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Abstract 

Caffeine consistently enhances endurance performance in temperate environmental 

conditions, while far less research has examined its ergogenic and physiological effects 

during prolonged exercise in the heat. Despite the performance benefit of an acute caffeine 

doses being less pronounced in regular caffeine users versus those not habituated to the 

drug, few studies have examined the influence of a prolonged period of controlled caffeine 

intake on endurance performance. The endogenous trace amine octopamine is purported to 

possess stimulant-like properties and influence fat metabolism, although no study has 

examined these effects in humans. The aim of this thesis was to further characterise the 

performance and physiological effects of caffeine during prolonged exercise, while 

elucidating a potential ergogenic role for octopamine.  

The first two studies investigated the ergogenic and thermoregulatory effects of low to 

moderate caffeine doses during prolonged cycle exercise in the heat. Chapter 4 

demonstrated that 3 mg·kg−1 caffeine, administered either as a single or split-dose (2 x 1.5 

mg·kg−1) before exercise, improved endurance performance without influencing 

thermoregulation during prolonged exercise at a fixed work-rate. Dividing the caffeine bolus 

appeared to confer an additional performance benefit, suggesting repeated low dose may 

potentiate the efficiency of the same total caffeine dose under these conditions. Chapter 5 

demonstrated that a 6 mg·kg−1 caffeine dose improved endurance cycle performance 

without differentially influencing thermoregulation than placebo.  

The level of habituation to caffeine influences the ergogenic effect of an acute dose, yet 

previous studies have employed sub-chronic supplementation protocols. Chapter 6 

investigated the effect of a twenty-eight day supplementation period on endurance cycle 

performance. Habituation to caffeine attenuated the ergogenic effect of an acute caffeine 

dose, without any change in circulating caffeine, substrate oxidation or hormonal 

concentrations. In chapter 7 the performance and metabolic effects of octopamine was 

investigated. Octopamine supplementation did not influence performance, hormonal 

concentrations or substrate oxidation, likely due to low serum concentrations of the drug.  

Key words: Central fatigue, central nervous system, heat strain, habituation, stimulants 
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Chapter 1 

General Introduction 

The use of dietary supplements is widespread among athletes (Desbrow and Leveritt, 2006; 

Knapik et al. 2016) and university students (Lieberman et al. 2015). One of the primary 

reasons individuals consume supplements is to enhance performance (Lieberman et al. 

2015), yet only a few appear to enhance performance. Stimulant-based compounds such as 

caffeine elicit consistent performance benefits in laboratory-based studies during prolonged 

exercise (>30 min) in temperate environmental conditions (20oC; Burke, 2008). However, 

the influence of a high ambient temperature (~30oC) on the ergogenic effect of caffeine has 

received little attention (Armstrong et al. 2007). Prolonged exercise in the heat places 

considerable strain on the thermoregulatory and cardiovascular systems (Cheuvront et al. 

2010; Nybo, 2010). Several lines of evidence suggest that caffeine elevates the core 

temperature response to exercise in the heat (Cheuvront et al. 2009; Del-Coso et al. 2009; 

Ely et al. 2011; Roelands et al. 2011), which may precipitate the onset of fatigue (González-

Alonso et al. 1999). However, a caffeine-induced increase in core temperature is not always 

observed, which may be due to the dosing strategy employed (Ganio et al. 2011; Pitchford 

et al. 2014; Roti et al. 2006). Indeed, larger intakes of caffeine (9 mg·kg−1) elicit more 

consistent elevations in core and body temperature during exercise (Cheuvront et al. 2009; 

Ely et al. 2011), while the performance and thermoregulatory responses to lower doses (3-6 

mg·kg−1) are less clear (Del-Coso et al. 2009; Ganio et al. 2011; Pitchford et al. 2014; 

Roelands et al. 2011). Given the widespread intake of caffeine by athletes competing in 

warm environments (Desbrow and Leveritt, 2006), a deeper understanding of the 

performance and physiological effects following acute caffeine intake during exercise in the 

heat is warranted. 

Despite such widespread intake of caffeine within the general population (Fitt et al. 2013), 

the influence of a prolonged period of controlled caffeine intake on endurance performance 

and exercise metabolism has not been investigated. The ergogenic effect of an acute 5 

mg·kg−1 caffeine dose was less pronounced in regular caffeine users (>300 mg·day−1) vs. 

their non-habituated counterparts (<50 mg·day−1; Bell and McLellan, 2002). Similar 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Gonz%C3%A1lez-Alonso%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10066720
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gonz%C3%A1lez-Alonso%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10066720
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metabolic responses occurred during prolonged, fixed-intensity exercise when comparing 

low-and high-habitual caffeine users (Bangsbo et al. 1992). Furthermore, studies which 

employed sub-chronic supplementation protocols failed to report any change in metabolism 

or performance following the habituation period. Irwin et al (2011) reported that four-days 

of controlled caffeine intake (3 mg·kg−1) did not influence the magnitude of performance 

benefit from an acute 3 mg·kg−1 caffeine dose. Similarly, five-days of low (3 mg·kg−1) and 

moderate (6 mg·kg−1) caffeine intakes did not alter the physiological response to prolonged 

exercise in the heat (Roti et al. 2006). Based on these observations, it seems likely that a 

greater duration of controlled caffeine supplementation is required to influence the 

magnitude of performance benefit attained from acute supplementation.  

The endogenous trace amine octopamine is suggested to possess stimulant-like properties 

and thus potentially enhance performance (Stohs, 2014). However, octopamine 

supplementation is currently prohibited by the World Anti-Doping agency (WADA), meaning 

its use is banned in competition by athletes (WADA, 2015). This is despite no evidence that 

octopamine influences performance in humans. Direct cerebral administration of 

octopamine increased locomotor activity in rats (Jagiełło-Wójtowicz, 1979), while data from 

mammalian cell-lines demonstrated the ability of octopamine to activate β3 

adrenoreceptors and stimulate lipolysis (Carpéné et al. 1999). Therefore, it would be of 

interest to examine the performance and physiological effects of acute octopamine 

supplementation in humans. 

 

1.1 Thesis aims and outline 

The aim of the work described in this thesis is to examine the performance and physiological 

effects of caffeine and octopamine during prolonged cycle exercise. 

The main objectives are as follows: 

• To investigate the performance and physiological responses following acute 

supplementation with low (Chapter 4) and moderate (Chapter 5) caffeine doses 

during prolonged exercise in the heat 
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• To examine the influence of a prolonged period of controlled caffeine intake on 

endurance cycle performance and exercise metabolism (Chapter 6) 

• To determine the performance and metabolic effects of acute octopamine 

supplementation during prolonged exercise (Chapter 7) 

A brief introduction to the subsequent chapters is provided below and a schematic of the 

experimental chapters is depicted in Figure 1.1.  

Chapter 2 reviews the current evidence regarding the performance and physiological effects 

of caffeine supplementation during exercise in the heat, while also discussing the relatively 

few studies to investigate the influence of caffeine habituation on exercise performance. In 

addition, the animal and in vitro models relating to the effects of octopamine administration 

on physical activity and metabolism and how these responses may influence endurance 

cycle performance and in vivo human physiology are reviewed. Chapter 3 provides a 

detailed explanation of the methods employed during each of the investigations.  

The study in Chapter 4 investigates the performance and physiological responses to 

prolonged exercise in the heat following two acute low-dose caffeine ingestion strategies (3 

mg·kg−1). Chapter 5 examines the effects of an acute moderate caffeine dose (6 mg·kg−1) on 

cycle performance and thermoregulation during endurance exercise in the heat. It is 

hypothesised that acute caffeine supplementation in both studies will improve endurance 

cycle performance without adversely influencing thermoregulation versus placebo. Chapter 

6 investigates whether a prolonged period (28 days) of controlled caffeine intake (1.5-3 

mg·kg·d−1) influences the performance or metabolic responses typical of acute 

supplementation. It is hypothesised that chronic caffeine intake will result in the 

development of tolerance to a subsequent acute caffeine dose. Chapter 7 examines the 

effects of an acute dose of octopamine (150 mg) on endurance cycle performance and 

exercise metabolism. It is hypothesised that octopamine supplementation will improve 

endurance cycle performance.  
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Figure 1.1 Schematic of experimental chapters  
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Chapter 2 

Literature Review 

2.1 Fatigue 

Traditionally, fatigue is defined as the inability to maintain the required force or power 

output during exercise (Edwards, 1981) or any exercise-induced reduction in the ability to 

exert muscle force or power, regardless of whether the exercise task can be sustained 

(Bigland-Ritchie and Woods, 1984). The aetiology of fatigue has been divided into two 

camps: central and peripheral fatigue. In relation to cycle exercise, peripheral fatigue may 

manifest as biochemical changes within the exercising muscle leading to a reduced response 

to neural excitation (i.e. greater neural input to generate the same force; Abbiss and 

Laursen, 2005; Amann, 2011; Green, 1997). Conversley, central fatigue refers to events 

arising within the central nervous system (CNS) which reduces efferent stimulation of motor 

neurons via decending supraspinal pathways (i.e. reduced neural input to the exercising 

muscles; Enoka, 1992; Gandevia, 2001). 

The concept of exercise-induced fatigue is not new. In 1891, August Waller suggested that 

the central component of fatigue served as a guard over peripheral fatigue. Subsequently, 

Alessandro Mosso crudely demonstrated a reduced capacity to perform physical work after 

a bout of mental exercise, resulting in the term ‘mental fatigue’ (Mosso, 1904). Francis 

Bainbridge later concluded that ‘muscular fatigue’ was superadded to ‘nervous fatigue’ 

(Bainbridge, 1919). Following the Nobel Prize winning work of Archibald Hill (Hill and 

Lupton, 1923; Hill et al. 1924), a great deal of emphasis was placed on the peripheral 

component of fatigue. During this time, the important link between blood glucose 

concentrations and marathon running performance was established (Gordon et al. 1925; 

Levine et al. 1924). The re-introduction of the muscle biopsy technique further emphasised 

the importance of substrate provision during prolonged exercise (Bergstrom et al. 1967). 

Despite the early proponents of central fatigue, a lack of available techniques to accurately 

assess CNS function likely precluded research into this area. However, with the introduction 

of twitch interpolation and transcranial magnetic stimulation (Barker, 1985; Grimby et al. 

1981), a greater focus was placed on the central component of fatigue.  
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In recent years, various cause-and-effect models have been proposed to explain fatigue 

during prolonged exercise, with focus on the cardiovascular, biochemical, thermoregulatory, 

psychological/motivation and central govenour models (Abbiss and Laursen, 2005; Noakes 

et al. 2005). However, a complex intergrated model of fatigue which occurs during 

prolonged cycle exercise has been proposed (Amann, 2011; Figure 2.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic representation of the supraspinal reflex inhibition fatigue model of fatigue 
proposed by Amann (2011). The thick solid line represents neural input to the exercising muscles 
and the dashed line indicates afferent feedback to the CNS. This model suggests that muscle 
afferents exert inhibitory control on the magnitude of central motor drive during whole-body 
endurance exercise. The magnitude of central motor drive determines the power output of the 
locomotor muscles, which in turn determines the metabolic milieu within the exercising muscles. 
Finally, the metabolic milieu determines the magnitude of afferent (inhibitory) feedback, providing a 
feedback loop which restricts the state of locomotor muscle fatigue to an individual threshold. 
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Using this model, Amann (2011) argues that afferent feedback from peripheral locomotor 

muscles is an important determinant of endurance performance. However, rather than 

peripheral fatigue per se, the preceding biochemical changes within the exercising muscles 

provide feedback to the CNS during exercise (Amann et al. 2010). Specifically, 

metabosensitive group III/IV afferents relate exercise-induced metabolic changes in the 

muscle to the brain (Kaufman and Rybicki, 1987), with this inhibitory feedback determining 

the magnitude of central motor drive to the locomotor muscles (Amann, 2011). When 

severe peripheral fatigue is present (which appears to be highly individual; Amann et al. 

2006), endurance exercise is voluntarily terminated (i.e. during a time to exhaustion task) or 

the exercise intensity is reduced though a decrease in central motor drive (i.e. during a TT 

task; Figure 2.1). The brain processes muscle afferent feedback to limit the development of 

peripheral fatigue to a critical threshold, beyond which the level of sensory input would not 

be tolerable. Therefore, the magnitude of biochemical changes within the exercising 

muscles exert an inhibitory effect on central motor drive and thus the development of 

central fatigue during whole-body endurance exercise (Amann, 2011). 

A separate model to explain the fatigue which arises during prolonged cycle exercise 

suggests that afferent feedback from peripheral locomotor muscles is not particularly 

important in regulating self-paced endurance exercise (Marcora, 2010). Smilar to the 

integrated peripheral/central models of endurance performance (Amann, 2011; St Clair 

Gibson and Noakes, 2004; Noakes et al. 2005), Marcora (2010) does state that knowledge of 

the distance to cover during exercise, the distance already covered, and any previous 

experience of the exercise task are all important factors that will likely influence 

performance. However, a greater emphasis is placed on perceived exertion during exercise, 

which appears to be independent of afferent feedback from peripheral muscles, heart and 

lungs (Marcora, 2009). For example, when inducing peripheral muscle fatigue with epidural 

anesthesia, perceived exertion is either unchanged or increased during exercise (Kjaer et al. 

1999; Smith et al. 2003). The latter effect is due to a compensatory increase in neural drive 

to the locomotor muscles in order to cycle at the same power output (Marcora et al. 2008). 

This increase in central motor command is detected, through collory discharges from motor 

to sensory areas of the cerebral cortex (Marcora, 2009), as an increase in perception of 

effort (Kjaer et al. 1999). Further evidence against the importance of afferent feedback from 
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skeletal muscles in determining endurance performance is the ‘end spurt’. That is, a large 

increase in power output at the end of a TT despite a high prescence of fatigue-inducing 

metabolites (Amann et al. 2008). Therefore, according to this model, the conscious self-

regualtion of power output during exercise, rather than inhibitory feedback from peripheral 

tissues, is more important in determining endurance performance. This is why it is called the 

‘psychobiological’ model of endurance performance (Marcora et al. 2008; Marcora, 2010). 

While the degree to which afferent feedback from peripheral tissues mediates the 

development of fatigue during prolonged exercise is still hotly debated (St Clair Gibson and 

Noakes, 2004; Marcora et al. 2008; Marcora, 2010; Noakes et al. 2005; Shephard, 2009), it is 

clear the brain plays a pivitol role (Meeusen and Watson, 2007). Nevertheless, the precise 

mechanisms responsible for the onset of fatigue will always depend on the duration, mode 

and intensity of exercise, as well as the environmental conditions. In recent decades, the 

central component has received increasing interest, especially in relation to changes in 

central neurotransmission (Meeusen and Watson, 2007; Newsholme et al. 1987), as 

discussed below.   

 

2.2 The Central Fatigue Hypothesis 

The most widely cited theory proposed to explain centrally-mediated fatigue was 

introduced by Newsholme and colleagues (1987).  These authors built on the work of 

Chaouloff et al (1985, 1986), who reported increased brain serotonin concentrations in rats 

during prolonged exercise. Serotonin is a classical monoamine neurotransmitter typically 

associated with feelings of lethargy, sleepiness, and decreased arousal and mood (Jacobs 

and Azimita, 1992). Therefore, elevating cerebral serotonin concentrations would be 

expected to precipitate the onset of fatigue. The central fatigue hypothesis suggests that 

changes in peripheral substrate availability influence the rate of serotonin synthesis in the 

brain (Newsholme et al. 1987). The amino acid tryptophan (a precursor of serotonin) is 

loosely bound to albumin, with approximately 10% of the unbound amino acid present in 

the circulation (McMenamy and Oncley, 1958). During prolonged exercise, elevated free 

fatty acid (FFA) concentrations liberate tryptophan from albumin (Curzon et al. 1974), 

leading to a greater concentration of unbound tryptophan in the blood. This increases 
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cerebral uptake of free tryptophan by the large neutral amino acid (LNAA) transporter. 

Serotonin synthesis is dependent on the enzyme tryptophan hydroxylase, which is not 

saturated under normal physiological conditions (Jacobs and Azmitia, 1992). Hence, the 

increased delivery of tryptophan augments cerebral serotonin synthesis (Newsholme et al. 

1987) and release (Schaechter and Wurtman, 1990).  

The attractive concept of this hypothesis is undoubtedly the potential to influence brain 

serotonin through dietary manipulation. The branched chain amino acids (BCAA) compete 

with tryptophan for passage across the blood-brain barrier (BBB) by the LNAA transporter 

(Pardridge, 1983). During prolonged exercise, BCAA concentrations decrease due to 

enhanced uptake by skeletal muscle (Bloomstrand et al. 1988). This reduces the competition 

for tryptophan at the LNNA transporter, further increasing its entry into the brain. An early 

study reported enhanced marathon performance when BCAA’s were consumed before 

exercise (Bloomstrand et al. 1991). Unfortunately, subsequent studies failed to confirm 

these initial findings (Blomstrand et al. 1997; Cheuvront et al. 2004; Watson et al. 2004). 

Additionally, the ingestion of tryptophan-free amino acid mixtures which deplete the pool of 

circulating tryptophan fails to influence endurance performance (Hobson et al. 2013). In 

rats, tryptophan administration augmented the exercise-induced increase in cerebral 

serotonin (>100%), but this did not induce early fatigue (Meeusen et al. 1996). Carbohydrate 

supplementation is another nutritional strategy purported to alter the balance of serotonin 

synthesis in the brain. Carbohydrate intake attenuates lipolysis, decreases the circulating 

concentration of FFA and ultimately limits the exercise-induced increase in unbound 

tryptophan. Supplementation with a 6% and 12% carbohydrate solution decreased FFA 

concentrations and the ratio of unbound tryptophan to BCAA’s (Davis et al. 1992). While 

performance was enhanced compared with placebo, it is difficult to discern the precise 

contribution of the central versus peripheral effects of carbohydrate ingestion. More 

recently, Blomstrand et al (2005) demonstrated that supplementation with a 6% 

carbohydrate solution decreased cerebral tryptophan uptake during prolonged exercise 

compared with placebo. However, the sample size was small (n=5), and performance was 

not measured.  

In addition to nutritional manipulation, pharmacological strategies have been employed to 

elucidate a potential role for serotonin in the development of fatigue during prolonged 
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exercise. The administration of a LNNA transporter blocker, which prevented cerebral 

tryptophan uptake and subsequent serotonin synthesis, prolonged exercise time in rats 

(Yamamoto and Newsholme, 2000). In a series of rat studies by Bailey et al (1992, 1993a), 

changes in exercise time were reported following the administration of specific serotonin 

agonists and antagonists. However, subsequent studies in humans failed to confirm these 

findings (Meeusen et al. 2006). Furthermore, augmenting synaptic serotonin concentrations 

with specific reuptake inhibitors can dose-dependently increase the activation of the entire 

motor pathway as assessed by magnetic resonance imaging (MRI; Loubinoux et al. 2002). In 

agreement, serotonin transmission is involved in stimulating locomotion in rats (Takahashi 

et al. 2000). While early evidence suggested that serotonin reuptake inhibition impairs 

endurance performance in humans (Wilson and Maughan, 1992), this might be due to 

disturbances in neuronal homeostasis via pre-and post-synaptic mechanisms, rather than by 

directly influencing the firing rate of serotonergic neurons (Struder and Weicker, 2001).  

Bailey and colleagues (1993b) reported a decrease in dopamine tissue content at the point 

of fatigue, while serotonin concentrations remained elevated. These findings led to the 

suggestion that the ratio of serotonin to dopamine might be an important factor in the 

development of fatigue (Davis and Bailey, 1997). Hence, elevating dopamine concentrations 

during prolonged exercise would be expected to enhance performance. Tyrosine, a 

precursor for dopamine and noradrenaline synthesis, is subject to competitive transport 

across the LNAA-carrier system (Fernstrom et al. 1983). Synaptic dopamine is responsive to 

precursor supply during periods of acute stress (During et al. 1989), yet tyrosine 

supplementation does not influence endurance capacity (Watson et al. 2012) or 

performance (Tumilty et al. 2014) in the heat. Furthermore, augmenting cerebral dopamine 

synthesis and release through L-3,4-dihydroxyphenylalanine (L-DOPA) supplementation 

(Floel et al. 2008) does not prolong endurance capacity in a warm environment (Cordery et 

al. 2016). Conversely, dual dopamine-noradrenaline reuptake inhibition consistently 

enhances performance in warm, but not temperate conditions (Roelands and Meeusen, 

2010). These contrasting findings suggest that simply influencing the ratio of serotonin to 

dopamine in the brain is not particularly important in the genesis of fatigue. Rather, the 

neurophysiological effects induced by different pharmacological interventions should be 

considered. For example, the dual dopamine-noradrenaline reuptake inhibitor Bupropion 
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changes the electrophysiology of the locus coeruleus (Nestler et al. 1999). While L-DOPA is a 

principle substrate for noradrenergic neurons within this brain region, it has no effect on 

locus coeruleus electrophysiology (Miguelez et al. 2011).  

Despite promising results from early animal studies (Bailey et al. 1993b; Chaouloff et al. 

1985, 1986), the role of serotonin in the development of fatigue is questionable. Several 

important factors should also be considered. First, the doses administered in previous 

animal models are typically much greater than the doses administered to humans. Second, 

the route of administration (i.e. direct injection in animals vs. oral ingestion in humans) will 

influence the pharmacokinetic profile of the drug. Third, the inter-species variation in the 

neurophysiological responses to nutritional and pharmacological interventions. Fourth, 

much of the early evidence was obtained from brain tissue homogenate, without the 

assessment of neurotransmitter concentrations over time (Meeusen et al. 2001; Meeusen 

et al. 2006). Even when microdialysis is employed, this method only enables the 

measurement of extracellular neurotransmitters in a single brain structure, which may not 

reflect changes in other cerebral regions. Despite the lack of consistent evidence 

substantiating a role for serotonin in the genesis of fatigue, events arising within the CNS 

appear to play a more important role in mediating endurance performance during exercise 

in the heat (Maughan et al. 2007; Nybo, 2010; Roelands et al. 2013). 

 

2.3 Prolonged Exercise in the Heat 

The capacity to perform prolonged exercise becomes impaired as the ambient temperature 

increases (Galloway and Maughan, 1997). Similarly, there is an inverse relationship between 

welt-bulb globe temperature and marathon race performance (Montain et al. 2007). The 

additional physiological challenge to thermoregulation is believed to play a key role in 

mediating this deterioration in performance (Nybo, 2010). Humans are approximately 20% 

efficient at converting chemical energy into mechanical work; the rest is lost as heat 

(Powers and Howley, 2009). During exercise, this excess heat will contribute to an elevation 

in core temperature, with the increase directly proportional to the power output (Neilsen, 

1938). To maintain a stable internal environment, there are 4 avenues through which 

humans dissipate heat: conduction, convection, radiation, and evaporation. The first 3 
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mechanisms rely on a skin to environmental temperature gradient for heat loss to occur. 

