 h after activation (Jones 

et al. 2001; Dimitrov et al. 2006). The mechanism responsible for the increased 

production in sIL-6R after exercise is still unknown.  
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Figure 2.2 Schematic representation of the 2 mechanisms of sIL-6R production. A. 

membrane-bound IL-6R is cleaved into the circulation (PC-sIL-6R) by ADAM17 and B. deletion 

of the transmembrane region results in mRNA splicing and the release of DS-sIL-6R. * denotes 

the reading frameshift. PM; plasma membrane. Adapted from Jones et al. 2001.  

 

Since IL-6 is biologically active when bound to IL-6R or sIL-6R, changes in the 

IL-6/sIL-6R complex after exercise will give an indication of how much IL-6 is 

biologically active. An acute 1 h bout of exercise at 90% lactate threshold 

resulted in over a 2-fold increase in the IL-6/sIL-6R complex after exercise, and 

was still significantly elevated at 1.5 h post-exercise (Gray et al. 2009b). This is 

the only study that has quantified the IL-6/sIL-6R complex in response to 

exercise. It remains unclear what happens to the concentration of the IL-6/sIL-

6R complex after 1.5 h post-exercise, or if altering the intensity of exercise will 

have an effect on the IL-6/sIL-6R complex.  
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2.2 Obesity, adipose tissue and inflammation 

Adipose tissue is a heterogenous organ and following the discovery of leptin 

secretion from the tissue in 1994 (Zhang et al. 1994), it is now known to form 

the largest endocrine organ in the body (Trayhurn 2005) and can produce and 

secrete over 75 inflammatory proteins (Wood et al. 2009). Approximately half of 

adipose tissue is made up of adipocytes, whilst the remainder consists of blood 

cells, endothelial cells, macrophages, pre-adipocytes and fibroblasts (Compher 

and Badellino 2008). Excess adipose tissue is related to an increased risk of 

chronic diseases such as CVD and T2DM (Sowers 2003). This superfluous 

adipose tissue results in a marked secretion of many inflammatory cytokines 

and cell adhesion molecules, including IL-6, TNF-α and intercellular adhesion 

molecule-1 (ICAM-1) in comparison to lean individuals (Hotamisligil et al. 1995; 

Kern et al. 1995; Kern et al. 2001; Bošanská et al. 2010). The increased 

production by adipose tissue contributes to a chronic state of inflammation and 

metabolic disorders (Maachi et al. 2004), which includes insulin resistance and 

progression to the metabolic syndrome and T2DM (Shoelson et al. 2006). 

 

2.3 Mechanisms of increased inflammation in adipose tissue 

Macrophages are mononuclear phagocytes and infiltration into the adipose 

tissue has been shown to be increased in obese compared with normal weight 

individuals (Weisberg et al. 2003; Cancello et al. 2005). These cells reside in 

the stromal vascular region of adipose tissue and produce many cytokines 

including IL-6 and TNF-α (Weisberg et al. 2003). It seems that the size of the 

adipocytes triggers macrophage infiltration rather than overall obesity (Cinti et 

al. 2005), and it has been speculated that recruitment of the macrophages may 

be stimulated by the chemokines, monocyte chemoattractant protein-1 (MCP-1) 

and macrophage inflammatory protein-1α (MIP-1α) (Bruun et al. 2005; Xu et al. 

2003). Adipocyte size has also emerged to be important in the release of 

inflammatory proteins, with the greatest secretion of IL-6, TNF-α, MCP-1, MIP-

1α and IL-1ra found in the largest adipocytes, which is probably due to a 

greater mean surface area and cell volume (Skurk et al. 2007). It is difficult to 
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completely distinguish the contribution of inflammatory mediators from different 

cell types within adipose tissue, although of the ~30% of circulating IL-6 claimed 

to be secreted from adipose tissue at rest (Mohamed-Ali et al. 1997), only 

~10% of this can be accountable to adipocyte production (Fried et al. 1998). 

Gene expression of IL-6 and its receptors IL-6R and gp130, as well as the 

acute phase protein CRP, have also been shown to be significantly elevated in 

adipose tissue of patients with chronic low-grade inflammation in comparison 

with healthy controls (Memoli et al. 2007), suggesting that adipose tissue may 

contribute to the elevated inflammatory proteins in the circulation. In addition, 

IL-6 is significantly elevated in obese individuals with T2DM in comparison to 

both a healthy control group and a group of non-obese T2DM individuals 

(Hansen et al. 2010), suggesting that adipose tissue is one of the main sources 

IL-6 production at rest. Although IL-6 levels are clearly related to the amount of 

adipose tissue, further regulation from other mediators are also likely, including 

dietary fat (García-Escobar et al. 2010) and hypoxia (Trayhurn and Wood 

2004). 

In vitro studies in rat adipocytes have shown that fatty acid composition in the 

diet is a strong mediator of IL-6 regulation despite no differences in body mass 

or fat mass (García-Escobar et al. 2010), therefore IL-6 regulation is likely to be 

moderated by more than one single factor. Another possible explanation for an 

increase in localised inflammation within adipose tissue of obese individuals is 

due to cellular hypoxia, proposed by Trayhurn and Wood (2004). Adipose 

tissue has poor vascularisation and obese individuals have lower tissue 

oxygenation in subcutaneous fat tissue than non-obese individuals 

(Fleischmann et al. 2005). Furthermore, adipocytes can reach up to 200 µm in 

diameter (Skurk et al. 2007), therefore exceeding the normal oxygen diffusion 

rate of ~100-200 µm (Brahimi-Horn and Pouysségur 2007). Elevated gene 

expression of many inflammatory proteins, including IL-6 and TNF-α have been 

found in hypoxic adipose tissue and macrophages in obese mice (Ye et al. 

2007). 
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2.4 Subcutaneous and visceral adipose tissue 

Adipose tissue is made up of white and brown tissue, where white adipose 

tissue cells contain a single large fat droplet and are used as a major energy 

store, whilst brown adipose tissue cells have numerous small lipid droplets and 

more mitochondria than white cells. There are two types of white adipose 

tissue, subcutaneous and visceral. Subcutaneous adipose tissue is stored just 

below the surface of the skin, whereas visceral adipose tissue is found deeper 

in the body, around the internal organs. There are differences in inflammatory 

protein release between subcutaneous and visceral adipose tissue. Evidence 

suggests that the dominant source of inflammation is visceral adipose tissue 

(Fried et al. 1998; Bruun et al. 2005; Bošanská et al. 2010), although one ex-

vivo study found more IL-6 in subcutaneous than visceral fat (Gletsu et al. 

2006), and similarly adiponectin abundance is greater in subcutaneous adipose 

tissue (Fain et al. 2004; Lihn et al. 2004). Despite the majority of evidence 

suggesting inflammatory proteins are present at greater concentrations in 

visceral than subcutaneous adipose tissue, visceral adipose tissue accounts for 

only 13% of total adipose tissue in obese men and 6% in obese women (Ross 

et al. 1994), therefore the contribution of subcutaneous adipose tissue to 

chronic low-grade inflammation could be substantial. 

 

2.5 Chronic low-grade inflammation, insulin resistance and T2DM 

Chronic low-grade inflammation has been shown to precede and predict the 

risk of T2DM (Schmidt et al. 1999). In particular elevated CRP and IL-6 are 

strong predictors of T2DM in those at risk of developing the disease (Pradhan 

et al. 2001; Dehghan et al. 2007). There is some evidence from animal studies 

to suggest that the pancreas produces inflammatory proteins, including IL-6, 

TNF-α and MCP-1 (Ehses et al. 2009), however, the pancreas is a relatively 

small organ, and it is likely that only a small proportion of chronic low-grade 

inflammation is a result of pancreatic inflammation. Adipose tissue is an 

important mediator of insulin sensitivity and many of the inflammatory proteins 

released from adipose tissue are involved in glycaemic control and the 
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development of insulin resistance. Both elevated subcutaneous and visceral 

adipose tissue are associated with insulin resistance, although there is a 

greater positive correlation between insulin resistance and visceral adipose 

tissue (Preis et al. 2010). 

In chronic low-grade inflammatory states, such as in obesity and insulin 

resistance, the pro-inflammatory cytokine TNF-α is elevated in the circulation 

(Dandona et al. 1998; Dandona et al. 2004), which is a cytokine known to 

induce insulin resistance. A study published in 1993 was the first to show that 

inflammatory proteins played an important role in the development of insulin 

resistance (Hotamisligil et al. 1993). The study found that TNF-α mRNA and 

protein expression in epididymal adipose tissue of obese rodents was elevated. 

The authors derived that TNF-α was an important factor in insulin resistance, as 

neutralisation of TNF-α lead to an increase in insulin sensitivity. The same 

research group went on to demonstrate that TNF-α was significantly higher in 

subcutaneous adipose tissue of obese compared to lean females and that TNF-

α was significantly reduced after weight loss (Hotamisligil et al. 1995). These 

findings suggested that the functional role of TNF-α in insulin resistance shown 

in their earlier animal studies is likely to be similar in humans. Evidence has 

shown that TNF-α may induce insulin resistance through the induction of serine 

phosphorylation of insulin receptor substrate 1 (IRS-1) (Hotamisligil et al. 1996), 

and it has been speculated that IL-6 can also induce insulin resistance via this 

mechanism (Bastard et al. 2002). 

In contrast to an acute bout of exercise causing a short-term elevation in IL-6, 

elevated basal IL-6 found with chronic low-grade inflammation is associated 

with chronic conditions including obesity (Bastard et al. 2000) and T2DM 

(Duncan et al. 2003; Hu et al. 2004). There is evidence to suggest that sIL-6R 

is also elevated in T2DM in comparison to a control group (Müller et al. 2002), 

although another study found no difference between groups (Kado et al. 1999). 

However, in both studies, sIL-6R concentration was extremely high in all groups 

(~100 ng·ml-1), which is more than double the range reported in more recent 

years (~30-50 ng·ml-1), possibly due to the variation in antibodies and modern 

antibodies being more specific to the target protein. Polymorphisms of the IL-6 

(Huth et al. 2009) and IL-6R genes (Hamid et al. 2004) may also contribute to 
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the genetic susceptibility of T2DM. Although Kado et al. (1999) found no 

difference in sIL-6R between T2DM and healthy controls, the study reported 

significantly higher levels of the IL-6/sIL-6R complex in T2DM. However, it 

should be noted that body mass was not reported in this study and the T2DM 

patients were significantly older than the controls. 

The role of IL-6 in insulin sensitivity is complex, with contradictory findings 

reported in the literature (Mooney 2007; Pedersen and Febbraio 2007). It has 

been argued that although elevated IL-6 is found in insulin resistant states, 

most of the data comes from correlation or animal studies, or from tissue 

culture studies using supraphysiological IL-6 concentrations (Pedersen and 

Febbraio 2007). In adipocytes, oxidative stress occurs with insulin resistance 

and can induce the production of IL-6 (Lin et al. 2005). Elevated  IL-6 in obese 

individuals has been shown to have a strong negative correlation with maximal 

insulin glucose transport rate, and has been speculated to be due to IL-6 

inducing IRS-1 serine phosphorylation (Bastard et al. 2002), which is known to 

inhibit the insulin signalling pathway. However, this study found that TNF-α did 

not correlate with insulin resistance, contradicting the earlier findings by 

Hotamisligil et al. (1995). Another mechanism for cytokine-induced insulin 

resistance, could be that the expression of the suppressor of cytokines 

(SOCS)3 is activated by IL-6 in adipose tissue, which could induce insulin 

resistance through inhibition of IRS transduction (Rieusset et al. 2004). IL-6 is 

known to have different actions in adipose tissue and skeletal muscle. Although 

IL-6 in adipose tissue appears to have detrimental effects on insulin signalling, 

it is thought that IL-6 in skeletal muscle has a positive influence.  It was 

previously shown that IL-6 increased glucose uptake in skeletal muscle at 

supraphysiological concentrations (Geiger et al. 2007) in rodent muscle, 

however this effect was not found in human tissue (Glund et al. 2007). More 

recently it has been shown sIL-6R plays a crucial role in glucose metabolism, 

since IL-6 in combination with sIL-6R, both at physiological concentrations, was 

shown to directly stimulate glucose transport, partially through adenosine 

monophosphate activated protein kinase (AMPK) signalling in mouse soleus 

muscle (Gray et al. 2009c). Activation of AMPK signalling also comes about via 

stimulation by adiponectin bound to its receptors, AdipoR1 and AdipoR2, and 
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results in an increase in fat oxidation and glucose utilisation in skeletal muscle 

(Yamauchi et al. 2002). 

In a state of chronic low-grade inflammation adiponectin is reduced and it has 

been clearly demonstrated that BMI is inversely associated with circulating 

adiponectin concentration in both healthy and T2DM individuals (Arita et al. 

1999; Weyer et al. 2001; Bruun et al. 2003; Kern et al. 2003; Ryan et al. 2003; 

Vilarrasa et al. 2005; Bluher et al. 2006). Adiponectin has been proposed to 

have insulin-sensitising effects via AMPK signalling (Berg et al. 2001; Fruebis et 

al. 2001; Yamauchi et al. 2001 Yamauchi et al. 2002), and a reduction in 

adiponectin production within adipose tissue results in both local and systemic 

insulin resistance. High adiponectin levels can also induce an anti-inflammatory 

environment by stimulating the production of IL-10 and IL-1ra in monocytes and 

macrophages (Kumada et al. 2004; Wolf et al. 2004) and can inhibit mRNA 

expression of ICAM-1 induced by TNF-α stimulation in human aortic endothelial 

cells (Ouchi et al. 1999). 

A disruption in adiponectin signalling has been shown to induce an increase in 

the expression of the chemokine MCP-1 (Yamauchi et al. 2007; Yamauchi and 

Kadowaki 2008). MCP-1 and ICAM-1 production are upregulated in obesity and 

insulin resistance (Strączkowsk et al. 2002; Leinonen et al. 2003; Kim et al. 

2006) and can induce macrophage recruitment into adipose tissue which leads 

to insulin resistance (Brake et al. 2006; Kanda et al. 2006). Mice 

overexpressing MCP-1 induced local insulin resistance in adipose tissue, due to 

an increase in macrophages infiltration which led to an increased expression of 

IL-6 and TNF-α (Kamei et al. 2006). Overexpression of MCP-1 can also lead to 

systemic effects on insulin resistance, as the authors in this study also showed 

that MCP-1 blunted insulin signalling in myotube cells and insulin-stimulated 

glucose uptake into skeletal muscle. The data suggests that adiponectin may 

be an important upstream regulator of chronic low-grade inflammation. In 

addition, inhibition of MCP-1 in obese mice reduced macrophage infiltration into 

adipose tissue and insulin resistance (Kanda et al. 2006), therefore 

emphasising the importance of this chemoattractant protein in the progression 

of T2DM. 
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Inflammatory proteins including IL-6 and TNF-α are associated with a number 

of downstream effects that can lead to the development of atherosclerosis 

(Libby et al. 2002) and it has been proposed that these inflammatory proteins 

can act on the liver to induce the production of certain lipoproteins (Sjöholm and 

Nyström 2006). Therefore, inflammation may cause dyslipidaemia, a major risk 

factor for atherosclerosis, and an association has been shown with increased 

very low density lipoprotein (VLDL), which is another risk factor for insulin 

resistance (Esteve et al. 2005). There is also some evidence that there could 

be a link between chronic low-grade inflammation and 25-hydroxyvitamin D 

(25(OH)D) deficiency. TNF-α has been shown to be negatively correlated with 

25(OH)D in healthy women (Peterson and Heffernan 2008), and furthermore 

there was a tendency for an inverse correlation between IL-6 and 25(OH)D, 

although no correlation was found between CRP or IL-10 with 25(OH)D. It is 

thought that 25(OH)D plays a role in T2DM, and correlates with insulin 

sensitivity and BMI in obesity (Muscogiuri et al. 2010). Future research is 

therefore required to determine to relationship between raised inflammation and 

25(OH)D deficiency. Moreover, T2DM patients are known to have poorer 

glycaemic control in the winter (Campbell et al. 1975), the time of year that 

hypovitaminosis D is most common. In addition to 25(OH)D correlating with 

some inflammatory mediators, it has been established that 25(OH)D has anti-

inflammatory properties by suppressing TNF-α secretion in macrophages 

(Cohen et al. 2001). It does not appear clear whether the increased prevalence 

of 25(OH)D deficiency in T2DM is due to increased levels of adiposity, and 

moreover, it remains unclear whether there is a relationship between 

inflammation and 25(OH)D in T2DM. 

 

2.6 Chronic low-grade inflammation and exercise training 

A number of studies have investigated the effects of exercise training on 

inflammatory proteins in the circulation in both healthy and disease states 

(Adamopoulos et al. 2002; Zoppini et al. 2006; Oberbach et al. 2008; Gray et al. 

2009a; Balducci et al. 2010b; Church et al. 2010; Thompson et al. 2010), with 

both positive and no effect of exercise training on inflammation reported. 
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However, most studies that have investigated the effects of exercise training on 

inflammation have used low to moderate intensity exercise, generally less than 

60%  ̇O2max, which could be below the lactate threshold even for some 

untrained individuals (Demello et al. 1987; Hagberg et al. 1988). 

Non-disease cohorts have been used in a number of studies to investigate the 

effects of exercise training on systemic inflammation. A 12 week community 

based walking intervention did not induce changes in plasma CRP, IL-6, sIL-

6R, TNF-α or its receptors in individuals who initially did less than 30 min of 

moderate intensity exercise, 5 days per week (Gray et al. 2009a). Participants 

were encouraged to increase walking by 3000 steps on 5 days per week during 

the 12 week period, in order to meet the physical activity guidelines. Two 

factors that could explain why no reduction in any of the inflammatory 

parameters were found were that adherence to the programme was not 

monitored and also the exercise intensity or volume may not have been 

sufficient to induce a reduction in the inflammatory proteins. In support of these 

findings Keller et al. (2005b) carried out a 10 week training study in untrained 

males, who undertook 1 h knee extensor training sessions at 75% maximal 

power output 5 days per week, and although this resulted in a 12% decrease in 

sIL-6R after training, this was not statistically significant, however this was 

possibly due to a small sample size (N = 7). 

Another study that utilised a higher exercise intensity than that of Gray et al. 

(2009a) and was conducted in sedentary and overweight males, who were 

otherwise healthy, found that IL-6 was reduced after 12 and 24 weeks 

participation in a progressive moderate intensity exercise training programme 

(50-70%  ̇O2max), although no change in CRP or ICAM-1 was detected 

(Thompson et al. 2010). This study also demonstrated that the effects of 

exercise training on inflammatory proteins could be relatively short-lived, since 

IL-6 had increased again after 2 weeks detraining. Since (Gray et al. 2009a) 

and (Thompson et al. 2010) both measured IL-6 after 12 weeks exercise 

training in similar populations and with a similar total exercise duration, it could 

be hypothesised that the induced decrease in IL-6 in (Thompson et al. 2010) 

was due to the higher exercise intensity.  
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Similarly to Gray et al. (2009a) and (Thompson et al. 2010), another study 

looked at the effects of 4 weeks moderate intensity exercise in healthy 

individuals and found no change in IL-6, CRP, IL-10 or adiponectin after the 

intervention, despite a reduction in inflammation in those with metabolic 

abnormalities (Oberbach et al. 2006). However, in this study there is no 

information on exercise intensity, and again it could be that it was not high 

enough to elicit any changes in inflammatory proteins. 

Although most research has looked at the effects of aerobic exercise on 

inflammatory proteins, there is also evidence that resistance training can have a 

beneficial effect on some inflammatory mediators. A one year moderate 

intensity resistance training intervention was shown to cause a reduction in 

CRP and increase adiponectin, despite there being no effect on IL-6, ICAM-1, 

body mass or fat mass in overweight women who trained at least twice a week 

(Olson et al. 2007). Similarly, resistance training but not aerobic training elicited 

a reduction in circulating CRP after a 10 week period in sedentary, overweight 

individuals, however IL-6 was unaltered in both groups (Donges et al. 2010). 

Therefore, there does appear to be some benefit of resistance training on 

inflammatory proteins, particularly regarding CRP, which has been shown to 

have an inverse relationship with physical activity (Abramson and Vaccarino 

2002), however, it may not be suitable to induce an improvement in other 

inflammatory proteins, including IL-6, in non-disease populations.  

In conclusion, a number of studies have looked at the effects of exercise 

training in healthy individuals with regards to basal inflammatory proteins. There 

is some evidence suggesting that exercise can be a suitable treatment or 

prevention strategy for inflammation in the circulation, however as this finding is 

not consistent, it is possible that individuals may benefit from incorporating 

higher intensity exercise into an exercise regimen, as the studies described 

utilised mainly low to moderate intensity exercise. The lack of effect of exercise 

on systemic inflammation could also be due to these studies being in non-

disease populations that already have relatively normal levels of inflammatory 

proteins prior to an intervention. 
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In addition to studies investigating the effects of exercise training in non-

disease groups, there are a number of studies that have investigated the effects 

of exercise interventions on inflammatory proteins in patient populations, 

including those with metabolic diseases such as T2DM and the metabolic 

syndrome who have chronic low-grade inflammation.  

IL-6, sIL-6R and TNF-α were successfully reduced after a 12 week exercise 

intervention in chronic heart failure patients who exercised for 30 min at 60-80% 

of maximal heart rate, 5 days per week (Adamopoulos et al. 2002). Although a 

decrease was found in chronic heart failure patients, another study that 

investigated the effects of 4 weeks moderate intensity exercise, 4 days per 

week, in T2DM and impaired glucose tolerance patients found no change in IL-

6 or IL-10 post-training, however the intervention did induce a significant 

reduction in CRP and an increase in adiponectin, coinciding with a small but 

significant weight loss in both groups (Oberbach et al. 2006).  

A longer term exercise training programme (6 months) has been shown to lead 

to an increase in IL-10 in T2DM patients, thereby exerting anti-inflammatory 

protection (Kadoglou et al. 2007). The authors also reported a reduction in CRP 

and a slight but not statistically significant decrease in TNF-α and increase in 

adiponectin. Increased IL-10 with exercise training could induce a decrease in 

ICAM-1, as shown to occur in other studies, since IL-10 has been shown to 

downregulate ICAM-1 (Willems et al. 1994), although this study did not 

measure ICAM-1. 

Low to moderate intensity exercise training can be a beneficial aid for 

decreasing ICAM-1 in obesity, as well as in those with impaired glucose 

tolerance. In T2DM patients, ICAM-1 was reduced after exercise training 

interventions lasting 3/4 weeks or 6 months, with sessions ranging from twice 

per week to daily (Roberts et al. 2006a; Roberts et al. 2006b; Zoppini et al. 

2006; Tönjes et al. 2007), however, the training had no effect in healthy 

individuals (Zoppini et al. 2006). Moderate intensity exercise interventions 

involving aerobic and resistance training have also significantly reduced MCP-1 

in men with the metabolic syndrome (Troseid et al. 2004), which could be due 

to an inhibitory effect via an increase in adiponectin. Therefore exercise training 
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in these populations has a positive effect on chronic low-grade inflammation. In 

all but one of these studies, the reduction in MCP-1 or ICAM-1 was 

accompanied by a significant weight loss, therefore it is not possible to 

conclude whether the reduced inflammation is entirely due to a direct effect of 

exercise training or to a reduction in adiposity. Despite not all studies showing 

that all inflammatory proteins are reduced after every exercise intervention in 

clinical populations, overall, exercise seems to be a suitable form of treatment 

to reduce chronic low-grade inflammation.  

Although some of the previously discussed exercise interventions induced a 

reduction in body mass, diet was not controlled in these studies. Calorie 

restriction is an additional component which may influence the outcome of 

exercise training on inflammation, and some studies have looked at the effects 

of exercise training and energy restriction on chronic low-grade inflammation. 

Bruun et al. (2006) carried out a study that involved a 15 week lifestyle 

intervention, and incorporated a large volume of moderate intensity exercise (2-

3 h, 5 days/week) and a hypocalorific diet in a morbidly obese population 

(Bruun et al. 2006). This lifestyle intervention resulted in reductions in IL-6, CRP 

and MCP-1 in the circulation, as well as an increase in adiponectin, although no 

change in TNF-α was found. In this study participants significantly reduced their 

body mass, with a mean loss of ~18 kg (~13% of body mass). Therefore, it is 

not possible to conclude whether the reduction in inflammatory proteins and 

increase in adiponectin was in response to the exercise training or due to the 

weight loss as the mean BMI in this study was also extremely high (~45 kg·m-2). 

A similar lifestyle intervention induced a weight loss of ~12 kg (12% of body 

mass) after a 3 month period by combining exercise and energy restriction 

(Christiansen et al. 2010a), in obese individuals, although their baseline BMI 

was much lower (~34 kg·m-2) than Bruun et al. (2006). The findings by 

Christiansen et al. (2010a) supported those of Bruun et al. (2006) as they found 

that IL-6 and MCP-1 were significantly reduced and that adiponectin was 

increased after training. In addition, Christiansen et al (2010a) included an 

exercise only group that resulted in a far smaller weight loss of ~3.5 kg (3% of 

body mass) and did not alter any of the inflammatory proteins or adiponectin 

after training. The findings of both Bruun et al. (2006) and Christiansen et al. 
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(2010a) suggest that with moderate intensity exercise, weight loss may also be 

required to induce positive effects on chronic low-grade inflammation in obese 

populations.  

Weight loss appears to be particularly important with regards to adiponectin. 

One study found that a weight loss programme via dieting caused a significant 

increase in adiponectin, however exercise without weight loss was insufficient 

to increase adiponectin (Hulver et al. 2002). Although these findings are 

important, it should be noted that the exercise group consisted of healthy 

individuals, whereas individuals in the diet group were morbidly obese, and 

therefore it is difficult to directly compare the effects of diet and exercise on 

adiponectin, albeit the post-intervention adiponectin concentration was far 

greater in the diet than exercise group. 

In addition to the above lifestyle interventions, another study in obese and 

overweight post-menopausal women found that a 6 week diet and exercise 

programme had no effect on CRP and TNF-α, although there was a significant 

reduction in IL-6 (Ryan and Nicklas 2004). Despite a significant reduction in IL-

6 there was no change in sIL-6R after training, however the mean pre-training 

sIL-6R of ~23 ng·ml-1 was very low. Exercise sessions were completed 3 times 

per week and involved 45 min sessions >60%  ̇O2max on a cycle ergometer or 

treadmill, however, it should be highlighted that only 25 of the 37 participants 

took part in the exercise training programme in addition to the weight loss 

programme. In addition, the weight loss in this study was less than in the 

previously discussed studies, where the mean weight loss was ~6 kg (~7% 

body mass) and initial body mass was ~50 and ~20 kg less than Bruun et al. 