Hence, when the environmental temperature increases, this temperature gradient narrows, 

and the evaporative route (i.e. sweating) becomes the primary method of heat loss (Neilsen, 

1938). When sweat is deposited onto the surface of the skin, a large thermal input drives 

the conversion from water to vapour, resulting in heat loss to the environment. This process 

is dependent on a high skin temperature and the pressure gradient between the skin and 

the environment (Fortney and Vroman, 1985). Any increase in relative humidity will reduce 

this pressure gradient, thereby attenuating the capacity for heat loss. Recently, endurance 

capacity was reduced in a humidity-dependant manner during prolonged exercise at the 

same ambient temperature (30oC; Maughan et al. 2012).   

The mechanisms which closely describe the onset of fatigue during prolonged exercise in 

temperate conditions, such as the depletion of muscle glycogen and the accumulation of 

metabolites (Abbiss and Laursen, 2005; Green, 1997), are not particularly important in the 

genesis of fatigue when exercise is performed under conditions of heat stress (Neilsen et al. 

1990; Neilsen et al. 1993; Parkin et al. 1999). The most widely-cited theory proposed to 

explain fatigue during prolonged exercise in the heat is the ‘critical’ core temperature 

hypothesis (Gonzalez-Alonzo et al. 1999; Neilsen et al. 1993). Despite commencing exercise 

with different core temperatures, participant’s cycled to volitional exhaustion until 

remarkably similar core temperatures were achieved (~40oC; Gonzalez-Alonzo et al. 1999). 

This response was also demonstrated in rats (Fuller et al. 1998), suggesting there may be a 

thermal limit beyond which exercise cannot continue. Additionally, impairments in 

voluntary muscle activation correlate more strongly with core temperature than local 

muscle temperature (Thomas et al. 2006). However, core temperature values at the point of 

exhaustion are greater in well-trained (Gonzalez-Alonzo et al. 1999) than untrained (Cheung 

and McLellan, 1998) individuals. Furthermore, highly-motivated athletes in the field can 

attain higher core temperatures than typically observed in a laboratory environment (Byrne 

et al. 2006). The administration of pharmacological agents also enable individuals to 

continue exercise with core temperatures >40oC (Watson et al. 2005a). These observations 

suggest that fatigue is unlikely to occur only when core temperature reaches a specific 

value. Alternatively, there appears be a progressive inhibition of brain areas responsible for 
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motor activation as a consequence of the steadily rising hyperthermic state (Morrison et al. 

2004).  

The important link between brain temperature and exercise tolerance was demonstrated by 

Caputa and colleagues (1986). Thermo-elements were implanted into goats to 

independently manipulate core and hypothalamic temperature during exercise, with an 

increase in the latter precipitating the onset of fatigue. Neurons innervating the preoptic 

anterior hypothalamus (PO/AH) regulate changes in body temperature, based on afferent 

input from peripheral and spinal thermoreceptors, as well as the temperature of the blood 

flowing to the brain (Boulant, 2000). Brain temperature increases during prolonged exercise 

in the heat, remaining approximately 0.2oC higher than the core, suggesting impaired heat 

removal via the blood (Nybo et al. 2002). Attenuated cerebral perfusion also accompanies 

hyperthermia (Nybo and Neilsen, 2001c), although restoring blood flow to non-

hyperthermic levels does not prevent fatigue (Rasmussen et al. 2004). Prolonged exercise in 

the heat induces a gradual change in brain-wave activity, which is typically correlated with 

perceived exertion (Nybo and Nielsen, 2001b). Exercise-induced hyperthermia also 

attenuates the duration of sustained maximal voluntary contractions of the muscle (Nybo 

and Nielsen, 2001a) and augments cerebral ammonia uptake (Nybo et al. 2005). Ammonia is 

neurotoxic and easily penetrates the BBB (Suárez et al. 2002), which might have deleterious 

effects on glutamate and gamma-aminobutyric acid (GABA) neurotransmission (Nybo et al. 

2005). Prolonged exercise in rats augments the permeability of the BBB (Sharma et al. 

1991), which might modify the transport kinetics of substances important for CNS function. 

In humans, prolonged exercise in the heat increases circulating S-100ß (Watson et al. 

2005b), a proposed peripheral marker of BBB permeability (Koh and Lee, 2014). However, 

sufficient fluid ingestion during exercise prevents the increase in S-100ß (Watson et al. 

2006). Furthermore, exercise-induced hypohydration attenuates ventricular and 

cerebrospinal fluid volumes, while brain volume remains unchanged (Watson et al. 2010). 

Hence, despite the observed changes in S-100ß, there appears to be mechanisms in place to 

defend brain volume during exercise.  

Cardiovascular function is also influenced during prolonged exercise in a warm environment 

(Cheuvront et al. 2010; Gonzalez-Alonso, 2007). The increased need to dissipate heat 

through the skin and the maintenance of muscle and cerebral blood flow requirements 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Su%C3%A1rez%20I%5BAuthor%5D&cauthor=true&cauthor_uid=12020613
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result in an elevated cardiac output (Gonzalez-Alonso, 2007; Sawka et al. 2011). The 

accompanying hypohydration augments the reductions in blood volume and stroke volume, 

further increasing cardiovascular strain and reducing maximal oxygen uptake (Cheuvront et 

al. 2010; Gonzalez-Alonzo and Calbet, 2003). The increased cutaneous vasodilation in the 

presence of a narrowing core-to-skin temperature gradient is believed to play a more 

important role in the genesis of fatigue than an elevated core temperature (Sawka et al. 

2012). An elevated core temperature during exercise would actually increase this 

temperature gradient, reduce skin blood flow requirements and thereby attenuate 

cardiovascular strain (Rowell, 1986; Sawka et al. 2012).  

A complex feedforward-feedback model suggests that any change in pacing strategy during 

exercise is dictated by peripheral, central and emotional cues, ensuring the exercise task is 

completed long before catastrophic injury occurs (Noakes, 2011; Noakes et al. 2005; Tucker 

et al. 2004). The rate of heat storage during exercise was sufficient to modulate power 

output at a fixed level of perceived exertion (Tucker et al. 2006), suggesting a neural 

mechanism regulates self-paced exercise in the heat (Tucker, 2009). While the validity of 

this model has been questioned (Jay and Kenny, 2009), the aforementioned mechanisms 

proposed to regulate fatigue (cortical or subcortical) are all predicated on the avoidance of 

thermal injury.  

While the precise cerebral mechanisms which mediate the onset of fatigue in the heat are 

not fully understood, influencing the CNS would seem a prudent strategy to enhance 

performance under these conditions. However, nutritional manipulation of CNS function 

does not appear to confer a performance benefit (Hobson et al. 2013; Tumilty et al. 2014; 

Watson et al. 2012). Conversely, pharmacological reuptake-inhibition of dopamine and 

noradrenaline consistently enhances performance in warm conditions (Roelands and 

Meeusen, 2010). However, these drugs enable participants to reach potentially dangerous 

core temperatures during exercise (Watson et al. 2005a), thus increasing the risk of heat 

illness. Furthermore, selective noradrenaline reuptake-inhibition with Reboxetine induced 

deleterious peripheral effects (Roelands et al. 2008). An alternative strategy is caffeine, a 

known CNS stimulant (Fredholm et al. 1999). Supplementation with caffeine consistently 

improves endurance performance in temperate conditions (Burke, 2008). Surprisingly, far 

less research has examined the ergogenic effects of caffeine during prolonged exercise in 
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the heat (Armstrong et al. 2007), despite a high prevalence of intake within the general 

population (Fitt et al. 2013) and by athletes competing in warm environments (Desbrow and 

Leveritt, 2006).  

 

2.4 Caffeine  

The methylxanthine caffeine (1,3,7-trimethylxanthine) is the most commonly consumed 

drug globally (Fredholm et al. 1999), with approximately 95% of UK adults consuming 

caffeine on a regular basis (Fitt et al. 2013). It was first isolated by Friedlieb Ferdinand Runge 

in 1819 (Runge, 1820) and later synthesised by Nobel Laureate Emil Fischer in 1895 (Fischer 

and Ach, 1895). Today, caffeine is present in a variety of foods, drinks, and over-the-counter 

medications. Early work by Rivers and Webber (1907) provided the first experimental 

evidence that caffeine ingestion increases muscular output. Subsequent research by Foltz 

and colleagues (1943) examined the influence of intravenous caffeine infusions to perform 

and recover from exhaustive exercise. During this time, American researchers investigated 

the effects of caffeine, cocaine, alcohol, strychnine and nitroglycerin on swimming 

performance (Haldi and Wynn, 1946). Interestingly, caffeine was the only intervention to 

enhance performance during prolonged exercise. Subsequent research further 

demonstrated caffeine’s positive influence on exercise performance (Costill et al. 1978; Ivy 

et al. 1979; Weiss and Laties, 1962). In recent years, numerous studies have examined the 

potential for caffeine to improve physical performance (Burke, 2008; Graham, 2001), 

including both short-and-long duration exercise (Table 2.1).  

 

 

 

 

 

 



16 
 

Table 2.1 Effect of caffeine on exercise performance in temperate environmental conditions 

 Intensity, mode, and duration of exercise Performance effect 

Short duration  

 

 

 

 

Long duration  

• >90% VO2Peak cycle and running-based 

exercise (<30 min) 

• >100% VO2Peak cycle exercise (<5min) 

• >150% VO2Peak running (<1 min) 

• Resistance training 

• 60-80% VO2Peak cycle-and running-based 

exercise (>30 min); time trials (>30 min) 

Slight positive effect, varied results 

depending on protocol 

Slight/no effect 

No effect 

Varied 

Generally positive, especially with 

longer duration exercise 

References: Astorino and Roberson (2010); Burke (2008); Davis and Green (2009); Graham (2001); 
Spriet (1995); Spriet (2014). 
 

As highlighted in table 2.1, caffeine’s ergogenic effects are less consistent during high 

intensity, short duration exercise tasks, although a recent review indicated that caffeine 

provided a positive effect in approximately 50% of studies (Astorino and Roberson, 2010). 

Additionally, the lack of ergogenic effect in some investigations might be due to difficulties 

in quantifying and detecting small, worthwhile improvements in such types of exercise, 

where there is minimal potential for benefit. While there is some inter-individual variability 

in the response to caffeine supplementation (Jenkins et al. 2008), it is generally accepted 

that endurance performance (>30 min) is improved during a wide variety of exercise 

protocols (running, cycling, rowing etc.) when caffeine doses of 3-6 mg·kg−1 are consumed 

approximately 60 min before exercise (Burke, 2008; Graham, 2001). However, few studies 

have investigated the potential for caffeine to improve endurance performance when 

exercise is performed in the heat. 

 

2.4.1 Endurance Performance, Thermoregulation, and Fluid-balance During Prolonged 

Exercise in the Heat 

Supplementation with caffeine is typically discouraged during exercise in the heat due its 

purported ability to adversely influence heat-balance and hydration status. Caffeine 

ingestion reduces cutaneous blood flow (Daniels et al. 1998) and increases metabolic rate at 

rest (Belza et al. 2009; Poehlman et al. 1985), potentially elevating the rate of heat storage 
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during exercise. Furthermore, the caffeine-induced increase in sweat-rate (Kim et al. 2011) 

could augment the reductions in plasma volume and stroke volume, thereby increasing 

cardiovascular strain. These perturbations to physiological function are key factors involved 

in the genesis of fatigue during prolonged exercise in the heat (discussed in chapter 2.3).  

Several early studies investigated the influence of varied caffeine doses on 

thermoregulation and fluid-balance during prolonged exercise in warm (25-29 oC) and hot 

(≥30oC) environmental conditions (Bell et al. 1999; Falk et al. 1990; Gordon et al. 1982; Roti 

et al. 2006; Stebbins et al. 2001). As highlighted in table 2.2, these studies demonstrate that 

caffeine ingestion fails to adversely influence the rate of heat storage, fluid-balance, or 

circulatory strain during prolonged exercise. Despite a caffeine-induced elevation in heart 

rate, blood pressure and lactate in the study by Stebbins et al (2001), these responses did 

not influence the rate of heat storage or dissipation during exercise.  

 

 

 

 

 

 

 

 

 

 

 



18 
 

Table 2.2 Physiological effects of caffeine supplementation during exercise in the heat 

Reference  Experimental design  Caffeine dose Main outcomes 
Roti  et al (2006) 
 
 
Gordon et al (1982) 
 
 
Cohen et al (1996) 
 
 
 
Bell et al (1999) 
 
 
Roti  et al (2006) 
 
 
Stebbins et al (2001) 
 
 
Falk et al (1990) 
 
 
Cohen et al (1996) 

20 males; 37.7oC (56% RH); EHT (~90 
min) 
 
2 groups of males (n=5); 24.5oC-28.9oC 
(41-54% RH); 100 min @ 89% VO2max 

 
5 males, 2 females; WBGT 24oC-28oC; 3 
x 21-km road races 
 
 
10 males; 40oC (30% RH); 50% VO2peak 
until Tre=39.3oC  
 
19 males; 37.7oC (56% RH); EHT (90 
min) 
 
11 males; 38oC (40% RH); 45 min rest + 
35 min @ 50% VO2max 

 
7 trained males; 25oC (50% RH); TTE 
(70-75% VO2max) 
 
5 males, 2 females; WBGT 24oC-28oC; 3 
x 21-km road races 

3 mg·kg−1  
 
 
5 mg·kg−1 
 
 
5 mg·kg−1 
 
 
 
5 mg·kg−1 + 1 
mg·kg−1 Eph 
 
6 mg·kg−1  
 
 

6 mg·kg−1  
 

 

7.5 mg·kg−1  
 

 

9 mg·kg−1 

Exercise time was greater compared with placebo. Sweat 
rate, Tre, Tsk, and VO2 were similar between trials 
 
Sweat rate, sweat electrolytes, Tre, and plasma volume 
change were similar between groups 
 
Usg, plasma volume change, body mass loss, Tty, lactate, 
glucose, and plasma sodium/potassium values were similar 
between trials 
 
Exercise time was similar compared with placebo (120 min). 
Sweat rate, Tre, Tsk, and VO2 were similar between trials 
 
Exercise time was similar compared with placebo (120 min). 
Sweat rate, Tre, Tsk, and VO2 were similar between trials 
 
Caffeine increased HR, BP, and lactate during exercise. Tre, 
Tsk, and FBF were similar across trials 
 
Heat storage, Tre, sweat rate and plasma volume change 
were similar between trials 
 
Usg, plasma volume change, body mass loss, Tty, lactate, 
glucose, and plasma sodium/potassium values were similar 
between trials 

Note: All studies provided a placebo condition for comparison. RH, relative humidity; TTE, time-to-exhaustion; Eph, Ephedrine; Tre, rectal temperature; Tty, tympanic 
temperature; Tsk, skin temperature; VO2, oxygen uptake; VO2max, maximum oxygen uptake; HR, heart rate; BP, blood pressure; FBF, forearm blood flow; EHT, exercise-heat 
tolerance test (treadmill walking); Usg, urine specific gravity; WBGT, wet-bulb globe temperature 



19 
 

Nonetheless, several important factors should be considered. The use of small sample sizes 

(n=5-7; Falk et al. 1990; Gordon et al. 1982), the between-group comparisons (Gordon et al. 

1982; Roti et al. 2006), and the relatively short exercise protocols (35 min; Stebbins et al. 

2001) make it difficult to substantiate caffeine’s influence on thermoregulation, circulatory 

strain and fluid-balance under these conditions (Armstrong et al. 2007). Furthermore, the 

results of a previous field study (Cohen et al. 1996) were likely influenced by changes in 

environmental conditions within and between races. In addition, tympanic temperature was 

used as an index of core temperature, which is considered unsuitable to assess exercise-

induced hyperthermia (Ganio et al. 2009a). In recent years, several well-controlled 

laboratory studies have provided further insight into caffeine’s ergogenic and physiological 

effects during prolonged exercise in the heat.  

Trained cyclists completed a 15 min performance test after 120 min of submaximal exercise 

in a warm (28.5oC) environment (Cureton et al. 2007). Compared with a carbohydrate-

electrolyte and placebo trial, performance was improved by 15-23% when participants 

received a drink containing both caffeine (5.3 mg·kg−1) and carbohydrates. Furthermore, the 

reduction in maximal voluntary contraction (MVC) of the muscle after exercise was 

attenuated when caffeine and carbohydrates were co-ingested versus placebo and isolated 

carbohydrate intake (5% vs. 15%). However, voluntary activation (VA) was not improved, 

suggesting a direct effect of caffeine on the muscle (Cureton et al. 2007). Employing the 

same experimental protocol, these researchers failed to report any influence of caffeine on 

cardiovascular strain, thermoregulation, or fluid-balance during prolonged steady-state 

exercise (Millard-Stafford et al. 2007). However, in both of these studies the caffeine and 

carbohydrate drink contained additional compounds (B vitamins, taurine, and carnitine) that 

were not present in the placebo and carbohydrate treatments, which might have influenced 

the results.  

Subsequently, Del-Coso et al (2008) assessed MVC and VA before and after 120 min of 

submaximal cycle exercise in a hot (36oC) environment. Using a repeated-measures design, 

endurance-trained cyclists received either water to replace 97% of fluid loss during exercise, 

the same volume of a 6% carbohydrate-electrolyte solution, no fluid, or each of these 

treatments with 6 mg·kg−1 caffeine. These authors demonstrated that caffeine, when 

combined with a carbohydrate-electrolyte solution, increased maximal leg force after 
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exercise (2%) by augmenting VA (i.e. reducing central fatigue). These results contrast with 

that of Cureton et al (2007), which could be due to the timing of the testing procedures. Del-

Coso et al (2008) assessed maximal leg force immediately after exercise while participants 

remained in the environmental chamber, while Cureton et al (2007) removed cyclists from 

the chamber and assessed MVC after 8, 18, and 28 min of rest in temperate conditions 

(21oC). Removing participants from the chamber will have lowered their core temperature, 

attenuated the influence of hyperthermia on central fatigue and thereby reduced the 

capacity for the caffeine and carbohydrate-electrolyte solution to influence VA. 

Utilising the same experimental protocol, these researchers examined the influence of 

caffeine on thermoregulation and fluid-electrolyte balance during prolonged exercise in the 

heat (Del-Coso et al. 2009). Using trained, heat-acclimated cyclists, the addition of caffeine 

to a carbohydrate-electrolyte drink induced a higher core temperature at the end of 

exercise than isolated carbohydrate intake (0.2-0.3oC; P=0.07). This difference was not due 

to enhanced carbohydrate oxidation, which has been suggested (Yeo et al. 2005), and 

measures of heat dissipation were not different between the two trials (i.e. skin 

temperature and skin blood flow; Del-Coso et al. 2009). Furthermore, when caffeine was 

ingested alone or in combination with water and the carbohydrate-electrolyte solution, 

urine excretion was greater than the trials without caffeine (21%, 43%, and 15%, 

respectively). Due to the high variation across participants, these individual differences were 

not statistically significant. However, when collapsing the data (i.e. caffeine trials vs. non-

caffeine trials), urine excretion was significantly greater after caffeine ingestion. It should be 

noted that the majority of fluid loss during exercise was due to sweating, and caffeine failed 

to influence whole-body sweat rate when ingested in isolation or with the rehydration 

drinks (Del-Coso et al. 2009).  

Cheuvront et al (2009) reported that 9 mg·kg−1 caffeine elicited a higher core temperature 

than placebo (0.2-0.3oC) during 30 min of steady-state exercise (50% VO2peak) in 40oC. 

Additionally, total work produced (kJ) during a subsequent 15 min performance task was 

similar between trials. Given the caffeine-induced increase in core temperature was small, 

remained constant throughout exercise, and was undetected by participants (i.e. no 

difference in perceived thermal stress across trials), these authors suggested that a high 

ambient temperature might negate the efficacy of otherwise well-established ergogenic aids 
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(Cheuvront et al. 2009). In agreement, carbohydrate ingestion did not improve endurance 

capacity in a warm (28oC) environment (Nassif et al. 2008), but supplementation prolonged 

time to exhaustion in temperate conditions (Bergstrom et al. 1967). Similar to the findings 

of Cheuvront et al (2009), the provision of 9 mg·kg−1 caffeine marginally increased mean 

body temperature and the rate of heat storage during 30 min of steady-state exercise (50% 

VO2peak) in 40oC (Ely et al. 2011). Unfortunately, endurance performance was not measured. 

More recently, Roelands et al (2011) supplemented well-trained cyclists with 6 mg·kg−1 

caffeine before prolonged exercise in the heat (30oC). During the initial hour of fixed-

intensity exercise (55% Wmax), there was a greater increase in core temperature during the 

caffeine trial than placebo, with values reaching approximately 0.5oC higher at the end of 

the preload (Roelands et al. 2011). The authors attributed this caffeine-induced increase in 

core temperature to the lack of ergogenic effect during a subsequent 30 min TT (P=0.462). 

However, it seems likely that such an elevation in core temperature would actually 

precipitate the onset of fatigue, rather than enable similar performance times to those 

attained in the placebo trial. Perhaps this provides further evidence that an elevated core 

temperature is not as important in the genesis of fatigue during prolonged exercise in the 

heat as suggested (Gonzalez-Alonso et al. 1999).  

Employing a repeated-measures design, Ganio et al (2011) examined the ergogenic and 

physiological effects of 6 mg·kg−1 caffeine during prolonged exercise in cool (12oC) and hot 

(33oC) environmental conditions, respectively. Trained male participants cycled for 90 min 

at 60% and 70% maximum oxygen uptake (VO2max; alternating every 15 min), immediately 

followed by a 15 min performance task (total kJ produced). During the steady-state exercise 

in both environmental conditions, caffeine failed to differentially influence the 

thermoregulatory, cardiovascular, and metabolic variables than placebo (Ganio et al. 2011). 

However, caffeine enhanced performance to a similar magnitude in both ambient 

conditions, with a 9 kJ (Placebo: 233 ± 37 kJ vs. Caffeine: 242 ± 38 kJ) and 12 kJ (Placebo: 185 

± 33 vs. Caffeine: 197 ± 38) increase in the cool and hot environment, respectively. 

Unfortunately, these authors did not provide a direct comparison between the caffeine and 

placebo trial in the hot condition only. When applying magnitude-based inferences to the 

data from this manuscript (Hopkins, 2000), assuming a smallest worthwhile change in 

performance of 3% (Ganio et al. 2009a), the 12kJ increase represents an 82.2% chance of 
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benefit (P=0.082). The findings of this investigation clearly contrast with that of Roelands et 

al (2011), despite both studies supplementing well-trained participants with the same total 

caffeine dose. However, one important difference is the dosing strategy employed. 

Roelands et al (2011) supplemented individuals with a single 6 mg·kg−1 caffeine dose 60 min 

before exercise, whereas Ganio et al (2011) provided participants with a 3 mg·kg−1 caffeine 

dose 60 min before and 45 min during exercise. Hence, the splitting of the caffeine bolus by 

Ganio and colleagues (2011) might have distributed the thermogenic effects of caffeine, 

thereby enabling participants to perform better during the subsequent performance task. 

While dividing the caffeine bolus confers a similar performance benefit compared with 

single-dose administration in temperate conditions (Conway et al. 2003), no study has 

investigated the performance and thermoregulatory responses to single-and split-caffeine 

doses during prolonged exercise in the heat. 

Pitchford et al (2014) recently investigated whether a low dose of caffeine could improve 

endurance performance in the heat (35oC), without negatively influencing thermoregulation 

during exercise. Well-trained participants completed an energy-based cycle TT (~60 min) 

after ingesting a single 3 mg·kg−1 caffeine dose or placebo. Performance was improved after 

caffeine intake (P=0.06), with these authors calculating an 85.8% chance of benefit 

(Pitchford et al. 2014). Furthermore, core temperature and estimated sweat rates were 

similar between trials. Despite participants completing the set amount of work quicker after 

caffeine ingestion, rating of perceived exertion (RPE) was similar between trials, suggesting 

a reduced relative perception of effort during exercise (Pitchford et al. 2014). However, 

these authors did not employ a period of fixed-intensity exercise prior to the performance 

task, which makes comparing the physiological data between trials difficult to interpret due 

to fluctuations in power output.  

 

2.4.2 Influence of Habituation 

Given the widespread intake of caffeine (Desbrow and Leveritt, 2006; Fitt et al. 2013; 

Fredholm et al. 1999), it is important to consider whether the level of habitual intake of the 

drug influences the physiological or ergogenic effects attained from acute supplementation. 

Robertson et al (1981) reported that 4 days of regular caffeine intake (750 mg) developed 
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tolerance to the humoral and hemodynamic responses to acute caffeine intake (250 mg) at 

rest, including blood pressure, heart rate, plasma renin activity, and urinary and plasma 

catecholamine concentrations. Subsequently, Bangsbo and colleagues (1992) assessed the 

metabolic response to steady-state exercise following acute and chronic caffeine 

supplementation. Trained participants were supplemented with daily doses of placebo (n=6) 

or 500 mg caffeine (n=6) for 6 weeks. The control group completed a placebo trial before 

and after the chronic supplementation period, while the caffeine group undertook these 

placebo trials and one acute 500 mg caffeine trial before and after the supplementation 

period (Bangsbo et al. 1992). After 6 weeks of caffeine intake, the adrenaline response to 

acute caffeine ingestion was attenuated, while there was no change in the activity of several 

key metabolic enzymes associated with fat metabolism. However, it is important to note 

that participants in both groups were permitted to consume their normal intake of caffeine 

throughout the 6 week period. Before testing, both groups reported habitual intakes of 

approximately 5 cups of coffee per day (range: 1-15; Bangsbo et al. 1992). If an average cup 

of coffee contains approximately 100 mg caffeine (Desbrow et al. 2007; Fitt et al. 2013), and 

the caffeine group ingested an additional 500 mg·day−1, the daily intake of these individuals 

would have been approximately 14 mg·kg−1 (mean body mass: 71.1 kg); this level of intake is 

far greater than habitually consumed by the general population (Fitt et al. 2013). 

Unfortunately, these authors did not determine whether participants in the caffeine group 

actually continued with their habitual intake of caffeine throughout the study period. 

Van Soeren and colleagues (1993) further examined the influence of chronic caffeine 

supplementation on the metabolic response to steady-state exercise (60 min at 50% 

VO2max). Caffeine naive individuals (n=7) completed one placebo trial and one acute 5 

mg·kg−1 caffeine trial. Habitual caffeine users (n=7) completed one placebo trial and two 

acute 5 mg·kg−1 caffeine trials; the two caffeine trials were separated by 6 days of 

randomised daily caffeine (2 x 2.5 mg·kg−1) or placebo intake. No additional dietary caffeine 

was permitted during the study period. In the caffeine naive group, the exercise-induced 

increase in plasma adrenaline was augmented by caffeine, while plasma adrenaline 

responses were similar across trials in the caffeine users group. Furthermore, noradrenaline, 

glycerol, FFA, and plasma and urinary caffeine concentrations were similar between groups 

(Van Soeren et al. 1993).  
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To determine whether the ergogenic effect of caffeine is influenced by the level of habitual 

intake of the drug, Dodd et al (1991) examined caffeine naive (<20 mg·day−1; n=8) and 

regular caffeine users (>300 mg·day−1; n=9) during three incremental exercise tests to 

exhaustion. One hour before exercise, participants ingested either placebo or caffeine at 3 

mg·kg−1 or 5 mg·kg−1. Despite caffeine ingestion augmenting resting heart rate and 

circulating FFA’s in the control group, time to exhaustion was similar between and within 

groups. Subsequently, Bell and McLellan (2002) compared caffeine users (>300 mg·day−1; 

n=13) and non-users (<50 mg·day−1; n=8) during a cycle time to exhaustion (80% VO2max) 

after ingesting 5 mg·kg−1 caffeine. These authors also assessed the duration of caffeine’s 

ergogenic effect, with the exercise protocol commencing 1, 3, or 6 hours post-caffeine 

ingestion, respectively (Bell and McLellan, 2002). Interestingly, both the magnitude and the 

duration of caffeine’s ergogenic effects were influenced by the level of habitual intake. In 

the caffeine users group, performance was enhanced at 1 and 3 hour post-caffeine 

ingestion, but was similar to placebo at 6 hours. Conversely, performance was enhanced at 

1, 3, and 6 hours post-caffeine ingestion in the caffeine naive group. Furthermore, time to 

exhaustion was longer during all three caffeine trials in the non-users group versus those 

habituated to caffeine (Bell and McLellan, 2002). These data strongly suggest that the level 

of habitual intake of caffeine can influence the performance benefits attained from acute 

supplementation. However, these models do not provide a timeframe by which regular 

caffeine intake induces the development of tolerance. Furthermore, in the Bell and McLellan 

(2002) study, no information was provided regarding the length of time participants in the 

caffeine group were habitually consuming >300 mg·day−1 prior to testing. It seems logical to 

suggest that the length of time participants were regularly consuming caffeine (i.e. weeks, 

months, years etc.) would influence the response to acute supplementation.  

Several animal studies have investigated the influence of chronic caffeine intake on physical 

activity. In rats, repeated exposure to caffeine in the drinking water (14 days) induced the 

development of tolerance to the performance benefit of a subsequent acute caffeine dose 

(Karcz-Kubicha et al. 2003). This response was confirmed in other animal models (Ciruela et 

al. 2006; Quarta et al. 2004), although large doses were used (i.e. 130 mg·kg·day−1; Quarta et 

al. 2004). Roti and colleagues (2006) stratified 59 participants by age, body composition and 

body mass into 3 groups (n=19-20). From days 1-6, all participants ingested 3 mg·kg−1 
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caffeine. From days 7-12, each group consumed either placebo or caffeine at 3 mg·kg−1 or 6 

mg·kg−1. Caffeine was ingested in two equal doses; the first in the morning, followed by the 

second in the afternoon. On the afternoon of day 12, one hour post-capsule ingestion, all 

participants undertook an exercise-heat tolerance test (graded treadmill walking) in 37oC. 

Exercise time was greater in the 3 mg·kg−1 caffeine group, while thermoregulation, 

cardiovascular responses and various markers of hydration status were similar between 

groups (Roti et al. 2006).  

Recently, Irwin et al (2011) examined the influence of a short withdrawal and habituation 

period on the acute ergogenic effects of caffeine. Using a repeated-measures design, 

trained participants were supplemented with placebo or 3 mg·kg−1 caffeine for 4 days, 

followed by an acute placebo or 3 mg·kg−1 caffeine trial on day 5 (Irwin et al. 2011). Acute 

caffeine ingestion enhanced performance compared with placebo, regardless of the 

intervention during the preceding 4 days, while there was no difference between the two 

caffeine trials. These data suggest that a short habituation period fails to influence the 

ergogenic effects of an acute 3 mg·kg−1 caffeine dose. Hence, a longer period of controlled 

caffeine intake might be required to elicit changes in endurance performance typical of 

acute caffeine ingestion. Given the performance differences between low-and high-habitual 

caffeine users in response to acute supplementation (Bell and McLellan, 2002), and the high 

prevalence of habitual caffeine intake within the general population (Fitt et al. 2013), this 

hypothesis warrants investigation.  

 

2.4.3 Pharmacokinetics 

After oral ingestion, caffeine is almost completely absorbed from the gastrointestinal tract 

(>99%), and peak blood concentrations are achieved within 30-60 min (Blanchard and 

Sawers, 1983; Graham and Spriet, 1995; Mumford et al. 1996). However, the rate of 

absorption can be influenced by the pH and composition of the drug formulation (Bonati et 

al. 1982). Caffeine is absorbed quicker from gum than capsules (Kamimori et al. 2002), from 

capsules than cola and chocolate (Mumford et al. 1996), and from coffee than cola (Marks 

and Kelly, 1973). Nonetheless, it appears that when the caffeine dose and administration 

volume are the same, these differences are not observed (Liguori et al. 1997). Recently, 
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Hodgson et al (2013) supplemented participants with pure (anhydrous) caffeine or coffee, 

with both trials providing 5 mg·kg−1 caffeine dissolved in 600 mL of water. These authors 

reported similar circulating caffeine concentrations and performance benefits (versus 

placebo) between the two caffeine trials (Hodgson et al. 2013).   

The hydrophobic nature of caffeine enables its passage across all biological membranes and 

thus it is readily distributed throughout all tissues of the body (Fredholm et al. 1999). After 

oral ingestion, caffeine dilutes in total body water and reaches a volume of distribution 

between 0.5-1.3 L·kg−1 (Kamimori et al. 2002; Lelo et al. 1986). In rats, caffeine 

concentrations in the extracellular fluid compartments of several tissues (liver, adipose 

tissue, muscle, brain) follow a similar time course to that observed in plasma (Stahle et al. 

1991a), while in man the distribution of caffeine in the extracellular fluid of subcutaneous 

adipose tissue is not closely correlated with plasma concentrations (Stahle et al. 1992b). 

This might be due to differences in albumin content between the two fluid compartments. 

In mice, intracellular caffeine concentrations in several organs (brain, heart, liver) are similar 

to the levels reported in plasma (Burg and Werner, 1972), while data from humans is 

lacking. The pharmacokinetic distribution of caffeine in plasma can be explained by first-

order, linear kinetics (Kamimori et al. 2002; Newton et al. 1981).  

Caffeine is metabolised by the cytochrome P450 (CYP450) system in the liver (Fredholm et 

al. 1999; Gu et al. 1992). Like most xenobiotics, liver microsomes metabolise caffeine to 

produce over 25 derivative compounds (Arnaud, 1987; Somani and Gupta, 1988). The most 

important of these biotransformations are the N3-demethylation to paraxanthine, N1-

demthylation to theobromine, and N7-demethylation to theophylline; these account for 

approximately 80%, 11%, and 5%, respectively, of caffeine metabolism in vivo (Lelo et al. 

1986). Once formed, these compounds undergo extensive metabolism to form a range of 

other metabolites (Arnaud, 1987). The remaining ~4% is attributed to the 

biotransformations leading to trimethyluric acid and trimethyluracil, as well as renal 

excretion of unchanged caffeine (Lelo et al. 1986). A simplified schematic of caffeine 

metabolism is shown in Figure 2.2.  
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Figure 2.2 Simplified schematic of caffeine metabolism in vivo. Full and broken arrows represent major and 
minor pathways, respectively. 1,3,7-TMX, 1,3,7-trimethylxanthine (caffeine); 1,7-DMX, 1,7-dimethylxathine 
(paraxanthine); 3,7-DMX, 3,7-dimethylxanthine (theobromine); 1,3-DMX, 1,3-dimethylxanthine (theophylline); 
1-MX, 1-methylxanthine; 3-MX, 3-methylxanthine; 7-MX , 7-methylxanthine; 1,3,7-TMU, 1,3,7-trimethyluric 
acid; 1,3-DMU, 1,3-dimethyluric acid; 1,7-DMU, 1,7-dimethyluric acid; 3,7-DMU, 3,7-dimethyluric acid; 1-MU, 
1-methyluric acid; AFMU, 5-acetylamino-6-formylamino-3-methyluracil; AAMU, 5-acetyl-6-amino-3-
methyluracil; CYP, cytochrome P450 (various subtypes); NAT2, N-acetyltransferase; XO, xanthine oxidase; 
FMO, flavin-containing monooxygenase. References: Arnaud (1987); Caubet et al (2002); Gu et al (1992); 
Magkos and Kavouras (2005); Lelo et al (1986); Somani et al (1988). 
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The biological half-life of plasma caffeine ranges from 3.5-5.5 hours (Arnaud, 1987), with a 

clearance rate of approximately 1-3 mL·kg·min−1 (Kamimori et al. 2002). Inter-individual 

differences in caffeine pharmacokinetics is largely due to hepatic CYP1A2 activity 

(Rasmussen et al. 2002), which accounts for approximately 95% of caffeine metabolism (Gu 

et al. 1992; Figure 2.2). While genetic differences can influence the activity of this enzyme 

(Chen et al. 2005; Rasmussen et al. 2002), a variety of lifestyle factors are also important. 

For example, smoking increases CYP1A2 activity, resulting in lower plasma caffeine 

concentrations (Vitisen et al. 1991). Conversely, the use of oral contraceptives decreases 

CYP1A2 activity, resulting in elevated levels of circulating caffeine (Rietveld et al. 1984). 

Urinary excretion of unchanged caffeine accounts for approximately 3% of the ingested 

dose (Tag-Liu et al. 1983). Until 2004, caffeine was placed on the WADA prohibited list, 

where it now remains on the monitoring programme (WADA, 2015). A urinary threshold of 

12 μg·mL−1 was enforced, with greater concentrations prompting a doping violation. 

However, caffeine intakes of 13 mg·kg−1 are necessary to increase urinary concentrations 

beyond this cut-off point (Pasman et al. 1995). Supplementation with 3-6 mg·kg−1 is deemed 

sufficient to provide the maximum performance benefit (Burke, 2008; Desbrow et al. 2012), 

and these doses elicit urinary caffeine concentrations well below the previous threshold 

(Pasman et al. 1995). Furthermore, the dosing strategy employed can influence urinary 

caffeine concentrations (i.e. lower with split-versus single-doses; Conway et al. 2003). These 

data likely contributed to the removal of caffeine from the WADA list of prohibited 

substances 

 

2.4.4 Mechanism of Action 

Several mechanisms have been proposed to explain caffeine’s ergogenic effects. The first of 

these is caffeine’s influence on skeletal muscle, which was demonstrated over a century ago 

(Veley and Waller, 1910). Specifically, caffeine was shown to influence calcium release from 

the sarcoplasmic reticulum (Rousseau et al. 1988), probably through its interaction with the 

ryanodine receptor (McPherson et al. 1991). However, mM concentrations are required to 

influence intracellular calcium in vitro, which would prove toxic in humans (Fredholm and 

Hedqvist, 1980; Fredholm et al. 1999). After oral intakes of 3-9 mg·kg−1, plasma caffeine 
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reaches 10-70 uM (Graham and Spriet, 1995), levels which are too low to increase the 

development of muscle tension when applied directly to isolated, fatigued muscles (James 

et al. 2004). Furthermore, supplementation with 6 mg·kg−1 caffeine enhanced isometric leg 

strength, time to fatigue, maximal voluntary torque, and maximal voluntary activation 

(Kalmar and Cafarelli, 1999; Plaskett and Cafarelli, 2001). However, in both of these studies 

caffeine failed to influence the contractile properties of the muscle, suggesting an 

alternative mechanism.   

Caffeine and theophylline were shown to be non-selective phosphodiesterase inhibitors 

(Butcher and Sutherland, 1962). Phosphodiesterase enzymes participate in various signal 

transduction pathways and hydrolyse the phosphodiester bond in second messenger 

molecules such as cyclic adenosine monophosphate (cAMP; Soderling and Beavo, 2000). 

This inhibits cAMP breakdown and stimulates lipolysis through the activation of hormone-

sensitive lipase (Fain et al. 1972). However, similar to caffeine’s influence on intracellular 

calcium, supraphysiological doses are required to inhibit phosphodiesterase enzymes in 

vitro (Fredholm et al. 1999).   

Probably the most well-known theory proposed to explain caffeine’s ergogenic effect during 

prolonged exercise is its purported ability to enhance fat oxidation (Costill et al. 1978; Ivy et 

al. 1979). Supplementation with 330 mg caffeine 60 min before exercise increased time to 

exhaustion and enhanced estimated fat oxidation rates and plasma concentrations of FFA’s 

and glycerol (Costill et al. 1978). Subsequently, Ivy et al (1979) demonstrated enhanced 

work production and estimated fat oxidation rates when caffeine was ingested before and 

during prolonged cycle exercise. To directly assess substrate utilisation during exercise, Essig 

et al (1980) took muscle biopsies before and after 30 min of submaximal exercise and 

reported a significant increase in muscle triglyceride oxidation during the caffeine trial. 

Furthermore, plasma FFA’s increased, while the respiratory exchange ratio (RER) decreased 

(Essig et al. 1980). This model is predicated on the assumption that enhancing fat oxidation 

during prolonged exercise (via adrenaline-mediated FFA release from adipose tissue) will 

spare limited muscle glycogen, thereby prolonging exercise capacity (Essig et al. 1980).  

However, subsequent investigations failed to confirm these initial findings (Graham et al. 

2000; Graham, 2001). Using stable-isotopic tracers to estimate substrate oxidation rates 
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during prolonged exercise, Hulston and Jeukendrup (2008) failed to report any change in 

glucose kinetics after participants ingested a drink containing carbohydrates and caffeine 

(5.3 mg·kg−1), despite a 4.1% increase in performance versus the carbohydrate only trial. 

Furthermore, glucose appearance/disappearance in the blood and estimated fat oxidation 

rates during 60 min of submaximal exercise were not influenced by 6 mg·kg−1 caffeine (Roy 

et al. 2001). Similarly, supplementation with theophylline did not influence fat metabolism 

during prolonged exercise (Raguso et al. 2006). Furthermore, a recent review concluded 

that caffeine ingestion exerts little to no effect on skeletal muscle metabolism during 

prolonged exercise (Graham et al. 2008). Finally, the strongest evidence against this model 

comes from observations that individuals with tetraplegia, in which there is no sympathetic 

activation, demonstrate improved performance after caffeine ingestion (6 mg·kg−1; Mohr et 

al. 1998). These authors also reported a caffeine-induced elevation in plasma FFA’s, without 

any change in circulating catecholamines. Hence, blood-borne mechanisms alone appear 

untenable to explain caffeine’s ergogenic effects.  

While additional mechanisms may partly account for caffeine’s positive influence on 

performance, such as the inhibition of glycogen phosphorylase and the stimulation of the 

sodium/potassium pump (Magkos and Kavouras, 2005), there is compelling evidence that 

caffeine enhances performance through direct actions within the CNS (Fredholm et al. 

1999). Specifically, the ergogenic effects of caffeine depend on its ability to antagonise 

adenosine receptors in the brain (Ferré, 2008; Ferré, 2010; Fredholm et al. 1999). In order to 

identify the specific neurophysiological effects elicited by adenosine receptor blockade, the 

role of adenosine should be addressed. Adenosine is a purine nucleoside which modulates 

neural activity (Dunwiddie and Masino, 2001), although it is not classed as a 

neurotransmitter (Fredholm et al. 2001). Neurotransmitters such as dopamine, 

noradrenaline, and serotonin are stored within presynaptic vesicles, released in a calcium-

dependant manner, and bind to post-synaptic receptors. Adenosine is not accumulated into 

vesicles and its presence within the synapse is not entirely dependent on calcium 

(Dunwiddie and Masino, 2001). There are two main sources of synaptic adenosine. First, 

high rates of cellular activity increase the dephosphorylation of adenosine triphosphate 

(ATP) within neurons, thus elevating intracellular adenosine. Virtually all cells are equipped 

with nucleoside transporters (Cass et al. 1998), ensuring a constant flux of intracellular 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
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adenosine into the extracellular space. Second, ATP is co-released with glutamate from 

neurons and glia (Chuna, 2001), which is rapidly metabolised by ecto-nucleotidases to 

generate adenosine (Zimmerman and Braun, 1999). In both scenarios, the concentration of 

synaptic adenosine is dependent on the workload of the cell (Schiffman et al. 2007).    

The physiological effects exerted by adenosine are determined by the presence of specific 

receptors. To date, four G-protein-coupled receptors have been cloned: A1, A2A, A2B, and A3 

(Fredholm et al. 2001; Fredholm et al. 2011). Basal concentrations of adenosine 

preferentially act on the A1 and A2A subtypes, whereas supraphysiological doses are 

required to tonically activate the A2B and A3 isoforms (Feoktistov and Biaggioni, 1997; 

Fredholm et al. 1999; Jacobson, 1998). This is partly due to a low affinity of adenosine for 

these receptors (i.e. A2B; Fredholm et al. 2001b), but is also attributed to the sparse 

expression of the A2B and A3 subtypes throughout the brain (Table 2.3). These receptors 

likely become important during periods of illness, when the concentration of adenosine in 

the interstitial fluid increases 100-1000-fold (i.e. ischemia; Hadberg et al. 1987). Differences 

in tissue distribution, intracellular signalling, and binding potencies of each receptor subtype 

is shown in table 2.3. 
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Table 2.3 Adenosine receptor distribution, signalling and binding potency 

cAMP, cyclic-adenosine monophosphate; IP3, Inositol triphosphate; DAG, diacylglycerol, PLA2, phospholipase 
A2; PLD, phospholipase D; PLC, phospholipase C. References: Distribution = Fredholm et al (1999); Fredholm et 
al (2001a); Mishina et al (2007); Salvatore et al (1993); Svenningsson et al (1997); Cellular effects = Fisone et al 
(2004); Fredholm et al (1999); Fredholm et al (2000); Binding potencies (mean values) = Fredholm et al 
(2001b).   

 

The neurophysiological effects exerted by habitual, low-doses of caffeine are primarily 

mediated through the central blockade of A1 and A2A receptors (Ferré, 2008; Fredholm et al. 

1999). This was demonstrated by Davis et al (2003) when caffeine and a selective A1/A2A 

agonist were directly administered into the brain of rats. Running time was enhanced after 

caffeine, decreased with the A1/A2A agonist, while exercise time was similar to placebo 

when both drugs were co-administered (i.e. they cancelled each other out; Davis et al. 