(2006) and Christiansen et al. (2010a) respectively. The same research group 

carried out a longer intervention lasting 6 months and demonstrated that IL-6, 

sIL-6R and CRP were significantly reduced, although there was still no change 

in TNF-α (You et al. 2004), where body mass was reduced by 7.3 kg (~9%). 

Whether exercise training is sufficient to reduce circulating TNF-α is not clear. 

Even when exercise training was accompanied by a large weight loss, studies 

have found no change in TNF-α in obese populations (Ryan and Nicklas 2004; 

Bruun et al. 2006). One study did find a reduction in TNF-α after a 12 week 
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supervised training programme in obese women, with and without impaired 

glucose tolerance (Strączkowsk et al. 2001), although pre-training TNF-α 

concentration was far greater than reported by Ryan and Nicklas (2004). In 

addition to the five 30 min supervised training sessions per week at 70% 

maximum heart rate, the participants were also encouraged to increase their 

leisure time physical activity throughout the duration of the study (Strączkowsk 

et al. 2001), which could account for the differences in the findings reported in 

this study and others that have found no change in TNF-α with exercise 

training. Further research is required to determine whether exercise is capable 

of inducing a decrease in TNF-α in chronic low-grade inflammation in conditions 

such as obesity. 

In all of the previously discussed studies the exercise intensity has been of a 

low to moderate intensity, generally below 60%  ̇O2max. Since some, but not all 

studies have found exercise to be a useful aid to maintain low levels of 

inflammatory proteins in the circulation in healthy populations and to reduce the 

inflammatory proteins in populations with chronic low-grade inflammation, it is 

important to consider the exercise intensity and whether the chosen intensity 

provides the optimum health benefits. One study that utilised a higher exercise 

intensity (70-80%  ̇O2max) training programme in T2DM and those with the 

metabolic syndrome, twice per week for 12 months, found many inflammatory 

proteins to be reduced (Balducci et al. 2010b). Reductions in IL-6, TNF-α and 

CRP were reported as well as an increase in the anti-inflammatory cytokine IL-

10. The increase in IL-10 was accompanied by an increase in adiponectin after 

exercise training, which has been shown to induce production of IL-10 in 

macrophages and monocytes (Wolf et al. 2004). Many of the studies discussed 

have shown that exercise training has not reduced TNF-α and therefore it is 

possible that the higher exercise intensity elicited in this study could have 

induced a reduction in TNF-α. This study suggests that a higher exercise 

intensity can induce greater reductions in inflammatory status than low or 

moderate intensity training programmes. It is likely that the changes in 

inflammatory proteins in this study were at least in part down to a direct effect of 

exercise since there was no change in fat mass, as measured via a bio-

impedance monitor, although there was a significant reduction in waist 
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circumference. In the earlier studies discussing adiponectin, it appeared an 

increase in most studies was only found with weight loss, however, from the 

findings by Balducci et al. (2010b) it could be hypothesised that in order to 

induce a change in adiponectin, without a reduction in body mass, higher 

intensity exercise is required. 

For many of these inflammatory proteins and adiponectin, there are 

inconsistencies with regards to the effects of exercise training between studies. 

Most of the studies that did induce a reduction in inflammation were in clinical 

populations that had higher levels of inflammatory proteins than those in non-

clinical populations. There are a number of other factors that could explain the 

inconsistencies between studies, such as exercise duration and frequency, 

supervision of exercise training and dietary control. One of the key elements in 

all of the studies is the exercise intensity. Nearly all studies utilised a low to 

moderate intensity training programme (< 60%  ̇O2max), often unsupervised, 

that may not be sufficient to induce reductions in inflammatory proteins, and 

therefore it is possible that higher intensity exercise is often required to 

decrease the inflammatory state in those with chronic low-grade inflammation. 

In addition, a number of the existing training protocols induced a significant 

weight loss in obese cohorts and therefore it is not clear whether any changes 

found in inflammatory proteins are directly due to the exercise or due to a 

weight loss induced by the exercise training. 

 

2.7 Inflammatory proteins in adipose tissue and exercise training 

As previously discussed adipose tissue contributes to inflammatory proteins in 

the circulation and this is particularly important in disease states where obesity 

is a risk factor, since there will be greater potential for production of 

inflammatory proteins. Inflammatory proteins produced within adipose tissue 

can have autocrine, paracrine and endocrine functions (Trujillo and Scherer 

2006). Despite adipose tissue being a major source of many inflammatory 

mediators, and evidence that exercise has been shown to reduce levels of 

circulating inflammatory proteins in many studies, there is limited research 
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investigating the effects of repeated exercise on local inflammation within 

adipose tissue. Some studies have looked at the effects of exercise and 

lifestyle interventions on mRNA expression of inflammatory mediators in 

subcutaneous adipose tissue, however mRNA is not always reflective of the 

functional protein expression, with only moderate correlations shown (Guo et al. 

2008). 

Of these studies investigating mRNA expression, no change in IL-6, TNF-α or 

adiponectin mRNA expression in subcutaneous adipose tissue was found after 

12 weeks of aerobic training at ~50%  ̇O2max (Polak et al. 2006) or resistance 

training (Klimcakova et al. 2006) in obese individuals, despite the aerobic 

training inducing a significant reduction in body mass. Christiansen and 

colleagues (2010a) however, found an increase in adiponectin mRNA 

expression in adipose tissue, after 12 weeks aerobic exercise training at an 

estimated 60%  ̇O2max, but no change in IL-6, TNF-α, MCP-1 or macrophage 

specific markers, CD-14 and CD-68. In contrast, lifestyle interventions over 12 

(Christiansen et al. 2010a; Christiansen et al. 2010b) and 15 (Bruun et al. 2006) 

weeks, incorporating moderate intensity exercise and a hypocaloric diet found a 

decreased expression of IL-6, TNF-α and MCP-1 mRNA in subcutaneous 

adipose tissue and an increase in adiponectin mRNA, alongside a weight loss 

of 5-14% in obese individuals. Despite these studies investigating the effects of 

exercise training on mRNA expression of these inflammatory mediators in 

adipose tissue, only one study has investigated the effect of weight loss 

induced by a hypocaloric diet in obese women who found that IL-6 protein in 

subcutaneous adipose tissue was reduced (Bastard et al. 2002), however this 

study did not involve an exercise intervention. 

The existing literature on mRNA expression of inflammatory mediators in 

adipose tissue after periods of exercise training, alongside evidence of a 

decrease in IL-6 in adipose tissue induced by weight loss, suggests that 

exercise alone may not be sufficient to reduce inflammation in adipose tissue. 

However, further studies are needed to determine whether exercise can reduce 

inflammation at the protein level. In addition, the exercise training was of a 

relatively low to moderate intensity (~50-60%  ̇O2max) in the above studies. As 
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many of the changes in the inflammatory proteins appear to be due to weight 

loss, future studies are required to see if a higher intensity exercise could 

reduce inflammation within adipose tissue, without weight loss. There is some 

evidence from clinical populations to support a higher exercise intensity, with 

reductions in many inflammatory proteins in the circulation found after a 12 

month exercise regimen at 70-80%  ̇O2max in those with impaired glucose 

tolerance and T2DM (Balducci et al. 2010b), therefore it is plausible that a 

higher intensity exercise may reduce inflammation in adipose tissue. 

 

2.8 High intensity intermittent training or traditional endurance training? 

In a number of the studies discussed in the previous section, the effects of 

exercise on chronic low-grade inflammation and mRNA expression of 

inflammatory proteins in adipose tissue were discussed. Although many studies 

have found that exercise training can reduce inflammation, not all studies have 

reported a positive effect. Exercise intensity, duration and frequency are key 

components of training protocols that could determine whether inflammation is 

reduced. There is currently no research on the effects of high intensity 

intermittent exercise on inflammatory proteins in the circulation or adipose 

tissue. 

The additional health benefits of high intensity intermittent exercise above 

traditional aerobic training are increasingly emerging in the health literature, 

with reports of increased  ̇O2peak, insulin sensitivity, fat oxidation and fat loss. 

High intensity intermittent exercise has been shown to have greater 

cardioprotective effects than moderate exercise, including greater 

improvements in lipid profile, risk of developing T2DM and all-cause mortality 

(Swain and Franklin 2006). 

The Wingate test is currently the most common form of intermittent training 

used in exercise physiology research and is a time efficient strategy in 

comparison to prolonged continuous aerobic training (90-120 min per session), 

to elicit similar changes in exercise performance, skeletal muscle oxidative 
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capacity and buffering capacity of skeletal muscle (Gibala 2006; Burgomaster 

2008). This training stimulus has also been shown to reduce risk factors 

associated with CVD, through an improvement in peripheral artery distensibility 

and endothelial function to a similar degree as continuous endurance training 

(Rakobowchuk et al. 2008). However, in addition to these benefits, high 

intensity intermittent exercise includes anaerobic aspects which can result in 

greater improvements in cellular adaptations involved in energy metabolism 

(Earnest 2008). Each Wingate training session consists of 4-6 thirty second „all 

out sprints‟, separated by 4 min cycling at a low cadence against a light 

resistance (~30 W) on a stationary bike, and will be referred to as sprint interval 

training (SIT) throughout this thesis.  

In addition to the adaptations mentioned above, there is some evidence to 

suggest that intermittent exercise training can induce improvements in insulin 

sensitivity. Three studies have investigated the effects of 2 weeks SIT on insulin 

sensitivity with variations in the results reported (Babraj et al. 2009; Richards et 

al. 2010; Whyte et al. 2010). One group found an improvement in the insulin 

sensitivity index, and the response of insulin and glucose to an oral glucose 

tolerance test (OGTT) in healthy sedentary young males (Babraj et al. 2009). 

Participants completed a post-training OGTT either 2 or 3 days after the last 

training session to ensure any improvements were not attributable to the last 

training session (Hawley and Lessard 2008). Richards et al. (2010) also 

reported an increase in insulin sensitivity 72 h after training, as measured by an 

increase in the glucose infusion rate (GIR) after training, using the gold 

standard methodology – the hyperinsulinaemic euglycaemic clamp. This study 

benefited from a control group, and a third group that completed an acute bout 

of SIT to ensure any change in the GIR was not due to an acute effect from the 

last bout of exercise. However, the pre-training GIR appeared low in the SIT 

group in comparison to the pre GIR in the control group and the acute exercise 

group, and although post-training GIR was significantly increased from pre-

training in the SIT group, the post GIR was comparable to the control groups. In 

contrast to the above findings a similar study has reported that the augmented 

insulin sensitivity at 24 h after the last training session was abolished at 72 h 

post-training in overweight and obese males (Whyte et al. 2010). These studies 
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indicate that it has not been fully established if intermittent training, and in 

particular if SIT can improve insulin sensitivity. 

Although SIT improves many physiological factors, it is a very intense type of 

exercise that may not be achievable for the general population (Hawley and 

Gibala 2009), with feelings of nausea and light headedness reported (Richards 

et al. 2010). Other modes of intermittent exercise involve longer intervals (3-4 

min) at a relatively high intensity (~80-90%  ̇O2max) and will be referred to as 

high intensity intermittent training (HIIT). A pilot study in individuals with 

metabolic syndrome found that HIIT, involving 4 min running intervals at 90% 

heart rate max interspersed with 3 min active recovery periods at 70% heart 

rate max, resulted in greater improvements in  ̇O2peak, endothelial function, 

insulin signalling in adipose tissue and skeletal muscle, as well as larger 

reductions in blood glucose and lipogenesis in comparison to moderate 

intensity exercise of equal volume (Tjønna et al. 2008). After 16 weeks training, 

45% of the HIIT group were no longer classed as having metabolic syndrome, 

therefore, HIIT could be an important prevention strategy for T2DM. Similar 

findings have also been reported in older patients with postinfarction heart 

failure, where HIIT improved endothelial function,  ̇O2max and left ventricular 

ejection fraction to a greater extent than moderate continuous exercise after 12 

weeks training (Wisløff et al. 2007). 

A reduction in adipose tissue has also been reported with different high 

intensity intermittent exercise protocols to a greater extent than training 

involving continuous moderate intensity exercise (Tremblay et al. 1994; Trapp 

et al. 2008). The authors of one study found that 15 weeks interval training (8 s 

sprints and 12 s slow pedalling for a maximum of 20 min) resulted in a 

significantly greater fat loss than steady state exercise, measured by dual-

energy X-ray absorptiometry (DEXA), and that abdominal fat was significantly 

reduced as well as an increase in abdominal lean mass (Trapp et al. 2008). 

Energy expenditure was not significantly different between groups, however the 

reason for the differences in fat loss are unclear. An increase in excess post-

exercise oxygen consumption (EPOC), post-exercise fat oxidation and appetite 

suppression have all been suggested to be mechanisms by which fat loss may 
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be increased to a greater extent after HIIT than after moderate intensity 

exercise training, although these have not been investigated. 

The studies utilising protocols with longer intervals (~3-4 min) could be classed 

as a middle ground between SIT and prolonged continuous endurance 

exercise. Talanian et al. (2007) carried out a 2 week training study in 

recreationally active women, where one session of HIIT consisted of ten 4 min 

intervals cycling at ~90%  ̇O2peak, interspersed by 2 min rest. This type of 

training elicited similar improvements in muscle oxidative potential and  ̇O2peak 

as SIT (Burgomaster 2005; Whyte et al. 2010). The authors concluded that 7 

sessions of HIIT over a 2 week period increased whole body fat oxidation 

during exercise and described the training as suitable for untrained individuals. 

Longer intervals enable the desired percentage of  ̇O2peak to be reached during 

the interval period and have been suggested to be one of the best forms of 

interval training due to all cardiorespiratory parameters being maximal (Astrand 

et al. 1960), with optimal improvements in  ̇O2max found with intervals at 90-

100%  ̇O2max in runners (Robinson et al. 1991). In addition to the performance 

and health benefits associated with high intensity intermittent exercise it has 

also been reported as „more enjoyable‟ than continuous moderate intensity 

exercise in both healthy young males (Bartlett et al. 2011) and in coronary heart 

disease patients (Guiraud et al. 2011). 

 

2.9 Summary 

In summary this literature review has demonstrated the importance of the IL-6 

system in relation to both acute and chronic exercise and the potential effects 

that regular exercise may have on chronic low-grade inflammation in disease 

states such as obesity and T2DM. It has also raised important questions on the 

potential health benefits of HIIT, however the effects of HIIT in relation to the IL-

6 system and inflammation are currently unknown. This thesis aims to answer 

some of the important questions regarding HIIT in relation to the IL-6 system, 

chronic low-grade inflammation and glycaemic control. 
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3.1 Participants and ethical approval 

All of the studies presented in this thesis were approved by the Loughborough 

University Ethical Advisory Committee and were conducted in accordance with 

the Declaration of Helsinki (2008). The volunteers gave informed written and 

verbal consent (Appendix A) after being advised of all possible risks and 

discomforts associated with the procedures used in the study designs. 

All participants were asked to complete a health-screening questionnaire at the 

time of consent (Appendix B) to ascertain their suitability for the study. Any 

participants who reported any haematological, inflammatory disorder or were 

taking any nonsteroidal anti-inflammatory drugs (NSAIDs) were excluded from 

taking part.  

 

3.2 Anthropometric measurements 

Participant‟s weight and height were measured prior to all experimental tests. In 

Chapters 5 and 7 participants had their waist and hip circumference measured 

with a measuring tape. Waist circumference was measured half way between 

the iliac crest and the lowest rib and hip circumference was measured at the 

widest part of the hips. These measurements were then used to calculate the 

waist-hip ratio. 

 

3.3 Exercise tests 

3.3.1 Maximal oxygen uptake 

In Chapters 4 and 5 participants had their peak oxygen uptake ( ̇O2peak) 

determined using a continuous incremental exercise test on an 

electromagnetically-braked cycle ergometer (Lode Excalibur, Groningen, The 

Netherlands), performed to volitional exhaustion. Expired air was measured 

continuously using an on-line breath-by-breath gas analysis system (Ultima 

CPX, MedGraphics, MN, USA), as well as continuous monitoring of heart rate 
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throughout the test (RS200, Polar Electro, Kempele, Finland). The Ultima CPX 

was calibrated using a 3 litre syringe, a calibration gas of known composition 

(5% CO2 and 12% O2) and a reference gas (21% O2). The power output for the 

incremental exercise test started at 100 watts (W) and increased by 35 W every 

3 min, with participants cycling at a pedal cadence of 70 revs·min-1.  ̇O2peak 

was identified as the  ̇O2 averaged over the highest 30 s period during the test. 

 

3.3.2 High intensity intermittent training (HIIT) 

The HIIT protocol utilised in Chapters 4 and 5 consisted of 10 intervals at ~85% 

 ̇O2peak lasting 4 min each and separated by 2 min recovery on the cycle 

ergometer. Participants completed a familiarisation trial for the HIIT protocol 

before all main trials. During this visit participants completed five 4 min intervals 

separated by 2 min rest at a load corresponding to that which would elicit 85-

90%  ̇O2peak. This session allowed the external work to be calculated for the 

HIIT trial. 

 

3.4 Food intake and physical activity control 

Participants abstained from caffeine, alcohol and strenuous exercise during the 

24 h period prior to all experimental trials. Where participants had to take part in 

more than one experimental trial they filled in food and physical activity diaries 

for the 24 h period beforehand and then were asked to replicate the diaries 

during any subsequent trials. 

 

3.5 Blood pressure 

Arterial blood pressure was measured using a digital automatic blood pressure 

monitor (Omron M7, Omron Healthcare UK Ltd, Milton Keynes, UK). 

Participants remained in a supine position for 5 min before the 1st 
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measurement. A cuff was placed around the upper right arm and the participant 

rested their arm on a firm surface during all measurements. Blood pressure was 

measured 3 times and the reported results are an average of the 2nd and 3rd 

readings. 

 

3.6 Blood sampling and handling 

Blood samples were collected from an antecubital vein via venepuncture using 

a 21 G butterfly winged infusion set (Hospira UK Ltd, Warwickshire, UK). Where 

repeated sampling during a short period of time was required an 18 G BD 

venflon cannula (Becton Dickinson Infusion Therapy, Helsingborg, Sweden) 

was used instead. The cannula was kept patent via regular flushing with 0.9% 

(w/v) saline solution. The first 2 ml of blood extracted from the cannula via a 

syringe was discarded. Blood samples were collected into BD vacutainers (BD, 

Plymouth, UK) containing 1.8 mg EDTA per ml of blood. Blood samples were 

gently inverted 8 times and then placed on an SRT6 Stuart roller mixer (Bibby 

Scientific Ltd, Stone, UK) to ensure mixing. Whole blood was used to determine 

haemoglobin (Hb) concentration and haematocrit (Hct) content. For plasma, 

whole blood was centrifuged at 4,000 x g for 10 min at 4°C (Heraeus Labofuge 

400 R, Kendro Laboratory Products, Langenselbold, Germany), and the 

resulting plasma aliquoted into eppendorfs and stored at -80°C for subsequent 

analysis. Participants were in a seated position for all blood sampling. Where 

blood samples were taken during acute exercise trials the participant‟s forearm 

was heated prior to sampling in order to collect an arterialised venous sample 

which was comparable to post-exercise samples. The forearm was inserted into 

warm water (~42ºC) for 10 min prior to sampling. 
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3.7 Haematological analysis 

3.7.1 Haemoglobin 

Hb concentration was measured in whole blood by a colorimetric method using 

a commercially available kit (Randox, Co Antrim, UK). This method is linear up 

to 21 g·dl-1. The reagent provided in the kit contained: 

 Potassium Ferricyanide 0.61 mmol·l-1 

 Potassium Cyanide 0.77 mmol·l-1 

 Potassium Phosphate 1.03 mmol·l-1 

 Surfactant 0.1 % v/v 

 

Samples were prepared in duplicate by adding 10 µl of whole blood to 2.5 ml of 

reagent and mixing. Samples were left to incubate for 10 min and the sample 

absorbance (Asample) of cyanmethaemoglobin was read at 540 nm on a UV mini 

1240 spectrophotometer (Shimadzu UK Ltd, Milton Keynes, UK). The Hb 

concentration was calculated using the following equation: 

 

Hb concentration (g·dl-1) = Asample x 36.77  

 

The intra-assay coeffients of variance (CV) are reported in Table 3.1.  

 

3.7.2 Haematocrit 

Hct content was measured in triplicate using the microcapillary method and the 

mean was calculated. Whole blood was drawn into non-heparinised 

microhaematocrit tubes and the tubes were sealed with Cristaseal capillary 

tube sealant. Samples were centrifuged for 4 min in a HaematoSpin1300 

centrifuge and Hct content was measured using a microhaemoatocrit tube 

reader (Hawksley, Sussex, UK). The intra-assay CVs for Hct are reported in 

Table 3.1. 
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Table 3.1 Intra-assay coefficients of variance (CV) for haemoglobin and haematocrit 

analysis. 

 CV (%) 

Haemoglobin 2.7 

Haematocrit 0.6 

 

3.7.3 Plasma volume changes 

Protein concentrations in plasma were adjusted to account for any changes in 

plasma volume from baseline according to the methods outlined previously by 

Dill and Costill (1974).  

 

3.8 Enzyme-linked immunosorbent assays  

Adiponectin, MCP-1 and ICAM-1 were quantified using commercial sandwich 

enzyme-linked immunosorbent assays (ELISAs), and TNF-α and IL-10 were 

measured via high-sensitivity ELISAs (R & D Systems, Minneapolis, MN, USA).  

Plasma IL-6, sIL-6R, the IL-6/sIL-6R complex and CRP were analysed via 

ELISAs. All materials and chemical reagents were obtained from Sigma-Aldrich 

Ltd (Poole, UK) unless otherwise specified. All incubation periods were at room 

temperature and during each incubation stage the plate was placed on a Stuart 

Mini Orbital Shaker (Bibby Scientific Ltd, Stone, UK) at 60 revs·min-1 unless 

otherwise stated. Wash steps for ELISAs were carried out using an automated 

Wellwash AC microplate washer (Thermo Scientific, Vantaa, Finland). The 

absorbance of wells was read using a Varioskan Flash Multimode Reader 

(Thermo Scientific, Vantaa, Finland). Protein concentration of samples was 

determined in relation to a 4-parameter logistic standard curve (GraphPad 

Prism version 4.00, San Diego California, USA). The equation of the curve is 

given below: 

X = log EC50 – LOG10((Top – y ) / (y – Bottom))*(1/Hillslope) 



 
 

39 
 

Where X is the sample concentration; y is the absorbance; EC50 is the middle 

of the curve. All samples were analysed in duplicate and were repeated if the 

CV between duplicates was more than 10%. The intra-assay CVs for the 

inflammatory proteins throughout this thesis are reported in Table 3.2. 

 

Table 3.2 Intra-assay coefficients of variance (CV) for inflammatory protein analysis in 

plasma. 

Inflammatory protein CV (%) 

IL-6 6.1 

sIL-6R 2.4 

IL-6/sIL-6R complex 3.8 

Adiponectin 2.7 

TNF-α 7.5 

IL-10 8.0 

CRP 3.8 

MCP-1 2.4 

ICAM-1 3.2 

 

3.8.1 Interleukin-6 assay 

An ELISA for the detection of plasma IL-6 was optimised using a human IL-6 

antibody set (OptEIA, BD Biosciences, Oxford, UK) containing a primary and 

secondary antibody and recombinant human IL-6 (rhIL-6) for standards. 

Immulon 4HBX Flat 96-well microtiter plates (Nunc, Thermo Scientific, 

Roskilde, Denmark) were coated with 100 µl anti-human IL-6 monoclonal 

capture antibody diluted 1:250 in a 0.1 M sodium carbonate buffer (see Table 

3.3). The next day the plates were washed with Tris Buffered Saline (TBS), pH 

7.5 with 0.05% Tween 20 (TBS-T) 3 times, and then blocked with 5% bovine 

albumin serum (BSA; Probumin, Millipore, Illinois, USA) in TBS. The plates 

were incubated for 1 h at room temperature. Afterwards, plates were washed 
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and 100 µl of samples or standards were added to the wells in duplicate. 

Plasma samples were diluted 1:5 in TBS with 10% fetal calf serum (FCS). The 

rhIL-6 was serially diluted in TBS with 10% FCS from 20 to 0.156 pg·ml-1. TBS 

with 10% FCS served as the zero standard. After 2 h plates were washed 6 

times and the 100 µl of biotinylated anti-human IL-6 monoclonal antibody 

detection antibody diluted 1:250 in TBS-T with 1% BSA was added per well. 

Plates were incubated for a further 1 h before being washed 7 times with 30 s 

soak periods. The enzyme Streptavidin Alkaline Phosphatase (AKP) was 

diluted 1:2000 in TBS with 1% BSA and 100 µl was added per well. Plates were 

then incubated for 45 min. Washes were repeated as in the previous step 

before the addition of an ELISA amplification system (Invitrogen, Paisley, UK). 

In the first step 50 µl of substrate solution was added to all wells and plates 

were incubated on the bench top before adding 50 µl of the amplification 

solution. The reaction was stopped within 15 min of the amplification solution 

being added by the addition of 50 µl of 10% sulphuric acid (stop solution) and 

the absorbance of the wells was read at 490 nm with a correction wavelength of 

690 nm. This assay measures total IL-6 content. 

 

3.8.2 Soluble interleukin-6 receptor assay 

Plasma sIL-6R concentration was determined by ELISA via a method adapted 

from Gray et al. (2008). Antibody pairs M5 (capture) and M182 (detection) were 

used to detect sIL-6R (BD Biosciences, San Diego, USA). This ELISA detects 

both free and bound sIL-6R. Immulon 4HBX Flat 96-well microtiter plates were 

coated with 100 µl Purified Mouse Anti-Human CD126 capture antibody (Clone 

M5, BD Biosciences, San Diego, USA) diluted in 0.1 M sodium carbonate buffer 

(see Table 3.3) to give a concentration of 2 µg·ml-1 and were stored at 4ºC 

overnight. The next day plates were washed 3 times with phosphate buffered 

saline (PBS) with 0.05% Tween 20 (PBS-T) and wells were subsequently 

blocked with PBS with 10% FCS (assay diluent). Plates were incubated for 1 h 

before being washed again and adding 100 µl standards or samples to wells. 

Samples were diluted 1:200 in assay diluent. The rhIL6-R (R&D systems, 

Minneapolis, MN, USA) was serially diluted in assay diluent to give standards 



 
 

41 
 

ranging from 500 to 0.5 pg·ml-1. After 2 h the plates were washed 5 times with 

PBS-T and 100 µl of the detection antibody, Biotin Mouse Anti-Human CD126 

(Clone M182, BD Biosciences, San Diego, USA) diluted in assay diluent to give 

a final concentration of 0.5 µg·ml-1, was added to each well. Plates were 

incubated for a further hour before washing 5 times. The enzyme Streptavidin 

Horse Radish Peroxidise (HRP) (BD Biosciences) was diluted 1:4000 in assay 

diluent and 100 µl was added per well. Meanwhile a substrate solution was 

prepared (see Table 3.6). After 45 min the plate was washed a further 7 times 

with 30 s soaks in between and 100 µl of the working substrate solution was 

added for 30 min before the addition of 50 µl of stop solution. The final 

absorbance was then read at 450 nm with a correction wavelength of 570 nm. 