2003). However, this study could not discern the precise contribution of the A1 and A2A 
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receptor. While the A1 isoform is located throughout the brain, the A2A receptor is densely 

enriched within the dopamine-innervated areas of the basal ganglia, especially the striatum 

(El Yacoubi et al. 2001; Table 2.3). This brain region is the main input structure of the basal 

ganglia and plays key role in the control of voluntary movements, reinforcement, reward, 

motivation, and addictive behaviours (Gerfen, 1992). Global-knockout of the A2A receptor 

attenuates the locomotor-stimulating effects of caffeine (Lindskog et al. 2002; El Yacoubi et 

al. 2000), while more selective gene-deletion strategies highlight a specific role for the 

striatum in meditating the performance benefits of caffeine (Lazarus et al. 2011). Hence, the 

ergogenic effects of caffeine, at least in part, can be explained by striatal A2A receptor 

blockade. Another facet to this mechanism is the influence of caffeine on the intra-

molecular cross-talk in the postsynaptic striatal A2/D2 heteromer. Adenosine-and caffeine-

mediated occupancy of the A2A receptor in this heteromer attenuate and augment, 

respectively, dopamine signalling via the D2 receptor (Ferré et al. 1991; Ferré et al. 1993; 

Ferré et al. 1997a). The caffeine-induced potentiation of D2 signalling results in the 

disinhibition of upper motor neurons, thereby enhancing performance through an increase 

in central motor drive (Fisone et al. 2004; Figure 2.3).   

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
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Figure 2.3 Simplified schematic of the basal ganglia circuitry including the direct and indirect output pathways 
of the striatum. Green, red and black arrows indicate stimulatory (glutamate), inhibitory (GABA) and 
modulatory (dopamine) input, respectively. SNc, substantia nigra pars compacta; GPe, external globus pallidus; 
STN, subthalamic nucleus; SNr, substantia nigra pars-reticulata (rodents); GPi, internal globus pallidus 
(primates); Enk, enkephalin; Dyn, dynorphin; DP, direct pathway; IP, indirect pathway. References: Fisone et al 
(2004); Morelli et al (2007); Schiffmann et al (2007). 
 

The striatum is primarily comprised of medium-spiny projection neurons (>95%) which use 

GABA as their principle neurotransmitter (Gerfen, 2004; Smith and Bolum, 1990). These 

output neurons influence the activity of several basal ganglia nuclei via two main efferents: 

the direct (dynorphin) and indirect (enkephalin) pathway (Gerfen, 1992). The striatum 

receives stimulatory input (glutamate) from the motor cortex, thalamus and limbic areas, 

while receiving modulatory input (dopamine) from the substantia nigra pars compacta. 

From here, the direct and indirect pathways have opposing actions on movement. The 

direct pathway inhibits the activity of the internal globus pallidus, disinhibits thalamic 

neurons and thus augments stimulatory input to the motor cortex. Conversely, the indirect 

pathway, via the external globus pallidus and subthalamic nucleus, inhibits thalamic neurons 

and thus attenuates glutamate projections to the motor cortex (Gerfen, 1992; Figure 2.3). 

Dopamine activates, via the D1 receptor, the direct pathway and inhibits, via the D2 

receptor, the indirect pathway (Gerfen, 2004). Adenosine, via the A2A receptor, attenuates 

dopamine-mediated inhibition of the indirect pathway. Caffeine, by potentiating D2 
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signalling in the A2A/D2 heteromer (Ferré et al. 1997), augments dopamine-mediated 

inhibition of the indirect pathway (Fisone et al. 2004). Of course, this is a gross simplification 

of how caffeine can influence the basal ganglia circuitry, especially since the precise 

functions of these striatal output neurons are only just being elucidated (Wall et al. 2013).  

There is also evidence to suggest that caffeine exerts it stimulatory actions by increasing 

striatal dopamine release through the blockade of presynaptic A1 receptors (Borycz et al. 

2007; Solanis et al. 2002; Quarta et al. 2004). However, these results were not confirmed in 

other animal models (Acquas et al. 2002; De Luca et al. 2007). Interestingly, the findings of 

De Luca et al (2007) suggest that previous reports of enhanced striatal dopamine release 

after caffeine administration (Solanis et al. 2002) might be due to inadequate placement of 

the microdialysis probe. Furthermore, the caffeine-mediated increase in striatal dopamine 

release may be sub-regional, with more consistent elevations in the medial compartments 

(Borycz et al. 2007). Nevertheless, supplementation with a low dose of caffeine (300 mg) 

failed to influence in vivo dopamine release in human striatum (n=20) as assessed by 

positron emission topography (PET) and [11C ] raclopride (Volkow et al. 2015). These data 

support those of a previous PET study after participants (n=8) ingested 200 mg caffeine 

(Kaasinen et al. 2004). Researchers from both investigations suggested that physiologically 

relevant doses of caffeine elicit changes in dopamine signalling via striatal A2A receptor 

blockade, without influencing dopamine release. Unfortunately, no human PET study has 

investigated whether caffeine can influence neurotransmitter release in other cerebral 

compartments.  

The ability of caffeine to increase arousal is well-established (Rainnie et al. 1994), which is 

likely due to enhanced cholinergic activity in the basal forebrain and prefrontal cortex 

(Acquas et al. 2002; Benington et al. 1995). This response was shown to be dependent on A1 

receptor blockade (Van Dort et al. 2009). Additionally, caffeine prolonged exercise time in 

rats in association with increased synaptic dopamine concentrations in the PO/AH (Zheng et 

al. 2014). A follow-up study by the same research group showed that caffeine inhibited the 

adenosine receptor agonist-induced decrease in running time and dopamine release in the 

same brain region (Zheng and Hasegawa, 2016). This suggests the ergogenic effect of 

caffeine is dependent on adenosine receptor blockade-induced dopamine release, at least in 

the PO/AH. Although large doses were administered in both of these studies (≥ 10 mg·kg−1), 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
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the influence of caffeine on neurotransmitter release in non-striatal regions should not be 

discounted.  

While the above studies provide strong evidence that caffeine enhances performance 

through a central mechanism, these data were obtained from animal models, cell cultures 

or resting human participants. However, a number of exercise studies in humans have 

provided further insight into the role caffeine may play in attenuating central fatigue. 

Recently, De Morree et al (2014) reported that caffeine supplementation reduced the 

motor-related cortical potential amplitude during isometric muscle contractions, despite 

participants being able to produce the same amount of force compared with placebo. The 

authors attributed this response to enhanced CNS excitability following caffeine ingestion. 

Indeed, caffeine may increase CNS excitability at a spinal or supraspinal level, including 

excitation of the alpha motor neuron pool and increases in motor evoked potentials and 

self-sustained firing of human motor units (Kalmar and Cafarelli, 2004a). An increase in self-

sustained firing is suggested to enhance motor neuron excitability and thus reduce the level 

of descending neural drive necessary to maintain a required power output during exercise 

(Walton et al. 2002). Similarly, the positive effect of caffeine of motor cortex excitability 

(Cerqueira et al. 2006) would reduce the magnitude of excitatory inputs from pre motor 

areas necessary to produce the same degree of primary motor cortex output.  Furthermore, 

when single-pulse TMS was used to estimate central excitability during exercise, caffeine 

increased the postactivation potentiation of cortical evoked potentials (Kalmar and Cafarelli, 

2004b), suggesting enhanced central motor drive to the locomotor muscles. Therefore, 

based on these observations, it seems caffeine can enhance power output during exercise 

by augmenting descending neural drive to the locomotor muscles and/or reducing the 

neural cost necessary to generate a specific power output (i.e. lowering the threshold for 

neuronal activation).  

 

2.5 Octopamine  

While the vast majority of athletes consume supplements to enhance performance 

(Lieberman et al. 2015), few actually hold up to the scrutiny of scientific research. As 

mentioned above, caffeine consistently enhances endurance performance due to its ability 
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to influence the CNS (Fredholm et al. 1999). Therefore, it would be of interest to determine 

whether other stimulant-based compounds can also influence endurance performance. 

Octopamine is a trace amine structurally similar to the neurotransmitter noradrenaline 

which functions as a principal stimulatory neurotransmitter in the invertebrate CNS 

(Farooqui, 2012); this is likely the reason it is currently on the WADA list of prohibited 

substances (WADA, 2015). In recent years, there have been reports of positive doping 

samples among athletes (WADA, 2011), despite no evidence from humans that octopamine 

actually improves exercise performance. 

 

2.5.1 Pharmacokinetics 

Octopamine exists either in the ortho (o-), meta (m-), or para (p-) form, depending on the 

location of the hydroxyl group on the benzene ring (Brown et al. 1998). In nature, p-

octopamine in synthesised from the precursor amino acid L-phenylalanine, which is 

converted to L-tyrosine via tyrosine hydroxylase. L-tyrosine is converted to the trace amine 

p-tyramine via aromatic L-amino acid decarboxylase (AADC) and then to p-octopamine via 

dopamine β-hydroxylase (Brandau and Axelrod, 1972; Figure 2.4). There are reports of m-

octopamine in mammalian nerves tissue and brain (Ibrahim et al. 1985), while o-octopamine 

does not occur in nature and is only derived through chemical synthesis. Given the role of p-

octopamine has been extensively studied, the specific involvement of the o-and m-isomers 

will no longer be considered in great detail. 
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Figure 2.4 Biosynthesis of octopamine. Blue and red font indicate precursor amino acids and primary trace 
amines, respectively. Enzymes (yellow background) TH, tyrosine hydroxylase; AADC, aromatic L-amino acid 
decarboxylase; DBH, Dopamine beta-hydroxylase; PNMT, Phenylethanolamine N-methyltransferase. 
References: Berry (2004); Broadley (2010); Lindemann and Hoener (2005).  
 

 

The physiological disposition of [3H] octopamine was determined by Hengstmann et al 

(1974). After oral ingestion, 93% of the dose was excreted in the urine compared with 82% 

via the intravenous route, suggesting the drug is well absorbed. Furthermore, peak serum 

concentrations were achieved 30-60 min post-ingestion (Hengstmann et al. 1974). 

Deamination and conjugation are the two major metabolic pathways responsible for 

octopamine clearance, with deamination by monoamine oxidase to p-hydroxmandelic acid 

constituting the major route of elimination (~66%; Hengstmann et al. 1974). These authors 

also showed that over eleven times more conjugated octopamine appears in the urine after 
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oral ingestion compared with intravenous infusion, suggesting the drug is rapidly 

metabolised via the oral route. 

 

2.5.2 Mechanism of Action 

Following the identification of octopamine in the salivary glands of the octopus (Erspamer, 

1948), a broad range of functions within the insect CNS were established, specifically signal-

transduction mechanisms mediated through the activation of octopamine receptors 

(Farooqui, 2012). These receptors are believed to represent the counterparts to 

adrenoreceptors in humans (Farooqui, 2007), yet octopamine receptors in insects and 

adrenoreceptors in mammals differ in their ligand binding characteristics. Hence, it is not 

possible to extrapolate the results obtained from one system to another (Stohs, 2014). For 

example, in invertebrates, octopamine binds to its α-adrenoreceptors with a greater affinity 

than adrenaline, noradrenaline, and dopamine (Evans et al. 1988; Klaassen and Kammer, 

1985; Park and Keeley, 1998). Conversely, in humans, octopamine exhibits a 30-fold (brown 

et al. 1988) and 2000-fold (Fregly et al. 1979) lower α-adrenergic activity than 

noradrenaline. However, an interesting observation is that octopamine can selectively and 

potently bind to mammalian β3-adrenoreceptors (Carpéné et al. 1999). These receptors are 

located in white and brown adipose tissue and their activation enhances lipolysis (Arch, 

2002). When comparing several biogenic amines, octopamine was shown to be the most 

potent and selective for β3-adrenoreceptors, stimulating lipolysis in rat, hamster and dog 

adipose tissue. Furthermore, octopamine expressed only a two-fold lower binding affinity 

for β3-adrenoreceptors than noradrenaline in a Chinese hamster ovary cell line (Carpéné et 

al. 1999).  

While specific octopamine receptors are not present in humans, the identification of the G-

protein-coupled trace amine-associated receptors (TAARs) has elucidated a potential central 

role for octopamine (Borowsky et al. 2001; Bunzow et al. 2001). Of the various TAAR 

subtypes identified (>20), octopamine binds to TAAR1 with highest affinity (Borowsky et al. 

2001). This receptor regulates cerebral neurotransmitter release (Liberles, 2015; Lindemann 

et al. 2008) and is expressed in the monoaminergic-enriched areas of the brain, including 

the striatum, substantia nigra, ventral tegmental area, locus coeruleus, amygdala, and raphe 
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nuclei (Berry, 2004; Borowsky et al. 2001; Linderman et al. 2008; Xie et al. 2007). 

Furthermore, TAAR1 is implicated in the functional regulation of the dopaminergic system 

(Miller, 2011), potentially influencing dopamine release and reuptake inhibition (Pei et al. 

2016; Xie et al. 2007; Xie and Miller, 2009). However, cerebral concentrations of 

octopamine are several hundred-fold lower than dopamine, noradrenaline, and serotonin 

(Berry, 2004), suggesting endogenous levels may act in a neuromodulatory capacity 

(Burchett and Hicks, 2006). Basal concentrations are detectable in plasma (~1 ng·mL−1; 

D'Andrea et al. 2010) and can fluctuate during various disease states. Lower concentrations 

are present in the early stages of Parkinson’s disease (D'Andrea et al. 2010) and Bulimia 

(D'Andrea et al. 2009), while plasma levels are elevated in patients with migraine (D'Andrea 

et al. 2012) and liver disease (Mousseau and Butterworth, 1995). These changes likely 

reflect a dysregulation in the metabolism of the precursor amino acids and/or their 

respective enzymes. For example, irregular activity of the enzyme tyrosine decarboxylase is 

a key feature of Parkinson’s disease (Haavik and Toska, 1998). 

Under the trade name Norphen, octopamine was administered to patients for the 

treatment of hypotensive and circulatory disorders. Doses of 450-600 mg·day−1 resulted in 

mild increases in systolic blood pressure (6-14 mm Hg), without the presence of adverse 

effects (Braasch et al. 1971; Mestrovic, 1972; Kuske, 1969; Stucke, 1972; Ziegelmeyer, 

1972). A variety of dosing protocols were employed, including repeated administration of 

drops and chewable capsules (Kuske, 1969), sustained release tablets or capsules (Braasch 

et al. 1971; Stucke, 1972; Ziegelmeyer, 1972), and intravenous infusions (Mestrovic, 1972). 

However, these studies did not investigate the physiological effects of octopamine in 

normotensive individuals, and no study has examined its performance effects in humans. 

Intracerebroventricular administration of octopamine increased locomotor activity in rats 

(Jagiełło-Wójtowicz, 1979; Jagiełło-Wójtowicz and Chodkowska, 1984), but this response 

was not confirmed elsewhere (Delacour and Guenaire, 1983). Furthermore, octopamine 

administration decreased GABAergic transmission in rats (Jagiełło-Wójtowicz and 

Chodkowska, 1984), while endogenous levels are purported to play a role in the central 

stress response (Ennaceur et al. 1986). When rats were subjected to bouts of uncontrolled 

stress, a decrease in octopamine in the hypothalamus and brain stem was observed 

(Ennaceur et al. 1986). Although the functional significance of this response is not clear, 
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neurons within the hypothalamus and brain stem mediate the top-down stress response 

(Joëls and Baram, 2009).  

 

2.6 Pituitary Hormones as Indirect Measures of Central Neurotransmission 

While the advent of brain imaging techniques such as PET and MRI has provided new 

avenues to monitor the central effects of various nutritional and pharmacological 

interventions, these methods are typically limited to clinical and diagnostic research. 

Furthermore, factors such as expense, the need for trained operators, and logistical 

problems with performing exercise in or close to the equipment precludes their application 

in exercise physiology-based research. As such, the measurement of peripheral hormones is 

typically used an as index of central neurotransmission (Checkley, 1980). This is due to the 

role of central monoamines in the control of hormone release from the anterior and 

posterior pituitary gland (Smith and Vale, 2006).  

Neurons within the paraventricular nucleus (PVN) of the hypothalamus synthesise and 

release corticotropin-releaing factor (CRF), a major regulator of the central stress response 

(Rivier and Vale, 1983). Noradrenergic projections from the brain stem induce CRF release 

from the PVN, which acts on the pituitary gland to secrete adrenocorticotropic hormone 

(ACTH) into the blood. Circulating ACTH then stimulates cortisol release from the adrenal 

gland (Tsigos and Chrousos, 2002). The influence of central serotoninergic and dopaminergic 

activity on pituitary hormonal release is also fairly well-established. Serotonin was initially 

believed to stimulate prolactin release (Van de Kar, 1997), with little influence from 

noradrenaline (Freeman et al. 2000). However, prolactin secretion is under tonic inhibition 

from tuberoinfundibular dopamine neurons, with a decrease in prolactin suggesting an 

increase in dopamine (Ben-Jonathan and Hnasko, 2001). Serotonin augments circulating 

ACTH and thus cortisol (Dinan, 1996), while noradrenaline has opposing actions at α-and ß-

adrenoreceptors on growth hormone release (Checkley, 1980; Van der Kar, 1997).  

Monitoring the hormonal response to a given nutritional or pharmacological intervention is 

a common tool in exercise physiology and provides useful information regarding alterations 

in central neurotransmission. The central effects of drugs which act via noradrenergic 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Jo%26%23x000eb%3Bls%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19339973
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(Cooper et al. 1994) and dopaminergic (Floel et al. 2008) mechanisms are in accordance 

with the hormonal responses reported in previous exercise studies (Watson et al. 2005a; 

Cordery et al. 2016). However, due to the complex functional integration of the monoamine 

neurotransmitter systems, it is difficult to determine the precise contribution of a single 

neurotransmitter to a given hormonal response. Furthermore, the involvement of other 

neurotransmitters systems (i.e. glutamate, GABA, orexin), neuropeptides, and endogenous 

opioids should be considered (Meeusen et al. 2006). There also remains a degree of 

uncertainty regarding the endocrine response to physiological and psychological stress 

(Dinan, 1996; Smith and Vale, 2006), which may conflate the significance of a given 

hormonal response.  

 

2.7 Summary 

Few studies have investigated the performance and thermoregulatory effects of caffeine 

during prolonged exercise in the heat (Armstrong et al. 2007). Similarly, the influence of 

habituation to caffeine has received little attention (Bell and McLellan, 2002; Irwin et al. 

2011). This is despite a high prevalence of intake by athletes during competition (Desbrow 

and Leveritt, 2006) and across the general population (Fitt et al. 2013). While octopamine is 

currently placed on the WADA prohibited list (WADA, 2015), no study has examined its 

performance or metabolic effects during prolonged exercise in humans.  

The studies described in chapters 4 and 5 are designed to further explore the performance 

and physiological effects of acute caffeine supplementation during prolonged exercise in the 

heat. Specifically, chapter 4 was the first study to examine the thermoregulatory and 

ergogenic effects of a low dose of caffeine, administered either as a single-or split-dose prior 

to prolonged exercise. Due to the lack of consistent findings within the literature (Ganio et 

al. 2011; Roelands et al. 2011), the aim of chapter 5 was to determine whether a moderate 

caffeine dose influences endurance performance or thermoregulation during prolonged 

cycle exercise. Chapter 6 was designed to assess the influence of a prolonged period of 

controlled chronic caffeine intake on endurance performance. As previous studies utilised 

sub-chronic supplementation protocols (i.e. 4 days; Irwin et al. 2011), the habituation 

protocol employed in chapter 6 was more representative to that observed within the 
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general population (Fit et al. 2013). The precise role of octopamine in humans is not clear, 

although it may possess stimulant-like properties (Stohs, 2014; WADA, 2015) and influence 

fat metabolism (Carpéné et al. 1999). As such, the study described in chapter 7 investigated 

whether an acute dose of octopamine could influence endurance performance or 

metabolism. 
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Chapter 3 

General Methods 

3.1 Ethical Approval 

All experimental protocols were approved by the Ethics Approvals (Human Participants) 

Sub-Committee at Loughborough University, UK. The reference numbers for the procedures 

described in chapters 3, 4, 5, and 6 are R12-P115, R15-P104, R14-P76, and R15-P072, 

respectively. All prospective participants were first approached either in person, or via email 

and poster advertisements. The full nature and purpose of the investigation was explained 

verbally and documented in the respective participant information sheet; this included 

information regarding any potential risks or discomfort that might arise during the study. 

For example, in chapters 3, 4, and 5, participants were informed about the mild side effects 

associated with caffeine ingestion. Additionally, participants in chapter 6 were informed 

that octopamine is currently on the WADA list of prohibited substances. Following an 

opportunity to ask questions, those interested in participating completed a health screen 

questionnaire to ensure eligibility for the study. After this, a written statement of consent 

was signed. Each participant was fully aware they could withdraw from the study at any 

point, without having to provide their reasons for doing so.  

 

3.2 Participants  

All participants were male, aged 18-40 years, and were recruited from the staff and student 

population at Loughborough University, as well as local sports clubs. Given the physically 

demanding nature of the investigations, all participants were familiar with the sensation of 

strenuous and prolonged exercise. Individuals with a history of metabolic disease or those 

which presented illness at the time of the study were excluded. In chapters 4 and 5, 

participants were unaccustomed to exercise in a warm environment at the time of the 

study. In chapter 6, only participants with a habitual caffeine intake of <75 mg·kg−1 were 

allowed to take part in the study. Those who failed to meet the inclusion criteria were 

thanked for their interest and informed their help would not be required.  
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3.3 Experimental Design  

All investigations employed a placebo-controlled, repeated-measures design. In chapters 4, 

5, and 7, all trials were randomised using a Latin-square design and were conducted in a 

double-blind manner. In chapter 6, the initial 2 trials were randomised and double-blind 

while the final trial was single-blind. Furthermore, a control group was used to enable a 

double-blind chronic supplementation period (discussed in chapter 6.3). Hence, chapter 6 

employed a mixed-measures design protocol (i.e. between and within factors), whereas 

chapters 4, 5, and 7 utilised a within-measures design.    

 

3.4 Measurement of Peak Oxygen Uptake 

During each investigation, participants had their peak oxygen uptake (VO2peak) established at 

least 72 hours before the familiarisation trial. This determined the workload used during the 

subsequent familiarisation and experimental trials. This test consisted of continuous 

incremental exercise on an electronically braked cycle ergometer (Lode Corival, Groningen, 

The Netherlands) set in hyperbolic mode (i.e. cadence independent).  

Participants began exercise at a workload of 95 Watts (W), with the intensity increasing by 

35W every 3 min until volitional exhaustion. Participants received verbal encouragement 

from the investigators to help ensure a maximum effort. At the end of exercise, maximum 

workload (Wmax) was calculated according to Jeukendrup et al (1996). In chapter 6, 

participants completed a second VO2peak test to account for any potential change in fitness 

over the study period; this followed the same procedure described above.  

In chapters 4 and 6, expired gas samples were collected during the final min of each stage 

using the Douglas bag method. If participants indicated they could not finish their current 

stage, a final sample was collected during the last min of exercise. In chapters 5 and 7, 

expired gas was collected during the final min of exercise only. In both tests, VO2peak was 

defined as the highest VO2 measured. Heart rate (Polar Beat, Kempele, Finland) and RPE 

(Borg, 1982) were recorded at the end of each stage and at exhaustion. 
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Expired gas was analysed for oxygen and carbon dioxide concentrations with a 

paramagnetic analyser (Servomex 1400, Sussex, UK) calibrated against gases of known 

concentration (British Oxygen Company, London, UK). Total volume was quantified (Harvard 

Dr Gas Meter, Harvard Apparatus, USA) and gas temperature was determined with an 

electronic sensor (Edale Instruments Ltd, Cambridge, UK). All gas volumes were expressed 

as standard temperature and pressure for dry gas (STPD) and barometric pressure was 

recorded with a standard mercury barometer. Oxygen uptake and carbon dioxide 

production were determined using published equations (Frayn, 1983). In chapters 4 and 6, 

the oxygen uptake to work-rate relationship was used to calculate the intensity of exercise 

during each trial. In chapters 5 and 7, the workload was calculated relative to Wmax.  

 

3.5 Standardisation of Conditions 

Before the experimental trials, all participants undertook one familiarisation trial. This visit 

ensured that participants were accustomed to the procedures employed during the 

investigation, to minimise learning or anxiety effects, and to ensure attainment of a 

maximum effort during the performance task. This visit was identical to the experimental 

trials in all respects, although no treatment was administered.   

To ensure metabolic conditions were similar across trials conditions, participants were 

provided with a dietary and physical activity diary to complete in the 24 hours before the 

familiarisation trial and to replicate this during the 24 hours preceding each subsequent 

experimental trial. Participants were also instructed to refrain from strenuous physical 

activity and alcohol ingestion during this period. The caffeine-specific standardisation 

protocols for each experimental chapter are fully described in their respective methods 

section. During each study, participants were provided with a list of commonly consumed 

caffeinated foods and drinks to help achieve these requirements. Compliance to these 

measures was verified at the start of each trial, before any data collection. 

All trials were performed in the morning (start: 7-9am) after an overnight fast (8-12 hours), 

although participants ingested 500 mL of plain water 60 min before arriving at the 

laboratory. The environmental conditions in chapters 6 and 7 were approximately 20oC and 
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50-60% RH. Similar environmental conditions were maintained during the pre-exercise rest 

period in chapters 4 and 5. However, during exercise the environmental conditions were 

30oC and 50% RH; these conditions were maintained using a climatic chamber (Weiss 

Technik, Loughborough, UK). Furthermore, the familiarisation and experimental trials were 

separated by 7-10 days to limit the development of heat acclimation (Barnett and Maughan, 

1993). All trials were performed at the same time of day to minimise circadian-type 

variations in performance; this also controlled for diurnal changes in thermoregulation in 

chapters 4 and 5 (Reilly and Brooks, 1986). Participants used the same ergometer during 

each visit and were supervised by the same investigator. Additionally, saddle height was 

recorded during the VO2peak test, which was used during each subsequent trial.   

 

3.6 Experimental Trials 

The exercise protocol employed during each investigation was a preloaded performance 

task. After a prolonged period of exercise at a fixed work-rate (30-60 min), the ergometer 

was programmed for the performance task. Participants were instructed to produce as 

much work (kJ) as possible within 30 min; this method is consistent with previous studies 

(Cheuvront et al. 2009; Ganio et al. 2011). Before starting, participants were encouraged to 

produce a maximal effort. The initial workload was set at 75% VO2peak or Wmax, but 

participants were free to adjust the intensity of exercise as desired from the outset. During 

exercise, participants received information regarding time elapsed and cadence, but no 

other information or verbal encouragement was provided. Each participant was provided 

with two chances to practice pacing and control of the ergometer; once shortly after 

completing the initial VO2peak test, and again during the familiarisation trial.  

In each study, post-void nude body mass was recorded upon arrival to the laboratory (Adam 

AFW-120 K, Milton Keynes, UK) and again immediately after exercise, after participants 

towelled dry (chapters 4 and 5). The change in body mass, corrected for urine output and 

fluid intake, was used to estimate sweat rate. These values were not corrected for 

respiratory water losses or changes in metabolic water production due to substrate 

oxidation. In chapters 4 and 5, participants ingested a radio-telemetry pill (CorTemp, HG Inc, 

Palmetto, Florida, USA) the evening before each experimental trial; this was used as an 
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index of core temperature. This method significantly correlates with rectal temperature 

during prolonged exercise in high ambient temperature (Ganio et al. 2009a). Furthermore, 

skin surface temperature thermistors (Grant Squirrel SQ800, Cambridgeshire, UK) were 

attached to four sites (chest, upper arm, thigh, and calf) for the calculation of weighted 

mean skin temperature (Ramanathan, 1964); these were held in place with Transpore 

medical tape (3M, Loughboorugh, UK). During all trials, heart rate was recorded using short-

range telemetry (Polar Beat, Kempele, Finland). Perceived exertion was recorded 

throughout exercise using the 15-point Borg scale (Borg, 1982). In chapters 4 and 5, 

perceived thermal stress (using a 21 point scale ranging from -10, unbearable cold, to +10, 

unbearable heat) was recorded at rest and during exercise. In chapters 4, 6, and 7, expired 

gas samples were collected every 15 min during the fixed-intensity exercise. In chapter 5, 

expired gas samples were collected every 30 min. These values were used to estimate the 

rates of fat and carbohydrate oxidation during exercise (Peronnet and Massicotte 1991). 

During the fixed-intensity exercise, plain water (temperature: ~20oC) was provided every 15 

min; the amount administered was 150 mL in chapters 4 and 5 and 100 mL in chapters 6 and 

7, respectively.  

 

3.7 Blood Collection and Analysis 

To prevent postural changes in blood volume, participants rested in a supine position for 15 

min before the first venous sample was collected. During all trials, a 21 g butterfly cannula 

was inserted into an antecubital forearm vein; this was attached to a three-way tap (BD 

Connecta, Helsingborg, Sweden) to enable repeated blood sampling throughout each trial. 

After each sample was collected, the cannula was flushed with 2.5 mL of saline to ensure 

patency. The volume of blood collected during each sample was 7 mL in chapters 4, 5 and 6 

and 12 mL in chapter 7, respectively.  

All venous samples were drawn directly into dry syringes. During all trials, 2 mL was 

dispensed into tubes containing K2EDTA. Duplicate 100 μL sub-samples were rapidly 

deproteinised in 1 mL of ice-cold 0.3 N perchloric acid. These were centrifuged, with the 

resulting supernatant used for spectrophotometric determination of plasma glucose in 

duplicate using a commercially available assay (GOD-PAP, Randox Ltd, UK). Haemoglobin 
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(Hb; cyanmethemoglobin method) was measured in duplicate with spectrophotometric 

detection while haematocrit (Hct) was measured in triplicate by microcentrifugation 

(Hawksley, Sussex, UK). Both Hb and Hct were determined on the same day the samples 

were collected; these data were used to estimate percentage changes to blood and plasma 

volumes relative to the resting sample (Dill and Costill, 1974). During all trials, 5 mL of whole 

blood was dispensed into tubes containing clotting activator (Sarstedt, Germany). In chapter 

7, a further 5 mL was dispensed into tubes containing K2EDTA (Sarstedt, Germany). These 

were left on ice for at least 60 min prior to centrifugation at 1750 g for 10 min at 4oC to yield 

serum and plasma, respectively. The supernatants were transferred into eppendorf tubes 

and stored at -21oC until analysis. In each study, serum cortisol and prolactin were 

measured via Enzyme-linked immunosorbent assay (ELISA; DRG diagnostic, Germany). In 

chapters 4, 5, and 6, serum caffeine was determined with reverse-phase high performance 

liquid chromatography (HPLC) with ultraviolet detection (Holland et al. 1998). In chapter 7, 

serum octopamine was measured with reverse-phase HPLC with fluorescence detection 

(Wood and Hall, 2000) and plasma FFA (Randox laboratories Ltd, Crumlin, UK) by 

colorimetric methods (ABX Pentra 400, Horiba Medical, UK). All standard curves were 

measured in duplicate, while participant samples were measured in singlicate. Section 3.8 

provides the intra-assay coefficient of variation (CV) for plasma glucose, haemoglobin, and 

haematocrit. The CV’S for caffeine, cortisol, prolactin, octopamine, and FFA’s are provided in 

the relevant experimental chapters.  

 

3.8 Coefficient of Variation of Methods (n=20) 

Measure Method Mean SD CV 

Plasma glucose (mmol·L−1) 

Haemoglobin (g·dL−1) 

Haematocrit (%) 

GOD-PAP (Randox) 

Cyanmethaemoglobin 

Microcentrifugation 

4.57 

14.79 

44.10 

0.08 

0.11 

0.35 

1.86 

0.74 

0.79 

Note: CV=(SD/Mean)*100 
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Chapter 4 

Performance and Thermoregulatory Responses to 

Prolonged Exercise in the Heat Following Two Low-Dose 

Caffeine Ingestion Strategies 

4.1 Abstract 

The aim of this study was to examine the performance and thermoregulatory effects of two 

low-dose caffeine ingestion strategies in high ambient temperature. Ten recreationally 

active males completed an incremental exercise test, one familiarisation trial and three 

experimental trials. Participants ingested a single 3 mg·kg−1 caffeine dose 60 min before 

exercise (single-caffeine), a 1.5 mg·kg−1 dose 60 min and immediately before exercise (split-

caffeine) or a placebo. Trials consisted of 60 min of cycle exercise at 60% peak oxygen 

uptake followed by a 30 min performance task (total kJ produced) in 30˚C and 50% RH. 

Performance was improved in the single-caffeine (341.9 ± 45.9 kJ; Cohen’s d effect size 

[d]=0.42; P=0.029; 95% CI: 2.4-43.1 kJ; 90.2% chance of benefit) and split-caffeine trial 

(357.6 ± 53.3 kJ; d=0.67; P<0.05; 95% CI: 23.7-53.1 kJ; 99.6% chance of benefit) compared 

with placebo (319.2 ± 62.0 kJ). The split-dose strategy further enhanced performance than 

single-dose administration (d=0.32; P=0.059; 95% CI: 0.6-31.9 kJ; 78.5% chance of benefit). 

Caffeine did not influence thermoregulation, hormonal concentrations or substrate 

oxidation (all P>0.05). Perceived exertion was lower throughout the initial 60 min of exercise 

during both caffeine trials than placebo (P<0.048), but no difference was observed between 

the two caffeine trials (P=0.506). While performance was enhanced after single-dose 

administration, dividing the caffeine bolus conferred additional benefit. Consequently, 

repeated low-doses could potentiate the efficacy of the same total caffeine dose when 

exercise is performed in the heat.  
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4.2 Introduction 

Caffeine (1,3,7-trimethylxanthine) is a popular nutritional supplement consumed by athletes 

(Desbrow and Leveritt, 2006). When exercise is performed in temperate environmental 

conditions (~20 oC), caffeine has well-established positive effects on endurance performance 

(Burke, 2008). However, the influence of a high ambient temperature on caffeine’s 

ergogenic potential has received less attention. Supplementation with 6 mg·kg−1 enhanced 

maximal voluntary contraction of the quadriceps (Del Coso et al. 2008) and enabled 

participants to produce more work (kJ) during a 15 min performance task compared with 

placebo (Ganio et al. 2011). Conversely, TT performance was not influenced by caffeine 

doses of 6 mg·kg−1 (Roelands et al. 2011) or 9 mg·kg−1 (Cheuvront et al. 2009). Furthermore, 

21 km race performance was not enhanced with caffeine intakes of 5 or 9 mg·kg−1 in hot, 

humid conditions (Cohen et al. 1996). Hence, caffeine’s ergogenic effects are less consistent 

when exercise is undertaken in a warm environment, at least when moderate to large doses 

(i.e. 5-9 mg·kg−1) are consumed.  

It is well-documented that the capacity to perform prolonged exercise becomes impaired as 

the ambient temperature increases (Galloway and Maughan, 1997). The increased 

physiological burden to dissipate heat through the skin and the concomitant elevation in 

core temperature are key factors mediating this deterioration in performance (Cheuvront et 

al. 2010; Nybo, 2010). The resulting hyperthermia influences several aspects of central 

nervous system function, including altered brain activity (Nielsen et al. 2001c), reduced 

maximal voluntary contractions (Nybo and Nielsen, 2001a) and increased perception of 

effort (Nybo and Nielsen, 2001b), leading to a decreased drive to continue exercise (Nybo, 

2010). Previous studies have demonstrated that caffeine can influence thermoregulation 

during exercise in high ambient conditions (Cheuvront et al. 2009; Ely et al. 2011; Roelands 

et al. 2011). Caffeine has elicited large (Roelands et al. 2011) and small (Cheuvront et al. 

2009; Ely et al. 2011) increases in core temperature compared with placebo. Additionally, 

sweat-electrolyte losses were greater after caffeine intake in the heat (Del Coso et al. 2009). 

Hence, these challenges to thermoregulation and fluid-balance could preclude the 

ergogenic effects of caffeine when exercise is performed in the heat. Interestingly, these 

responses are typically observed when moderate to large caffeine doses (i.e. 6-9 mg·kg−1) 

are employed (Cheuvront et al. 2009; Del Coso et al. 2009; Ely et al. 2011; Roelands et al. 
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2011). Therefore, the provision of smaller doses (~3 mg·kg−1) could prove a more prudent 

strategy when aiming to enhance performance in the heat, thus avoiding the deleterious 

physiological effects induced by larger caffeine intakes. To date, only one study has 

employed this approach (Pitchford et al. 2014). These authors reported improved cycle TT 

performance when 3 mg·kg−1 of caffeine was administered prior to prolonged exercise in 

the heat (35oC and 25% RH). While core temperature was similar between trials, the self-

paced TT employed makes comparing the physiological data between trials difficult to 

interpret due to fluctuations in power output. Additionally, these authors did not measure 

skin temperature. It therefore remains to be determined if a low-dose of caffeine can 

influence thermoregulation during prolonged fixed-intensity exercise in the heat.  

Differences in caffeine-dosing strategies can influence the core temperature response to 

prolonged exercise in the heat (Ganio et al. 2011; Roelands et al. 2011). Both studies 

provided 6 mg·kg−1 and examined the influence of caffeine at a fixed work-rate. Roelands et 

al (2011) reported an elevation in core temperature from 25 min until the end of exercise 

after the provision of a single 6 mg·kg−1 dose. Conversely, Ganio et al (2011) did not 

observed a caffeine-induced increase in core temperature after dividing the caffeine bolus 

into two 3 mg·kg−1 doses. This discrepancy led to the suggestion that splitting the caffeine 

bolus could distribute its thermogenic effects during prolonged exercise in high ambient 

temperature (Pitchford et al. 2014). Dividing the caffeine bolus in a temperate environment 

confers a similar performance benefit compared with single-dose administration (Conway et 

al. 2003; Cox et al. 2002). Moreover, the optimum caffeine dose required to enhance 

performance in temperate conditions plateaus at 3 mg·kg−1 (Desbrow et al. 2012). However, 

no study has investigated the effects of a single and divided low-dose of caffeine on 

endurance performance and thermoregulation in the same participant group during 

prolonged exercise in the heat. 

Hence, the aim of this study was to examine the influence of a low-dose of caffeine, 

administered either as a single-or split-dose, on endurance performance and 

thermoregulation during prolonged exercise in the heat.  
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4.3 Methods 

Ten healthy, recreationally active males (Age: 22 ± 4 y; body mass: 82.0 ± 9.8 kg; height: 

1.80 ± 0.08 m; VO2peak: 49.0 ± 3.4 mL·kg−1·min−1) took part in this double-blind, placebo 

controlled, randomised, cross-over study. All participants completed one initial incremental 

exercise test to exhaustion, one familiarisation trial, and three experimental trials. The 

preliminary trial consisted of an incremental exercise test to volitional exhaustion 

conducted on an electronically braked cycle ergometer (Lode Corival, Groningen, Holland) 

to determine VO2peak and the power output required to elicit 60% and 75% VO2peak. This test 

was conducted in temperate conditions (~20˚C). After 5-7 days, the familiarisation trial was 

undertaken to ensure participants were fully accustomed to the procedures employed 

during the investigation and to minimise any learning or anxiety effects. This visit was 

performed in environmental conditions maintained at 30oC and 50% RH and was identical to 

the experimental trials in all respects, although no treatment was administered. 

The trial overview is depicted in figure 4.1. The pre-trial dietary and exercise standardisation 

procedures are outlined in chapter 3.5. No caffeine was permitted during the 24 hours 

before the familiarisation and experimental trials. Participants were given a telemetry pill to 

ingest the evening before each experimental trial to enable the measurement of core 

temperature. On the day of testing, participants arrived at the laboratory (7-9am) and post-

void nude body mass was recorded. After 15 min of seated rest, a 21 g cannula was inserted 

into an antecubital vein to enable repeated blood sampling. An initial 7 mL resting blood 

sample was collected after which participants received a capsule containing 3 mg·kg−1 

(single-caffeine) or 1.5 mg·kg−1 (split-caffeine) of anhydrous caffeine (BDH Ltd, Poole, UK) or 

250 mg of starch (BDH Ltd, Poole, UK; Placebo) with 50 mL of plain water. A telemetry 

heart-rate band was then positioned (Polar Beat, Kempele, Finland) and skin surface 

temperature thermistors (Grant Squirrel SQ800, Cambridgeshire, UK) were attached to four 

sites (chest, upper arm, thigh, and calf) to determine weighted mean skin temperature 

(Ramanathan, 1964). After 45 min of seated rest in 20 oC, core and skin temperature and 

heart rate were recorded at 5 min intervals. A second venous sample (7 mL) was collected 

60 min post-capsule ingestion. Next, participants consumed a second capsule containing 

250 mg of starch (single-caffeine and placebo) or 1.5 mg·kg−1 of caffeine (split-caffeine). All 

capsules were indistinguishable with regards to dimension, weight and colour 
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Participants then entered a climatic chamber (Weiss-Gallenkamp, UK) maintained at 30˚C 

and 50%. Trials consisted of 60 min of cycle exercise at a workload corresponding to 60% 

VO2peak. During this period, core and skin temperature and heart rate were recorded every 5 

min. Perceived exertion (Borg 1982) and perceived thermal stress (using a 21 point scale 

ranging from -10, unbearable cold, to +10, unbearable heat) were measured every 10 min. 

Expired gas samples (1 min) were collected into Douglas bags every 15 min to determine the 

rates of fat and carbohydrate oxidation (Peronnet and Massicotte 1991). After each sample, 

participants were provided with 150 mL of plain water and venous samples (7 mL) were 

collected every 20 min. 

Following the fixed intensity exercise, there was a 2-3 min delay whilst the ergometer was 

set up for the performance task. Participants were instructed to complete as much work (kJ) 

as possible within 30 min. Exercise began at a workload corresponding to 75% VO2peak, but 

from the outset participants were free to increase or decrease their power output as 

desired. Core and skin temperature and heart rate were measured every 5 min while RPE 

and thermal stress were recorded at 10 and 20 min, respectively. Immediately after the 

performance task, a final venous sample (7 mL) was collected while participants remained 

seated on the ergometer. Participants then returned to a comfortable environment (~20˚C) 

where the cannula, telemetry band and skin thermistors were removed. Thereafter, nude 

body mass, corrected for fluid intake, was recorded to enable the estimation of sweat rate.  

Whole blood (2 mL) was used to measure Hb, Hct, and glucose. The remaining blood (5 mL) 

was used to yield serum for the subsequent analysis of serum prolactin and cortisol with 

ELISA (DRG diagnostics, Germany) and caffeine with reverse-phase HPLC (Holland et al. 

1998) as described in chapter 3.7. The intra-assay CV for serum prolactin, cortisol, and 

caffeine was 5.9%, 3.1%, and 3.3%, respectively.  

All data were analysed using IBM SPSS statistics version 21.0. Normality was assessed with 

the Shapiro Wilk test. To evaluate differences in exercise performance, fasting plasma 

glucose, pre exercise nude body mass, initial core temperature and sweat rate across trials 

conditions, a one-way repeated-measures analysis of variance (ANOVA) was employed. 

Cohen’s d effect size for differences in total work produced during the experimental trials 

was calculated ([mean 1 - mean 2]/pooled SD) and interpreted as trivial (0-0.19), small (0.2-
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0.49), medium (0.5-0.79) or large (>0.8) as previously described (Cohen 1992). Variables 

measured throughout each trial were analysed using a two-way (trial x time) repeated-

measures ANOVA. Where the assumption of sphericity had been violated, the degrees of 

freedom were corrected with a Greenhouse-Geisser as appropriate. Main effects and 

interactions were followed up with Bonferroni-adjusted paired t-tests for normally 

distributed data or Bonferroni-adjusted Wilcoxon Signed Rank tests for non-normally 

distributed data. In addition to null-hypothesis testing, magnitude-based inferences 

examined whether the observed changes in performance were meaningful (Hopkins 2000). 

Based on previous findings (Ganio et al. 2009b), the smallest worthwhile change in 

performance was set at 3% (10 kJ). Data are presented as means ± standard deviation (SD) 

throughout, unless otherwise stated. Statistical significance was accepted at P<0.05. 

 

 

  

Figure 4.1 Trial overview 
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4.4 Results 

Self-reported habitual caffeine intake revealed that participants were low caffeine 

consumers (mean: 75 ± 77 mg·day−1). No side effects related to the treatment were 

reported during any of the trials. There were no main effects of trial for pre-exercise nude 

body mass (P=0.528), initial core temperature (P=0.369) or fasting plasma glucose (P=0.625), 

suggesting participants began each trial in a similar physiological state. 

There was a main effect of trial for exercise performance (P<0.05). Total work produced was 

greater during the single-caffeine (341.9 ± 45.9 kJ; d=0.42; P=0.029) and split-caffeine trial 

(357.6 ± 53.3 kJ; d=0.67; P<0.05) compared with placebo (319.2 ± 62.0 kJ; Figure 4.2). Based 

on the smallest worthwhile change of 10 kJ, the chance these increases represent a 

beneficial, trivial or harmful influence on performance is 90.2%, 9.7% and 0.2% (95% CI: 2.4 

to 43.1 kJ) for the single-caffeine trial and 99.6%, 0.4% and 0.0% (95% CI: 23.7 to 53.1 kJ) for 

the split-caffeine trial, respectively. There was a small increase in work produced during the 

split-caffeine trial compared with single-caffeine (d=0.32; P=0.059); the chance this 

difference represents a beneficial, trivial or harmful influence on performance is 78.5%, 

21.2% and 0.3% (95% CI: -0.6 to 31.9 kJ), respectively. 

Figure 4.2 Mean (bars) and individual (lines) work produced during the performance task. *denotes 
single-caffeine and split-caffeine greater than placebo (P<0.029). ‡denotes P=0.059 compared with 
single-caffeine. Values are mean ± SD. 
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All 10 participants performed best during the split-caffeine trial, 1 performed worst during 

the single-caffeine trial and 9 performed worst during the placebo trial (Figure 4.2). Only 1 

participant correctly guessed the order of the trials, suggesting that the blinding treatment 

was successful (i.e. less than chance).     