 

3.8.3 IL-6/sIL-6R complex assay 

An ELISA for the determination of the IL-6/sIL-6R complex has previously been 

described by Gray et al. (2009b). This ELISA measures the biologically active 

binary form of the IL-6/sIL-6R complex and does not measure the biologically 

inactive tertiary IL-6/sIL-6R/sgp130 complex. The protocol for this method is 

similar to the sIL-6R assay, however, the wells were coated with 100 µl anti-

human IL-6 monoclonal capture antibody diluted 1:250 in coating buffer and 

plasma samples were diluted 1:2 in assay diluent. There are no standards 

available for this assay, therefore the results are presented either as a fold-

change or as arbitrary units. 

 

3.8.4 C-reactive protein assay 

CRP was quantified via an ELISA method adapted from (Pawluczyk et al. 

2011). Immulon 4HBX Flat 96-well microtiter plates were coated with 70 µl of 

primary anti-CRP rabbit polyclonal antibody (Calbiochem, EMD Biosciences, 

Inc., La Jolla, CA, USA), diluted to a working concentration of 3.5 µg·ml-1 in 

0.05 M sodium carbonate, pH 9.6 (Table 3.7). The plates were incubated at 4˚C 

overnight. The following morning the plates were washed 4 times with PBS-T 



 
 

42 
 

and the wells were blocked with 100 µl PBS with 1% BSA (Probumin, Millipore, 

Illinois, USA). The plates were then incubated for 1 h at room temperature and 

then washed as before. Afterwards, 50 µl of plasma samples (diluted 1:100 in 

PBS) or standards were added to the wells in duplicate. Human CRP (NIBSC, 

Potters Bar, UK) was used as a calibrant for this ELISA method. A CRP stock 

concentration of 50 µg·ml-1 was serially diluted in PBS to give a standard curve 

ranging from 1000 to 1 ng·ml-1. The plate was incubated at 4˚C overnight. On 

the 3rd day the plates were washed as before and 50 µl of a secondary mouse 

monoclonal antibody to CRP (Abcam, Cambridge, UK) diluted to a working 

concentration of 2.7 µg·ml-1 in PBS was added to each well. Plates were then 

incubated for 2 h and the wash step was repeated. For the next step polyclonal 

rabbit anti-mouse IgG conjugated to HRP (Dako, Ely, UK) was diluted 1:1000 in 

PBS and 50 µl of the diluted solution was added to the wells and plates were 

incubated for 1 h. A soluble substrate solution for the detection of peroxidase 

activity was prepared using SIGMAFAST OPD tablets shortly before the next 

wash step. One o-Phenylenediamine dihydrochloride (OPD) tablet and one 

urea hydrogen peroxide tablet were dissolved in 20 ml deionised water to give a 

final concentration of 0.4 mg·ml-1 OPD, 0.4 mg·ml-1 urea hydrogen peroxide, 

and 0.05 M phosphate-citrate, pH 5.0. The plates were washed a further 4 

times and 50 µl of the substrate solution was immediately added to all wells and 

the colour was left to develop for 5 min before stopping the reaction with 70 µl 

of 10% sulphuric acid. The absorbance of the wells was read at 490 nm with a 

correction wavelength at 650 nm.  
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3.8.5 ELISA buffers and solutions 

 

Table 3.3   0.1 M Sodium carbonate (coating buffer). 

Component Mass/Volume 

NaHCO3   Sodium 

bicarbonate 
                  0.42 g 

Na2CO3   Sodium carbonate  0.178 g 

Deionised water to  50 ml 

pH 9.5 with HCl  

 

Table 3.4   Tris buffered saline. 

Component Mass/Volume 

Tris base (50 mM) 6.05 g 

NaCl  Sodium chloride  

(150 mM) 
8.76 g 

Deionised water to: 1000 ml 

pH 7.5 with HCl  

 

Table 3.5   Phosphate buffered saline. 

 Component Mass/Volume 

NaCl Sodium chloride 8 g 

Na2HPO4 Sodium phosphate, 

dibasic 
1.16 g 

KH2PO4 Potassium phosphate, 

monobasic 
0.2 g 

KCl Potassium chloride 0.2 g 

Deionised water to 1000 ml 

pH 7.4 with HCl  
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Table 3.6   Working substrate solution for the sIL-6R and IL-6/sIL-6R complex ELISA. 

Component Mass/Volume 

TMB in DMSO (6 mg·ml
-1

) 100 µl 

Sodium acetate (0.1 M) 10 ml 

H2O2 Hydrogen peroxide (30 w/w) 5 µl 

pH 5 with Solid citric acid crystals  

TMB, 3,3‟,5,5‟-Tetramethylbenzidine; DMSO, Dimethyl sulfoxide. 
Hydrogen peroxide was added immediately before use.  

 

Table 3.7   0.05 M Sodium carbonate (coating buffer) for the C-reactive protein ELISA. 

Component Mass/Volume 

NaHCO3   Sodium 

bicarbonate 
0.189 g 

Na2CO3   Sodium carbonate 0.027 g 

Deionised water to  50 ml 

pH 9.6 with HCl  

 

3.9 Subcutaneous abdominal adipose tissue sampling and analysis 

3.9.1 Adipose tissue biopsy procedure 

Subcutaneous abdominal adipose tissue biopsy samples were collected for 

Chapters 5 and 6, before and after 2 weeks of HIIT. After a 12 h overnight fast 

participants reported to the lab. Participants lay in a semi-supine position and 

povidone-iodine was used to clean the inferior border of the costal margin to the 

anterior superior iliac spine. 10 ml of 1% (w/v) lidocaine was administered 

under sterile conditions to the area before the adipose tissue was extracted 

~10-15 cm laterally from the umbilicus, using a percutaneous needle biopsy 

technique (Christiansen et al. 2010a) with a 14 G needle and 20 ml syringe. A 

vacuum was applied to the syringe resulting in the collection of adipose tissue. 

The excised adipose tissue was immediately washed with 0.9% (w/v) saline 
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solution to limit blood levels within the biopsy sample before it was aliquoted 

into eppendorfs using sterile forceps. The tissue was snap-frozen in liquid 

nitrogen before being transferred to -80 ºC freezer until analysis. The post 2 

weeks HIIT sample was taken 46-48 hours after the last training session in 

order to abolish any effects of acute exercise (Hawley and Lessard 2008). 

 

3.9.2 Homogenisation of subcutaneous adipose tissue 

Adipose tissue samples (typically ~200 mg) were homogenised in 500 µl buffer 

of 5 mM Tris/HCl, pH 7.5 (Table 3.8), containing protease inhibitor cocktail 

(Roche Diagnostics Ltd, Mannheim, Germany), for 30 s using a handheld 

TissueRuptor (Qiagen Ltd, Crawley, UK). The probe on the TissueRuptor was 

changed between samples. After homogenisation the samples were clarified by 

centrifugation at 10,000 x g for 10 min at 4ºC and the internatant was 

transferred to a fresh eppendorf and then stored and frozen at -80 ºC prior to 

protein analysis.  

 

Table 3.8   Tris/HCl homogenisation buffer for adipose tissue. 

Component 
Final 

concentration 
Mass/Volume 

Tris/HCl (500 mM) 5 mM 100 µl 

EDTA (50 MM) 1 mM 100 µl 

Sucrose (10 % w/v)  1 g 

DTT (100 mM) 1 mM 100 µl 

Deionised water to  10 ml 

Protease inhibitor cocktail tablet  1 tablet 

pH 7.4 with HCl   

Components were added in this order. Samples were homogenised immediately after protease 
inhibitor cocktail tablet had dissolved in the buffer.  
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3.9.3 Determination of adipose tissue protein concentration 

Internatant protein concentration was determined using the DC Protein Assay 

Kit (Bio-Rad Laboratories, Hemel Hempstead, UK) with a bovine serum albumin 

standard set (Bio-Rad Laboratories) used as protein standards. Samples were 

diluted 1:50 in 5 mM Tris/HCl, pH 7.5. To 96-well microtest plates (Sarstedt, 

Nümbrecht, Germany) 40 µl of standards, ranging from 1.25-10 µg·ml-1 or 

samples were added to wells, followed by 20 µl of Reagent A and 160 µl of 

Reagent B. Tris/HCl buffer served as the blank. Wells were incubated at room 

temperature for 15 min and the absorbance measured at 750 nm (Varioskan 

Flash, Thermo Scientific, Vantaa, Finland). The absorbance of standards was 

plotted and the linear regression relationship was determined which was used 

to calculate the protein concentration of adipose tissue samples. R2 was >0.98 

for all linear regression relationships.  

 

3.10 Statistical analysis 

All statistical analysis was performed using SPSS 16.0 software (Statistical 

Package for the Social Sciences Inc., Chicago, Illinois, USA) and data is 

presented as mean and standard deviation (± SD) with 95% confidence 

intervals (CI). All data was checked for normality using the Shapiro-Wilk test 

before the main analysis. If data was not normally distributed the data was 

transformed and checked for normality again. The transformed, normally 

distributed data was then used for any subsequent statistical analysis, to 

comply with the assumptions of parametric models of analysis. Where there 

were more than 3 comparisons Mauchly‟s test of sphericity was also checked. 

Sphericity was assumed where p > 0.05. Where sphericity was not met the 

Greenhouse-Geisser correction was used. 

Data was analysed using a within group, repeated measures analysis of 

variance (ANOVA) model where there were more than two comparisons. Post-

hoc pair-wise comparisons were performed where appropriate according to the 

Bonferroni adjustment method. Paired sample t-tests were used to analyse 
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within group differences when there were only two comparisons. Statistical 

significance was accepted at p ≤ 0.05. 
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Chapter 4 

 

 

 

 

IL-6 AND sIL-6R RESPONSES TO INTERMITTENT HIGH 

INTENSITY AND CONTINUOUS MODERATE INTENSITY 

EXERCISE  



 
 

49 
 

4.1 Abstract 

As IL-6, sIL-6R and the IL-6/sIL-6R complex are transiently elevated in 

response to continuous moderate intensity exercise, this study investigated how 

these biological parameters would be modulated by an acute bout of HIIT in 

comparison to continuous moderate exercise (MOD). The study also 

investigated the response of differentially spliced sIL-6R (DS-sIL-6R) to 

exercise. Eleven healthy males completed 2 exercise trials matched for external 

work done [582 (82) kJ]. During MOD participants cycled at 62 (3) %  ̇O2peak for 

59 (2) min, whilst HIIT consisted of ten 4 min intervals cycling at 88 (3) % 

 ̇O2peak separated by 2 min rest. Blood samples were collected pre-exercise, 

post-exercise and 1.5, 6 and 23 h post-exercise. Plasma IL-6, sIL-6R, the IL-

6/sIL-6R complex and DS-sIL-6R levels were measured by ELISA. HIIT caused 

a significantly greater increase in IL-6 than MOD (p = 0.018). Both MOD and 

HIIT resulted in an increase in sIL-6R and IL-6/sIL-6R complex (p < 0.001), 

however, this was not significantly different between trials. The sIL-6R was 

significantly increased at 6 h post-exercise in both trials (p < 0.05). DS-sIL-6R 

was also significantly increased after exercise (p = 0.020), representing 0.5% of 

the total sIL-6R increase. This investigation has demonstrated that the IL-6 

response is greater after intermittent high intensity exercise than comparable 

moderate exercise, however, increased IL-6/sIL-6R complex and sIL-6R did not 

differ between HIIT and MOD. The current study has also shown for the first 

time that elevated sIL-6R after exercise is derived from both proteolytic 

cleavage and differential splicing of membrane-bound IL-6R.  
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4.2 Introduction 

A comprehensive review of the cytokine, IL-6, has provided evidence to support 

the concept that acute elevations of IL-6 can have beneficial consequences on 

health through metabolic and anti-inflammatory mechanisms (Pedersen 2009). 

IL-6 has been classified as having both pro- and anti-inflammatory properties 

(Scheller et al. 2011). Unlike pro-inflammatory cytokines, IL-6 appears to be the 

primary inducer of acute-phase proteins, many of which have anti-inflammatory 

properties, as well as inhibiting TNF-α and IL-1 expression (reviewed in 

Pedersen et al. 2001). Prolonged moderate intensity exercise is capable of 

elevating levels of circulating IL-6 (Keller et al. 2001), which binds to IL-6R to 

form a binary complex (IL-6/IL-6R) (Taga et al. 1989). Soluble IL-6R allows IL-6 

signalling to occur in tissues lacking membrane-bound IL-6R (Rose-John and 

Heinrich 1994) and can be generated by differential mRNA splicing (DS-sIL-6R) 

(Horiuchi et al. 1994) or proteolytic cleavage (PC-sIL-6R) of the membrane 

bound receptor (Müllberg et al. 1994). Although DS-sIL-6R represents less than 

1% of sIL-6R at rest (Dimitrov et al. 2006), the source of the elevated sIL-6R in 

response to exercise stress is unknown. 

While there is considerable knowledge regarding moderate intensity exercise 

and the response of the IL-6 system, there is increasing evidence that high 

intensity exercise may have a greater cardioprotective effect (Swain and 

Franklin 2006). This is in parallel to evidence indicating that IL-6 release is 

intensity dependent (Ostrowski et al. 2000; Helge et al. 2003), and that over 

50% of the variation can be contributed to the duration of exercise (Fischer 

2006). Intermittent exercise offers a solution to both these criteria in that it 

combines periods of high intensity exercise intervened with rest periods 

allowing the duration to be extended beyond that of continuous high intensity 

exercise. Although intermittent exercise is normally the domain of athletes, 

there is evidence that this form of exercise can be accomplished by 

recreationally active women (Talanian et al. 2007) and in patient populations 

including those with the metabolic syndrome and postinfarction heart failure 

patients (Wisløff et al. 2007; Tjønna et al. 2008). If IL-6 is considered a 
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mediating factor for health then it is important to investigate the response of the 

IL-6 system to this type of exercise. 

This study aimed to test the hypothesis that an acute bout of HIIT will elevate all 

components of the IL-6 system above that of continuous moderate intensity 

exercise. In addition, a secondary hypothesis, that acute exercise will increase 

DS-sIL-6R was investigated. 

 

4.3 Materials and methods 

4.3.1 Participant characteristics 

Eleven healthy male volunteers participated in this study [age 22.3 (4.0) y, body 

mass 73.5 (5.4) kg, height 1.79 (0.1) m, BMI 23.0 (1.8) kg·m-2]. Participants 

were not specifically trained to a particular sport, however, all were physically 

active and reported participating in exercise equating to 3 or 4 thirty minute 

exercise sessions per week. 

 

4.3.2 Preliminary measurements 

Participants completed a  ̇O2peak test 2 weeks before the first main trial and a 

familiarisation trial for the HIIT protocol 1 week prior to the first main trial 

(Section 3.3). The familiarisation trial allowed the external work to be calculated 

for the HIIT trial. This was used to determine the duration required during the 

MOD trial (undertaken at ~60%  ̇O2peak), in order for the same external work to 

be completed in both trials. 

 

4.3.3 Experimental protocol 

Participants attended the laboratory on 2 other occasions separated by 1 week, 

to complete a HIIT and a MOD trial in a randomised order. On both occasions, 

participants arrived at the laboratory at 8 am following a 10 h overnight fast. A 
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cannula provided blood samples at pre-, post- and 1.5 h post-exercise. After 

pre-exercise blood sampling, the participant moved to the cycle ergometer and 

completed ten 4 min intervals at a power output to elicit ~85-90% of  ̇O2peak or 

cycled continuously at ~60%  ̇O2peak. Participants completed the same external 

work in both experimental trials. Immediately upon the cessation of exercise a 

post-exercise blood sample was taken. Participants then rested in a seated 

position for 1.5 h at which point another blood sample was taken. Following this 

sample, the cannula was removed and the participant was permitted to leave 

the laboratory, and was requested to reduce physical activity to a minimum for 

the remainder of the trial. The participant returned to the laboratory at 6 h post-

exercise and 24 h from the start of the exercise for blood sampling. The 

average temperature and relative humidity throughout the study were 20.4 (0.4) 

ºC and 33.8 (6.3) % respectively. Figure 4.1 illustrates the HIIT and MOD trials. 

 

 

Figure 4.1 Schematic representation of the high intensity intermittent and the moderate 

continuous intensity exercise trials. ↑ represents blood sampling.  

 

4.3.4 Blood sampling 

Blood samples were collected and handled as previously described (Section 

3.6). Haematological analysis was carried out and results were corrected for 

changes in plasma volume from pre-exercise (Section 3.7).  
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4.3.5 Meals for experimental trials 

Participants were provided with standardised meals for both experimental trials, 

consisting of lunch, a snack, dinner and drinks. Energy intake was the same for 

every participant and totalled 10,962 kJ per trial day. Nutrient content of the 

meals can be found in Appedix C. 

 

4.3.6 IL-6, sIL-6R and the IL-6/sIL-6R complex analysis 

Plasma IL-6, sIL-6R and the IL-6/sIL-6R complex were analysed as described 

in Chapter 3. 

 

4.3.7 Differentially spliced sIL-6R analysis 

An ELISA for the detection of DS-sIL-6R was adapted from Horiuchi et al. 

(1998). As sIL-6R peaked at 6 h post-exercise, blood samples at pre-exercise 

and 6 h post-exercise were analysed from the HIIT trial for DS-sIL-6R 

concentration, in order to determine the mechanism of sIL-6R production at rest 

and after exercise. Briefly 96-well plates were coated overnight with 100 µl of 

0.5 µg·ml-1 anti-DS-sIL-6R monoclonal antibody (mAb 2F3, which was raised 

against the unique COOH-terminal sequence of DS-sIL-6R, GSRRRGSCGL) in 

PBS. The following morning the plate was washed 3 times with PBS-T and the 

wells were blocked with 200 µl PBS with 5% BSA for 1 h. After washing the 

plate 3 times, 100 µl of samples or standards were added to wells in triplicate 

and incubated for 2 h at room temperature. Recombinant DS-sIL-6R was 

serially diluted in PBS with 1% BSA to provide a standard curve ranging from 

2000 to 31.25 pg·ml-1. Afterwards, the plate was washed a further 3 times and 

wells were incubated with the secondary antibody, human IL-6R biotinylated 

antibody, clone Sf 21 (R & D Systems, Minneapolis, MN, USA) in PBS with 1% 

BSA. After 1 h the plate was washed 3 times and 100 µl of ready-to-use HRP 

(Vector Laboratories Ltd, Peterborough, UK) was added to each well for 20 min 

before washing the plate a further 3 times. The color was developed by the 
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addition of 100 µl SureBlue TMB 1-Component Microwell Peroxidase Substrate 

(KPL, Gaithersburg, MD, USA). The reaction was stopped with the addition of 

50 µl 1 M sulphuric acid and the optical density was read at 450 nm. There was 

an intra assay CV of 7.6%. 

 

4.3.8 Substudy: IL-6 response to an indwelling cannula 

During this study Dixon et al. (2009) published a paper identifying that IL-6 was 

significantly greater when an indwelling cannula was used in comparison to a 

single-use needle. In the current study this would apply to our post-exercise 

and 1.5 h post-exercise samples and would suggest that our values may be 

slightly high at these time points. However, as a cannula was used in both trials 

this should not affect trial differences. To investigate this further, in 4 

participants an additional blood sample was collected from the contralateral 

forearm via venepuncture at 1.5 h post-exercise. 

 

4.3.9 Statistical analysis 

Full statistical analysis is outlined in Section 3.10. 

 

4.4 Results 

4.4.1 Exercise intensity and heart rate 

The mean  ̇O2peak for the participants was 51 (6) ml·kg-1·min-1 and occurred at 

a mean power output of 294 (33) W. Table 4.1 summarises the exercise 

outcomes for both HIIT and MOD trials.  
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Table 4.1 Descriptive data for HIIT and MOD exercise trials.  

 
 ̇O2 peak 

(%) 

Heart rate 

(beats∙min
-1

) 

Power 

output (W) 

Work done 

(kJ) 

Exercise 

duration 

(min) 

HIIT 88 (3) 172 (9) 242 (34) 582 (82) 40 (0) 

MOD 62 (3) 146 (12) 165 (19) 582 (82) 59 (2) 

Values are mean (SD), N = 11. 

 

In addition, Figure 4.2 illustrates the percentage of peak heart rate and  ̇O2 that 

participants were cycling at for each interval during the HIIT trial. 

 

Figure 4.2 The percentage of peak heart rate (▲) and  ̇O2 (■) that participants were 

cycling at during individual intervals in the HIIT trial.  
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4.4.2 IL-6 

A main trial effect was found for IL-6 (p = 0.018), with significantly higher IL-6 

immediately post-exercise during HIIT compared to MOD (p = 0.004; Figure 

4.3). In addition, there was a main effect of time (p < 0.001), with IL-6 peaking 

immediately post-exercise in both trials (10.2 (6.8) [5.6-14.7 95% CI] pg·ml-1 

and 7.2 (3.6) [4.8-9.6 95% CI] pg·ml-1 after HIIT and MOD respectively). IL-6 

was significantly elevated post- and 1.5 h post-exercise during both trials (p < 

0.05). 

  

Figure 4.3 The IL-6 response to MOD (▲) and HIIT (■) exercise trials. Mean (SD). * 

significantly higher than the MOD (p = 0.004). † significantly different to pre-exercise (p < 

0.001).  
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4.4.3 Soluble IL-6R 

No differences were found for sIL-6R between trials (p = 0.214; Figure 4.4), 

however, a main effect of time was found (p < 0.001), where sIL-6R was 

significantly higher than pre-exercise at 6 h post-exercise during both trials (sIL-

6R was 49.1 (16.5) [38.1-60.2 95% CI] ng·ml-1 and 47.5 (15.0) [37.4-57.6 95% 

CI] ng·ml-1 during HIIT and MOD respectively).  

 

Figure 4.4 The sIL-6R response to MOD (▲) and HIIT (■) exercise trials. Mean (SD). † 

significantly different to pre-exercise (p < 0.05).  
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4.4.4 IL-6/sIL-6R complex 

No significant differences were found for the IL-6/sIL-6R complex concentration 

between HIIT and MOD trials (p = 0.215), although a main effect of time was 

found (p < 0.001; Figure 4.5). Peak IL-6/sIL-6R complex concentration occurred 

immediately post-exercise during both trials (59 (62) [17-100 95% CI] % and 26 

(41) [-2.2-53 95% CI] % increase from pre-exercise for HIIT and MOD 

respectively). 

 

Figure 4.5 Fold-change of the IL-6/sIL-6R complex from pre-exercise in response to MOD 

(▲) and HIIT (■) exercise trials. Mean (SD). † Significantly different from pre-exercise during 

HIIT (p < 0.05).  
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4.4.5 Differentially spliced sIL-6R  

DS-sIL-6R was significantly elevated 6 h post-exercise (155 (80) [79-190 95% 

CI] pg·ml-1 in comparison to pre-exercise (135 (83) [101-209 95% CI] pg·ml-1; p 

= 0.020), however, this contributed to less than 1% of sIL-6R at both time 

points. There was also a large inter subject variation in DS-sIL-6R 

concentration, ranging from 25 - 290 pg·ml-1 (Figure 4.6). 

 

 

Figure 4.6 DS-sIL-6R in response to the HIIT exercise trial. Mean (SD). * significantly 

different to pre-exercise (p < 0.05).  
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4.4.6 Sub-study: The IL-6 response to an indwelling cannula 

IL-6 was 0.88 pg·ml-1 higher when sampled via a cannula than by venepuncture 

at 1.5 h post-exercise, however this was not statistically significant (p = 0.088; 

Figure 4.7). If the 1.5 h post-exercise samples from the remaining 7 subjects 

are corrected to reflect a theoretical venepuncture value, a significant main trial 

effect for IL-6 is still detected (p = 0.029). 

 

Figure 4.7 IL-6 concentration at 1.5 h post-exercise in samples collected via 

venepuncture or a cannula. Mean (SD), N = 4 (p = 0.088). 

 

4.5 Discussion 

The main findings of this Chapter were that IL-6 was increased to a greater 

extent after HIIT than MOD when the same external amount of work was 

undertaken, although sIL-6R and the IL-6/sIL-6R complex were not significantly 

different between trials. In addition, the findings of the study provide a novel 

indication that the increase in sIL-6R after exercise is derived from both 

proteolytic cleavage and differential IL-6R mRNA splicing, though the latter 

contributes less than 1% of total sIL-6R. 
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To our knowledge the present study is the first to have shown a higher IL-6 

response after an acute bout of high intensity intermittent exercise than 

continuous moderate exercise. Previous intermittent exercise protocols have 

shown that IL-6 increased in distance runners completing ten 1000 m sprints 

with 2 min recovery (Niess et al. 2003), and again in handball players after four 

250 m sprints (Meckel et al. 2009). In addition to these protocols not being 

applicable to the general population there was no indication to whether elevated 

IL-6 was comparable to moderate intensity exercise. Elevated IL-6 after HIIT 

could be due to increased glycogen usage compared to MOD, as circulating IL-

6 is increased to a greater extent during exercise when muscle glycogen levels 

are low compared to normal levels (Keller et al. 2001; Steensberg et al. 2001). 

However, in order to confirm this muscle glycogen levels after HIIT and MOD 

would need to be quantified. 

The literature is variable regarding how IL-6 concentration is reported following 

exercise. All data in this study has been corrected for changes in plasma 

volume in order to accurately reflect alterations in the amount of protein 

present. However, a substantial amount of the literature on IL-6 has not been 

corrected for PVC, therefore the data was also analysed before correction for 

PVC and the main outcome is not altered (main trial effect, p = 0.013). 

Interestingly, correcting for PVC alters the timing of peak levels of the sIL-6R 

due to haemoconcentration associated with exercise and the subsequent 

haemodilution (Kargotich et al. 1998). Before correction, sIL-6R peaks 

immediately post-exercise in both trials, compared to 6 h post-exercise when 

corrected for PVC (graphs and statistics for the data before correcting for PVC 

can be found in Appendix D). 

In a previous study, plasma volume corrected peak sIL-6R occurred 

immediately after exercise (Gray et al. 2009b), although there was no 

significant difference between this point and that taken at 1.5 h post-exercise - 

the only other time point to be sampled. In the current study although sIL-6R is 

significantly increased at 6 h post-exercise, there is no significant difference 

between this point and the other time points. Keller et al. (2005a) reported peak 

IL-6R mRNA levels in skeletal muscle at 6 h after the cessation of exercise, 

however, did not identify any significant differences in circulating sIL-6R, 
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possibly due to a small sample size (N = 6). In addition, Robson-Ansley et al. 

(2009) identified significantly elevated sIL-6R the morning following strenuous 

exercise, yet the current study was unable to identify an elevation in sIL-6R 24 

h from the start of exercise. Discrepancies between this study and Robson-

Ansley et al. (2009) could be explained by the extremely large volume of 

exercise (468 km cycled over 6 days) completed in comparison to the current 

study and repeated exercise may extend the elevation of the receptor. In 

contrast to these findings, a decrease in sIL-6R has been reported 48 and 72 h 

after eccentric exercise (Robson-Ansley et al. 2010). If our data is not corrected 

for plasma volume changes and is analysed similarly to that of Robson-Ansley 

et al. (2010) then our data show that during HIIT sIL-6R was significantly 

decreased at 23 h post-exercise when compared to pre-exercise levels (p = 

0.034). 

Although there are no differences between trials for the IL-6/sIL-6R complex, 

both experimental trials in the current study are consistent with a previous 

report of elevations in the IL-6/sIL-6R complex after exercise (Gray et al. 

2009b), which will prolong the half-life of IL-6 (Peters et al. 1996). 

To determine the contribution of sIL-6R isoforms of the exercise-dependent 

elevation in sIL-6R, DS-sIL-6R was quantified. At rest, DS-sIL-6R represents 

less than 1% of total sIL-6R which is consistent with previous studies (Dimitrov 

et al. 2006). The novel finding of this study is that DS-sIL-6R increases 

significantly with exercise, although it remains less than 1% of total sIL-6R. As 

the increase in DS-sIL-6R does not account for the total increase in sIL-6R then 

PC-sIL-6R must also increase. There remains the possibility that proportionally 

the contributions of the two sIL-6R isoforms varied at different time points, as 

previously shown with sleeping patterns (Dimitrov et al. 2006), however, a more 

detailed study would be needed to comprehensively answer this question. 

Functionally, the two sIL-6R isoforms are alike in that they appear to mediate 

IL-6 signalling in a similar fashion (Nowell et al. 2003; McLoughlin et al. 2004), 

however they are produced by different cell types. DS-sIL-6R has been shown 

to be produced by a defined subset of monocytic cells (McLoughlin et al. 2004), 

as well as T cells (Horiuchi et al. 1994), whereas PC-sIL-6R appears to be shed 

from all cells expressing membrane-bound IL-6R. PC-sIL-6R activation is rapid 
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and is shed by a number of activators, including CRP (Jones et al. 1999), 

whereas few activators have been found to regulate DS-sIL-6R (reviewed in 

Jones et al. 2008). 

In conclusion, the present study is the first to compare the acute effects of high 

intensity intermittent exercise and continuous moderate intensity exercise on 

the IL-6 system and found that there was a greater IL-6 production in response 

to HIIT compared to MOD. This is the first study to show that sIL-6R produced 

by differentially splicing increases in response to an acute bout of exercise. The 

study lends support to advocating HIIT as an appropriate and achievable 

exercise intervention for recreationally active individuals that induces a greater 

IL-6 response than moderate intensity continuous exercise. 
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INFLAMMATION IN THE CIRCULATION AND ADIPOSE 

TISSUE IN RESPONSE TO HIGH INTENSITY 

INTERMITTENT TRAINING IN OVERWEIGHT AND 

OBESE MALES  



 
 

65 
 

5.1 Abstract 

This study aimed to determine whether two weeks of HIIT altered the 

inflammatory profile in plasma and adipose tissue in overweight and obese 

males. Twelve participants (mean (SD); age 23.7 (5.2) y, body mass 91.0 (8.0) 

kg, BMI 29.1 (3.1) kg∙m-2) undertook 6 HIIT sessions over 2 weeks. Resting 

blood and subcutaneous abdominal adipose tissue samples were collected pre- 

and post-training. Inflammatory proteins were quantified in plasma and adipose 

tissue via ELISAs and insulin sensitivity was determined. There was a 

significant decrease in sIL-6R (p = 0.050), the IL-6/sIL-6R complex (p = 0.047), 

MCP-1 (p = 0.047) and adiponectin (p = 0.041) in plasma post-training. Plasma 

IL-6, ICAM-1, TNF-α, IL-10, CRP and insulin sensitivity did not change. In 

adipose tissue, IL-6 significantly decreased (p = 0.036) and IL-6R increased (p 

= 0.037), whilst adiponectin tended to decrease (p = 0.056), with no change in 

ICAM-1 post-training. TNF-α, MCP-1 and IL-10 were not detectable in adipose 

tissue. The current investigation suggests two weeks of HIIT is sufficient to 

induce some beneficial alterations in the resting inflammatory profile of an 

overweight and obese male cohort.  
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5.2 Introduction 

Adipose tissue produces a number of inflammatory cytokines and cell adhesion 

molecules that contribute to chronic low-grade inflammation. Increased 

adiposity will drive localised inflammation deriving from cellular hypoxia 

(Trayhurn and Wood 2004) and macrophage infiltration into adipose tissue 

(Weisberg et al. 2003; Cancello et al. 2005), which increases the capacity for 

production of inflammatory proteins. As a consequence, adipose tissue in 

obese individuals produces greater amounts of inflammatory proteins including 

TNF-α, IL-6 and ICAM-1 than lean individuals (Hotamisligil et al. 1995; Kern et 

al. 1995; Kern et al. 2001; Bošanská et al. 2010). These inflammatory proteins 

can be released into the circulation resulting in chronic low-grade inflammation 

which is associated with insulin resistance (Kern et al. 2001). 

Exercise has many health benefits, including maintaining a healthy weight, 

reducing the risk of developing chronic diseases such as T2DM and 

subsequent CVD (Warburton et al. 2006), and reducing chronic low-grade 

inflammation in both healthy and disease states (Adamopoulos et al. 2002; 

Zoppini et al. 2006; Balducci et al. 2010b; Thompson et al. 2010). In addition, a 

lifestyle intervention involving exercise has been shown to improve insulin 

sensitivity in individuals with elevated fasting glucose levels, above that of 

application of the anti-hyperglycaemic drug metformin (Knowler et al. 2002). 

Therefore, exercise plays an important role in the prevention of T2DM and other 

associated co-morbidities. 

Despite adipose tissue being a major source of inflammatory mediators, there is 

limited research investigating the effects of repeated exercise on inflammatory 

proteins. No changes in IL-6, TNF-α or adiponectin mRNA expression in 

subcutaneous adipose tissue were found after 12 weeks of aerobic training 

(Polak et al. 2006) or strength training (Klimcakova et al. 2006) in obese 

groups, despite aerobic training causing a significant reduction in body mass. 

Christiansen and colleagues (2010a) however, did find an increase in 

adiponectin mRNA expression in adipose tissue, in an exercise only group, but 

no change in any cytokine mRNA expression. In contrast, lifestyle interventions 

over 12 (Christiansen et al. 2010a; Christiansen et al. 2010b) and 15 (Bruun et 
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al. 2006) weeks, incorporating exercise and a hypocaloric diet found a 

decreased expression of IL-6, TNF-α and MCP-1 mRNA in adipose tissue and 

an increase in adiponectin mRNA alongside a weight loss of 5-14% in obese 

individuals. Studies investigating protein levels have shown IL-6 to be reduced 

in adipose tissue of obese women after weight loss induced by a hypocaloric 

diet (Bastard et al. 2000). The consensus in the literature appears to indicate 

therefore that exercise alone is not sufficient to reduce inflammation. 

However, in all of these studies the exercise protocol is of a relatively low to 

moderate intensity and the influence of HIIT has not been tested. Positive 

training outcomes, including improved insulin sensitivity (Richards et al. 2010), 

can be achieved with just 2 weeks training of 6 or 7 exercise sessions. 

However, this protocol involved 4-6 thirty second maximal Wingate sprints per 

session and participants reported feelings of nausea and light-headedness. In 

Chapter 4 an alternate intermittent protocol found that there was a greater 

response of the IL-6 system to a single bout of HIIT compared to continuous 

moderate intensity exercise and a marked increase in whole body and skeletal 

muscle capacity for fatty acid oxidation has been shown after 2 weeks HIIT 

training (Talanian et al. 2007), without any report of the negative outcomes 

associated with Wingate sprints. 

To investigate whether increasing the intensity of exercise is sufficient to drive 

decreases in inflammatory proteins this study examined the effects of two 

weeks of HIIT on metabolic and inflammatory changes in the circulation and 

subcutaneous adipose tissue in a cohort of overweight and obese males. 

 

5.3 Materials and methods 

Twelve overweight and obese males (age 23.7 (5.2) y; body mass 91.0 (8.0) 

kg; BMI 29.1 (3.1) kg·m-2) participated in this study. All participants had a BMI 

greater than 25 kg·m-2 but were otherwise healthy and reported taking part in 

no more than 2 bouts of light to moderate intensity exercise per week.  
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5.3.1 Preliminary measurements 

Participants performed a  ̇O2peak test and a familiarisation of the HIIT protocol, 

separated by 5-7 days, as outlined in Section 3.3. Waist-hip ratio and blood 

pressure measurements were also taken prior to training (Sections 3.2 and 3.5 

respectively). 

 

5.3.2 Subcutaneous abdominal adipose tissue biopsy and oral glucose 

tolerance test (OGTT) 

One week after the familiarisation, participants underwent a subcutaneous 

abdominal adipose tissue biopsy as outlined in Section 3.9.1. After, a cannula 

was inserted into a participant‟s antecubital vein and a resting blood sample 

was collected. Participants then consumed a 75 g glucose load (82.5 g 

dextrose monohydrate) in 300 ml liquid (290 ml water and 10 ml lemon juice for 

flavouring) within a 5 min period. Further venous blood samples were collected 

every 30 min over a 2 h period. Blood samples were collected and handled as 

previously described (Section 3.6) and haematological analysis was carried out 

(Section 3.7). 

 

5.3.3 High intensity intermittent training (HIIT) 

Participants completed 3 sessions of HIIT per week for 2 weeks, with 1 or 2 

days rest between sessions, as outlined in Section 3.3. Expired gas samples 

were collected during each 4 min interval during the first training session to 

determine exercise intensity. The mean  ̇O2 during the intervals of the first HIIT 

session was 85.0 (4.6) %  ̇O2peak, which equated to 89.5 (2.4) % of maximal 

heart rate. Subsequently, during the remaining HIIT sessions the power output 

was kept the same as the first session and heart rate was recorded throughout. 

The power output was adjusted if heart rate dropped below 80% of maximal 

levels in the subsequent sessions. Forty-six to forty-eight hours after the last 

training session a subcutaneous adipose tissue biopsy was taken, and fasting 
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resting blood collected and an OGTT undertaken. The post-training adipose 

tissue biopsy was taken from the contralateral side of the abdomen in order to 

reduce any effect of the pre-training biopsy on localised inflammation. This time 

delay from the last training session was employed to minimise any influence of 

acute exercise (Hawley and Lessard 2008). Fluid and dietary intake were 

standardised 24 h before both visits as outlined previously (Section 3.4). 

Seventy-two hours after the last training session, blood pressure, waist and hip 

circumference, and  ̇O2peak measurements were repeated. All participants were 

asked to maintain their normal diet and physical activity routine throughout the 

training period. The average temperature and relative humidity throughout the 

study were 20.6 (1.0) ºC and 26.6 (7.6) % respectively. 

 

5.3.4 Adipose tissue homogenisation 

Adipose tissue samples were homogenised and internatant protein 

concentration was determined as previously described (Sections 3.9.2 and 

3.9.3 respectively). 

 

5.3.5 ELISAs and biochemical analysis 

Plasma IL-6, sIL-6R, the IL-6/sIL-6R complex and CRP were analysed via 

ELISA at rest before and after 2 weeks HIIT (Section 3.8). IL-6 and IL-6R 

concentration in 40 µg protein in adipose tissue internatant was also quantified 

using the same ELISA protocols. Adiponectin, TNF-α, MCP-1, ICAM-1 and IL-

10 levels were determined in plasma and to quantify the amount of each protein 

present in subcutaneous adipose tissue using commercially available kits 

(Section 3.8). Plasma insulin concentration was also determined using a 

commercially available kit, with human low and high controls (Mercodia, 

Uppsala, Sweden) and plasma glucose concentration was determined by an 

enzymatic, colorimetric method using a bench top analyser (Pentra 400, 

HORIBA ABX Diagnostics, Montpellier, France). Intra-assay CVs for 

inflammatory proteins in adipose tissue are shown in Table 5.1. IL-6/sIL-6R and 
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CRP were not quantified in adipose tissue and MCP-1, TNF-α and IL-10 were 

not detectable in adipose tissue. 

 

Table 5.1 Intra-assay coefficients of variance (CV) for inflammatory protein analysis in 

adipose tissue. 

Inflammatory protein CV (%) 

IL-6 5.8 

sIL-6R 2.7 

Adiponectin 2.6 

ICAM-1 3.4 

 

5.3.6 Insulin sensitivity index 

Insulin sensitivity was assessed as the insulin sensitivity index (ISI) calculated 

using the OGTT results and the formula proposed by Matsuda and DeFronzo 

(1999).  

 

Insulin Sensitivity Index        =           
      

√(       ) (   )
 

Where:  
FPG is the fasting plasma glucose 

FPI is the fasting plasma insulin 

G is the mean plasma glucose during the OGTT 

I is the mean plasma insulin  

 

5.3.7 Statistical analysis 

Full statistical analysis is outlined in Section 3.10.  
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5.4 Results 

5.4.1 Exercise intensity and heart rate 

Figure 5.1 illustrates the percentage of peak heart rate and  ̇O2 that 

participants were cycling at for each interval during the first HIIT session. 

Figure 5.1 The percentage of peak heart rate (▲) and  ̇O2 (■) that participants were 

cycling at during individual intervals of the first HIIT session. 

 

5.4.2 Anthropometry, blood pressure and peak oxygen uptake during 

exercise 

As a result of the 2 weeks of HIIT training there was a significant reduction (p = 

0.029) in waist circumference as well as a tendency for a decrease in hip 

circumference (p = 0.052), despite no change in body mass or BMI (p > 0.05). 

There was also a significant increase in  ̇O2peak expressed in absolute or 

relative terms (Table 5.2). 
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Table 5.2 Anthropometry, blood pressure and peak oxygen uptake during exercise at pre and post 2 weeks HIIT. 

 Pre-training Post-training  

 Mean (SD) 95% Confidence interval for mean Mean (SD) 95% Confidence interval for mean p 

  Lower Upper  Lower Upper  

Body mass (kg) 91.0 (8.0) 85.9 96.1 90.7 (7.8) 85.8 95.7 0.518 

BMI (kg·m
-2

) 29.1 (3.1) 27.1 31.1 29.0 (3.2) 27.0 31.0 0.501 

Waist circumference 
(cm) 

96.3 (8.0) 91.2 101.4 94.9 (8.4) 89.6 100.3 0.029* 

Hip circumference (cm) 109.8 (5.2) 106.5 113.1 108.6 (5.7) 105.0 112.2 0.052 

Waist-to-hip ratio 0.88 (0.05) 0.85 0.91 0.87 (0.05) 0.84 0.90 0.269 

Systolic BP (mmHg) 126 (8) 121 131 126 (9) 120 132 0.870 

Diastolic BP (mmHg) 77 (12) 69 84 79 (11) 71 85 0.651 

 ̇O2peak (l·min
-1

) 3.4 (0.6) 3.1 3.8 3.7 (0.5) 3.4 4.1 0.022* 

 ̇O2peak (ml·kg
-1

·min
-1

) 38 (6) 34 43 42 (5) 38 45 0.037* 

N = 12. * Significantly different compared to pre-training (p ≤ 0.05). 
BMI, body mass index; BP, blood pressure 
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5.4.3 Inflammatory proteins in the circulation and adipose tissue at rest 

After training, there were decreases in plasma sIL-6R, the IL-6/sIL-6R complex, 

adiponectin and MCP-1 of approximately 10%, 13%, 11% and 12% 

respectively, yet no significant changes in IL-6, TNF-α, ICAM-1, IL-10 or CRP 

(Table 5.3). 
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Table 5.3 Inflammatory proteins in plasma at pre and post 2 weeks HIIT. 

 Pre-training Post-training p  

 Mean (SD) 
95% Confidence interval for 

mean 
Mean (SD) 

95% Confidence interval for 
mean 

 

  Lower Upper  Lower Upper  

IL-6 (pg·ml
-1

) 3.1 (3.0) 1.2 5.0 2.6 (2.2) 1.2 3.9 0.373 

sIL-6R (ng·ml
-1

) 42.0 (12.3) 34.2 49.8 37.6 (9.6) 31.6 43.7 0.050* 

IL-6/sIL-6R complex 
(arbitrary units) 

7.6 (3.5) 
5.4 9.7 

6.6 (3.2) 
4.6 8.6 

0.047* 

MCP-1 (pg·ml
-1

) 145 (50) 114 177 128 (38) 104 152 0.047* 

Adiponectin (µg·ml
-1

) 7.5 (3.5) 5.3 9.7 6.7 (3.4) 4.5 8.9 0.041* 

TNF-α (pg·ml
-1

) 1.3 (0.4) 1.0 1.6 1.3 (0.5) 1.0 1.6 0.918 

ICAM-1 (pg·ml
-1

) 161 (25) 145 177 154 (19) 143 166 0.373 

IL-10 (pg·ml
-1

) 2.1 (0.6) 1.7 2.4 1.9  (0.6) 1.5 2.3 0.455 

CRP (μg·ml
-1

) 1.8 (1.9) 0.5 3.0 1.2 (1.3) 0.4 2.0 0.340 

N = 12. * Significantly different compared to pre-training (p ≤ 0.05).  
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Within adipose tissue, IL-6 was reduced by 33% (p = 0.036; Figure 5.2) and IL-

6R increased by 31% (p = 0.037; Figure 5.3). In addition there was a tendency 

for a reduction in adiponectin of 23% (p = 0.056; Figure 5.4). There was no 

change in ICAM-1 after training (p = 0.480; Figure 5.5). TNF-α, MCP-1 and IL-

10 protein levels were below the limit of detection of the assay. 

 

Figure 5.2 IL-6 in subcutaneous adipose tissue at pre and post 2 weeks HIIT. N = 12; † 

significantly different to pre-training (p ≤ 0.05). 

 

Figure 5.3 IL-6R in subcutaneous adipose tissue at pre and post 2 weeks HIIT. N = 12; † 

significantly different to pre-training (p ≤ 0.05). 
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Figure 5.4 Adiponectin in subcutaneous adipose tissue at pre and post 2 weeks HIIT. N = 

12; p = 0.056). 

 

 

Figure 5.5 ICAM-1 in subcutaneous adipose tissue at pre and post 2 weeks HIIT. N = 12; p 

= 0.480).  
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5.4.4 Insulin sensitivity 

There were no significant changes in fasting glucose, insulin or the insulin 

sensitivity index, nor were there any differences found for the area under the 

curve (AUC) in response to a 75 g OGTT (Table 5.4). The glucose and insulin 

response to the 2 h OGTT before and after training is shown in Figure 5.6. 

Although, there were significant time effects for both glucose and insulin (p < 

0.001) during the OGTT, there were no differences between pre- and post-

training for glucose or insulin (p = 0.842 and 0.831 respectively). 

 

 

Figure 5.6 Plasma glucose (A) and insulin (B) response to a 75 g OGTT pre and post 2 

weeks HIIT. ▪ (solid line) represents pre-training. ▲(dashed line) represents post-training. 
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Table 5.4 Glycaemic control at pre and post 2 weeks HIIT.  

 Pre-training Post-training  

 Mean (SD) 95% Confidence interval for mean Mean (SD) 95% Confidence interval for mean p 

  Lower Upper  Lower Upper  

Fasting glucose (mmol·l
-1

) 5.6 (0.6) 5.2 5.9 5.0 (1.0) 4.4 5.7 0.151 

Fasting insulin (mU·l
-1

) 7.8 (3.2) 5.7 9.8 6.8 (3.5) 4.6 9.0 0.268 

Glucose AUC           
(mmol·l

-1
·120 min

-1
) 

791 (110) 721 861 801 (165) 696 905 0.815 

Insulin AUC                 
(mU·l

-1
·120min

-1
) 

6105 (3303) 4007 8203 5730 (3459) 3533 7926 0.448 

Insulin sensitivity index 6.7 (4.6) 3.8 9.7 7.7 (3.8) 5.2 10.1 0.374 

N = 12 
AUC, area under the curve.
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5.5 Discussion 

Exercise regimens of varying intensities may improve well-being and combat 

some of the basal increase in inflammation associated with excessive fat 

deposition and other adverse health conditions including T2DM and CVD 

(Adamopoulos et al. 2002; Balducci et al. 2010b; Thompson et al. 2010; Zoppini 

et al. 2006). The results of this study indicate that in overweight and obese 

males, a two week HIIT regimen can induce reductions in waist circumference 

and increase  ̇O2peak, and that it is an achievable mode of exercise to reduce 

inflammation, with participants completing 100% of HIIT sessions during the 

study. 

IL-6 is a pleiotropic cytokine and exerts both pro- and anti-inflammatory actions 

(Scheller et al. 2011). This is the first study to report a significant reduction in 

IL-6 in subcutaneous adipose tissue with exercise training. However, it is 

unclear whether this is due directly to the exercise or to a loss in fat, as reduced 

IL-6 in subcutaneous adipose tissue has been shown after weight loss in obese 

women through a hypocaloric diet but no exercise intervention (Bastard et al. 

2000). The same research group has also shown that IL-6 in subcutaneous 

adipose tissue is negatively correlated with insulin sensitivity (Bastard et al. 

2002). Previous studies have found no change in IL-6 mRNA expression in 

adipose tissue after 12 weeks aerobic training in obese females (Polak et al. 

2006) or strength training in obese males (Klimcakova et al. 2006), although 

these studies did not examine IL-6 protein changes in adipose tissue, and the 

exercise intensity was substantially lower. The finding of a decrease in IL-6 

protein in adipose tissue in the current study could therefore be due to the 

higher exercise intensity elicited in this study. In the present study there was no 

significant change in circulating IL-6 post-training which could explain why 

insulin sensitivity was unaltered, as systemic IL-6 is strongly correlated with 

insulin resistance (Bastard et al. 2000; Fernandez-Real et al. 2001; Kern et al. 

2001; Bastard et al. 2002), however there was a significant reduction in the IL-

6/sIL-6R complex suggesting that the biological activity of IL-6 has been 

reduced. It is important to note that the current study focussed on total changes 

in the protein concentration of inflammatory proteins within the adipose tissue 
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as opposed to changes in protein secretion. Therefore, although there was a 

significant reduction of IL-6 in adipose tissue the rate of IL-6 secretion from 

adipose tissue into the circulation may have been unaltered and could explain 

why there was no change in circulating IL-6. Other tissues and cells also 

contribute to circulating IL-6, with only ~15-35 % of circulating IL-6 at rest 

deriving from subcutaneous adipose tissue (Mohamed-Ali et al. 1997). The lack 

of correlation between the changes in adipose tissue and circulating levels is 

therefore understandable. 

Within adipose tissue, only around 4-10% of IL-6 comes from adipocytes (Fried 

et al. 1998; Fain et al. 2004), therefore it is likely that other immune cells such 

as macrophages are the main source of IL-6 production. Macrophage 

recruitment into adipose tissue is greater in obese compared with lean 

individuals (Weisberg et al. 2003; Cancello et al. 2005), although, it seems that 

the size of the adipocytes triggers macrophage infiltration rather than overall 

obesity (Cinti et al. 2005). MCP-1 is a chemoattractant known specifically to 

stimulate macrophage and monocyte recruitment into adipose tissue. MCP-1 

levels are increased in obesity resulting in an influx of macrophages and 

monocytes into the adipose tissue (Bruun et al. 2005). MCP-1 was not 

detectable in subcutaneous adipose tissue in the current study and furthermore, 

has been shown to be higher in visceral adipose tissue (Bruun et al. 2005), 

therefore it is likely that the decrease of this chemokine in the circulation is due 

to a reduced MCP-1 production in other tissues such as visceral adipose tissue. 

IL-6R in subcutaneous adipose tissue was significantly increased post-training 

which is consistent with findings in skeletal muscle after 10 weeks of knee 

extensor exercise training (Keller et al. 2005b; Akerstrom et al. 2009). IL-6R 

has previously been shown to be expressed on the plasma membrane of 

approximately 60% of adipocytes (Bastard et al. 2002). The counter finding of a 

reduction in sIL-6R in plasma is also in support of previous studies showing 

similar changes in obese women after 6 months of training (You et al. 2004; 

Silverman et al. 2009) and in chronic heart failure patients after a 12 week 

exercise intervention (Adamopoulos et al. 2002). This finding is consistent with 

the current understanding that sIL-6R is independent of cell production of the 
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protein and is predominantly derived from proteolytic cleavage of the 

membrane-bound IL-6R (Chapter 4). 

ICAM-1 is a vascular cell adhesion molecule that is used as a biomarker of 

endothelial dysfunction and can independently predict CVD (Ridker et al. 1998). 

In the current study, no alterations were found in ICAM-1 in plasma or adipose 

tissue. Some research has shown improvements in circulating ICAM-1 with 

exercise training in individuals with metabolic disorders and T2DM (Roberts et 

al. 2006a; Roberts et al. 2006b; Zoppini et al. 2006), however there were no 

changes in a group with normal glucose tolerance after a 4-week exercise 

intervention (Tönjes et al. 2007). In all of these studies pre-intervention ICAM-1 

concentrations were 2-3 times greater than in the current study. As with MCP-1, 

it has been demonstrated that ICAM-1 is greater in visceral fat in obese 

compared with lean individuals, but there is no difference in subcutaneous 

adipose tissue (Bošanská et al. 2010). Therefore, the reason for the absence of 

a reduction in circulating ICAM-1 in the present study could be that decreases 

in circulating ICAM-1 found in other studies are caused by a reduction in ICAM-

1 production in visceral as opposed to subcutaneous fat, as well as lower 

pretraining circulating ICAM-1 in the present study than in the aforementioned 

studies. 