There were no differences across trials for pre-exercise core temperature (P=0.255; Figure 

4.3A). There was a main effect of time for core temperature during the fixed-intensity 

exercise (P<0.05), but no main effect of trial (P=0.123) or trial x time interaction (P=0.808). 

During the performance task there was a main effect of time (P=0.022), trial (P<0.05), and a 

trial x time interaction (P<0.05). Higher values were recorded from 20 to 30 min during the 

split-caffeine trial compared with single-caffeine and placebo (P<0.05). Furthermore, higher 

values were recorded at 25 and 30 min during the single-caffeine trial compared with 

placebo (P<0.05; Figure 4.3A). There were no differences across trials for pre-exercise skin 

temperature (P=0.459; 4.3B). There was a main effect of time for skin temperature during 

the fixed-intensity exercise (P<0.05), with values steadily increasing and reaching a plateau 

after 25 min. No main effect of trial (P=0.610) or trial x time interaction (P=0.864) was 

apparent. Similarly, during the performance task there was a main effect of time (P=0.019), 

but no main effect of trial (P=0.250) or interaction effect (P=0.862; Figure 4.3B).  
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Figure 4.3 Core (A) and skin (B) temperature during the experimental trials. Single-caffeine and split-
caffeine greater than placebo are denoted as * and #, respectively. Split-caffeine greater than single-
caffeine is denoted as †. All notations are P<0.05. PT, performance test. Values are mean ± SD. 
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There was a main effect of time (P<0.05), trial (P<0.05) and a trial x time interaction (P<0.05) 

for serum caffeine. Baseline concentrations were similar across trials (P>0.05), remaining 

below the limit of detection for most participants. Circulating concentrations were 2.24 ± 

0.73 μg·mL−1 and 1.16 ± 0.28 μg·mL−1 60 min post-ingestion during the single-caffeine and 

split-caffeine trials, respectively (P<0.05; Figure 4.4). Caffeine concentrations remained 

higher throughout the initial 40 min of exercise during the single-caffeine trial compared 

with split-caffeine (P<0.05). After the performance task, higher values were recorded during 

the split-caffeine trial than single-caffeine (P<0.05; Figure 4.4).  

 

Figure 4.4 Circulating caffeine during the experimental trials. Single-caffeine and split-caffeine 
greater than placebo are denoted as * and #, respectively. Single-caffeine greater than split-caffeine 
is denoted as §. Split-caffeine greater than single-caffeine is denoted as †. All notations are P<0.05. 
Values are mean ± SD.   
 

Circulating cortisol showed a main effect of time (P=0.001), but no main effect of trial 

(P=0.404) or trial x time interaction (P=0.545; Figure 4.5A). There was a main effect of time 

for circulating prolactin (P<0.05), with higher values recorded from 20 min until the end of 

exercise compared with baseline (P<0.05; Figure 4.5B). No main effect of trial (P=0.978) or 

trial x time interaction (P=0.832) was apparent.  
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Figure 4.5 Circulating cortisol (A) and prolactin (B) during the experimental trials. *denotes a 
significant difference (P<0.05) from -60. Values are mean ± SD. 
 

 

Plasma glucose showed a main effect of time (P<0.05), but no main effect of trial (P=0.415) 

or interaction effect (P=0.693; Figure 4.6).  
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Figure 4.6 Plasma glucose during the experimental trials. *denotes a significant difference (P<0.05) 
from -60. Values are mean ± SD. 

 

Changes to blood and plasma volume showed main effects of time (P<0.05), but no main 

effects of trial (P>0.345) or trial x time interactions (P>0.387) were apparent. There was no 

main effect of time (P=0.248), trial (P=0.638) or a trial x time interaction (P=0.699) for 

changes to cell volume. 

During the fixed-intensity exercise RPE showed main effects of time (P<0.05) and trial 

(P<0.05), but no interaction effect (P=0.155). Lower values were recorded during the single-

caffeine (P=0.048) and split-caffeine trial (P=0.003) compared with placebo (Figure 4.7). No 

difference was observed between the two caffeine trials (P=0.506). During the performance 

task RPE showed a main effect of time (P<0.05), but no main effect of trial (P=0.907) or trial 

x time interaction (P=0.098).  
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Figure 4.7 Perceived exertion during exercise. *denotes placebo greater than single-caffeine and 
split-caffeine (P<0.048). PT, performance test. Values are mean ± SD. 
 

Thermal stress showed a main effect of time during the fixed-intensity exercise and 

performance task (P<0.05), but no main effect of trial (P=0.375) or interaction effect 

(P=0.832; Figure 3.8). Similarly, thermal stress showed a main effect of time during the 

performance task (P<0.05), but no main effect of trial (P=0.310) or trial x time interaction 

(P=0.092).  
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Figure 4.8 Perceived thermal stress during exercise. PT, performance test. Values are mean ± SD. 
 

There was a main effect of trial for sweat rate (P<0.05). Higher values were recorded during 

the single-caffeine (20.8 ± 3.6 mL·min−1; P=0.029) and split-caffeine trial (21.6 ± 4.4 

mL·min−1; P=0.001) compared with placebo (19.1 ± 4.7 mL·min−1). No difference was 

observed between the two caffeine trials (P=0.213).  

Pre-exercise heart rate was similar across trials (P=0.180; Figure 4.9). There was a main 

effect of time for heart rate during the fixed-intensity exercise (P<0.05), but no main effect 

of trial (P=0.486) or trial x time interaction (P=0.827). Heart rate showed a main effect of 

time (P<0.05), trial (P=0.007) and an interaction effect (P=0.031) during the performance 

task. Higher values were recorded from 5 to 20 min during the split-caffeine trial compared 

with single-caffeine (P<0.05). Additionally, higher values were recorded throughout the 

performance task during the split-caffeine trial compared with placebo (P<0.05; Figure 4.9).  
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Figure 4.9 Heart rate during the experimental trials. Split-caffeine greater than single-caffeine and 
placebo is denoted as † and #, respectively. All notations are P<0.05. PT, performance test. Values 
are mean ± SD 
 

Carbohydrate oxidation did not show a main effect of time (P=0.717), trial (P=0.475), nor an 

interaction effect (P=0.642; Table 4.1). There was a main effect of time for fat oxidation 

(P=0.026), but no main effect of trial (P=0.463) or interaction effect (P=0.591). No main 

effect of time (P=0.277), trial (P=0.492), or trial x time interaction (P=0.408) was observed 

for RER. Oxygen uptake showed a main effect of time (P<0.05), with the highest values at 

the end of the fixed-intensity exercise across all trials (P<0.05; Table 4.1). No main effect of 

trial (P=0.928) or interaction effect (P=0.971) occurred.  
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Table 4.1 Substrate oxidation and oxygen uptake during the fixed-intensity exercise 
 Treatment 15 30 45 60 

CHO ox (g·min−1) 

 

 

Fat ox (g·min−1) 

 

 

RER 

 

 

VO2 (L·min−1) 

 

Placebo 

Single-caffeine 

Split-caffeine 

Placebo 

Single-caffeine 

Split-caffeine 

Placebo 

Single-caffeine 

Split-caffeine 

Placebo 

Single-caffeine 

Split-caffeine 

2.09 ± 0.64 

2.28 ± 0.55 

2.48 ± 0.52 

0.42 ± 0.19 

0.37 ± 0.17 

0.28 ± 0.23 

0.89 ± 0.05 

0.91 ± 0.05 

0.93 ± 0.05 

2.40 ± 0.28 

2.43 ± 0.32 

2.42 ± 0.27   

2.23 ± 0.69 

2.42 ± 0.57 

2.47 ± 0.37 

0.42 ± 0.24 

0.35 ± 0.16 

0.34 ± 0.14 

0.90 ± 0.06 

0.91 ± 0.04 

0.92 ± 0.03 

2.50 ± 0.29 

2.51 ± 0.36 

2.52 ± 0.28 

2.28 ± 0.69 

2.25 ± 0.75 

2.41 ± 0.38 

0.43 ± 0.19 

0.43 ± 0.23 

0.36 ± 0.15 

0.90 ± 0.05 

0.90 ± 0.06 

0.91 ± 0.03 

2.56 ± 0.30 

2.55 ± 0.37 

2.53 ± 0.27 

2.32 ± 0.61 

2.29 ± 0.61 

2.42 ± 0.44 

0.45 ± 0.21 

0.47 ± 0.22 

0.41 ± 0.17 

0.90 ± 0.05 

0.89 ± 0.05 

0.90 ± 0.04 

2.62 ± 0.33* 

2.64 ± 0.38* 

2.63 ± 0.27* 

CHO ox, carbohydrate oxidation; Fat ox, fat oxidation; RER, respiratory exchange ratio; VO2, oxygen uptake. 
*denotes significantly greater (P<0.05) than all previous time points. Values are mean ± SD. 
 

4.5 Discussion 

The current study examined the performance and thermoregulatory responses to exercise 

in high ambient temperature after supplementation with 3 mg·kg−1 of caffeine administered 

either as a single-or split-dose (2 x 1.5 mg·kg−1) before exercise. The results of the present 

investigation demonstrate that endurance performance was enhanced when caffeine was 

ingested both as a single-dose (d=0.42; P=0.029; 90.2% chance of benefit) and split-dose 

(d=0.67; P<0.05; 99.6% chance of benefit) compared with placebo. Furthermore, dividing 

the caffeine bolus further enhanced performance than single-dose administration (d=0.32; 

P=0.059; 78.5% chance of benefit). Additionally, neither caffeine-ingestion strategy 

adversely influenced core or skin temperature during exercise at a fixed work-rate (Figure 

4.3).  

The performance benefit observed during the single-caffeine trial confirms the results of a 

recent investigation (Pitchford et al. 2014). Participants in this study completed a 

predetermined amount of work 7% quicker than placebo when 3 mg·kg−1 of caffeine was 

ingested prior to cycle exercise in the heat. Moderate to large caffeine doses (i.e. 5-9 

mg·kg−1) provide less consistent performance benefits during exercise in warm conditions. 
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Caffeine at 6 mg·kg−1 enhanced performance during a 15 min performance task (Ganio et al. 

2011) and increased force production of the quadriceps after prolonged exercise (Del Coso 

et al 2008). However, 6 mg·kg−1 had no effect on 30 min TT performance (Roelands et al. 

2011) and 9 mg·kg−1 did not influence 15 min cycle performance (Cheuvront et al. 2009) or 

21 km run time (Cohen et al. 1996). Hence, supplementation with single low-doses (~3 

mg·kg−1) may prove a better strategy to enhance performance in the heat than larger single-

doses.  

The mechanism of action of caffeine has not been fully elucidated. Microdialysis studies in 

rodents demonstrate that caffeine prolongs physical activity in association with increased 

synaptic dopamine concentrations (Solinas et al. 2002; Zheng et al. 2014). However, large 

doses (10-30 mg·kg−1) administered via intraperitoneal injection are required to induce this 

response (Solinas et al. 2002; Zheng et al. 2014). Such doses are larger than necessary to 

enhance performance (3 mg·kg−1; Desbrow et al. 2012) and higher than typically consumed 

by athletes during competition (Desbrow and Leveritt 2006). Serum prolactin was measured 

to provide an indirect assessment of central dopaminergic activity, with a decrease in 

prolactin suggesting an increase in dopamine (Ben-Jonathan and Hnasko 2001). The similar 

values across trials (Figure 4.5B) suggest caffeine failed to influence dopamine release. 

While only a peripheral measure, supplementation with L-DOPA, a drug which augments 

dopamine release in the human brain (Floel et al. 2008), attenuates circulating prolactin 

after prolonged exercise in warm conditions (Cordery et al. 2016). Importantly, a recent PET 

study demonstrated that oral caffeine supplementation (300 mg) failed to influence in vivo 

dopamine release in the human brain (Volkow et al. 2015). Alternatively, caffeine likely 

enhances performance through changes in adenosine-dopamine receptor-binding and 

intracellular signalling (Ferré, 2008; Lindskog et al. 2002).   

An interesting finding of the present study was that dividing the caffeine bolus conferred an 

even greater performance benefit than single-dose administration, despite both trials 

providing 3 mg kg-1. While this was not statistically significant (P=0.059), the small increase 

(d=0.32) represents a 78.5% chance of benefit, with a 0.3% likelihood of harm. Cox et al 

(2002) reported similar performance benefits when 6 mg·kg−1 caffeine was administered as 

a single dose before exercise compared with six 1 mg·kg−1 doses provided every 20 min 

during exercise. Conway et al (2003) also reported a similar performance benefit when 6 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
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mg·kg−1 caffeine was ingested either as a single bolus or two 3 mg·kg−1 doses. The contrast 

between these studies and the present investigation might be due to differences in the 

ambient temperature, as prolonged exercise in the heat could provide conditions more 

suitable for repeated caffeine doses to provide an additional performance benefit.  

Given the ergogenic effect of caffeine is due to central blockade of adenosine receptors 

(Ferré, 2008), perhaps the additive benefit during the split-caffeine trial is mediated by 

changes in adenosine receptor sensitivity during exercise. To date, no study has investigated 

the influence of heat stress and exercise on adenosine receptor function. However, a single 

bout of exercise increased the adenosine receptor-mediated response to insulin in rat 

soleus muscle (Langfort et al. 1993), while exercise and adenosine receptor antagonists 

interact to regulate antioxidant responses in rat cardiac tissue (Husain and Somani, 2005). 

Furthermore, single versus repeated injections of cocaine differentially influenced calcium 

signalling and protein phosphorylation in rat striatum (Kim et al. 2009). In striatal cells, the 

concentration of intracellular calcium regulates the function of the A2A-D2 heteromer 

(Navarro et al. 2014), a primary target of caffeine (Ferré, 2008). Thus, any change to calcium 

signalling within these neurons would likely influence adenosine receptor sensitivity and 

consequently the response to repeated caffeine doses.   

Caffeine can influence the core temperature response to prolonged exercise in the heat. 

Supplementation with a single 6 mg·kg−1 dose induced a greater increase in core 

temperature than placebo during prolonged exercise at a fixed work-rate (Roelands et al. 

2011). Additionally, a single 9 mg·kg−1 caffeine dose resulted in a modest increase in core 

(Cheuvront et al. 2009) and body temperature (Ely et al. 2011) during prolonged exercise. 

However, Ganio et al (2011) failed to report a caffeine-induced increase in core temperature 

after dividing a 6 mg·kg−1 bolus into two 3 mg·kg−1 doses. Therefore, the splitting of the 

caffeine bolus by Ganio et al (2011) might have distributed the thermogenic properties of 

the drug. Given there was no difference in core temperature between the two caffeine trials 

in the present study (Figure 4.3A), perhaps the diminished thermogenic properties from 

dividing the caffeine bolus only occur after intakes of moderate to large doses (i.e. 6-9 mg 

kg-1). 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
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Caffeine ingestion enhanced sweat-electrolytes losses during prolonged exercise in the heat 

(Del Coso et al. 2009). While higher sweat rates were recorded during both caffeine trials 

compared with placebo, this was likely due to the increased exercise intensity during the 

performance task and the resulting elevation in core temperature. When exercise is 

performed at a fixed-work rate, caffeine does not influence sweat rate in temperate or 

warm environmental conditions (Ganio et al. 2011). Even chronic supplementation (11 days) 

with low and moderate doses (3 and 6 mg·kg−1) did not influence fluid, electrolyte or renal 

indices of hydration (Armstrong et al. 2005). Therefore, body water losses attributable to 

caffeine appear to be of a similar magnitude as plain water (Maughan and Griffin, 2003).   

In conclusion, the present study demonstrates that supplementation with a 3 mg kg-1 

caffeine bolus ingested as a single-or split-dose before exercise improved endurance 

performance in high ambient temperature. Furthermore, dividing the caffeine bolus 

conferred a greater benefit than single-dose administration. This response appeared to be 

mediated by the gradual increase in serum caffeine during the split-dose trial, but more 

work is required to confirm these initial findings. Given that caffeine failed to influence 

thermoregulation during exercise, future studies should examine the thermoregulatory and 

performance effects of larger caffeine intakes (i.e. 6-9 mg kg-1), divided into smaller doses. 

This will enable dosing strategies to be developed with the aim of enhancing endurance 

performance in the heat, without the previously reported deleterious effects on 

thermoregulation and fluid-balance. 
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Chapter 5 

Effect of a Moderate Caffeine Dose on Endurance Cycle 

Performance and Thermoregulation During Prolonged 

Exercise in the Heat 

5.1 Abstract 

This study investigated the influence of a moderate caffeine dose on endurance cycle 

performance and thermoregulation during prolonged exercise in high ambient temperature. 

Eight healthy, recreationally active males (Mean ± SD; age: 22 ± 1 y; body mass: 71.1 ± 8.5 

kg; VO2peak: 55.9 ± 5.8 mL·kg−1·min−1; Wmax: 318 ± 37 W) completed one VO2peak test, one 

familiarisation trial and two experimental trials. After an overnight fast, participants 

ingested a placebo or a 6 mg·kg−1 caffeine dose 60 min before exercise. The exercise 

protocol consisted of 60 min of cycle exercise at 55% Wmax, followed by a 30 min 

performance task (total kJ produced) in 30oC and 50% RH. Performance was enhanced 

(Cohen’s d effect size=0.22) in the caffeine trial (363.8 ± 47.6 kJ) compared with placebo 

(353.0 ± 49.0 kJ; P=0.004). Caffeine did not influence core (P=0.188) or skin temperature 

(P=0.577) during exercise. Circulating prolactin (P=0.572), cortisol (P=0.842) and the 

estimated rates of fat (P=0.722) and carbohydrate oxidation (P=0.454) were also similar 

between trial conditions. Caffeine attenuated perceived exertion during the initial 60 min of 

exercise (P=0.033), with no difference in thermal stress across trials (P=0.911). Caffeine 

supplementation at 6 mg·kg−1 improved endurance cycle performance in a warm 

environment, without differentially influencing thermoregulation than placebo during 

prolonged exercise at a fixed work-rate. Therefore, moderate caffeine doses which typically 

enhance performance in temperate environmental conditions also appear to benefit 

endurance performance in the heat.  
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5.2 Introduction 

Caffeine is a well-established ergogenic aid commonly consumed by endurance athletes 

(Desbrow and Leveritt, 2006). Supplementation with low to moderate doses (3-6 mg·kg−1) 

consistently enhance performance in temperate environmental conditions (~20oC), 

especially when exercise is performed for 30 min or longer (Ganio et al. 2009). However, 

few studies have investigated the potential for caffeine to improve endurance performance 

in the heat. Laboratory-based investigations demonstrate that caffeine does (Del Coso et al. 

2008; Ganio et al. 2011), but not always (Chevront et al. 2009; Roelands et al. 2011), 

improve performance in high ambient temperature. Additionally, race performance in hot 

field conditions was not influenced by caffeine (Cohen et al. 1996). Hence, from the limited 

data available, it is unclear whether caffeine benefits endurance performance in the heat, 

despite a high prevalence of intake among athletes competing in warm environments 

(Desbrow and Leveritt, 2006).  

The progressive impairment in endurance capacity with increasing ambient temperature is 

well-documented (Galloway and Maughan, 1997). Several explanations for this 

deterioration in performance have been proposed, including an increased physiological 

burden to dissipate heat via the skin and an increase in core temperature (Sawka et al. 

2012). The resulting hyperthermia and increased brain temperature reduce central drive to 

continue exercise, thus precipitating the onset of fatigue (Nybo, 2010). During prolonged 

exercise in the heat, caffeine has elicited higher core temperatures than placebo (Chevront 

et al. 2009; Ely et al. 2011; Roelands et al. 2011). Consequently, these perturbations to 

thermoregulation might explain the lack of performance benefit in the heat after caffeine 

intake (Roelands et al 2011). Interestingly, larger caffeine doses (≥ 9 mg·kg−1) consistently 

induce elevations in core and body temperature during exercise in the heat (Chevront et al. 

2009; Ely et al. 2011). Hence, the provision of smaller doses (6 mg·kg−1), which typically 

improve performance in temperate conditions (Desbrow et al. 2012; Ganio et al. 2009), 

might prove a more useful strategy to enhance performance in the heat. As lower caffeine 

intakes benefit endurance cycle performance in high ambient conditions (Pitchford et al. 

2014; chapter 4), the influence of moderate caffeine doses warrant investigation.  
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Supplementation with 6 mg·kg−1 caffeine enhanced maximal voluntary contraction of the 

quadriceps after prolonged cycle exercise in a hot (36oC) environment (Del-Coso et al. 2008). 

However, during exercise under the same environmental conditions, the same caffeine dose 

co-administered with carbohydrates elicited a higher core temperature than isolated 

carbohydrate intake (Del-Coso et al. 2008). To date, only two laboratory-based studies have 

examined the influence of 6 mg·kg−1 caffeine on endurance cycle performance without 

additional carbohydrates (Ganio et al. 2011; Roelands et al. 2011). Roelands et al (2011) 

reported no ergogenic effect of caffeine but an increase in core temperature during 

prolonged exercise at a fixed work-rate, while Ganio et al (2011) observed an improvement 

in endurance cycle performance but no thermogenic effects. Hence, it is unclear whether 

moderate caffeine doses influence endurance cycle performance or thermoregulation 

during prolonged exercise in high ambient temperature. Given the widespread intake of 

caffeine by athletes (Desbrow and Leveritt, 2006), it would be of interest to determine 

whether moderate doses which consistently enhance performance in temperate conditions 

(Desbrow et al. 2012; Ganio et al. 2009), also confer performance benefits in the heat. 

Consequently, the aim of this study was to examine the performance and thermoregulatory 

responses to prolonged exercise in the heat following the ingestion of a 6 mg·kg−1 caffeine 

dose versus a placebo condition. Given the findings from chapter 4, it is hypothesised that 

caffeine will improve cycle performance  

 

5.3 Methods 

Eight healthy, low-caffeine consuming men (116 ± 46 mg·day−1; age: 22 ± 1 y; body mass: 

71.1 ± 8.5 kg; height: 1.74 ± 0.08 m; VO2peak: 55.9 ± 5.8 mL·kg−1·min−1; Wmax: 318 ± 37 W) 

took part in this investigation, which employed a double-blind, placebo controlled, 

randomised, cross-over design. All participants completed one maximal exercise test, one 

familiarisation trial and two experimental trials. The initial visit consisted of an incremental 

exercise test to volitional exhaustion conducted on an electronically braked cycle ergometer 

(Lode Corival, Groningen, Holland) to determine Wmax and the power required to elicit 55% 

and 75% of Wmax. This test was performed in temperate conditions (~20oC). After 5-7 days, 

participants completed a familiarisation trial to minimise any learning or anxiety effects. This 
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visit was performed in 30oC and 50% RH and was identical to the experimental trials in all 

respects, although no treatment was administered.  