The literature shows clear evidence that adiponectin levels are inversely 

correlated with BMI (Arita et al. 1999; Weyer et al. 2001; Bruun et al. 2003; 

Kern et al. 2003; Ryan et al. 2003; Vilarrasa et al. 2005; Bluher et al. 2006) and 

is increased after a year of high intensity exercise in T2DM patients (Balducci et 

al. 2010b). The present finding of a reduction in adiponectin in plasma and a 

tendency for this decrease to be replicated in adipose tissue (p = 0.056) is 

inconsistent with some existing literature. However, in a recent review (Simpson 

and Singh 2008), only 3 out of 8 randomised control trials involving exercise 

training resulted in an increase in plasma adiponectin, and there is some 

evidence, supported by the current study, that in order to increase adiponectin 

levels, at least in plasma, dietary restriction with a 10% weight loss is required 

(Madsen et al. 2008). Christiansen and colleagues (2010b) support this concept 

presenting a small non-significant decrease in plasma adiponectin after a 3 

month exercise regimen, yet adiponectin was increased in a diet only group and 
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a combined diet plus exercise group. This research group demonstrated 

adiponectin mRNA in subcutaneous adipose tissue was increased in all groups, 

whereas other exercise only interventions have found no changes in 

adiponectin mRNA in adipose tissue (Klimcakova et al. 2006; Polak et al. 

2006), although none of these studies measured protein changes. An 

alternative explanation may relate to the fact that there are different isoforms of 

adiponectin expressing both anti- and pro-inflammatory actions (Ouchi et al. 

1999; Ouchi et al. 2000; Haugen and Drevon 2007). Haugen and Drevon 

(2007) demonstrated that globular proteolyticaly cleaved adiponectin induced 

TNF-α secretion demonstrating pro-inflammatory properties whereas in studies 

measuring total adiponectin, it is thought to exhibit overall anti-inflammatory 

properties including enhancing insulin sensitivity (Berg et al. 2001;Yamauchi et 

al. 2001). Further work is required to determine whether functionality is related 

to changes in the various isoforms of adiponectin and to test the differences 

between dietary restriction and exercise interventions on the adiponectin 

response. 

IL-10, MCP-1 and TNF-α were not detectable within subcutaneous adipose 

tissue, suggesting the dominant source of inflammation is visceral adipose 

tissue which is consistent with other studies (Fried et al. 1998; Bruun et al. 

2005; Bošanská et al. 2010). Whereas one ex-vivo study found IL-6 to be 

greater in subcutaneous than visceral fat (Gletsu et al. 2006) and similarly 

adiponectin is more abundant in subcutaneous adipose tissue (Fain et al. 2004; 

Lihn et al. 2004). Despite the majority of evidence suggesting inflammatory 

proteins are present at greater concentrations in visceral than subcutaneous 

adipose tissue, visceral adipose tissue accounts for only 13% of total adipose 

tissue in obese men and 6% in obese women (Ross et al. 1994), therefore the 

contribution of subcutaneous adipose tissue to systemic low-grade 

inflammation could be substantial. Clarification of the protein concentration of 

inflammatory cytokines is therefore required to substantiate the existing 

literature. 

A similar decrease in waist circumference was found after 2 weeks sprint 

interval training (Whyte et al. 2010), although it seems unlikely that the 

decrease in waist circumference is simply due to the increased energy 
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expenditure introduced due to the training protocol. Total energy expenditure in 

the current study was estimated to be ~14,500 kJ for the 6 HIIT sessions, with 

an estimated additional ~5000 kJ due to excess post-exercise oxygen 

consumption (Knab et al. 2011). This would theoretically cause a total body fat 

loss of ~600 g of adipose tissue, which is unlikely to induce a mean reduction in 

waist circumference of ~1.4 cm. Further studies are therefore required to 

determine the cause of the reduced waist circumference since abdominal 

adiposity was not measured in the current study. 

Despite significant improvements in inflammatory proteins, waist circumference 

and  ̇O2peak, the current investigation found no improvement of insulin 

sensitivity after HIIT. A possible explanation for the discrepancy in findings 

between this study and others that did detail an increase in insulin sensitivity 

after 2 weeks SIT (Richards et al. 2010; Whyte et al. 2010) could be due to the 

timing of the post-training OGTT. In the present study the OGTT took place 46-

48 h after training to eradicate any acute effects on insulin sensitivity from the 

last training session (Hawley and Lessard 2008). A previous investigation in 

overweight and obese males has shown that insulin sensitivity although 

augmented 24 h after the last bout of exercise was lost at 72 h post-training 

suggesting the augmentation may be due to the effect of the last acute exercise 

bout (Whyte et al. 2010). In contrast to these findings, utilising the gold 

standard methodology of the hyperinsulinaemic euglycaemic clamp, before and 

after a 2 week sprint training protocol and sampling 72 h post-training, found 

insulin sensitivity to be increased (Richards et al. 2010). In this study, however, 

the pre-exercise sample of the training group appeared low and the post-

training sample although significantly different from pre-training, was 

comparable to the sedentary control group and much lower than an acute 

exercise group suggesting the pre-training value was unusually low. It is clear 

that the timing of the post-training samples after the last exercise bout is critical 

when interpreting insulin sensitivity results.  

In conclusion the present study provides novel evidence to support that HIIT, a 

high intensity intermittent training protocol, is an appropriate form of exercise to 

induce both metabolic and inflammatory changes after only 2 weeks. The 
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protocol was suitable for an overweight and obese cohort, with all HIIT sessions 

completed by the participants. Future research should determine whether this 

mode of training is suitable for different patient groups and if greater health 

benefits can be achieved over a longer training period. 
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DEVELOPMENT OF A METHOD TO QUANTIFY 

MEMBRANE-BOUND IL-6R IN ADIPOSE TISSUE 
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6.1 Abstract 

In Chapter 5, IL-6R in adipose tissue was found to be significantly increased 

after 2 weeks HIIT in overweight and obese males (p = 0.037). Since IL-6R is 

commonly identified as a membrane-bound glycoprotein as well as in a soluble 

form in the circulation (sIL-6R), this study aimed to investigate whether the IL-

6R detected in adipose tissue was membrane-bound IL-6R, present on the 

surface of cells within adipose tissue or purely due to sIL-6R present in the 

adipose tissue matrix. Western blot analysis initially revealed many protein 

bands when probed with an antibody to detect membrane-bound IL-6R, with a 

range of molecular weights between ~45-220 kDa, questioning the specificity of 

the antibody. Control experiments were therefore carried out, including 

immunoprecipitation and blocking the antibody with the peptide it was raised 

against, which provided some evidence that the antibody was binding to IL-6R. 

The Western blot protocol was then optimised. After optimisation, some non-

specific binding was reduced and a single band was visible at a molecular 

weight of ~90 kDa and several bands between ~45-55 kDa. Fold-change from 

pre-training found a similar increase in IL-6R between Western blotting analysis 

and that found via ELISA in Chapter 5 (1.22 and 1.31 fold-change respectively), 

however no significant differences were found in any of the IL-6R isoforms 

detected during Western blotting. This suggests that the increase in total IL-6R 

found in Chapter 5, is at least in part due to an increase in membrane-bound IL-

6R. Full-length IL-6R has 6 potential N-linked glycosylation sites and the 

different bands detected during Western blotting could be due to a range of 

glycosylated forms of IL-6R. In conclusion this study has developed a robust 

measurement of membrane-bound IL-6R in adipose tissue and demonstrated 

that many forms of IL-6R exist in adipose tissue.  
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6.2 Introduction 

In order for IL-6 to signal it must bind to the type I transmembrane receptor, IL-

6R (CD126). This complex then associates with gp130 (CD130), a common 

signal-transducing membrane protein for many cytokines to form either a 

tetrameric [IL-6-IL-6R-(gp130)2] or hexameric [(IL-6)2-(IL-6R)2-(gp130)2] 

structure (Schroers et al. 2005). Once bound, gp130 can activate the Janus 

kinase (Jak) family (Lütticken et al. 1994; Stahl et al. 1994), followed by 

activation of signalling pathways, such as signal transducer and activator of 

transcription (STAT) 3 and 1, as well as activation of the MAPK pathway 

(Heinrich et al. 2003). This is known as classic IL-6 signalling. Membrane-

bound IL-6R has been found to be expressed mainly on the plasma membrane 

of macrophages, monocytes, hepatocytes, neutrophils and some lymphocytes 

(Bauer et al. 1989; Oberg et al. 2006; Chalaris et al. 2007), as well as 

adipocytes (Bastard et al. 2002). The cytoplasmic and transmembrane domains 

of IL-6R are not essential for initiating IL-6 signalling, therefore the soluble form 

of the receptor (sIL-6R), that was quantified in Chapters 4 and 5, is an active 

isoform of this receptor, as it is composed of the signalling extracellular domain 

of full-length IL-6R. Soluble IL-6R can be produced by proteolytic cleavage or 

differential splicing, as quantified in Chapter 4, and allows IL-6 to bind and 

signal in tissues that are deficient in the membrane-bound IL-6R, as well as in 

tissues that express IL-6R on the plasma membrane, and is termed trans-

signalling, as previously shown in Figure 2.1. 

Results from Chapter 5 showed that IL-6R was present in adipose tissue 

homogenate and that it was increased after 2 weeks HIIT in overweight and 

obese males. This was quantified via ELISA, with the antibodies raised against 

an epitope in the extracellular domain, hence detecting membrane-bound and 

soluble IL-6R. Therefore, it was not clear whether the IL-6R detected was 

membrane-bound IL-6R present in cells such as adipocytes and macrophages 

or sIL-6R present in the adipose tissue matrix (blood and connective tissue), 

which can comprise up to 70% of adipose tissue (Fain et al. 2004), though this 

should be limited by washing the tissue with saline and removing connective 

tissue. 
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The 468 long amino acid sequence for the IL-6R is a precursor for the mature 

IL-6R, which is 449 amino acids in length (Yamasaki et al. 1988). IL-6R 

consists of a 19 amino acid signal peptide, a 339 amino acid extracellular 

region, a 28 amino acid transmembrane region and an 82 amino acid 

cytoplasmic region (Figure 6.1). Mature full-length IL-6R has a predicted 

molecular weight of 49.9 kDa, however, the observed molecular weight is 

consistently reported as ~80 kDa (Hirata et al. 1989). The observed molecular 

weight of proteins can be different from the predicted molecular weight for 

various reasons; post-translational modifications, post-translational cleavage, 

splice variants of the full-length protein, the composition of the amino acids and 

multimers. In the case of IL-6R the mature molecular weight is greater than 

predicted due to 6 potential N-linked glycoslation sites (Yamasaki et al. 1988), 5 

in the extracellular domain and 1 in the cytoplasmic domain of the protein. 

Glycosylation is an enzymatic reaction where glycans attach to proteins at 

specific sites and is essential for protein folding to create its tertiary structure. 

Without this folding IL-6 would be unable to bind to IL-6R and signalling would 

not occur. During denaturing and preparation of the gels for Western blotting it 

is likely that some or all of these sites are cleaved, thus presenting with various 

molecular weights, however, in vivo these forms of the protein could be 

functional.  
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A. 

 

B. 

1   mlavgcalla allaapgaal aprrcpaqev argvltslpg dsvtltcpgv epednatvhw    

61  vlrkpaagsh psrwagmgrr lllrsvqlhd sgnyscyrag rpagtvhllv dvppeepqls 

121 cfrksplsnv vcewgprstp slttkavllv rkfqnspaed fqepcqysqe sqkfscqlav 

181 pegdssfyiv smcvassvgs kfsktqtfqg cgilqpdppa nitvtavarn prwlsvtwqd 

241 phswnssfyr lrfelryrae rsktfttwmv kdlqhhcvih dawsglrhvv qlraqeefgq 

301 gewsewspea mgtpwtesrs ppaenevstp mqalttnkdd dnilfrdsan atslpvqdss 

361 svplptflva ggslafgtll ciaivlrfkk twklralkeg ktsmhppysl gqlvperprp 

421 tpvlvplisp pvspsslgsd ntsshnrpda rdprspydis ntdyffpr 

 

Figure 6.1 A. Schematic structure of IL-6R and B. amino acid sequence for full-length IL-

6R. The signal peptide is underlined in bold. 

 

It is hypothesised that membrane-bound IL-6R constitutes the IL-6R detected in 

our adipose samples. This study aimed to develop a technique to quantify 

membrane-bound IL-6R in adipose tissue via Western blot techniques. The 
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antibody used in this study spans the –COOH cytoplasmic terminal and 

therefore should not detect sIL-6R. This antibody was selected as it has 

previously been shown to detect IL-6R in skeletal muscle (Akerstrom et al. 

2009) and osteoblasts (Vermes et al. 2002). The second aim was to determine 

if protein expression of membrane-bound IL-6R in adipose tissue changed after 

2 weeks HIIT, as found for total IL-6R (Chapter 5). 

 

6.3 Overview of general methods 

One-dimensional polyacrylamide gel electrophoresis (1D-PAGE) was carried 

out in order to separate the proteins in adipose tissue homogenate according to 

molecular weight. Proteins were transferred by electroblotting to polyvinylidene 

fluoride (PVDF) membranes and probed with an antibody to detect IL-6R. 

Materials were purchased from Invitrogen unless stated otherwise. Initially 

samples were prepared using existing protocols which are detailed below. A 

secondary aim of this study was to determine whether membrane-bound IL-6R 

changed in subcutaneous adipose tissue after 2 weeks HIIT in overweight and 

obese males (samples collected during Chapter 5). 

 

Subcutaneous adipose tissue sampling 

Methodology for adipose tissue sampling, tissue homogenisation and protein 

concentration determination are outlined in Chapter 3.8. 

 

Sample preparation 

Protein homogenate from adipose tissue samples was reduced by the addition 

of a quarter of a volume of NuPAGE Lithium dodecyl sulfate (LDS) Sample 

Buffer (4X) and a tenth of a volume of NuPAGE Sample Reducing Agent (10X, 

contains 500 mM dithiothreitol (DTT)), then heat-denatured by incubation for 10 

min at 70ºC on a Techne Dri-Block DB-3 (Bibby Scientific Limited, Stone, UK) 
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to reduce the protein disulfide bonds (see Table 6.1 for sample preparation). 

Samples were left to cool before 1D-PAGE or frozen at -80ºC until required. 

 

Table 6.1 Reagents and sample volume for adipose tissue preparation. 

Component Mass/Volume 

NuPAGE Sample Reducing Agent (X10) 3 µl 

NuPAGE Sample Buffer (X4) 7.5 µl 

Homogenised adipose tissue protein 40 µg 

Deionised water to  30 µl 

 

One-dimensional polyacrylamide gel electrophoresis (1D-PAGE) 

NuPAGE Novex 4-12% Bis-Tris gels (1.0 mm thick, 10 well) were inserted into 

an XCell SureLock Mini-Cell tank and the inner chamber was filled with 2-(N-

morpholino)ethanesulfonic acid (MES) running buffer and 500 μl of NuPAGE 

antioxidant, which maintains proteins in a reduced state during protein gel 

electrophoresis. MES buffer is recommended for resolving small to medium 

proteins and is composed of 50 mM MES, 50 mM Tris Base, 0.1% sodium 

dodecyl sulfate (SDS), 1 mM EDTA, pH 7.3. The outer chamber was half-filled 

with MES buffer, and sample protein (40 µg/gel lane) was resolved on the gels 

for 1.5 h at 150 V. 

 

Colloidal Blue staining 

After electrophoresis, the gel cassette was removed from the tank and rinsed 

with deionised water and the gel was removed from the cassette using a gel 

knife. Proteins were fixed by washing for 10 min in 50 % methanol, 10 % acetic 

acid (v/v), and then stained with Colloidal Blue stain. The Colloidal Blue staining 

kit contains Stainer A and Stainer B. For each gel to be stained 5 ml of 

methanol, 13.75 ml of deionised water and 5 ml of Stainer A were mixed and 
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poured onto the gel and it was left to incubate on a Mini Orbital Shaker at room 

temperature at 20 rev∙min-1. After 10 min, 1.25 ml of Stainer B was added to the 

solution and the gels were left in the solution overnight on the shaker. The 

following morning the staining solution was disposed and the gels were washed 

with deionised water. The gels were left on the shaker and the water was 

replaced every hour for 3 h. Images of the stained gels were obtained using a 

scanner (Canon Ltd., Surrey, UK). 

 

Protein Transfer 

In order to carry out Western blot analysis 1D-PAGE was repeated for all 

samples and proteins were transferred to PVDF membranes for Western 

blotting. The PVDF membrane (Millipore Ltd, Billerica, MA, USA) was cut to the 

same size as the gel (9 X 8 cm) and soaked in methanol for 5 min. Methanol 

was gradually replaced with NuPAGE transfer buffer until the membrane was 

soaked in 100% transfer buffer. After 1D-PAGE, the gel was removed from the 

cassette and was left to equilibrate in transfer buffer for 15 min. After, the gel 

was assembled to prepare protein transfer from the gel to the PVDF membrane 

(Figure 6.2). When assembling the transfer unit, care was taken to ensure there 

were no air bubbles between the gel and the PVDF membrane, to allow equal 

protein transfer across the membrane. The unit containing the gel and 

membrane was inserted into a Mini-PROTEAN Tetra System tank (Bio-Rad, 

Hercules, CA, USA). The tank was placed in an ice box and a cooling unit was 

inserted into the tank. The tank was then filled with transfer buffer. Proteins 

were electrophorectically transferred onto the PVDF membrane for 2 h at 80 V.  
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Figure 6.2 Assembly of unit for electrophoretic protein transfer. The PVDF membrane and 

gel are inserted between 2 sheets of filter paper and sponge pads before being tightly secured 

in the cassette for protein transfer. The gel proteins have been coated with LDS, rendering 

them negatively charged. Therefore the proteins will migrate out of the gel during protein 

transfer towards the positive electrode, where they will be captured onto the PVDF membrane. 

 

After 2 h the cassette was removed from the tank and the membrane was 

removed. Protein transfer onto the membrane was confirmed using Simply Blue 

Safestain. Twenty five millilitres of Coomassie stain was poured onto the 

membrane and incubated at room temperature for 30 min on the orbital shaker 

at 20 rev∙min-1. The membrane was then removed from the solution and left to 

dry overnight. To confirm complete protein transfer, gels were also stained with 

the Colloidal Blue stain after electroblotting, as described earlier. If protein 

transfer was successful there should only be little protein visible on the gel after 

staining. Large proteins do not migrate as efficiently and therefore some are left 

on the gel after protein transfer, however proteins at these molecular weights (> 

180 kDa) are not relevant to the current study. The following day the 

membranes were destained with 50% methanol, 10% acetic acid (v/v), to 

visualise protein bands and confirm that there was even protein transfer across 

the membrane. The blots were washed 3 X 10 min using PBS with 0.05% 

Tween 20 (PBS-T) as a wash buffer, on the orbital shaker at 20 rev∙min-1. All 

subsequent washes were the same as this.  
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Western blotting 

After protein transfer, the PVDF membranes can be probed with antibodies for 

specific proteins to detect their presence in the adipose tissue homogenate. 

The primary antibody used in this study was an IL-6R rabbit polyclonal antibody 

(Santa Cruz Biotechnology, Inc., CA, USA) used at a concentration of 0.5 

µg·ml-1 in PBS-T with 5% dried milk. The IL-6R antibody is approximately 15-25 

amino acids long and was raised against a peptide mapping within the last 50 

C-terminal amino acids of IL-6R of human origin (Figure 6.1). PVDF 

membranes were blocked with 25 ml of 5% dried milk in PBS-T for 1 h at room 

temperature. The membranes were then probed with 8 ml of the primary IL-6R 

antibody solution and the membranes were rotated at 40 rev∙min-1, for 16 h at 

4ºC. The following day the membranes were washed, and then incubated with a 

secondary antibody, a polyclonal goat anti-rabbit immunoglobulins-horseradish 

peroxidase conjugated antibody (Dako, Ely, UK) at 1:1000 dilution for 1 h at 

room temperature. Membranes were washed again and then antibody 

localisation was visualised by enhanced chemiluminescence using SuperSignal 

West Femto Chemiluminescent Substrate (Thermo Scientific, Cramlington, UK). 

Equal amounts of the peroxide buffer and luminol/enhancer solution were 

mixed just prior to use. The membrane was placed on a sheet of overhead 

projector paper and 2 ml of the working substrate solution was poured onto the 

membrane. The membrane was incubated for 5 min and light was captured 

using a ChemiDoc XRS+ system (Bio-Rad, Hercules, CA, USA). Relative levels 

of protein bands were quantified using Quantity One 1D analysis software (The 

Discovery Series, Bio-Rad, Hercules, CA, USA). The freehand tool was used to 

draw around the protein band, as well as an area of equal size at an unexposed 

region of the membrane to represent the background. The software gives the 

intensity∙mm2 for each band, which were corrected for background 

intensity∙mm2.  
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Protein Normalisation 

To account for any differences in protein loaded between pre- and post-training 

samples for participants, the same membranes were also probed for actin 

which is expected to be uniformly expressed across these cell types. This 

allowed the post-training IL-6R results to be normalised to actin expression. 

After membranes were probed for IL-6R they were stripped with 25 ml of 

Restore PLUS Western Blot stripping buffer (Thermo Scientific, Cramlington, 

UK) and incubated at 50ºC for 30 min at 60 rev∙min-1 in a benchtop incubating 

shaker (MaxQ 4000, Thermo Scientific, Cramlington, UK). The membranes 

were then washed and blocked again before re-probing for actin using the 

previous Western blot method. The primary antibody used in this application (I-

19; Santa Cruz Biotechnology, Inc., CA, USA) detects a broad range of actin 

isoforms of human origin and is raised against a peptide mapping at the C-

terminus. The rabbit polyclonal antibody was diluted in PBS-T with 5% dried 

milk to a working concentration of 0.8 µg·ml-1. A single band was detected at 43 

kDa. All changes in IL-6R between pre- and post-training are presented relative 

to actin expression. The intensity∙mm2 of each band was quantified and the 

fold-change from pre-training determined in order to normalise any changes in 

IL-6R. An example of a membrane probed for actin expression pre- and post-

training is shown in Figure 6.3. 

 

 

Figure 6.3 Actin expression in subcutaneous adipose tissue homogenate pre and post 2 

weeks HIIT. 
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6.4 Experimental procedures 

Experiment 1: 1D-PAGE running conditions 

Initially, 1D-PAGE samples were resolved on the gels for 1.5 h at 150 V. This 

tended to give a „smile‟ effect on the gel, with samples in the middle running 

quicker than samples at either end of the gel. Therefore, samples were run at a 

lower voltage of 125 V for a longer period of time of 2 h. This resulted in a more 

uniform migration of proteins through the gel and proteins had successfully run 

the full length of the gel after this time. 

 

Experiment 2: Denaturation of protein samples 

The aim of this experiment was to ensure that the protein samples were fully 

denatured and intact, and to assess relative protein levels, before proceeding 

with Western blots. Protein samples were loaded onto gels for electroblotting 

and then stained as described earlier. An image of a stained gel is shown in 

Figure 6.4. 

  

Figure 6.4 Colloidal Blue staining of adipose tissue homogenate. Samples resolved on 

NuPAGE 4-12% Bis-Tris gels, pre and post 2 weeks HIIT. 
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Figure 6.4 demonstrates that there are many bands visible between ~18-188 

kDa representing individual proteins. This image provides some evidence that 

the protein samples are intact and appear to have been successfully reduced, 

and sufficiently resolved. To provide evidence that IL-6R specifically had been 

successfully reduced, samples were denatured at both 70ºC and 90ºC, prior to 

1D-PAGE and Western blot analysis, as described previously. If samples are 

not fully denatured this could lead to proteins being detected at different 

molecular weights than those expected. Figure 6.5 shows that all of the same 

protein bands are detectable at both 70ºC and 90ºC, therefore the higher 

temperature did not cause additional denaturing of IL-6R. 

 

 

Figure 6.5 Western blots probed for IL-6R where adipose tissue homogenates were 

reduced at either 70ºC or 90ºC. 

 

Experiment 3: IL-6R isoforms 

The aim of this experiment was to determine whether membrane-bound IL-6R 

was detectable in the subcutaneous adipose tissue samples of all 12 
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participants before and after 2 weeks HIIT. 1D-PAGE was carried out for all 

samples, which were transferred to PVDF membranes and probed for IL-6R 

using a rabbit polyclonal antibody (see Western blot section). Figure 6.6 shows 

the protein bands identified as IL-6R by chemiluminescence. 

 

 

Figure 6.6 A Western blot showing IL-6R expression in subcutaneous adipose tissue 

homogenate, pre and post 2 weeks HIIT. 

 

Figure 6.6 shows that there are a number of protein bands detected over a wide 

range of molecular weights (~40-220 kDA). The most prominent band identified 

spanned a molecular weight of approximately 45-55 kDa. Since 55 kDa is the 

molecular weight of heavy chain immunoglobulins (IgG) further experiments 

were carried out to ensure the antibody was not binding to non-specific 

antigens.  
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Experiment 4: Negative Controls 

In order to determine the specificity of the IL-6R antibody two negative control 

experiments were carried out: 

 

Peptide neutralisation 

The IL-6R antibody was incubated with its blocking (neutralising) peptide. 

Affinity purified rabbit polyclonal antibodies can be raised against peptide 

antigens. Incubating the IL-6R antibody with the peptide (immunogen) prior to 

incubating the IL-6R antibody with the adipose tissue homogenate should block 

any IL-6R immunoreactivity present within the sample from binding to the 

polyclonal antibody and therefore provides a negative control. Four micrograms 

of IL-6R rabbit polyclonal antibody was added to 500 μl of PBS in an eppendorf. 

The neutralising peptide for IL-6R antibody was added to this solution at 5-fold 

the weight of the antibody, therefore 20 μg. The antibody and peptide mixture 

was left to incubate on a rotator overnight at 4°C at 40 rev∙min-1, to enable the 

immunogen to bind to the IL-6R antibody. 

The following morning, a membrane with adipose tissue samples from 2 

participants, pre- and post-training was blocked with PBS (5% dried milk) for 1 

h. The peptide mixture was diluted in PBS (5% dried milk) to a total volume of 8 

ml. This was then left to incubate on the membrane overnight on the rotator at 

4°C. The membrane was then treated as previously described, where it was 

washed before incubation with a goat anti-rabbit HRP linked secondary 

antibody. An image of the blot incubated with IL-6R plus the neutralising 

peptide is shown in Figure 6.7B. 

 

Control IgG 

As a second negative control, another membrane with the same samples as 

used for the neutralising peptide experiment, was probed with normal rabbit IgG 

(sc-2027) (Santa Cruz Biotechnology, Inc., CA, USA). This control serum is not 
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raised against any specific antigens and therefore should have no or very low 

binding to proteins in the samples (Figure 6.7C). 

As well as the membranes for the 2 negative control experiments, a third 

membrane with the same samples was treated as normal (A), as described in 

the Western blot section for comparison. In addition, as a further control a 

single adipose tissue sample was probed with only the goat anti-rabbit HRP 

linked secondary antibody at 1:1000 dilution, to ensure the secondary antibody 

was not binding non-specifically (D). Images for all 4 Western blots are shown 

in Figure 6.7. 

 

 

Figure 6.7 Negative control Western blots. Western blot were probed with: A IL-6R; B IL-6R 

+ neutralising peptide C control serum D secondary antibody only. Adipose tissue samples 

were from 2 participants, pre and post 2 weeks HIIT. 

 

Figure 6.7 shows there are no visible bands on the membrane incubated with 

the IL-6R antibody plus neutralising peptide (B). Therefore, the peptide has 

successfully bound to the IL-6R antibody, hence blocking it from binding to 

proteins on the membrane and supports the claim that the antibody used is 



 
 

101 
 

specific to IL-6R. The control serum (C), which should contain no or little IL-6R, 

shows some non-specific binding, however, this is not at the same molecular 

weights that IL-6R has been identified (A). Since the control serum and 

neutralising peptide showed no/little non-specific binding it seems likely that the 

IL-6R antibody used in these experiments is specific to IL-6R. In addition, there 

is no non-specific binding of the secondary antibody as no protein bands were 

identified during this experiment (D). In conclusion, these control experiments 

provide evidence that the antibody is specifically binding to IL-6R. 

 

Experiment 5: Immunoprecipitation 

Figure 6.6 showed several bands were detected when probed for IL-6R. 

Western blot procedures are constrained by the concentration of the specific 

protein of interest, and the specificity and sensitivity of the antibody used. Non-

specific signals can occur if other proteins in the sample contain cross-reacting 

epitopes, due to the denaturation of proteins during sample preparation which 

can expose cross-reacting epitopes. By combining immunoprecipitation (IP) 

with Western blotting procedures this cross-reactivity can be reduced. The 

protein of interest is partially purified and concentrated during IP. IP allows the 

antibody to bind to native IL-6R in the adipose homogenate where cross-

reacting epitopes are unlikely to be present. IP is then followed by Western 

blotting where the protein of interest (i.e. IL-6R) will become the predominant 

signal detected. This procedure was carried out in adipose tissue homogenate 

from 2 participants in this study. An outline of the procedure is below and is 

illustrated in Figure 6.8. 

 

Immunoprecipitation Procedure: 

 200 µg of protein from adipose tissue homogenate was diluted in PBS to 

give a final volume of 500 µl. 

 1 µl of normal rabbit IgG-AC (25% agarose) (Santa Cruz Biotechnology, 

Inc., CA, USA) was added to each sample and rotated at 40 rev∙min-1, at 
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4°C for 30 min. This preclearing step prior to IP limits non-specific 

proteins in the homogenate. Samples were centrifuged at 1,000 g·min-1 

for 30 s at 4°C, before transferring the supernatant to new eppendorfs. 

 2 µg of IL-6R antibody was added to the supernatant and rotated at 40 

rev∙min-1 overnight, at 4°C. The antibody will bind to IL-6R in the 

sample. 

 The following morning 300 µl of protein A/G PLUS-agarose (50% 

suspension) (Santa Cruz Biotechnology, Inc., CA, USA) was centrifuged 

at 1,000 g·min-1 for 2 min at room temperature. The supernatant was 

discarded and 150 µl of PBS was added to the eppendorf to wash the 

agarose beads before centrifuging again. This step was repeated a 

further 3 times. 

 After the final wash, the PBS was discarded and 50 µl of a 50% agarose 

bead solution was added to each eppendorf before rotating samples at 

40 rev∙min-1 for 1 h at 4°C. The IL-6R immune complex binds to the 

protein A/G agarose beads. 

 Samples were centrifuged for at 1,000 g·min-1 for 3 min at 4°C. The 

supernatant was transferred to a fresh eppendorf, on ice. The pellet 

(containing the IL-6R immune complex) was washed 4 times with 150 µl 

of PBS and centrifuged in between at 1,000 g·min-1 for 3 min at 4°C. 

After the final wash all liquid was aspirated from the samples. 

 Both the pellet and supernatant were prepared for 1D-PAGE. 
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Figure 6.8 Immunoprecipitation process. Red circle represents IL-6R molecule (blue and 

green circles are non-specific proteins).  
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Figure 6.9 shows Western blots of 2 participants before and after IP for IL-6R, 

as well as the supernatant that was removed during the IP. 

 

Figure 6.9 Western blots probed for IL-6R before and after immunoprecipitation, pre and 

post 2 weeks HIIT for 2 participants. Where A represents start material, B represents the 

supernatant from the immunoprecipitate and C represents the immunoprecipate material. 

 

The supernatant should include any protein signals that the IL-6R antibody 

cross-reacts with, that were not precipitated during the IP. The supernatant (B) 

for all 4 samples confirms there is very little material identified, and therefore 

the material in A, i.e. the starting material, and the material used in the Western 

blots in Experiment 3, is likely to be IL-6R, rather than signals identified due to 

cross-reactivity with non-specific epitopes. In the lanes with the 

immunoprecipitate material (C) there are large bands at ~25 and ~55 kDa 

which are likely to be light and heavy chain IgG respectively, from the 

immunoprecipitating antibody. As heavy chain IgG is at the same molecular 

weight as the band we wish to detect (~45-55 kDa) it is not possible to quantify 

any changes in IL-6R from the immunoprecipitate material. This experiment is 

for illustrative processes only as different amounts of protein had to be used for 

the starting material (A) than for the IP. For the IP each sample started with 
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200 µg of protein to ensure when IL-6R was removed there was enough 

material immunoprecipitated that could be detectable. In conclusion, 

immunoprecipitation of IL-6R has provided evidence that the material detected 

in the previous Western blot experiment was IL-6R, as opposed to the IL-6R 

antibody cross-reacting with non-specific epitopes in the denatured adipose 

tissue samples. The immunoprecipitated material was unable to be quantified 

due to the IL-6R antibody reacting with light and heavy chain IgG. 

 

Experiment 6: Immunoglobulin and albumin removal 

As there is a large band detected at ~55 kDa in all of the adipose tissue 

samples (Figure 6.6), a ProteoExtract kit (Calbiochem, EMD Biosciences, Inc., 

La Jolla, CA, USA) was used to deplete IgG and albumin in adipose tissue 

homogenate from 2 participants. This was to ensure that the band detected at 

this molecular weight was IL-6R and not heavy chain IgG which also has a 

molecular weight of 55 kDa. To 540 µl of a binding buffer 60 µl of adipose 

tissue homogenate was added. To each column 850 µl of albumin/IgG binding 

buffer was added and allowed to pass through the resin bed by gravity-flow. 

The column was placed in a new collection tube and the 600 µl binding buffer 

and sample mixture was added to the column and left to pass through the resin 

bed into the collection tube. A further 600 µl of binding buffer was added to 

wash the column. The collected sample was depleted of IgG and albumin. As 

the sample has been diluted in a large volume of binding buffer and albumin 

and IgG have been depleted, the protein concentration was too low for 1D-

PAGE. Therefore, the samples were concentrated using Amicon Ultra-0.5 

centrifugal filter devices (Millipore, Billerica, MA, USA), which concentrates 

samples by filtering out proteins with a molecular weight less than 3 kDa 

(Figure 6.10).  
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Figure 6.10 Procedure for concentrating the adipose tissue protein after IgG and albumin 

depletion. Up to 500 µl of the IgG and albumin depleted samples were added to the filter unit 

and centrifuged at 14,000 g·min
-1

 for 20 min at 4°C. Immediately afterwards, the filter unit was 

placed upside down in a new eppendorf and centrifuged at 1,000 g·min
-1

, for 2 min at 4°C to 

recover the concentrated sample. 

 

The protein concentration of the samples was determined again using the DC 

Protein Assay (Chapter 3.9.3) and samples were prepared for 1D-PAGE. 

Samples from before and after albumin and IgG removal were loaded onto 4-

12% Bis-Tris gels as previously described and then transferred to PVDF 

membranes. One membrane was probed with the IL-6R antibody and another 

with normal rabbit IgG control serum to check for non-specific binding (Figure 

6.11).  
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Figure 6.11 Western blot probed for IL-6R and normal rabbit IgG for adipose tissue 

homogenate before (+) and after (-) IgG and albumin depletion. 

 

Figure 6.11 illustrates that after IgG and albumin have been removed from the 

samples there is less material present at 45-55 kDa. Therefore, the antibody 

used in these experiments could be binding non-specifically to heavy chain IgG.  

However, it is important to note that IgG removed samples have been treated 

differently to the other samples, although the amount of protein is the same 

across wells. The IgG depleted samples still have the same bands present, but 

at a lower concentration which could be due to the IgG and albumin depletion 

process or the concentration procedure. Since the same bands are still visible 

and in addition to the previous experiments it seems likely that the bands 

identified are IL-6R. In conclusion, all of the control experiments in this Chapter 

have supported that it is IL-6R detected in the adipose tissue homogenates. 

Since there is confidence that the protein detected is IL-6R, the Western Blot 

procedure was optimised in the following section.  
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Experiment 7: Optimisation of antibody concentration 

Optimisation of this IL-6R Western blot protocol is required to ensure the best 

possible images are captured. The concentration of primary and secondary 

antibodies during Western blotting is important as too high a concentration will 

lead to non-specific binding and too low an antibody concentration will result in 

too weak a signal to allow detection of the protein of interest. In order to 

optimise the protocol, 2 adipose tissue samples were blotted with different 

concentrations of the primary IL-6R antibody. Membranes were incubated with 

IL-6R at 2 µg·ml-1, 0.5 µg·ml-1 (the concentration used in the previous 

experiments), 0.25 µg·ml-1 and 0.17 µg·ml-1 in PBS with 5% dried milk (Figure 

6.12). All other variables remained constant. 

 

 

Figure 6.12 Optimisation of the primary IL-6R rabbit polyclonal antibody. Western blots for 

2 adipose tissue samples probed with different concentrations of primary IL-6R antibody (2 

µg·ml
-1

, 0.5 µg·ml
-1

, 0.25 µg·ml
-1

 and 0.17 µg·ml
-1

). The concentration of the goat anti-rabbit 

HRP linked secondary antibody was 1:1000.  
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IL-6R is detectable at all 4 concentrations. At the highest primary antibody 

concentration of 2 µg·ml-1 individual bands are not distinguishable and there 

appears to be some non-specific binding of protein bands at higher molecular 

weights which is reduced with dilution of the antibody. As Western blots with 

antibody concentrations of 0.25 µg·ml-1 and 0.17 µg·ml-1 give similar images it is 

more economical to use a working primary IL-6R antibody concentration of 0.17 

µg·ml-1. There are now 2 distinct bands at ~45-55 kDa and a band at ~90 kDa. 

To optimise the IL-6R Western blot protocol further, 4 membranes were 

incubated with the optimal primary IL-6R antibody concentration of 0.17 µg·ml-1, 

and a range of concentrations of the polyclonal goat anti-IgG-HRP conjugated 

secondary antibody. The concentration of the secondary antibody was 1:1000, 

1:2000, 1:3000 or 1:4000 (Figure 6.13). Due to limited sample, the adipose 

tissue samples are different to the samples used to optimise the primary IL-6R 

antibody concentration and therefore there will be some differences in the 

images.  
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Figure 6.13 Optimisation of goat anti-rabbit HRP linked secondary antibody. Western blots 

for 2 adipose tissue homogenates probed with the following antibody dilutions: 1:1000, 1:2000, 

1:3000 and 1:4000. The concentration of the primary IL-6R rabbit polyclonal antibody was 0.17 

µg·ml
-1

. 

 

Figure 6.13 shows that the same bands are visible for all of the blots, however, 

the clearest image is with the 1:1000 dilution. Therefore, the optimum 

concentrations for this IL-6R Western blot protocol is 0.17 µg·ml-1 for the 

primary IL-6R antibody and 1:1000 for the secondary antibody. 
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Experiment 8: Optimised Western blots for detection of IL-6R 

1D-PAGE analysis and protein transfer to PVDF membranes were repeated for 

the pre- and post-training samples (N = 12), and membranes were probed for 

IL-6R using the new optimal antibody concentrations. After, membranes were 

stripped and probed for actin to normalise protein loading between pre- and 

post-training samples. Figure 6.14 is a Western blot for IL-6R for 4 participants 

pre- and post-training. 

 

Figure 6.14 A Western blot showing IL-6R expression in subcutaneous adipose tissue 

homogenate, after optimising antibody concentrations, pre and post 2 weeks HIIT. 

 

There is a clear band visible at ~90 kDa, similar to a band detected for 

membrane-bound IL-6R in osteoblasts at ~88 kDa (Vermes et al. 2002), and 

several isoforms identified between 45-55 kDa (Figure 6.14). Much of the cross-

reactivity seen in earlier experiments has been reduced and the bands at 45-55 

kDa are shown to be separate identifiable isoforms, whereas in previous 
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experiments were only visible as one large band. An example of the bands 

quantified for the participants is shown in Figure 6.15. 

 

 

Figure 6.15 IL-6R isoforms quantified for one participant. IL-6R isoforms spanning ~45-55 

kDa and ~90 kDa were quantified. The blue line represents the area that the intensity·mm
2 

was 

determined. An area of equal size to the protein bands, from a similar unexposed region of the 

blot was subtracted, which represented the background intensity·mm
2
.  
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Figure 6.16 shows the fold-change of the protein bands identified at ~45-55 

kDa, ~90 kDa and the sum of these bands, pre- and post-training. 

 

 

Figure 6.16 IL-6R isoforms at ~45-55 kDa, ~90 kDa and the sum of these isoforms in 

subcutaneous adipose tissue homogenate, pre and post 2 weeks HIIT (N = 12). Data 

normalised to actin expression. 

 

The majority of IL-6R is present in the form of a cluster of protein bands 

detected at ~45-55 kDa. There were no changes found in IL-6R protein 

expression at ~45-55 kDa (p = 0.912), ~90 kDa (p = 0.710) or total (p = 0.975) 

IL-6R expression after 2 weeks HIIT. The fold-change from pre-training was 

compared to the fold-change in total IL-6R measured via ELISA in Chapter 5 

(Figure 6.17). 
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Figure 6.17 IL-6R fold-change in adipose tissue after 2 weeks HIIT using a polyclonal 

antibody during Western blot analysis and paired monoclonal antibodies during ELISA. 

Dotted line (1.0) represents baseline. 

 

Figure 6.17 shows that both the ELISA and Western blot methods result in a 

similar fold-change in IL-6R of 1.31 and 1.22 respectively, although there were 

no significant differences between pre- and post-training for the different 

isoforms (Figure 6.16). It is likely that there was no significant difference in IL-

6R post-training with Western blotting due to the larger variation found between 

individuals than was found with the ELISA. Therefore, the Western blot data 

has provided a similar mean fold-change result to the ELISA, suggesting that 

the assay is detecting changes in membrane-bound IL-6R and not the soluble 

form and represents a “true change” in the capability of IL-6 to signal. 

  



 
 

115 
 

6.5 Discussion 

This Chapter has addressed many issues that arise when undertaking protein 

analysis. At the start of the study the aim was to investigate whether full-length 

membrane-bound IL-6R was present in adipose tissue. In Chapter 5, IL-6R was 

detected in adipose tissue, however it was unclear whether this was 

membrane-bound IL-6R or sIL-6R. The antibody in the current study has also 

been used to detect IL-6R in skeletal muscle (Akerstrom et al. 2009), where the 

authors reported detection of a single band at a molecular weight of ~80 kDa, 

although no images of the Western blots were provided in the publication. In a 

separate study this antibody was used to detect membrane-bound IL-6R in 

osteoblasts with a band detected at ~88 kDa (Vermes et al. 2002), 

approximately the same molecular weight as the band detected in the final 

Western blots in this Chapter. 

Initial Western blots, following the published recipes, identified numerous bands 

at different molecular weights ranging from ~40-200 kDa. Control experiments, 

including blocking the IL-6R antibody with a neutralising peptide, were carried 

out to validate the specificity of the antibody. The control experiments provided 

supporting evidence that the bands identified during Western blotting were IL-

6R, and the protocol was then optimised. After optimisation, fewer protein 

bands were detected, suggesting either the primary or secondary antibody or 

both were binding non-specifically. In the final set of Western blots, a band at 

~88 kDa, similarly to that detected in osteoblasts (Vermes et al. 2002), and 

several bands detected at ~45-55 kDa were identified in adipose tissue. In most 

samples more than one band was detected between ~45-55 kDa. 

Full-length IL-6R has 6 potential N-linked glycosylation sites, 5 in the 

extracellular domain and 1 in the cytoplasmic domain of the protein (Yamasaki 

et al. 1988). Glycosylation is an enzymatic reaction where glycans attach to 

proteins at specific sites and are essential for protein folding to create its tertiary 

structure. N-linked glycosylation is where glycans attach to a nitrogen of 

asparagine or arginine side-chains. Without this folding IL-6 would be unable to 

bind to IL-6R and IL-6 signalling would not occur. It is possible that when the 

adipose tissue homogenate was denatured there was less glycosylation, due to 
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heating and the addition of a denaturing detergent prior to 1D-PAGE. These 

conditions could break the N-glycosidic bonds between the peptide and 

carbohydrate, and therefore the molecular weight of the IL-6R would be 

reduced from the mature ~80 kDa to the predicted molecular weight of ~49.9 

kDa if all bonds were broken. However, glycosylation may survive denaturing 

PAGE. The different forms of IL-6R detected in this Chapter could be the range 

of glycosylated forms of IL-6R. With specific antibodies for the carbohydrate 

side-chains this could be evaluated in future work. Native 1D-PAGE (i.e. without 

denaturing conditions) could also provide more information on the isoforms of 

IL-6R, as well as treating samples with deglycosylation enzymes to ensure all 

N-linked oligosaccharide chains have been removed. During denaturing 

conditions the proteins lose their tertiary and secondary structures, however, 

the primary amino acid structure remains intact. Therefore any bands 

detectable with a molecular weight lower than ~49.9 kDa cannot be 

accountable to the reducing conditions disrupting the amino acid sequence, 

however, they could be due to spliced variants of full-length IL-6R, if they 

consist of the cytoplasmic domain which the antibody has been raised against. 

There is evidence that there are more than the 2 IL-6R isoforms (membrane-

bound and soluble) commonly reported in the literature. In fact there is 

evidence of at least 5 spliced variants of full-length IL-6R, which is 468 amino 

acids. The spliced variants encode proteins of 365, 356, 293, 170 and 133 

amino acids according to AceView (Thierry-Mieg and Thierry-Mieg 2006). 

However, based on the predicted molecular weights of these spliced variants 

along with their amino acid sequence it is unlikely these isoforms will be 

detected by the antibody used in these experiments. There is also the 

possibility that other spliced variants of the receptor exist that have not been 

identified yet. 

After optimisation of the Western blot protocol a similar fold-change in IL-6R 

was found after 2 weeks HIIT, to that quantified via ELISA, although, this was 

not significantly different for the Western blot analysis. This could be due to the 

greater variation in fold-change for Western blot analysis in comparison to 

ELISA. There is the possibility that sIL-6R was present in the homogenate, 

which would have been detected via ELISA but not via Western blotting. This 
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could at least partially account for the discrepancy between methods, if the 

increase via ELISA was partly due to an increase in sIL-6R, however it is 

difficult to confirm this without an antibody specifically for sIL-6R. 

This study has provided evidence that the increase in IL-6R after 2 weeks HIIT 

(as found in Chapter 5) is not purely due to an increase in sIL-6R in the adipose 

tissue matrix, but that cells within adipose tissue are expressing IL-6R on the 

plasma membrane. This supports previous findings that IL-6R is expressed on 

~60% of adipocytes (Bastard et al. 2002) as well as expressed on macrophage 

cell surfaces (Bauer et al. 1989). Furthermore, a reliable Western blot method 

that has identified membrane-bound IL-6R in adipose tissue has been 

developed. This Chapter has revealed the complexity of the IL-6R protein and 

provided evidence that there are several isoforms of IL-6R present within 

subcutaneous adipose tissue that require further attention. 
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7.1 Abstract 

The rising prevalence of obesity in Western populations has led to an epidemic 

of T2DM. The age of diagnosis of T2DM is decreasing and data describing this 

young adult T2DM population are currently lacking. The aim of this study was to 

investigate inflammatory status,  ̇O2peak and biochemical measurements 

associated with T2DM, including 25-hydroxyvitamin D, in young adults (< 40 y) 

diagnosed with T2DM. Twenty young adults with T2DM aged 18-40 years, 10 

age-matched lean controls and 10 BMI and age-matched obese controls were 

recruited. Fasting, resting blood samples were collected and plasma IL-6, sIL-

6R, CRP, IL-10, TNF-α and adiponectin concentration were measured via 

ELISA. Anthropometric measurements were taken, and lipid profiles, glycaemic 

control and  ̇O2peak were determined. T2DM had significantly higher plasma IL-

6, TNF-α, IL-10 and CRP in comparison to the lean group (p < 0.05), but there 

were no significant differences compared with the OC group for any of the 

inflammatory proteins. Adiponectin in T2DM was significantly lower compared 

to the lean group (p < 0.001), however, there was no difference compared to 

obese controls (p = 0.145). T2DM had a significantly lower  ̇O2peak than lean 

controls relative to body mass (p < 0.001) but there was no difference 

compared to obese controls (p = 0.255). 85% of T2DM were 25-hydroxyvitamin 

D deficient, compared to 30% of lean controls and 80% of obese controls. This 

study has provided evidence that young adults with T2DM demonstrate chronic 

low-grade inflammation which is suspected to be due to increased adiposity.1   

                                                           
This research was funded by a Medical Research Council (MRC) Interdisciplinary Bridging 
Award. 



 
 

120 
 

7.2 Introduction 

T2DM has traditionally been seen as a disease of middle to older age, however 

the age of diagnosis has fallen dramatically and the condition is now being seen 

in children, adolescents and young adults (Ehtisham et al. 2000; Ehtisham et al. 

2004; Haines et al. 2007). The young adult with T2DM often has specific issues 

and represents an extreme phenotype. They are likely to be obese, many with 

morbid obesity, and are likely to have a strong family history of T2DM, lead a 

sedentary lifestyle, be of black or minority ethnic (BME) origin and come from 

less affluent socio-economic groups (Feltbower et al. 2003; Millett et al. 2008). 

In 2008 in a single specialist clinic at one site at University Hospitals Leicester 

there was over 30 cases of T2DM in those under 25 years, and 105 in those 

aged 30 or younger (Data from UHL Clinical Workstation July 2008). 

As discussed in earlier chapters, chronic low-grade inflammation, including 

elevated CRP and IL-6, are known to be associated with T2DM (Hansen et al. 

2010), and a number of studies have shown that there is a greater risk of 

developing T2DM in those with elevated inflammatory proteins (Pradhan et al. 

2001; Hu et al. 2004; Pickup 2004). Until now, most of the literature has looked 

at inflammation in relation to insulin resistance and T2DM in older adults. 

However, one study investigated inflammatory proteins in young men with 

T2DM (aged 10-25 y), and CRP and TNF-α were elevated in obese T2DM but 

not lean T2DM, suggesting the increased CRP and TNF-α were associated with 

obesity (Su et al. 2010). This study included lean and obese groups with T2DM, 

as well as a lean control group, however they did not include an obese control 

group in the absence of T2DM to investigate the effects of obesity. 

The aim of this study was to assess the inflammatory profile in young adults 

with T2DM, in comparison to lean and obese controls, and to determine if 

chronic low-grade inflammation in T2DM is attributable to obesity. Furthermore 

other risk factors associated with the development of T2DM including, 

biochemical, metabolic, anthropometric and  ̇O2peak were investigated to 

characterise which risk factors are associated with T2DM in young adults. 
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7.3 Materials and methods 

7.3.1 Participants 

Twenty young adults diagnosed with T2DM aged between 18-40 y, 10 age-

matched lean controls, and 10 age and BMI matched obese controls were 

recruited from the Leicestershire region. T2DM patients were recruited from two 

specialist clinics at UHL based at the Leicester Royal Infirmary which 

specifically runs a young adult clinic and the Leicester General Hospital.  

Controls participants were recruited through advertisements in Loughborough 

and Leicester. Those with asthma or a body mass over 150 kg were not 

permitted to participate in the study. This study was granted ethical approval by 

the North Nottinghamshire Research Ethics Committee and Leicester NHS 

Research and Development. Participant characteristic are shown in Table 7.1. 

 

Table 7.1 Participant characteristics 

 
T2DM 

(N = 20) 

Lean 

(N = 10) 

Obese 

(N= 10) 

Sex, female/male 

Age (y) 

Body mass (kg) 

BMI (kg·m
-2

) 

Current smoker (%) 

Family history of T2DM (%) 

Black & minority ethnicity (%) 

9/11 

31.8 (6.6) 

100 (20.3) 

33.9 (5.8) 

20 

90 

50 

5/5 

30.0 (6.7) 

63.3 (8.2) 

21.9 (1.7) 

20 

20 

30 

6/4 

30.9 (5.6) 

93.9 (13) 

33.4 (2.4) 

0 

80 

50 

Mean (SD) 
BMI, body mass index; T2DM, Type 2 diabetes mellitus. 

 

Patients had been diagnosed with T2DM for a mean of 4.7 y (range 0.2 – 14 y) 

prior to participation in this study, with a mean age at diagnosis of 27.1 (6.1) y. 

All except one T2DM patient was on at least one antidiabetic drug. Current 

medications taken by the T2DM participants are listed in Table 7.2.  
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Table 7.2 Current medications taken by the Type 2 diabetes mellitus (T2DM) patients 

 

Medical use 
Number 

of 
patients 

Antihypertensive 
drugs  

Lower blood pressure 6/20 

Aspirin Non-steroidal anti-inflammatory drug 1/20 

Statins  Lower cholesterol  7/20 

Fibrate Lower cholesterol 4/20 

Biguanide (Metformin) Antidiabetic drug, decreases hyperglycaemia, lowers LDL 
cholesterol 

16/20 

Sulphonylurea Antidiabetic drug, increases insulin production 3/20 

GLP-1 analogue Antidiabetic drug, 2/20 

DPP – IV inhibitor Antidiabetic drug, inhibits glucagon release, increase insulin 
production 

2/20 

Insulin Administration will reduce blood glucose levels 5/20 

T2DM, Type 2 diabetes mellitus; GLP-1, Glucagon-like peptide 1; DPP-IV, Dipeptidyl peptidase-
IV 

 

7.3.2 Study visits 

All participants completed two study visits at least one week apart. The first visit 

took place in the exercise laboratory of the Clyde Williams building at 

Loughborough University. During this visit participants had their weight, height, 

blood pressure, waist and hip circumference measured, as described in 

Chapter 3. They went on to complete a  ̇O2peak test to volitional exhaustion. 

The equipment has previously been described in this thesis (Section 3.3). The 

starting power output and stage increments varied between participants 

depending on how active the individual reported they were during everyday life, 

with an aim to reach  ̇O2peak between ~8-12 min (Myers et al. 1991). The 

starting power output ranged from 25-100 W, and increased every 2 min by 20-
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35 W.  ̇O2peak was identified as the  ̇O2 averaged over the highest 30 s period. 