The trial overview is illustrated in figure 5.1. The pre-trial dietary and activity 

standardisation requirements are outlined in chapter 3.5. No caffeine was permitted during 

the 24 hours before the familiarisation and experimental trials. On the evening before each 

trial, participants ingested a radio-telemetry pill (CoreTemp, HQ Inc, Palmetto, Florida, USA) 

to enable the measurement of core temperature. Upon arrival at the laboratory (7-9am), 

post-void nude body mass was recorded. After a brief period of seated rest (15 min), a 21-g 

cannula was introduced into an antecubital vein. A baseline venous sample was collected 

(7mL) before participants ingested a capsule containing 6 mg·kg−1 of anhydrous caffeine 

(Sigma-Aldrich, UK) or a placebo (BDH Ltd, Poole, UK) with 50 mL of plain water. All capsules 

were indistinguishable with regards to dimension, weight and colour. Next, a heart rate 

telemetry band was positioned (Polar Beat, Kempele, Finland) and skin surface thermistors 

(Grant Squirrel SQ800, Cambridgeshire, UK) were attached to four sites (chest, upper arm, 

thigh and calf) to calculate weighted mean skin temperature (Ramanathan, 1964). Following 

a 45 min period of seated rest in 20oC, core and skin temperature and heart rate were 

recorded at 5 min intervals. A second 7 mL venous sample was collected 60 min post-

capsule ingestion while participants remained in a seated position. 

Participants then entered the climatic chamber (Weiss-Gallenkamp, UK) maintained at 30oC 

and 50% RH and began 60 min of cycle exercise at a workload corresponding to 55% Wmax. 

During this period, core and skin temperature and heart rate were recorded every 5 min. 

RPE (Borg, 1982) and perceived thermal stress (using a 21 point scale ranging from -10, 

unbearable cold, to +10, unbearable heat) were recorded every 10 min. Expired air samples 

(1 min) were collected every 30 min to calculate the rates of substrate oxidation during 

exercise (Peronnet and Massicotte, 1991). Participants were provided with 150 mL of plain 

water every 15 min and a third venous sample (7mL) was collected at 60 min while 

participants remained seated on the ergometer. 

Subsequently, there was a 2-3 min delay while the ergometer was programmed for the 

performance task. Participants were instructed to produce as much work (kJ) as possible 

within 30 min. The initial workload was set at 75% Wmax, but participants were free to adjust 
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their power output as desired from the outset. Core and skin temperature and heart rate 

were recorded every 5 min. A final 7 mL venous sample was collected immediately after the 

performance task while participants remained seated on the ergometer. Participants then 

returned to a temperate environment (20oC) where the cannula, telemetry band and skin 

thermistors were removed. Nude body mass was then recorded. The change in body mass, 

corrected for fluid intake, was used to estimate sweat rate.  

A small volume of whole blood (2 mL) was used to determine plasma glucose, Hb, and Hct. 

The remaining 5 mL was used to yield serum for the subsequent determination of cortisol 

and prolactin with ELISA (DRG diagnostic, Germany) and caffeine with reverse-phase HPLC 

(Holland et al. 1999) as described in chapter 3.7. The intra-assay CV for serum prolactin, 

cortisol, and caffeine was 4.8%, 4.1%, and 2.1%, respectively. 

All data were analysed using IBM SPSS statistics version 22.0. To determine whether the 

outcome variables had a normal distribution, the Shapiro-Wilk test was used. Exercise 

performance, pre-exercise nude body mass, initial core temperature, fasting plasma 

glucose, and estimated sweat rates were examined using a paired t-test. Cohen’s d effect 

size for differences in total work produced during the performance task was determined 

([mean 1 - mean 2]/pooled SD) and interpreted as trivial (0-0.19), small (0.2-0.49), medium 

(0.5-0.79) or large (≥ 0.8) as previously described (Cohen, 1992). Variables measured 

throughout each trial were examined with a two-way (trial x time) repeated-measures 

ANOVA. The Greenhouse-Geisser correction was applied where the assumption of sphericity 

had been violated. Where a significant main effect or interaction was identified, Bonferroni 

adjusted paired t-tests for normally distributed data or Bonferroni adjusted Wilcoxon Signed 

Rank tests for non-normally distributed data were used. Data are presented as means ± SD 

throughout. Statistical significance was accepted at P<0.05. 
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Figure 5.1 Trial overview  

 

5.4 Results 

Pre-exercise nude body mass (P=0.732), initial core temperature (P=0.279) and fasting 

plasma glucose (P=0.454) were not different between trials, suggesting that participants 

began each trial in a similar physiological state.  

All eight participants completed both trials, no adverse effects were reported. There was a 

small increase (d=0.22) in total work produced during the caffeine trial (363.8 ± 47.6 kJ) 

compared with placebo (353.0 ± 49.0 kJ; P=0.004). This represents a percentage increase in 

performance of 3.0 ± 2.3% (range: -0.4 to 7.1%; Figure 5.2).  

Finish Start 

Performance 
task (30 min) 

55% Wmax (60 min) 

Rest (60 min) 

Caffeine/placebo Heart rate/core 
temp/skin temp 

RPE and/or 
thermal stress 

Water Expired air Venous sample 
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Figure 5.2 Mean (bars) and individual (lines) work produced (kJ) during the performance task. 
*denotes caffeine greater than placebo (P=0.004). Values are mean ± SD. 

 

Pre-exercise core temperature was similar between trials (P=0.718; Figure 5.3A). During the 

initial 60 min of exercise core temperature showed a main effect of time (P<0.05), but no 

main effect of trial (P=0.188) or trial x time interaction (P=0.112). Core temperature showed 

main effects of time (P<0.05) and trial (P=0.006), as well as an interaction effect (P=0.005) 

during the performance task. Higher values were recorded from 20 to 30 min during the 

caffeine trial compared with placebo (P<0.05; Figure 5.3A). Pre-exercise skin temperature 

was similar between trials (P=0.429; Figure 5.3B). During the initial 60 min of exercise, there 

was a main effect of time (P<0.05), but no main effect of trial (P=0.648) or trial x time 

interaction (P=0.219). Similarly, during the performance task skin temperature showed a 

main effect of time (P<0.05), but no main effect of trial (P=0.970) or interaction effect 

(P=0.311; Figure 5.3B).  

240

260

280

300

320

340

360

380

400

420

440

Placebo Caffeine

W
or

k 
pr

od
uc

ed
 (k

J)
 

* 



76 
 

 

 

Figure 5.3 Core (A) and skin (B) temperature during the experimental trials. *denotes caffeine 
greater than placebo (P<0.05). PT, performance test. Values are mean ± SD. 
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Pre-exercise heart rate was not different between trials (P=0.240; Figure 5.4). There was a 

main effect of time for heart rate during the initial 60 min of exercise (P<0.05), but no main 

effect of trial (P=0.644) or trial x time interaction (P=0.320). During the performance task 

heart rate showed a main effect of time (P<0.05) and trial (P=0.011), but no interaction 

effect (P=0.904; Figure 5.4).  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 5.4 Heart rate during the experimental trials. *denotes caffeine greater than placebo 
(P=0.011). PT, performance test. Values are mean ± SD. 
 

 

During exercise RPE showed main effects of time (P<0.05) and trial (P=0.033), but no 

interaction effect (P=0.662; Figure 5.5).  
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Figure 5.5 Perceived exertion during the fixed-intensity exercise. *denotes placebo greater than 
caffeine (P=0.033). Values are mean ± SD. 
 

 

Perceived thermal stress showed a main effect of time (P<0.05), but no main effect of trial 

(P=0.829) or interaction effect (P=0.253; Figure 5.6).  

 

Figure 5.6 Perceived thermal stress at rest and during the fixed-intensity exercise. Values are mean ± 
SD. 
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Caffeine concentrations remained below the limit of quantification during the placebo trial 

and for the baseline sample during the caffeine trial. Circulating concentrations peaked 60 

min post-caffeine ingestion, with values remaining constant throughout exercise (Figure 

5.7). No pair-wise differences were identified from 60 to 150 min post-ingestion (P>0.279).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.7 Serum caffeine concentrations. Values are mean ± SD. 
 

Serum cortisol showed a main effect of time (P<0.05), but no main effect of trial (P=0.842) 

or trial x time interaction (P=0.148; Figure 5.8). 

 

 

 

 

 

 

 

 

 

Figure 5.8 Circulating cortisol during the experimental trials. *denotes a significant difference from 
the -60 value (P<0.05). Values are mean ± SD. 
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There was a main effect of time for serum prolactin (P<0.05), but no main effect of trial 

(P=0.572) or interaction effect (P=0.551; Figure 5.9).  

 

Figure 5.9 Circulating prolactin during the experimental trials. *denotes a significant difference from 
the -60 value (P<0.05). Values are mean ± SD. 

 

Plasma glucose showed a main effect of time (P<0.05), but no main effect of trial (P=0.068) 

or trial x time interaction (P=0.176; Figure 5.10). Similarly, the percentage change to blood 

and plasma volumes both showed main effects of time (P<0.05), but no main effects of trial 

(P>0.056) or interactions effects (P>0.111) occurred.  
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Figure 5.10 Plasma glucose during the experimental trials. *denotes a significant difference (P<0.05) 
from -60. Values are mean ± SD. 
 

There were no main effect of time (P>0.363), trial (P>0.454), or interaction effects (P>0.410) 

for fat and carbohydrate oxidation or RER (Table 5.1). Oxygen uptake showed a main effect 

of time (P=0.001), but no main effect of trial (P=0.361) or trial x time interaction (P=0.188; 

Table 5.1).  

 

Table 5.1 Substrate oxidation and oxygen uptake during the fixed-intensity exercise 
 Treatment 30 60 

CHO ox (g·min−1) 

 

Fat ox (g·min−1) 

 

RER 

 

VO2 (L·min−1) 

Placebo 

Caffeine 

Placebo 

Caffeine 

Placebo 

Caffeine 

Placebo 

Caffeine 

2.27 ± 0.29 

2.28 ± 0.30 

0.27 ± 0.10 

0.28 ± 0.14 

0.93 ± 0.02 

0.93 ± 0.03 

2.22 ± 0.30 

2.26 ± 0.32 

2.24 ± 0.31 

2.34 ± 0.42 

0.32 ± 0.13 

0.28 ± 0.21 

0.92 ± 0.02 

0.93 ± 0.04 

2.30 ± 0.31* 

2.30 ± 0.30* 

CHO ox, carbohydrate oxidation; Fat ox, fat oxidation; RER, respiratory exchange ratio; VO2, oxygen uptake. 
*denotes significantly greater (P<0.05) than 30 min. Values are mean ± SD. 
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Estimated sweat rates were slightly higher during the caffeine trial (25.7 ± 4.8 mL·min−1) 

than placebo (24.5 ± 4.1 mL·min−1; P=0.034).  

 

5.5 Discussion 

This study investigated the performance and thermoregulatory effects of a 6 mg·kg−1 

caffeine dose during prolonged exercise in the heat. This caffeine dose consistently 

improves endurance performance in temperate environmental conditions (Desbrow et al. 

2012; Ganio et al. 2009), yet there are conflicting reports when exercise is performed in the 

heat (Ganio et al. 2011; Roelands et al. 2011). In the study by Roelands et al (2011), caffeine 

failed to enhance performance but increased core temperature during exercise. Conversely, 

Ganio et al (2011) reported enhanced 15 min cycle TT performance with no difference in 

core temperature versus placebo. The results of the present study agree with the latter 

findings, as caffeine provided a small, but significant ergogenic effect (Figure 5.2), with no 

clear difference in core or skin temperature between trials (Figure 5.3). These findings also 

support those of chapter 4 and suggest that caffeine intakes of 3-6 mg·kg−1 are ergogenic to 

endurance cycle performance in the heat. 

Several studies failed to report performance improvements in the heat after caffeine 

ingestion (Chenvront et al. 2009; Cohen et al. 1996; Roelands et al. 2011), attributing this 

response to an elevation in core temperature during exercise (Roelands et al. 2011). 

However, even large doses of caffeine (9 mg·kg−1) result in only mild thermogenic effects 

(Chevront et al. 2009; Ely et al. 2011), which is typically undetected by participants (Ely et al. 

2011). In addition, five days of controlled caffeine intake (3 and 6 mg·kg−1) did not influence 

core temperature during exercise in the heat versus placebo (Roti et al. 2006). Alternatively, 

some researchers suggest that a high environmental temperature might negate the efficacy 

of caffeine (Chenvront et al. 2009). This study reported no performance benefit in 40oC 

when 9 mg·kg−1 caffeine was ingested before a short exercise protocol (30 min at 50% 

VO2peak plus a 15 min performance task). The lower environmental temperature and/or 

caffeine dose employed in the present study might account for these divergent findings. 

Additionally, 21 km race time in the heat was not influenced by caffeine intakes of 5 or 9 

mg·kg−1 (Cohen et al. 1996). However, participants in this study became ~4% dehydrated 
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during exercise, thus it is unknown if caffeine would have enhanced performance if fluid-

balance was maintained. When hydration status is controlled across temperate and hot 

environmental conditions, caffeine still improves cycle performance (Ganio et al. 2011).  

The ergogenic effect of caffeine was previously attributed to changes in fat metabolism 

during exercise, resulting in a glycogen sparring effect (Costill et al. 1978). However, there is 

compelling evidence caffeine enhances performance via direct actions within the central 

nervous system (Fredholm et al. 1999). Caffeine increases synaptic dopamine 

concentrations in exercising rats, although large doses (10-30 mg·kg−1) are required to 

induce this response (Solanis et al. 2002). Using positron emission topography, a low dose of 

caffeine (300 mg) failed to influence in vivo dopamine release in the human brain (Volkow et 

al. 2015). Attenuated prolactin concentrations suggest an increase in dopamine (Ben-

Jonathan and Hnasko, 2001), but similar values were observed across trials (Figure 5.9). 

Alternatively, caffeine influences key neuronal signaling proteins which mediate increases in 

physical activity (Lindskog et al. 2002) and potentiates adenosine-dopamine receptor 

binding in striatum (Ferré, 2008). A reduced perception of effort is a common response to 

caffeine intake, which might account for approximately 29% of its ergogenic effect (Doherty 

and Smith, 2005). Participants in the present study reported lower RPE values during the 

initial hour of exercise after caffeine (Figure 5.5), which is likely mediated by a reduced 

activity of cortical premotor and motor areas (de Morree et al. 2014). 

Supplementation with 6 mg·kg−1 caffeine enhanced sweat-electrolyte losses in 37oC (Del-

Coso et al. 2009), while 3 mg·kg−1 augmented sweat rates during submaximal cycle exercise 

in 24oC (Kim et al. 2011). In the present study, greater sweat rates were observed during the 

caffeine trial versus placebo over the entire 90 min period (25.7 ± 4.8 mL·min−1 vs 24.5 ± 4.1 

mL·min−1). However, this small difference likely reflects the higher work rate during the 

performance task in the caffeine trial and the concomitant elevation in core temperature 

(Figure 4.3A). During prolonged exercise at a fixed work-rate, caffeine failed to differentially 

influence fluid-balance, sweat rate and serum osmolality in cool and warm environmental 

conditions compared with placebo (Ganio et al. 2011). Additionally, there were no 

differences in fluid, electrolyte, or renal indices of hydration after 5 days of controlled 

caffeine intake (3 and 6 mg·kg−1) versus placebo (Armstrong et al. 2005).  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
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In conclusion, the provision of a 6 mg·kg−1 caffeine dose before prolonged exercise in 30oC 

and 50% RH improved endurance cycle performance in non-heat acclimatised participants, 

without differentially influencing thermoregulation than placebo. There appeared to be a 

developing trend for core temperature during the initial 60 min of exercise (interaction 

effect, P=0.112), suggesting that a longer period of fixed-intensity exercise might enable 

caffeine to elicit a greater increase in core temperature than placebo during exercise under 

these conditions. However, the difference at the end of the preload was small (0.03oC, 

Figure 4.3A), which was also undetected by participants (Figure 5.6). These data, together 

with previous reports (Ganio et al. 2011), suggest that moderate caffeine doses which 

typically benefit endurance performance in temperate conditions (Desbrow et al. 2012; 

Ganio et al. 2009), also improve endurance cycle performance in the heat.  
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Chapter 6 

Chronic Ingestion of a Low Dose of Caffeine Induces 

Tolerance to the Performance Benefits of Caffeine 

6.1 Abstract 

This study examined effects of four weeks caffeine supplementation on endurance 

performance. Eighteen low-habitual caffeine consumers (<75 mg·day−1) were randomly 

assigned to ingest caffeine (1.5 – 3.0 mg·kg−1day−1; titrated) or placebo for 28 days. Groups 

were matched for age, body mass, V�O2peak and Wmax (P>0.05). Before supplementation, all 

participants completed one V�O2peak test, one practice trial and two experimental trials (acute 

3 mg·kg−1 caffeine [precaf] and placebo [testpla]). During the supplementation period a 

second V�O2peak test was completed on day 21 before a final, acute 3 mg·kg−1 caffeine trial 

(postcaf) on day 29. Trials consisted of 60 min cycle exercise at 60% V�O2peak followed by a 30 

min performance task. All participants produced more external work during the precaf trial 

than testpla, with increases in the caffeine (383.3 ±75 kJ vs. 344.9 ± 80.3 kJ; Cohen’s d effect 

size=0.49; P=0.001) and placebo (354.5 ± 55.2 kJ vs. 333.1 ± 56.4 kJ; d=0.38; P=0.004) 

supplementation group, respectively. This performance benefit was no longer apparent 

after four weeks of caffeine supplementation (precaf: 383.3 ± 75.0 kJ vs. postcaf: 358.0 ± 

89.8 kJ; d=0.31; P=0.025), but was retained in the placebo group (precaf: 354.5 ± 55.2 kJ vs. 

postcaf: 351.8 ± 49.4 kJ; d=0.05; P>0.05). Circulating caffeine, hormonal concentrations and 

substrate oxidation did not differ between groups (all P>0.05). Chronic ingestion of a low 

dose of caffeine develops tolerance in low-caffeine consumers. Therefore, individuals with 

low-habitual intakes should refrain from chronic caffeine supplementation to maximise 

performance benefits from acute caffeine ingestion.    
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6.2 Introduction 

Acute caffeine (1,3,7-trimethylxanthine) supplementation approximately 60 min before 

exercise improves endurance performance in laboratory-based studies (Burke, 2008). The 

same occurs in the field (Berglund and Hemmingsson, 1982), leading to its widespread use 

by athletes during competition (Desbrow and Leveritt, 2006). To determine optimum 

conditions by which caffeine improves performance, factors such as dose (Desbrow et al. 

2012), source (Hodgson et al. 2013), and the timing of intake (Cox et al. 2002) have been 

investigated. However, habituation to chronic caffeine intake has received less attention 

(Bell and McLellan, 2002). This is important from a practical standpoint given the high 

prevalence of daily caffeine intake in the general population (Fitt et al. 2013) and by athletes 

during competition (Desbrow and Leveritt, 2006).   

Caffeine likely improves exercise performance through its role as a non-selective adenosine 

receptor antagonist (Fredholm et al. 1999). A prominent role for the adenosine A1 receptor 

in mediating the acute performance enhancing effects of caffeine has been demonstrated 

(Snyder et al. 1981). However, more recent studies with adenosine A2A receptor knockout 

mice confirmed that central blockade of this adenosine receptor isoform is largely 

responsible for the performance enhancing properties of the drug (El Yacoubi et al. 2000). 

Chronic caffeine intake influences the concentration of A1 and A2A receptors in several brain 

regions (Johansson et al. 1993; Svenningsson et al. 1999). This includes A2A expression in the 

striatum (Svenningsson et al. 1999), a sub-cortical region essential for coordinating 

voluntary actions (Tepper et al. 2008). Therefore, it is possible that habituation influences 

performance benefits typical of acute caffeine supplementation. Data from animal studies 

support this hypothesis, as chronic exposure to caffeine in the drinking water of rats 

resulted in tolerance to the performance benefit of a subsequent acute caffeine dose (Karcz-

Kubicha et al. 2003). Although these findings have been confirmed in other animal models 

(Quarta et al. 2004), the doses administered have been large (i.e. 130 mg·kg·day−1) and 

much greater than those typically consumed by the general population (Fitt et al. 2013). 

Whether the same tolerance develops after habituation to doses typically consumed by the 

general population is not clear. 
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The magnitude of performance benefit after an acute 5 mg·kg−1 caffeine dose was less 

pronounced in individuals already habituated to caffeine (>300 mg·day−1) than their 

caffeine-naive counterparts (Bell and McLellan, 2002). Similar metabolic responses have 

occurred after an acute caffeine dose in comparisons of low-and high-habitual caffeine 

users (Bangsbo et al. 1992). However, studies which have employed a period of controlled 

caffeine intake failed to report any change in metabolism or performance following the 

habituation protocol. For example, sub-chronic intake (5 days) both of low (3 mg·kg−1) and 

moderate (6 mg·kg−1) caffeine doses did not influence thermoregulatory or cardiovascular 

responses during exercise in the heat (Roti et al. 2006). Furthermore, TT performance was 

similar when individuals received an acute 3 mg·kg−1 caffeine dose subsequent to either a 

four-day habituation (3 mg·kg−1day−1) or withdrawal period (Irwin et al. 2011). Therefore, 

perhaps a greater duration of supplementation is required before the performance benefit 

of an acute caffeine dose becomes compromised. To date, no study has systematically 

evaluated a prolonged period of controlled caffeine intake and its influence on endurance 

performance. Hence, the aim of this study was to examine the effect of a four-week period 

of controlled caffeine supplementation on endurance performance.  

 

6.3 Methods  

Eighteen healthy, recreationally active men (age: 21 ± 2 y; body mass: 74.1 ± 8.6 kg; stature: 

1.75 ± 0.06 m; V�O2peak: 51.4 ± 8.7 ml·kg−1·min−1; Wmax: 289 ± 46 W) were recruited and 

completed this study. Habitual caffeine intake was assessed (Addicot et al. 2008) to ensure 

intake did not exceed 75 mg·day−1. This cut-off point was chosen as it equates to 

approximately one cup of caffeinated instant coffee (Fitt et al. 2013) and is similar to 

previous studies (Bell and McLellan, 2002).  

The experimental design is illustrated in figure 6.1. All participants attended the laboratory 

on six occasions. During the initial visit each participant undertook an incremental exercise 

test to volitional exhaustion on an electronically braked cycle ergometer (Lode Corival, 

Groningen, the Netherlands) to determine V�O2peak and the power output required to elicit 

60% and 75% V�O2peak. After this visit, each participant completed one familiarisation trial. 

This was undertaken to ensure that all participants were accustomed to procedures, to 
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minimise order effects from learning or anxiety and ensure attainment of a maximal effort 

during the performance task.  

After these initial tests, each participant completed one acute caffeine trial (precaf) and one 

placebo trial (testpla), separated by 5-7 days. Thereafter, participants were randomly 

assigned to ingest daily doses of caffeine (BDH Ltd, Poole, UK) or starch (placebo: BHD Ltd, 

Poole, UK) for 28 days. Both supplementation groups were matched for age, height, body 

mass, V�O2peak and Wmax (P>0.05). During the first seven days of supplementation, the 

caffeine group ingested half of the prescribed caffeine dose (1.5 mg·kg−1) in their morning 

capsule (7-9 am) followed by a placebo capsule (250 mg starch) in the afternoon (1-3 pm). 