The average temperature and relative humidity throughout the study were 21.2 

(1.2) ºC and 29.9 (7.3) % respectively. 

For the second study visit, participants attended Glenfield Hospital in Leicester 

after an overnight fast, having abstained from alcohol, caffeine and exercise for 

24 h prior to the visit. On arrival at the hospital a cannula was inserted into an 

antecubital vein and a resting blood sample was collected into vacutainers. 

Serum gel vacutainers (4.7 ml) were used to collect blood for the analysis of 

lipids and 25-Hydroxyvitamin D. A 2.5 ml EDTA vacutainer was used to sample 

blood for HbA1c. Fluoride oxalate vacutainers (2.5 ml) were collected for 

glucose measurement. A 4.9 ml vacutainer treated with lithium heparin was 

collected for the analysis of plasma insulin and c-peptide. Two 10 ml EDTA 

vacutainers were collected for the measurement of the inflammatory proteins 

and adiponectin. The vacutainers for the inflammatory protein analysis were 

immediately centrifuged at Glenfield Hospital before aliquoting plasma and 

storing at -80°C. Samples were later transported to Loughborough University 

where the analysis of inflammatory proteins was carried out. The analysis for all 

other biochemical parameters was carried out by the pathology department at 

Glenfield Hospital or Leicester Royal Infirmary. 

 

7.3.3 Inflammatory protein analysis 

IL-6, sIL-6R, the IL-6/sIL-6R complex, CRP, IL-10, TNF-α and adiponectin were 

measured by ELISAs as outlined earlier in this thesis (Chapter 3). 

 

7.3.4 Biochemical analysis 

Plasma glucose and serum cholesterol, HDL cholesterol and triacylglcerol were 

all measured using standard enzymatic endpoint methods on an ADVIA 

Chemistry System (Bayer Healthcare, NY, USA). The LDL cholesterol fraction 

was calculated by the Friedewald formula (1972). HbA1c was measured by ion 

exchange liquid chromatography (G7; Tosoh, Tokyo, Japan). Plasma insulin 
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and c-peptide concentration were determined using commercial ELISA kits 

(Mercodia, Uppsala, Sweden). Homeostasis Model Assessment of Insulin 

Resistance (HOMA-IR) was calculated using the recommended revised 

computer programme (Levy et al. 1998). 25(OH)D was quantified using liquid 

chromatography mass spectrometry (6410 Triple Quad, Agilent Technologies 

UK Ltd, Wokingham, UK). 

 

7.3.5 Statistical analysis 

Data was analysed using a between group analysis of covariance (ANCOVA) 

model, where sex and ethnicity were covariates in the model. Separate models 

were run for the comparison of T2DM and lean controls, and T2DM and obese 

controls. 25(OH)D results were categorised into deficient (<30 nmol·l-1) and 

non-deficient (>30 nmol·l-1) groups. Binary logistic regression models where sex 

and ethnicity were used as categorical covariates were used to estimate the 

odds ratio (95% CI) for 25(OH)D deficiency in T2DM. ANCOVA models were 

also used to determine whether inflammatory proteins differed in 25(OH)D 

deficient and non-deficient groups before and after adjusting for BMI. 

 

7.4 Results 

7.4.1 Anthropometry and blood pressure 

T2DM had a significantly higher waist and hip circumference as well as waist-

hip ratio than the lean controls (p < 0.001; Table 7.3). Matching BMI was 

achieved in the T2DM and obese control groups, with no significant difference 

in body mass, weight, waist and hip circumference or waist-hip ratio (p > 0.05; 

Table 7.4). No statistically significant differences in blood pressure were 

detected between groups. 
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Table 7.3 Anthropometric and blood pressure measurements for Type 2 diabetes mellitus (T2DM) patients and lean controls.  

 
T2DM 

(N=20) 

Lean 

(N=10) 
 

 Mean (SD) 
95% Confidence interval for 

mean 
Mean (SD) 

95% Confidence interval for 
mean 

p 

  Lower Upper  Lower Upper  

Waist (cm) 109.7 (12.6) 103.8 115.6 76.6 (7.2) 71.5 81.7 <0.001* 

Hip (cm) 113.3 (11.1) 108.1 118.5 94.4 (4.1) 91.4 97.3 <0.001* 

Waist: Hip ratio 0.97 (0.06) 0.94 1.00 0.81 (0.07) 0.76 0.86 <0.001* 

Systolic BP 
(mmHg) 

135 (14) 128 141 130 (11) 121 138 0.196 

Diastolic BP 
(mmHg) 

88 (10) 83 92 79 (12) 70 88 0.110 

* Significantly different to T2DM group (p ≤ 0.05) 
BP, blood pressure.  
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Table 7.4 Anthropometric and blood pressure measurements for Type 2 diabetes mellitus (T2DM) patients and obese controls.  

 
T2DM 

(N=20) 
  

Obese 

(N=10) 
  

 Mean (SD) 
95% Confidence interval for 

mean 
Mean (SD) 

95% Confidence interval for 
mean 

p 

  Lower Upper  Lower Upper  

Waist (cm) 109.7 (12.6) 103.8 115.6 106.2 (8.1) 100.4 112.0 0.394 

Hip (cm) 113.3 (11.1) 108.1 118.5 115.6 (8.0) 109.9 121.4 0.614 

Waist: Hip ratio 0.97 (0.06) 0.94 1.00 0.92 (0.07) 0.87 0.97 0.082 

Systolic BP 
(mmHg) 

135 (14) 128 141 127 (14) 117 137 0.168 

Diastolic BP 
(mmHg) 

88 (10) 83 92 84 (9) 78 91 0.376 

BP, blood pressure.
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7.4.2 Peak oxygen uptake and power output 

 ̇O2peak in T2DM was not significantly different compared to lean or obese 

control groups (p = 0.258 and 0.471 respectively; Figure 7.1). However, when 

expressed per kg of body mass, the T2DM group had a significantly lower 

 ̇O2peak than the lean individuals (p < 0.001), with no significant difference 

between T2DM and BMI matched, obese controls (p = 0.255). Peak power 

output at  ̇O2peak was significantly higher in lean controls, 221 (60) [178-264 

95% CI] W, compared to T2DM, 162 (57) [135-190 95% CI] W (p = 0.043), 

although there was no difference between T2DM and obese controls, 178 (56) 

[138-218 95% CI] W (p = 0.404). 

 

 

Figure 7.1 Absolute  ̇O2peak and  ̇O2peak relative to body mass. *** significant difference 

between groups, p <0.001.  
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7.4.3 Biochemical analysis 

Fasting insulin, glucose, HbA1c and HOMA-IR were significantly higher in 

T2DM compared to lean and obese controls (Table 7.5 and 7.6). C-peptide was 

also significantly elevated in T2DM compared to lean controls, and tended to be 

higher than obese controls (p = 0.086). Lean controls had a significantly higher 

concentration of HDL cholesterol and lower triacylglycerols compared to T2DM. 

There were no difference in lipid profile between T2DM and obese controls. 
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Table 7.5 Glycaemic control and blood lipid profile for Type 2 diabetes mellitus (T2DM) patients and lean controls.  

 

 

 

 

 

 

 

 

 

 

 

 

 
* significantly different to the T2DM group (p ≤ 0.05) 
a
 Adjusted for ethnicity and sex; 

b
 Based on transformed data; 

c
 1 Missing value; 

d
 2 missing values; 

e
 3 missing values. 

HOMA-IR, Homeostasis Model Assessment of Insulin Resistance HbA1c, Glycated haemoglobin; HDL, high density lipoprotein; LDL, low density 
lipoprotein.

 
T2DM 

(N=20) 

Lean 

(N=10) 
 

 Mean (SD) 
95% Confidence interval for 

mean 
Mean (SD) 

95% Confidence interval for 
mean 

p 

  Lower Upper  Lower Upper  

Glycaemic control        

Fasting glucose (mmol·l
-1

)
ab

 9.2 (4.0) 7.4 11.1 4.8 (0.5) 4.4 5.2 0.002* 

Fasting insulin (mU·l
-1

)
 ab

 28.3 (24.2)
c
 17.0 39.6 5.1 (1.1)

e
 4.4 5.9 <0.001* 

Fasting C-peptide (nmol·l
-1

)
ab

 1.26 (0.76) 0.91 1.62 0.42 (0.05)
d
 0.38 0.46 <0.001* 

HOMA-IR
ab

 3.7 (2.5) 2.5 4.8 0.9 (0.1)
d
 0.8 1.0 <0.001* 

HbA1c (%)
ab

 8.2 (2.2)
c
) 7.2 9.3 5.5 (0.3) 5.2 5.7 <0.001* 

Blood lipid profile        

Total cholesterol (mmol·l
-1

)
a
 4.6 (1.3) 3.9 5.2 4.6 (1.1) 3.8 5.3 0.809 

HDL cholesterol (mmol·l
-1

)
a
 1.1 (0.2)

c
 0.9 1.2 1.6 (0.4) 1.3 1.8 <0.001* 

LDL cholesterol (mmol·l
-1

)
a
 2.7 (1.2)

d
 2.1 3.3 2.7 (1.0) 2.0 3.4 0.907 

Triacylglycerols (mmol·l
-1

)
a
 2.0 (1.2) 1.4 2.5 1.1 (1.1) 0.3 1.8 0.014* 
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Table 7.6 Glycaemic control and blood lipid profile for Type 2 diabetes mellitus (T2DM) patients and obese controls.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
* significantly different to the T2DM group (p ≤ 0.05) 
a
 Adjusted for ethnicity and sex; 

b
 Based on transformed data; 

c
 1 Missing value; 

d
 2 missing values; 

e
 3 missing values. 

HOMA-IR, Homeostasis Model Assessment of Insulin Resistance HbA1c, Glycated haemoglobin; HDL, high density lipoprotein; LDL, low density 
lipoprotein. 

 
T2DM 

(N = 20) 

Obese 

(N = 10) 

 Mean (SD) 
95% Confidence interval for 

mean 
Mean (SD) 

95% Confidence interval for 
mean 

p 

  Lower Upper  Lower Upper  

Glycaemic control        

Fasting glucose (mmol·l
-1

)
ab

 9.2 (4.0) 7.4 11.1 5.1 (0.4) 4.8 5.5 0.003* 

Fasting insulin (mU·l
-1

)
 ab

 28.3 (24.2)
c
 17.0 39.6 15.0 (8.1) 9.3 20.8 0.030* 

Fasting C-peptide (nmol·l
-1

)
ab

 1.26 (0.76) 0.91 1.62 0.86 (0.30) 0.65 1.07 0.086 

HOMA-IR
ab

 3.7 (2.5) 2.5 4.8 1.9 (0.7) 1.4 2.4 0.021* 

HbA1c (%)
ab

 8.2 (2.2)
c
) 7.2 9.3 5.6 (0.4) 5.3 5.9 <0.001* 

Blood lipid profile        

Total cholesterol (mmol·l
-1

)
a
 4.6 (1.3) 3.9 5.2 4.3 (0.7) 3.8 4.9 0.830 

HDL cholesterol (mmol·l
-1

)
a
 1.1 (0.2)

c
 0.9 1.2 1.2 (0.3) 1.0 1.3 0.336 

LDL cholesterol (mmol·l
-1

)
a
 2.7 (1.2)

d
 2.1 3.3 2.6 (0.5) 2.2 3.0 0.851 

Triacylglycerols (mmol·l
-1

)
a
 2.0 (1.2) 1.4 2.5 1.3 (0.8) 0.8 1.9 0.133 
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Out of the T2DM patients, 85% were classified as being 25(OH)D (<30 nmol·l-1) 

deficient in comparison to 30% of lean (p = 0.010) and 80% of obese controls 

(Figure 7.2). The odds ratio for the incidence of 25(OH)D deficiency in T2DM 

compared to lean controls was 13.9 [CI: 1.9, 101.5]. The number of individuals 

in the T2DM and obese groups with a 25(OH)D deficiency were not significantly 

different (p = 0.720), with an odds ratio of 1.6 [CI: 0.2, 11.4]. 

 

 

Figure 7.2 Percentage of individuals in T2DM, lean and obese groups who are deficient in 

25-hydroxyvitamin D (25(OH)D) (* p ≤ 0.05). 

 

7.4.4 Inflammatory proteins 

The T2DM group had significantly elevated levels of IL-6, TNF-α, IL-10 and 

CRP in comparison to the lean group (Table 7.7), although there were no 

differences in any of the inflammatory proteins between the T2DM and obese 

control groups (Table 7.8). There was also a tendency for the T2DM group to 

have higher sIL-6R in comparison to both lean and obese controls (p = 0.058 

and 0.075 respectively), however there were no differences detected between 

T2DM and lean or obese controls for the IL-6/sIL-6R complex (p = 0.514 and 
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0.921 respectively). Adiponectin concentration was significantly lower in T2DM 

than the lean controls (p < 0.001), although there was no significant difference 

between T2DM and obese controls (p = 0.145). 
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Table 7.7 Fasted inflammatory proteins for Type 2 diabetes mellitus (T2DM) patients and lean controls.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
* significantly different to the T2DM group (p ≤ 0.05) 
a
 1 value missing; 

b
 2 values missing.  

 
T2DM 

(N = 20) 

                                   Lean 

                                  (N = 10) 

 Mean (SD) 
95% Confidence interval for 

mean 
Mean (SD) 

95% Confidence interval for 
mean 

p 

  Lower Upper  Lower Upper  

IL-6 (pg·ml
-1

) 7.9 (9.1) 3.6 12.1 2.5 (2.8)a
 0.4 4.7 0.004* 

sIL-6R (ng·ml
-1

) 46.1 (12.1) 40.4 51.8 39.3 (8.8) 33.0 45.5 0.058 

IL-6/sIL-6R complex (arbitrary 
units) 

15.3 (8.4) 11.4 19.2 15.4 (8.8) 9.4 21.4 0.514 

TNF-α (pg·ml
-1

) 1.7 (1.2) 1.1 2.3 1.1 (0.3) 0.9 1.3 0.016* 

IL-10 (pg·ml
-1

) 2.3 (1.4) 1.7 3.0 0.9 (0.3) 0.7 1.1 <0.001* 

CRP (μg·ml
-1

) 4.0 (3.1) 2.6 5.5 1.2 (0.7) 0.7 1.7 0.004* 

Adiponectin (µg·ml
-1

)  2.9 (1.7) 2.1 3.7 7.3 (2.8) 5.2 9.3 <0.001* 
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Table 7.8 Fasted inflammatory proteins for Type 2 diabetes mellitus (T2DM) patients and obese controls.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* significantly different to the T2DM group (p ≤ 0.05) 
a
 1 value missing; 

b
 2 values missing

 
T2DM 

(N = 20) 

Obese 

(N = 10) 
 

 Mean (SD) 
95% Confidence Interval for 

Mean 
Mean (SD) 

95% Confidence Interval for 
Mean 

p 

  Lower Upper  Lower Upper  

IL-6 (pg·ml
-1

) 7.9 (9.1) 3.6 12.1 7.0 (8.5) 1.0 13.1 0.741 

sIL-6R (ng·ml
-1

) 46.1 (12.1) 40.4 51.8 38.1 (8.5) 32.1 44.2 0.075 

IL-6/sIL-6R complex  

(arbitrary units) 
15.3 (8.4) 11.4 19.2 14.8 (8.9) 8.4 21.2 0.921 

TNF-α (pg·ml
-1

) 1.7 (1.2) 1.1 2.3 1.4 (0.3) 1.2 1.6 0.003* 

IL-10 (pg·ml
-1

) 2.3 (1.4) 1.7 3.0 1.5 (0.2) 1.3 1.7 0.087 

CRP (μg·ml
-1

) 4.0 (3.1) 2.6 5.5 4.6 (2.9) 2.5 6.6 0.651 

Adiponectin (µg·ml
-1

)  2.9 (1.7) 2.1 3.7 3.9 (1.7) 2.6 5.1 0.145 
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7.4.5 25-hydroxyvitamin D deficiency and inflammation 

There is some evidence to suggest that inflammation is associated with 

25(OH)D deficiency (Peterson and Heffernan 2008), which has also been 

associated with T2DM (Muscogiuri et al. 2010), however, it is not clear whether 

this is due to excess adiposity. Therefore, all participants were split into 

25(OH)D deficient or non-deficient groups and ANCOVAs were run to assess 

whether there were any differences in the inflammatory profiles between 

groups. The 25(OH)D deficient group had significantly lower adiponectin and 

significantly elevated IL-10 and CRP (p < 0.05), with a tendency for sIL-6R and 

the IL-6/sIL-6R complex to be elevated in 25(OH)D deficient individuals (p = 

0.080 and 0.071 respectively), but there was no difference between groups for 

IL-6 or TNF-α concentration (p > 0.05; Table 7.9). Once adjusted for BMI, there 

were no differences between 25(OH)D deficient and non-deficient groups for 

any of the inflammatory proteins (p > 0.05). 

Table 7.9 Inflammatory proteins in 25-hydroxyvitamin D deficient and non-deficient 
groups. 

   p 

 

 

Sufficient 

(N = 29) 

Deficient 

(N = 11) 

Not BMI 
adjusted 

BMI       
adjusted 

Adiponectin (µg·ml
-1

) 5.8 (3.0) 3.6 (2.4) 0.029* 0.488 

IL-6 (pg·ml
-1

) 5.7 (5.6) 6.7 (8.8) 0.985 0.165 

sIL-6R (ng·ml
-1

) 39.9 (9.8) 43.3 (11.4) 0.080 0.337 

IL-6/sIL-6R complex                   
(arbitrary units) 

17.1 (7.5) 14.6 (8.6) 0.071 0.112 

TNF-α (pg·ml
-1

) 1.4 (0.7) 1.5 (0.9) 0.649 0.797 

IL-10 (pg·ml
-1

) 1.3 (0.7) 2.0 (1.3) 0.031* 0.488 

CRP (μg·ml
-1

) 1.5 (1.1) 4.2 (3.1) 0.004* 0.438 

Mean (SD); 25(OH)D results were categorised as deficient (<30 nmol·l
-1

) and sufficient (>30 
nmol·l

-1
) amounts of 25(OH)D; N = 40. 

* significantly different to the T2DM group (p ≤ 0.05). 
25(OH)D, 25-hydroxyvitamin D. 
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7.5 Discussion 

The main finding of this study was that the development of chronic low-grade 

inflammation is at least in part mediated by excessive fat deposition. This study 

found that young adults with T2DM display signs of early onset chronic low-

grade inflammation in comparison to healthy lean individuals, including elevated 

IL-6, IL-10, TNF-α and CRP and a reduction in adiponectin, although protein 

levels did not differ in comparison to obese individuals. In addition this is the 

first study to have shown that young obese adults with and without T2DM have 

an increased prevalence of 25(OH)D deficiency. 

Elevated TNF-α may contribute to the induction of insulin resistance by 

inhibiting insulin-regulated glucose uptake and/or the phosphorylation of IRS-1. 

This is supported by previous studies that showed TNF-α was increased in both 

young lean and obese individuals with T2DM, aged between 10-25 y, compared 

to lean individuals without T2DM (Su et al. 2010). In the current study 

circulating TNF-α was raised in comparison to lean controls, however there was 

no difference compared to the obese control group. In contrast to the current 

study, Monroy and colleagues showed that adults (~42 y) with T2DM had 

increased circulatory TNF-α in compared to lean and obese controls (Monroy et 

al. 2009). This discrepancy could be due to the participants in this study being 

on average ~10 years older than in the current study. 

There was a tendency for sIL-6R to be elevated in T2DM compared to lean and 

obese controls (p = 0.058 and 0.075 respectively). Significantly higher sIL-6R 

has previously been shown in T2DM (Monroy et al. 2009), although another 

study has found no difference between T2DM patients and controls (Kado et al. 

1999). In the latter study sIL-6R was very high in both groups (~100 ng·ml-1) 

and therefore their findings may not be comparable to the current study. 

Despite only a tendency for sIL-6R to be elevated in T2DM, IL-6 was 

significantly higher in T2DM compared to lean individuals, however there was 

no difference between T2DM and obese controls (p = 0.741). This suggests 

that elevated IL-6 in T2DM is likely to be due to an increased adiposity and 

therefore greater potential for IL-6 production and secretion of IL-6 into the 

circulation, and supports the finding previously shown in older adults (Hansen 
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et al. 2010). Su et al. (2010) has also shown that IL-6 was only elevated in lean 

patients with T2DM and not obese patients with T2DM compared to lean 

controls, however IL-6 concentration was relatively low in all three groups (~1.3-

2.2 pg·ml-1), whereas in the current study IL-6 ranged between ~0.5-40 pg·ml-1. 

The large range of IL-6 in the current study could be due to inclusion of BME 

participants and the large variation in BMI, however this factor was accounted 

for in the statistical analysis, therefore it will not affect the outcomes of the 

study. 

IL-6 and TNF-α have been shown to induce production of lipoproteins in the 

liver (Sjöholm and Nyström 2006). Chronic low-grade inflammation is also 

associated with dyslipedmia, including an increase in VLDL, which is a risk 

factor for insulin resistance (Esteve et al. 2005). In the current study, all but two 

of the T2DM patients were on at least one cholesterol lowering medication 

which could explain why although IL-6 and TNF-α were both elevated in T2DM, 

there was not any difference in total or LDL cholesterol. Although there were no 

differences for total or LDL cholesterol between T2DM and lean controls, HDL 

cholesterol was significantly lower in T2DM and triacylglycerols were elevated. 

These differences are likely due to excess adipose tissue as no differences 

were found between T2DM in comparison to the obese group. In addition, all 

but one of the T2DM patients were currently being prescribed at least one 

antidiabetic drug and 6 patients were on antihypertensive medication. And it is 

therefore it possible that this could confound the findings of the study. However 

since inflammatory proteins were significantly elevated in T2DM group 

compared to the lean group, but there were no differences between T2DM and 

the obese control group which suggests that the medication may have had little 

effect on chronic low-grade inflammation. 

There was a significant reduction in adiponectin in T2DM compared to lean 

controls, however adiponectin was not statistically different to obese controls (p 

= 0.145). This would suggest that the reduced adiponectin is due to an increase 

in adipose tissue, supporting the current literature that adiponectin is inversely 

correlated to BMI (Arita et al. 1999; Weyer et al. 2001; Bruun et al. 2003; Kern 

et al. 2003; Ryan et al. 2003; Vilarrasa et al. 2005; Bluher et al. 2006). 

Decreased adiponectin can cause insulin resistance due to a reduction in 
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AMPK activation and increase the concentration of triacylglycerols in the 

muscle (Yamauchi et al. 2001). 

The finding of a significant increase in IL-10 in T2DM compared to lean controls 

is in contrast to another study where circulating IL-10 was lower in T2DM than 

individuals with impaired or normal glucose tolerance before an exercise 

intervention (Oberbach et al. 2006). The participants in this study were older 

than the current study (> 40 y) and it is possible that during obesity and the 

early stages of T2DM that the body tries to counteract the increase in pro-

inflammatory cytokines and limit the overall inflammatory effect by increasing 

the production of the anti-inflammatory cytokine IL-10. Since chronic low-grade 

inflammation is defined as an increase in pro- as well as anti-inflammatory 

proteins, an elevation of IL-10 in chronic disease states seems plausible. 

Although speculative there is some evidence to support this theory since TNF-α 

has been shown to stimulate IL-10 release in subcutaneous adipose tissue 

which could act as a counter-regulatory measure as suggested by Juge-Aubry 

et al. (2005). Furthermore, a study has shown that IL-10 is elevated in obesity, 

however, is reduced in women with the metabolic syndrome, irrespective of 

body weight (Esposito et al. 2003). In addition it has been shown that exercise 

in those with T2DM induces an increase in IL-10 (Kadoglou et al. 2007; 

Balducci et al. 2010b), which is likely to be due to stimulation of IL-10 

production through an increase in IL-6 after exercise. 

The proportion of individuals with hypovitmanosis D was similar for both obese 

and T2DM participants (80% and 85% respectively), suggesting that 25(OH)D 

deficiency is associated with obesity. 25(OH)D deficiency has been suggested 

to be associated with inflammation and has been shown to correlate with TNF-α 

and a tendency to correlate with IL-6, but not CRP or IL-10 (Peterson and 

Heffernan 2008). In contrast to these findings, the current study found that IL-10 

and CRP were significantly elevated and adiponectin significantly reduced in 

those that were 25(OH)D deficient. There was also a tendency for the 25(OH)D 

deficient group to have elevated sIL-6R and IL-6/sIL-6R (p = 0.080 and 0.071 

respectively), but there were no differences for IL-6 or TNF-α. However, when 

the results were adjusted for BMI there were no differences for any of the 
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inflammatory proteins in the 25(OH)D deficient and non-deficient groups, 

therefore 25(OH)D deficiency is associated with obesity. 

In conclusion, it seems that elevated IL-6, TNF-α, CRP, IL-10 and 

triacylglycerols as well as a decrease in adiponectin and HDL cholesterol in 

young adults with T2DM is likely to be caused by excessive fat tissue. This is 

the first study to investigate many of these inflammatory proteins in adults 

under 40 years with T2DM, as well as being the first study to show that 

25(OH)D deficiency is common in this population and that it is likely due to an 

increase in adipose tissue. 



 
 

140 
 

 

 

 

 

Chapter 8 

 

 

 

 

GENERAL DISCUSSION  
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8.1 Thesis outline 

This thesis initially set out to investigate whether an acute bout of high intensity 

intermittent training (HIIT) was sufficient to induce a greater response of the IL-

6 system in comparison to continuous moderate intensity exercise (MOD), 

where external work done was matched. Once it had been established that 

there was a greater IL-6 response after HIIT than MOD, subsequent studies 

were implemented to investigate: 

 the effects of 2 weeks HIIT on inflammatory status in the circulation and 

adipose tissue, and glycaemic control in a cohort of overweight and 

obese males; 

 whether IL-6R, detectable in subcutaneous adipose tissue, is 

membrane-bound or soluble IL-6R. If membrane-bound IL-6R is 

detected, to determine if it is altered after 2 weeks HIIT in overweight 

and obese males; 

 the inflammatory, glycaemic and lipid profiles, and peak oxygen uptake 

during exercise in young adults with T2DM (< 40 y), in comparison to 

age-matched lean and obese individuals. 

 

8.2 Main findings 

The key findings of this thesis were: 

 that an acute bout of HIIT induced a greater IL-6 response than a bout of 

continuous moderate intensity exercise, where external work done was 

matched (Chapter 4); 

 that sIL-6R and the IL-6/sIL-6R complex were both augmented after a 

single bout of exercise, however there were no significant differences 

between the HIIT and MOD trials (Chapter 4); 

 plasma DS-sIL-6R was increased 6 h after an acute bout of HIIT. 

However, at both rest and after exercise, DS-sIL-6R contributes less 
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than 1% of total sIL-6R, therefore the majority of sIL-6R must be derived 

from proteolytic cleavage of the membrane-bound IL-6R (Chapter 4); 

 after 2 weeks HIIT a reduction in waist circumference was induced as 

well as an increase in  ̇O2peak in overweight and obese males (Chapter 

5); 

 two weeks HIIT in an overweight and obese male cohort induced a 

reduction in sIL-6R, the IL-6/sIL-6R complex, MCP-1 and adiponectin in 

the circulation; 

 that IL-6 was reduced and IL-6R was increased in subcutaneous adipose 

tissue after 2 weeks HIIT in overweight and obese males (Chapter 5); 

 within subcutaneous adipose tissue, there are a number of different 

forms of IL-6R detected (Chapter 6), which are possibly due to varying 

degrees of glycosylation of the full-length IL-6R. This study demonstrated 

that membrane-bound IL-6R is present in subcutaneous adipose tissue, 

however was not significantly altered after 2 weeks HIIT. A method to 

quantify IL-6R within adipose tissue via Western blotting was optimised 

and the specificity of the antibody validated using control experiments; 

 it was found that many inflammatory proteins were elevated in T2DM in 

comparison to a control group of lean participants (Chapter 7), yet when 

compared to a group of obese controls the concentration of inflammatory 

proteins was not significantly different. This suggests that the 

inflammatory proteins quantified in this study are at least in part 

dependent on adiposity, rather than a state of insulin resistance. 

 

8.3 Main discussion 

The research questions in this thesis recognised the increasing prevalence of 

obesity in the UK and in parallel the increasing evidence of the health benefits 

achieved from short exposures to high intensity exercise. The exercise regimen 

used in this thesis, HIIT, was selected since studies that have used sprint 
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interval training, i.e. a Wingate protocol, have reported feelings of nausea and 

light-headedness during the exercise, even in healthy individuals (Richards et 

al. 2010), therefore it may not be a feasible protocol to transfer to patient 

populations or even the general public. As the power output during HIIT is 

relative to individual aerobic capacity this should be a relatively safe and 

achievable mode of exercise for some patient groups, including those with 

T2DM. All of the participants in Chapters 4 and 5 successfully completed the 

HIIT protocol. In addition, other studies that have used a similar exercise 

intensity during intervals have induced a number of health benefits in patient 

populations, including heart failure patients and those with the metabolic 

syndrome ( Wisløff et al. 2007; Tjønna et al. 2008). Intermittent exercise was 

also found to be more enjoyable than continuous exercise in coronary heart 

disease patients (Guiraud et al. 2011), therefore exercise adherence may be 

improved. More recently a new high intensity intermittent exercise protocol has 

been introduced, compromising of ten 60 s intervals on a cycle ergometer at 

90% maximal heart rate, interspersed with 60 s rest (Little et al. 2011). This has 

been shown to improve glucose control after 2 weeks training using continuous 

glucose monitoring over a 24 h period in T2DM patients. Although energy 

expenditure is likely to be much lower than HIIT, and the potential for fat loss 

may be lower, further work could be carried out using this protocol to determine 

the effects on chronic low-grade inflammation, as it has been shown to be a 

time efficient strategy that is suitable for patient populations. 

Chronic low-grade inflammation is characteristic of obesity and there is some 

evidence that exercise can reduce this inflammation in disease states. The 

major outcome throughout this thesis has been the inflammatory proteins and 

the IL-6 system in particular. The IL-6 system was selected for in depth 

investigation in this thesis due to its anti- and pro-inflammatory properties, and 

it represents a key link between acute and adaptive inflammation. IL-6 is also 

the most significant cytokine to increase after acute exercise and precedes the 

presence of others. It was originally hypothesised by the Copenhagen research 

group that IL-6 was the metabolic link between skeletal muscle and other 

tissues (Pedersen et al. 2001; Figure 8.1). 
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Figure 8.1 The proposed effects of skeletal muscle produced IL-6 on different tissues. 

The contracting muscle produces and releases IL-6, and this release is enhanced further if 

muscle glycogen is low. It was proposed that IL-6 induces lipolysis in the adipose tissue and 

through its effects on the liver, IL-6 also contributes to the maintenance of glucose homeostasis 

during exercise. IL-6 may also inhibit TNF-α induced insulin resistance. TG, triacylglycerol; FFA 

free fatty acid (Taken from Pedersen et al. 2001). 

 

Steensberg et al. (2001) has suggested that the increase in IL-6 production in 

skeletal muscle during exercise, which is then released into the circulation, 

could have a direct or indirect effect on elevating hepatic glucose output. The 

increase in glucose release from the liver is required to maintain blood glucose 

levels during exercise to account for the increase in glucose uptake by the 

working muscles, and furthermore ingestion of glucose during exercise 

attenuates the increase in IL-6 (Nieman et al. 1998). Collectively this evidence 

suggests that IL-6 may have a role in glucose regulation during exercise. 

It was shown that the increase in IL-6 was greater after HIIT than MOD at 1.5 h 

post-exercise and it was speculated that this was due to greater glycogen 

depletion induced by HIIT, since an increase in IL-6 transcription and mRNA 

expression in contracting skeletal muscle has been shown to be increased 
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further with low glycogen availability (Keller et al. 2001; Steensberg et al. 2001). 

Glycogen utilisation has previously been shown to be dependent on exercise 

intensity (Gollnick et al. 1974), although a counterargument available at that 

time (Essén et al. 1977), indicated that there was no difference in skeletal 

muscle glycogen content after 1 h high intensity intermittent or continuous 

exercise with similar external work outputs. However, in this latter study there 

was a small sample size (N = 5) and 6 months to 1 year between trials. A 

recently published study however, has compared an acute high intensity 

intermittent running protocol (six 3 min intervals at 90%  ̇O2max separated by 3 

min recovery periods at 50%  ̇O2max) with continuous exercise (50 min at 70% 

 ̇O2max), matched for average intensity, duration and work done, and found no 

difference in glycogen depletion, or AMPK and p38 MAPK phosphorylation in 

skeletal muscle post-exercise (Bartlett et al. 2012). Some dubiety still exists 

however, as time spent at high intensity exercise is only 18 min as opposed to 

40 min for the HIIT protocol used in this thesis, although the overall exercise 

duration is similar (50 and 58 min respectively). The authors of the study 

acknowledged that the difference in exercise intensity may not have been large 

enough to identify significant differences between the protocols (Bartlett et al. 

2012), and therefore it is still plausible that the greater augmentation in IL-6 

after HIIT is due to lower skeletal muscle glycogen content post-exercise than 

after MOD, but this requires further investigation. 

IL-6 has been shown to increase glucose uptake into skeletal muscle in the 

presence of sIL-6R, partly through AMPK signalling (Gray et al. 2009c). 

Therefore if glycogen utilisation was greater during HIIT this could stimulate IL-

6 production in order to increase the uptake of glucose into the exercising 

muscles. Reduced glycogen also leads to an increase in phosphorylation of p38 

MAPK (Chan et al. 2004), and it is possible that p38 MAPK phosphorylation 

increased to a greater extent after HIIT, which could lead to subsequent 

activation of transcription factors which will induce an increase in IL-6 

production (Pedersen and Febbraio 2008). MAPK signalling has been shown to 

be dependent on exercise intensity (Widegren et al. 2000) and has been 

significantly increased in skeletal muscle after a bout of intermittent exercise 

(Yu et al. 2003), similar to the protocol used in this thesis. Although Bartlett et 
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al. (2012) found no difference in p38 MAPK phosphorylation between trials, as 

previously discussed the time exercising at high intensity was less than half the 

time in the HIIT protocol used in this thesis, and in addition the exercise 

intensities of the two trials may not have differed sufficiently. Furthermore, 

another study has shown that although MAPK phosphorylation was not intensity 

dependent, activation of transcription factors and AMPK was (Egan et al. 2010), 

which could explain the greater increase in IL-6 after HIIT. Overall, indirect 

evidence suggests that glycogen depletion was greater after HIIT and therefore 

signalling pathways including AMPK and MAPK may have been enhanced 

which could have been linked to IL-6 production, however this warrants further 

investigation. 

It was anticipated that the greater elevation in IL-6 after an acute bout of HIIT 

would initiate the anti-inflammatory cascade and lead to a greater activation of 

the anti-inflammatory system including an augmented production of IL-10, and 

inhibit the pro-inflammatory cytokines, TNF-α and IL-1. Although these 

cytokines were not measured it is anticipated that intermittent exercise may 

cause a greater anti-inflammatory drive than continuous exercise. The HIIT 

protocol was then used in an exercise training intervention, with 6 exposures to 

HIIT over a 2 week period. The main outcomes focused on were inflammation 

and glucose control. Because it is believed that a significant amount of many 

inflammatory proteins comes from adipose tissue this was studied to determine 

whether 2 weeks HIIT altered the inflammatory profile in adipose tissue. The 

population studied were overweight and obese who were not in regular training. 

Although studies have found that some protocols of high intensity intermittent 

exercise are capable of improving glucose regulation (Babraj et al. 2009; 

Richards et al. 2010; Little et al. 2011), the results in Chapter 5 showed that 2 

weeks HIIT in overweight and obese males did not induce such an 

improvement. On closer examination of the literature there are some 

inconsistencies as to whether 2 weeks intermittent exercise does improve 

glucose regulation (Babraj et al. 2009; Richards et al. 2010; Whyte et al. 2010). 

These discrepancies could be due to the differing populations studied, the 

timing of post-training measurements as well differences in the methodologies 

used. Two weeks SIT was shown have a positive response on insulin sensitivity 
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24 h post training, however this effect was eradicated at 72 h post-training, 

therefore suggesting the augmented insulin sensitivity was due to an acute 

exercise response (Whyte et al. 2010). Further research is required to 

determine if insulin sensitivity is improved after HIIT in those that have 

developed impaired glucose tolerance and T2DM. The lack of improvement in 

glucose regulation in this study coincided with a lack of change in circulatory IL-

6 after 2 weeks HIIT. Despite no change in resting circulating IL-6 after the 

training period, there was a significant decrease in the IL-6/sIL-6R complex 

suggesting that IL-6 signalling may have been downregulated. However, it has 

been shown that IL-6R is increased in skeletal muscle post-training (Akerstrom 

et al. 2009), which could explain why although there was no difference in 

circulatory total IL-6, there is a reduction in sIL-6R and IL-6 bound to the soluble 

form of IL-6R in the circulation, as more IL-6R is present on the plasma 

membrane of specific tissues such as adipose tissue and skeletal muscle for 

signalling to occur. 

IL-6R has previously been identified in adipocytes by Bastard et al. (2002) and 

this is the first study to have shown an increase in IL-6R in adipose tissue with 

exercise training. In Chapter 4 it was shown that sIL-6R increased with acute 

exercise, however there was no difference between HIIT and MOD. As the 

contribution of the two sIL-6R isoforms after exercise were unknown, DS-sIL-6R 

was quantified at rest and 6 h post HIIT, as this was the time point when total 

sIL-6R peaked. DS-sIL-6R was significantly increased at 6 h post-exercise, 

however, constituted less than 1% at rest and after exercise. Similarly Chapter 

6 set out to evaluate the isoforms of IL-6R present in adipose tissue i.e. soluble 

and membrane-bound IL-6R. An antibody that binds to the intracellular domain 

of IL-6R in adipose tissue was used during Western blot analysis and 

concluded that membrane-bound IL-6R was present in subcutaneous adipose 

tissue. There was a multitude of IL-6R isoforms present, however it is unclear 

whether all of these forms would be functional in vivo.  

IL-6R in adipose tissue increased after 2 weeks HIIT, yet there was a significant 

reduction in sIL-6R in plasma in overweight and obese males. Although 

speculative, the increase in IL-6R in adipose tissue could be due to a reduction 

in cleavage of the membrane-bound receptor, which could contribute to a 
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decrease in sIL-6R in plasma. Enzymes of the ADAM family have been shown 

to cleave IL-6R from the plasma membrane (Matthews et al. 2003). The 

membrane-bound IL-6R and the sIL-6R are therefore regulated by different 

processes and it is not surprising that they respond differently to an exercise 

stimulus. Future research should aim to establish if the activity of these 

enzymes are downregulated with exercise training. T2DM patients also tended 

to have elevated sIL-6R in comparison to both lean and obese controls (p = 

0.058 and 0.075 respectively; Chapter 7) supporting the findings of Müller et al. 

(2002), who showed sIL-6R to be increased in older adults (mean age ~65 y) 

with T2DM in comparison to lean controls. Further work should be carried out to 

determine if the differences detected between T2DM and non-T2DM in sIL-6R 

extend to the adipose tissue. 

In an obese state there is a greater infiltration of macrophages into adipose 

tissue (Cancello et al. 2005) which is regulated by MCP-1, although this was 

undetectable in subcutaneous adipose tissue pre- and post- 2 weeks HIIT. It is 

possible that macrophage infiltration was reduced after exercise training. The 

reduction in circulating MCP-1 could be due to a decrease in MCP-1 release 

from other tissues such as visceral adipose tissue, which has been shown to 

have a greater concentration of MCP-1 than subcutaneous adipose tissue 

(Bruun et al. 2005).  

The reduction of adiponectin in the circulation and a tendency for a decrease in 

adipose tissue (p = 0.056) after 2 weeks HIIT was unexpected. Particularly as 

the classical outcome that adiponectin was highest in lean individuals was 

found in the EXPEDITION study Chapter 7, suggesting adiponectin is 

dependent on fat deposition. Lean controls had significantly higher adiponectin 

than T2DM patients, had but there was no significant difference with a group of 

BMI matched individuals. Exercise training has been reported to induce an 

increase in circulatory adiponectin, however, there are also studies that do not 

support this statement (Hulver et al. 2002; Boudou et al. 2003; Christiansen et 

al. 2010b). The study by Christiansen et al. (2010b) gives an insight that the 

differing responses may be due to fat loss as opposed to the exercise per se. 

They were able to show that a 3 month moderate intensity exercise intervention 

induced a non-significant decrease in circulating adiponectin, however, in a diet 
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group, and a diet and exercise combined group, adiponectin was elevated in 

obese individuals. Weight loss was approximately 4-fold higher in both the diet 

groups than the exercise only group. In Chapter 5 the effects of exercise on 

adiponectin in adipose tissue were shown for the first time. The tendency for a 

reduction in adiponectin in adipose tissue reflects the reduction in the 

circulation, as would be expected, since most adiponectin stems from adipose 

tissue. An additional complexity of adiponectin lies in the fact that there are 

different isoforms exerting both pro- and anti-inflammatory properties (Ouchi et 

al. 1999; Ouchi et al. 2000; Haugen and Drevon 2007). Further studies are 

required to decipher the roles of the different adiponectin isoforms and how 

exercise and diet affect these isoforms. 

The final chapter phenotyped the inflammatory profile of young adults with 

T2DM as this is a growing population. There is little knowledge on whether they 

have similar metabolic and inflammatory traits to the traditional older population 

with T2DM. The T2DM patients were identified as having chronic low-grade 

inflammation in comparison to a group of age-matched lean controls, however, 

when compared to obese there were no differences detected, suggesting that 

many inflammatory proteins may be associated with adiposity. However, the 

finding of elevated TNF-α in comparsion to the lean control group is of 

importance as it is known to be a key player in the development of insulin 

resistance. The majority of both T2DM patients and obese controls were also 

identified as being 25(OH)D deficient, however the role that 25(OH)D plays in 

obesity, insulin resistance and chronic low-grade inflammation remains unclear 

and warrants further attention. An exercise intervention needs to be established 

that this population can successfully undertake. Future studies should be 

conducted to determine whether HIIT can reduce chronic low-grade 

inflammation in patient populations and what effect this has on 25(OH)D status. 

Other studies are required to determine whether this is an achievable mode of 

exercise in populations with chronic low-grade inflammation, such as in obesity 

and T2DM. 
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8.4 Remaining issues 

The findings of this thesis have highlighted the beneficial effects of both acute 

and chronic HIIT on the IL-6 system as well as the effects on other 

inflammatory and metabolic parameters. In doing so the findings have brought 

about new issues and questions that future research should aim to address. 

In Chapter 4, it was demonstrated that HIIT induced a greater IL-6 response 

than MOD, however the mechanism behind this augmented response is 

unclear. Further studies should be carried out to determine whether glycogen 

depletion in skeletal muscle differs between these protocols, as this could 

augment the IL-6 response. Furthermore, it should also be established if there 

is greater upregulation of the signalling pathways in skeletal muscle after HIIT, 

including AMPK and MAPK which have been linked to IL-6 production and 

glucose regulation. 

Although HIIT was found to improve the inflammatory status in an obese and 

overweight cohort after 2 weeks, the optimum dosage should be established. 

Studies should be conducted to determine whether health benefits in relation to 

inflammatory status can be achieved with fewer intervals, and the number of 

training sessions per week required to achieve health benefits should also be 

optimised. A two week training period was chosen for this study as a number of 

other health benefits have previously been shown after the same length of time. 

However, it would also be useful to determine whether further health benefits 

can be achieved after longer training periods using this HIIT protocol. In 

addition, detraining studies should be carried out to establish how long these 

health benefits can be sustained. 

A small, but significant reduction in waist circumference was induced after 2 

weeks of HIIT in obese and overweight males. Waist circumference is 

correlated with abdominal visceral adiposity deposition and with CVD risk 

factors (Pouliot et al. 1994). However, further studies are warranted to ascertain 

if the decrease detected in waist circumference is due to a reduction in fat 

mass. This could be done via DEXA which gives localised lean and fat mass or 

by magnetic resonance imaging (MRI) scanning, which would allow the amount 

of subcutaneous and visceral adipose tissue to be quantified. 
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There is also some evidence that intermittent exercise will increase EPOC 

above continuous exercise, as research has shown that splitting aerobic 

sessions in two results in a significantly higher EPOC (Kaminsky et al. 1990; 

Almuzaini et al. 1998). However, it is thought that EPOC after aerobic exercise 

contributes 6-15% of total oxygen consumption (LaForgia et al. 2006), and 

therefore although it is likely to contribute to an increased fat loss after training 

it is unlikely to be the only factor to explain the differing fat loss. Future studies 

should aim to determine the effect of HIIT and MOD exercise on EPOC to 

determine the significance of this on energy expenditure. 

A robust method was developed and validated for the detection of membrane-

bound IL-6R in adipose tissue. Western blots revealed numerous IL-6R 

isoforms in adipose tissue. Continuing research in this area should evaluate the 

functionality of these isoforms and experiments should be carried out to 

determine whether the isoforms were the result of varying degrees of 

glycosylation. Similarly to the development of a method for IL-6R, it would be 

useful to do a comparable study for adiponectin to determine the contribution of 

the adiponectin isoforms in plasma and adipose tissue, particularly in response 

to an exercise intervention, to determine whether the adiponectin isoforms 

respond differently to an exercise stimulus. 

 

8.5 Conclusions 

In conclusion, this thesis has demonstrated that HIIT can significantly augment 

the IL-6 system after an acute bout of exercise, above that of moderate 

intensity exercise, matched for duration and external work done, however the 

mechanism behind this is unknown and requires further attention. For the first 

time it has been shown that exercise, and specifically HIIT, can induce changes 

in the inflammatory profile in subcutaneous adipose tissue in overweight and 

obese males after a 2 week training period, as well as reduce inflammatory 

mediators in the circulation. A protocol was optimised for the detection of 

membrane-bound IL-6R in adipose tissue. This protocol identified numerous 

forms of the IL-6 receptor and requires further attention to ascertain the 
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functionality of these isoforms. Future studies are needed to establish the 

functions of IL-6 in differing tissues and the role that IL-6R plays in mediating 

these functions. Young adults that have developed T2DM, as well as obese 

individuals that have not developed T2DM are in a state of chronic low-grade 

inflammation. These groups are at risk of chronic conditions and it is imperative 

that exercise protocols are developed which are achievable for such 

populations and can be adhered to. It should be established whether the HIIT 

protocol utilised in this thesis can be translated into patient populations, and if 

this type of training can induce changes in the inflammatory profile in those with 

T2DM, as it did with overweight and obese individuals. 
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Appendix A 

Example of the informed consent form to be completed by participants prior to 

taking part in any study.  

INFORMED CONSENT FORM 

(to be completed after Participant Information Sheet has been read) 

 

The purpose and details of this study have been explained to me.  I understand 

that this study is designed to further scientific knowledge and that all 

procedures have been approved by the Loughborough University Ethical 

Advisory Committee. 

I have read and understood the information sheet and this consent form. 

I have had an opportunity to ask questions about my participation. 

I understand that I am under no obligation to take part in the study. 

I understand that I have the right to withdraw from this study at any stage for 

any reason, and that I will not be required to explain my reasons for 

withdrawing. 

I understand that all the information I provide will be treated in strict confidence 
and will be kept anonymous and confidential to the researchers unless (under 
the statutory obligations of the agencies which the researchers are working 
with), it is judged that confidentiality will have to be breached for the safety of 
the participant or others.  
 

I agree to participate in this study. 

                    Your name 

 

              Your signature 

 

Signature of investigator 

 

                               Date  
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Appendix B 

 

Health Screen Questionnaire for Study Volunteers 

As a volunteer participating in a research study, it is important that you are currently in 

good health and have had no significant medical problems in the past.  This is (i) to 

ensure your own continuing well-being and (ii) to avoid the possibility of individual 

health issues confounding study outcomes. 

If you have a blood-borne virus, or think that you may have one, please do not take 

part in this research. 

 

Please complete this brief questionnaire to confirm your fitness to participate: 

1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise ...........  Yes 
 

No  

(b) attending your general practitioner ..................  Yes  No  

(c) on a hospital waiting list ...................................  Yes  No  

 
2. In the past two years, have you had any illness which required you to: 

(a) consult your GP ...............................................  Yes 
 

No  

(b) attend a hospital outpatient department ...........  Yes  No  

(c) be admitted to hospital  ...................................  Yes  No  

 
3. Have you ever had any of the following: 

(a) Convulsions/epilepsy  ........................................  Yes 
 

No  

(b) Asthma  .............................................................  Yes  No  

(c) Eczema  ............................................................  Yes  No  

(d) Diabetes  ...........................................................  Yes  No  

(e) A blood disorder  ...............................................  Yes  No  

(f) Head injury  .......................................................  Yes  No  

(g) Digestive problems  ...........................................  Yes  No  

(h) Heart problems  .................................................  Yes  No  

(i) Problems with bones or joints     ........................  Yes  No  

(j) Disturbance of balance/coordination  .................  Yes  No  

(k) Numbness in hands or feet  ...............................  Yes  No  

(l) Disturbance of vision  ........................................  Yes  No  

(m) Ear / hearing problems  .....................................  Yes  No  

(n) Thyroid problems  ..............................................  Yes  No  

(o) Kidney or liver problems  ...................................  Yes  No  

(p) Allergy to nuts  ...................................................  Yes  No  
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4. Has any, otherwise healthy, member of your family under the 

age of 35 died suddenly during or soon after 
exercise?  .................................................................  

Yes  No  

 
If YES to any question, please describe briefly if you wish (eg to confirm problem 

was/is short-lived, insignificant or well controlled.) 

..........................................................................................................................................

.......................................................................................................................................... 

 

5. Are you, 

exercising more than 3 x 30 min / week?  .................  Yes  No  

 

6. Allergy Information 

(a) are you allergic to any food products? Yes  No  

(b) are you allergic to any medicines? Yes  No  

(c) are you allergic to plasters? Yes  No  

 

If YES to any of the above, please provide additional information on the allergy 

…………………………………………………………………………………………………… 

 

7. Additional questions for female participants 

(a) are your periods normal/regular?  ......................  Yes  No  

(b) are you on “the pill”?  .........................................  Yes  No  

(c) could you be pregnant?    ..................................  Yes  No  

(d) are you taking hormone replacement therapy 
(HRT)? 

Yes  No  

 

Please provide contact details of a suitable person for us to contact in the event 

of any incident or emergency. 

 

Name:  ……………………………………………………………………………………… 

 

Telephone number: 

…………………………………………………………………………………… 

 Work  Home  Mobile  

 

Relationship to 

Participant:………………………………………………………………………………… 
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Are you currently involved in any other research studies at the University? 

 Yes  No  

If yes, please provide details of the study 

………………………………………………………………………………………………

……………………………………………………………………………………………… 
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Appendix C 

 

Dietary intake during HIIT and MOD trials in Chapter 4.  

 Energy 

(kcal) 

Protein  

(g) 

Carbohydrate 

(g) 

Fat 

 (g) 

LUNCH 

Sunflower spread (10 g) 

Sliced chicken (65 g) 

Wholemeal bread (2 slice) 

Gala apple (~160 g) 

Orange squash (500 ml) 

Kit Kat Chunky (50 g) 

 

222 

330 

786 

308 

811 

1101 

 

trace 

18.3 

8.8 

0.5 

trace 

2.6 

 

trace 

trace 

33 

17.3 

47.6 

31 

 

5.9 

0.7 

2.2 

0.3 

trace 

14.3 

SNACK 

Nutri-Grain Elevenses (45 g) 

 

687 

 

2.5 

 

30 

 

4 

DINNER 

Thin & crispy margherita pizza 

(301g) 

Ready salted  crisps (34.5 g) 

Chocolate pudding (150 g) 

Orange squash (500 ml) 

 

2888 

758 

2260 

811 

 

34.2 

2.2 

4.7 

trace 

 

82.4 

16.9 

58.4 

47.6 

 

24.8 

11.7 

21 

trace 

TOTAL 10962 73.8 364.2 84.9 
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Appendix D 

Statistical analysis for Chapter 4 before correcting for changes in plasma volume. 

There was a main trial effect for IL-6 (p = 0.013), with significantly higher IL-6 

immediately post-exercise during HIIT compared to MOD (p = 0.002). In addition, there 

was a main effect of time (p < 0.001), with IL-6 peaking immediately post-exercise in 

both trials. IL-6 was significantly elevated post- and 1.5 h post-exercise during both 

trials (p < 0.05). No differences were found for sIL-6R between trials (p = 0.086), 

however, a main effect of time was found (p < 0.001). Soluble IL-6R was significantly 

higher than pre-exercise immediately post-exercise after the HIIT trial only. No 

significant differences were found for the IL-6/sIL-6R complex concentration between 

HIIT and MOD trials (p = 0.299), although a main effect of time was found (p < 0.001). 

Peak IL-6/sIL-6R complex concentration occurred immediately post-exercise during 

both trials. 

 

The IL-6, sIL-6R and IL-6/sIL-6R complex response to MOD (▲) and HIIT (■) exercise trials 
without correcting for changes in plasma volume. Mean (SD). * main effect of time (p < 0.05). # 
main trial effect (p < 0.05).  