From days 8 to 28, the caffeine group received the full 3 mg·kg−1 dose, equally divided 

between the morning and afternoon capsules. This titrated approach minimised negative 

influences of caffeine on daily activities in caffeine-naive individuals (e.g. jitteriness, 

disturbed sleep etc). The placebo group followed the same pattern of intake, but received 

starch (250 mg) in both capsules. Participants were instructed to ingest the capsules at the 

same time of day throughout the supplementation period and compliance was verified by 

telephone contact, email and in person. Both the placebo and caffeine capsules were 

visually identical and blinded by an external party not involved in any stage of data 

collection. A second incremental exercise test was completed on the morning of day 21, 

before the ingestion of any capsules. This followed the same procedure as the initial visit 

and was undertaken to account for any potential change in V�O2peak before the final single-

blind acute 3 mg·kg−1 caffeine trial on day 29 (postcaf). 

Figure 6.1 Schematic of the study design 

postcaf trial 
(day 29): 

 3 mg·kg−1 
 

V�O2peak 
test 

precaf 
trial: 

 3 mg·kg−1 

testpla trial:  
250 mg 
Starch Group 

randomisation 

Group 2 (n=9): CAF 
Days 1-7:  

1.5 mg·kg−1 
Days 8-28:  
3 mg·kg−1 

Group 1 (n=9): PLA 
Days 1-28:  

2 x 250 mg starch 

Day 21 
V�O2peak test Practice 

trial 

precaf 
trial: 

 3 mg·kg−1 
 

testpla trial:  
250 mg 
Starch 
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The order of the testpla and precaf trials and assignment to either supplementation group 

was via a double-blind, randomised design. No strenuous exercise, alcohol, or caffeine 

ingestion was permitted during the 24 h before each trial. However, the caffeine provided in 

the capsules was permitted during the 24 h before the postcaf trial (caffeine group). No 

additional dietary caffeine was permitted during the supplementation period in either group 

and participants were provided with a list of commonly consumed caffeinated foods and 

drinks to help achieve this. Participants were also instructed to maintain their usual dietary 

and exercise patterns throughout the supplementation period.  

The trial overview is depicted in figure 6.2. Upon arrival at the laboratory, post-void nude 

body mass was recorded. To enable repeated blood sampling during each trial, a 21 g 

cannula was inserted into an antecubital vein after 15 min of seated rest. A baseline venous 

sample was collected (7mL) before participants ingested a capsule containing either 3 

mg·kg−1 of anhydrous caffeine (precaf and postcaf; BDH Ltd, Poole, UK) or starch (testpla; 

BDH Ltd, Poole, UK). Next, a heart rate telemetry band was positioned (Polar Beat, Kempele, 

Finland). After 60 min of seated rest, a second venous sample (7mL) was drawn before 

participants cycled for 60 min at an intensity equivalent to 60% V�O2peak. Heart rate and RPE 

(Borg, 1982) were recorded every 5 and 10 min, respectively. Expired air samples (1 min) 

were collected into Douglas bags every 15 min to determine the rates of fat and 

carbohydrate oxidation (Peronnet and Massicotte, 1991). After each sample was collected, 

participants were provided with 100 mL of plain water. A third 7 mL blood sample was 

collected immediately after the fixed-intensity exercise while participants remained seated 

on the ergometer.  

Subsequently, there was a 2-3 min delay while the ergometer was set for the performance 

task. Performance was assessed as the maximum amount of external work (kJ) that could be 

completed in 30 min. The initial intensity was set at 75% V�O2peak, but participants were free 

to adjust the workload as from the outset. Heart rate was recorded every 5 min and RPE at 

10 and 20 min, respectively. A final 7 mL blood sample was collected upon completion of 

exercise while participants remained seated on the ergometer. After this, the cannula was 

removed.  



90 
 

Whole blood (2 mL) was used to determine plasma glucose, Hb, and Hct. The remaining 5 

mL was used to yield serum for the subsequent determination of cortisol and prolactin with 

ELISA (DRG diagnostic, Germany) and caffeine with reverse-phase HPLC (Holland et al. 

1999). Chapter 3.7 contains additional information regarding blood collection and analysis. 

The intra-assay CV for serum prolactin, cortisol, and caffeine was 4.9%, 5.3%, and 2.9%, 

respectively. 

All data were analysed using IBM SPSS statistics version 21.0. Normality was assessed with 

the Shapiro Wilk test. Between-group comparisons of self-reported habitual caffeine intake, 

height, body mass, age, V�O2peak and Wmax were determined with t-tests for independent 

samples. Repeated measurements of body mass, V�O2peak and Wmax were analysed using a 

two-way (group x time) mixed-design factorial ANOVA. Exercise performance and fasting 

plasma glucose were analysed using a two-way (group x trial) mixed-design factorial ANOVA. 

Variables measured throughout each trial were analysed using a three-way (group x trial x 

time) mixed-design factorial ANOVA. Where a main effect or interaction occurred, 

Bonferroni adjusted paired t-tests for normally distributed data or Wilcoxon Signed Rank 

tests for non-normally distributed data were used. Between-group comparisons during the 

testpla, precaf and postcaf trials were determined with t-tests for independent samples. In 

addition to null-hypothesis testing, magnitude-based inferences were made to examine 

whether the observed differences in total external work produced were meaningful 

(Hopkins, 2000). The magnitude of the smallest worthwhile change in performance was set 

at 3% (~12 kJ), based on the findings of Jenkins et al (2008). Cohen’s d effect size (ES) 

examined the magnitude of individual differences in total external work produced ([mean 1 

- mean 2]/pooled SD) and were interpreted as trivial (0-0.19), small (0.2-0.49), medium (0.5-

0.79) or large (>0.8) as previously described (Cohen, 1992). Data are presented as means ± 

SD, unless otherwise stated. Statistical significance was accepted at P<0.05. 
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Figure 6.2 Trial overview 

 

6.4 Results 

Self-reported habitual caffeine intake was similar between groups (placebo: 66 ± 6 mg·day−1 

vs. caffeine: 60 ± 8 mg·day−1; P=0.076) There were no between-group differences for 

baseline measures of age (placebo: 21 ± 2 y; caffeine: 21 ± 2 y; P=0.710), height (placebo: 

1.75 ± 0.06 m; caffeine: 1.76 ± 0.08 m; P=0.781), body mass (placebo: 73.3 ± 7.4 kg; caffeine: 

74.8 ± 10.1 kg; P=0.708), V�O2peak (placebo: 51.6 ± 9.6 ml·kg−1·min−1; caffeine: 51.2 ± 8.4 

ml·kg−1·min−1; P=0.860) or Wmax (placebo: 286 ± 47 W; caffeine: 296 ± 55 W; P=0.667). Day 

21 body mass (placebo: 73.1 ± 6.8 kg; caffeine: 74.8 ± 10.2 kg), V�O2peak (placebo: 51.0 ± 9.2 

ml·kg−1·min−1; caffeine: 50.6 ± 8.3 ml·kg−1·min−1) and Wmax (placebo: 282 ± 43 W; caffeine: 

289 ± 47 W) was similar to baseline between both supplementation groups (trial x group 

interactions, P>0.646).  

Performance during the testpla trial was similar between the caffeine (344. 9 ± 80.3 kJ) and 

placebo (333.1 ± 56.4 kJ) groups (d=0.17; P=0.723; Figure 6.3). Compared with testpla, total 

work produced during the precaf trial increased 12.0 ± 7.4% in the caffeine group (383.3 ± 
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75 kJ vs. 344. 9 ± 80.3 kJ; d=0.49; P=0.001) and 6.7 ± 4.2% in the placebo group (354.4 ± 55.2 

kJ vs. 333.1 ± 56.4 kJ; d=0.38; P=0.004; Figure 6.3). Based on a smallest worthwhile change 

in performance of 12 kJ, these within-group increases represent an ‘almost certainly 

beneficial’ (caffeine group) and ‘probably beneficial’ (placebo group) effect on performance, 

respectively (Table 6.1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Total work produced (kJ) during the performance task. Trial x group interaction (P=0.017). 
* and # denote a within-group difference (P<0.05) compared with testpla and precaf, respectively. 
Values are mean ± SD. 

 

Chronic caffeine supplementation resulted in a 7.3 ± 6.3% decrease in performance during 

the postcaf trial compared with precaf (358 ± 89 kJ vs. 383.3 ± 75 kJ; d=-0.31; P=0.025; 

Figure 6.3), with eight of nine participants demonstrating impaired performance following 

the chronic supplementation period (Figure 6.4A). This diminished response represents a 

‘probably harmful’ effect on performance (Table 6.1). Total work produced during the 

postcaf trial and tetspla was not statistically different (358 ± 89 kJ vs. 344.9 ± 80.3 kJ; 

d=0.16; P=0.188). However, inferences suggest the difference between these trials 

represents a ‘possibly beneficial’ effect (Table 6.1). Hence, chronic caffeine supplementation 

might have not completely eliminated the performance benefit of caffeine (i.e. postcaf vs. 

testpla; Table 6.1).  
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Figure 6.4 Individual responses during the performance task by participants in the Caffeine (A) and Placebo (B) supplementation group, respectively.  
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Participants in the placebo group produced 6.1 ± 2.4% more work during the postcaf trial 

than testpla (351.8 ± 49.4 kJ vs. 333.1 ± 56.4; d=0.33; P=0.004; Figure 6.3), with this increase 

representing a ‘probably beneficial’ effect on performance (Table 6.1). Accordingly, there 

was no difference between the precaf and postcaf trials (354.4 ± 55.2 kJ vs. 351.8 ± 49.4 kJ; 

d=0.05; P>0.05).  

There were no significant between-group differences during the precaf (28.7 ± 74.8 kJ; 

d=0.44; P=0.368) or postcaf (6.2 ± 90.7 kJ; d=0.09; P=0.858) trials (Figure 6.3; Table 6.1).  

 
 
 
 
Table 6.1 Differences in total work produced (kJ) during the experimental trials within and between 
supplementation groups. 

PLA, placebo group; CAF, caffeine group; d, Cohen’s d effect size. Qualitative outcome numbers indicate the 
percentage chance the true value is beneficial, trivial or harmful based on a 12 kJ difference in work produced 
during the performance task. An effect was deemed unclear when the percentage chances of benefit and harm 
were >5% 
 

 
Treatment comparison 

Mean ± SD difference and 
95% confidence interval 

 
d 

Qualitative outcome 
(beneficial/trivial/harmful) 

CAF 
  Precaf-testpla 
 
  Postcaf-testpla 
 
  Postcaf-precaf 
PLA 
  Precaf-testpla 
 
  Postcaf-testpla 
 
  Postcaf-precaf 
Testpla 
  CAF-PLA 
Precaf 
  CAF-PLA 
Postcaf 
  CAF-PLA 

 
38.4 ± 19.9 (18.4 to 58.4) 

 
13.1 ± 18.2 (-5.2 to 31.3) 

 
-25.3 ± 21.9 (-47.3 to -3.4) 

 
21.4 ± 13.1 (8.3 to 34.7) 

 
18.7 ± 11.9 (6.8 to 30.6) 

 
-2.8 ± 9.8 (-12.7 to 7.1) 

 
11.8 ± 89.7 (-58.3 to 81.9) 

 
28.7 ± 74.8 (-37.7 to 95.2) 

 
6.2 ± 90.7 (-68.1 to 80.5) 

 
0.49 

 
0.16 

 
-0.31 

 
0.38 

 
0.33 

 
-0.05 

 
0.17 

 
0.44 

 
0.09 

Almost certainly beneficial 
(100/0/0) 
Possibly beneficial 
(55/44/1) 
Probably harmful 
(0/9/91) 
Probably beneficial 
(94/6/0) 
Probably beneficial 
(91/9/0) 
Unclear 
(50/0/50) 
Unclear 
(50/26/24) 
Unclear 
(70/19/11) 
Unclear 
(43/26/30) 
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The order of the experimental trials was correctly guessed by two participants in each 

supplementation group. Furthermore, three participants in each supplementation group 

correctly guessed whether they received the caffeine or placebo treatment during the 

habituation period. Therefore, blinding can be considered successful as these odds are less 

than what could occur purely by chance.  

Circulating caffeine, cortisol, prolactin, and glucose values recorded during exercise are 

shown in table 6.2. Acute caffeine supplementation increased serum concentrations during 

the precaf and postcaf trials, peaking 60 min after ingestion and remaining greater 

throughout exercise than baseline and testpla (trial x time interaction, P<0.05). There were 

no changes in serum caffeine concentrations during testpla, with values remaining close to 

baseline throughout exercise in both groups. The habituation protocol did not influence 

caffeine metabolism (P=0.605). Serum cortisol increased progressively throughout exercise 

(P<0.05), peaking at the end of the performance task in both groups. No influence from trial 

(P=0.535) or supplementation group (P=0.628) occurred. Similarly, prolactin concentrations 

increased during exercise (P<0.05), but the rate of increase was similar across trials 

(P=0.498) and between groups (P=0.649). The greatest concentrations were at the end of 

the performance task across all trials in both groups (P<0.05). Neither cortisol (P=0.552) nor 

prolactin (P=0.965) were influenced by the habituation protocol. Fasting plasma glucose was 

similar across all three trials in both supplementation groups (P=0.465). During exercise, 

plasma concentrations increased steadily (P<0.05), with similar values across trials (P=0.096) 

and between groups (P=0.443). Compared with baseline, both blood and plasma volumes 

were reduced during exercise (P<0.05). No influence of trial (P>0.135) or group (P>0.649) 

occurred. 
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Table 6.2 Circulating caffeine, cortisol, prolactin, and glucose concentrations during the experimental trials.  

 PLA CAF 

Variable  -60 0 60 90 -60 0 60 90 

Caffeine (μg∙mL-1) 

  Testpla 

  Precaf 

  Postcaf 

Cortisol (ng·mL-1) 

  Testpla 

  Precaf 

  Postcaf 

Prolactin (ng·mL-1) 

  Testpla 

  Precaf 

  Postcaf 

Glucose (mmol·L-1) 

  Testpla 

  Precaf 

  Postcaf 

 

0.06 ± 0.07 

0.09 ± 0.07 

0.10 ± 0.09 

 

131.55 ± 37.22 

142.13 ± 26.85 

146.42 ± 33.79 

 

8.13 ± 2.68 

7.91 ± 1.78 

7.59 ± 2.50 

 

4.17 ± 0.27 

4.10 ± 0.30 

4.18 ± 0.22 

 

0.06 ± 0.07 

3.54 ± 0.59*# 

3.54 ± 0.65*# 

 

125.29 ± 59.77 

118.00 ± 50.96 

122.48 ± 36.89 

 

7.80 ± 3.16 

7.43 ± 1.46 

8.78 ± 3.27 

 

4.18 ± 0.38 

4.10 ± 0.35 

4.22 ± 0.17 

 

0.06 ± 0.07 

3.17 ± 0.44*# 

3.22 ± 0.44*# 

 

153.22 ± 75.59 

177.90 ± 86.66 

185.70 ± 63.54 

 

10.01 ± 2.80 

10.39 ± 2.13 

10.37 ± 1.16* 

 

4.45 ± 0.51 

4.52 ± 0.51 

4.70 ± 0.48 

 

0.07 ± 0.06 

2.97 ± 0.23*# 

2.97 ± 0.55*# 

 

211.17 ± 90.96 

227.32 ± 90.89 

249.50 ± 71.88 

 

19.65 ± 4.43* 

19.42 ± 3.18* 

19.25 ± 3.69* 

 

4.71 ± 0.82 

4.99 ± 1.03 

5.06 ± 0.75 

 

0.13 ± 0.07 

0.28 ± 0.29 

0.49 ± 0.37 

 

115.47 ± 14.78 

136.25 ± 34.27 

121.87 ± 42.89 

 

7.83 ± 3.86 

7.89 ± 3.65 

8.33 ± 3.31 

 

4.26 ± 0.28 

4.19 ± 0.42 

4.41 ± 0.39 

 

0.08 ± 0.10 

3.48 ± 0.57*# 

3.69 ± 0.60*# 

 

85.30 ± 33.50 

104.55 ± 26.11 

80.30 ± 38.35 

 

7.84 ± 3.02 

7.57 ± 3.31 

7.94 ± 3.66 

 

4.21 ± 0.35 

4.21 ± 0.35 

4.25 ± 0.25 

 

0.10 ± 0.08 

3.40 ± 0.53*# 

3.26 ± 0.53*# 

 

163.73 ± 20.75* 

159.76 ± 46.14 

168.10 ± 42.36 

 

9.99 ± 2.79 

10.23 ± 2.10 

9.79 ± 3.06 

 

4.50 ± 0.39 

4.49 ± 0.32 

4.57 ± 0.37 

 

0.05 ± 0.08 

3.03 ± 0.56*# 

3.09 ± 0.66*# 

 

236.10 ± 51.18* 

225.63 ± 48.25 

234.73 ± 38.28* 

 

20.53 ± 4.99* 

20.03 ± 5.22* 

19.68 ± 5.06* 

 

5.03 ± 0.57 

5.35 ± 0.77 

5.32 ± 0.76 

PLA, Placebo group; CAF, Caffeine group. *denotes a within-trial significant difference (P<0.05) compared with -60. #denotes a significant difference (P<0.05) compared 
with the corresponding time point in the testpla trial. There were no significant trial x group (P>0.552) or trial x time x group (P>0.512) interactions for any variable. Values 
are mean ± SD. 
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Exercise caused a progressive increase in heart rate throughout the fixed-intensity exercise 

(P<0.05). This increase remained similar across trials (P=0.169) and between 

supplementation groups (P=0.984; Table 6.3). Similarly, heart rate increased during the 

performance task (P<0.05), but this increase was independent of trial (P=0.891) and group 

(P=0.887). Within-group differences in mean heart rate occurred across trials. The greatest 

values were during the precaf trial in both groups (Table 6.3). No between-group differences 

were apparent (P>0.274).  

 

Table 6.3 Mean heart rate during the experimental trials. 

 testpla precaf postcaf P 

HR (beats·min-1), fixed 

   PLA 

   CAF 

HR (beats·min-1), PT 

   PLA 

   CAF 

 

146 ± 7 

145 ± 6 

 

167 ± 13 

169 ± 9 

 

145 ± 7 

144 ± 7 

 

172 ± 12* 

177 ± 5* 

 

145 ± 8 

146 ± 7 

 

172 ± 12* 

171 ± 9† 

 

 

0.312 

 

 

0.034 

PLA, Placebo group; CAF, Caffeine group; HR, heart rate; Fixed, values recorded during the fixed-intensity 
exercise; PT, values recorded during the performance task. P values are derived from trial x group interactions. 
*denotes a within-group significant difference (P<0.05) compared with testpla. †denotes a within-group 
comparison (P=0.061) to precaf. Values are mean ± SD. 
 

There was a steady increase in RPE during the fixed-intensity exercise (P<0.05), but this 

response was not influenced by trial (P=0.265) or group (P=0.441; Figure 6.5). Similarly, RPE 

increased throughout the performance task (P<0.05), but this response was independent of 

trial (P=0.174) and group (P>0.05; Figure 6.5).  
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Figure 6.5 Perceived exertion during exercise in the placebo (A) and caffeine (B) supplementation group, respectively. PT, performance task.  Values are 
mean ± SD. 
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Rates of carbohydrate oxidation decreased (P=0.026) while rates of fat oxidation increased 

(P<0.05) during the fixed-intensity exercise. Neither of these were influenced by trial 

(P>0.784) or group (P>0.328; Table 6.4). Furthermore, RER values decreased (P<0.05) while 

V�O2 increased (P<0.05) during exercise. No influence from trial (P>0.691) or group (P>0.189) 

occurred (Table 6.4). 
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Table 6.4 Substrate oxidation and oxygen uptake during the fixed-intensity exercise. 

 PLA CAF 

Variable 15 30 45 60 15 30 45 60 

CHO ox (g·min-1) 

  Tetspla 

  Precaf 

  Postcaf 

Fat ox (g·min-1) 

  Tetspla 

  Precaf 

  Postcaf 

RER 

  Tetspla 

  Precaf 

  Postcaf 

VO2 (L·min-1) 

 Tetspla 

  Precaf 

  Postcaf 

 

2.11 ± 0.38 

2.08 ± 0.42 

2.01 ± 0.48 

 

0.33 ± 0.15 

0.34 ± 0.18 

0.35 ± 0.16 

 

0.91 ± 0.03 

0.91 ± 0.04 

0.90 ± 0.05 

 

2.23 ± 0.36 

2.22 ± 0.34 

2.19 ± 0.24 

 

2.10 ± 0.45 

2.12 ± 0.44 

1.81 ± 0.27 

 

0.38 ± 0.20 

0.36 ± 0.19 

0.46 ± 0.12 

 

0.90 ± 0.04 

0.91 ± 0.04 

0.88 ± 0.02 

 

2.33 ± 0.35 

2.30 ± 0.31 

2.27 ± 0.28 

 

1.93 ± 0.59 

2.07 ± 0.56 

2.04 ± 0.47 

 

0.45 ± 0.22 

0.38 ± 0.21 

0.40 ± 0.19 

 

0.88 ± 0.06 

0.90 ± 0.05 

0.90 ± 0.04 

 

2.34 ± 0.28 

2.31 ± 0.32 

2.32 ± 0.21 

 

1.96 ± 0.32 

2.00 ± 0.68 

2.00 ± 0.29 

 

0.46 ± 0.14 

0.43 ± 0.26 

0.46 ± 0.16 

 

0.88 ± 0.03 

0.89 ± 0.06 

0.89 ± 0.03 

 

2.38 ± 0.25 

2.36 ± 0.31 

2.42 ± 0.23 

 

2.36 ± 0.40 

2.45 ± 0.46 

2.36 ± 0.77 

 

0.25 ± 0.15 

0.22 ± 0.15 

0.28 ± 0.31 

 

0.93 ± 0.03 

0.94 ± 0.03 

0.93 ± 0.07 

 

2.25 ± 0.31 

2.26 ± 0.36 

2.31 ± 0.29 

 

2.22 ± 0.48 

2.34 ± 0.40 

2.23 ± 0.62 

 

0.32 ± 0.22 

0.30 ± 0.12 

0.32 ± 0.21 

 

0.92 ± 0.04 

0.92 ± 0.03 

0.91 ± 0.05 

 

2.30 ± 0.35 

2.34 ± 0.32 

2.31 ± 0.22 

 

2.25 ± 0.49 

2.43 ± 0.45 

2.17 ± 0.63 

 

0.33 ± 0.16 

0.29 ± 0.19 

0.38 ± 0.26 

 

0.91 ± 0.04 

0.92 ± 0.04 

0.90 ± 0.06 

 

2.34 ± 0.31 

2.39 ± 0.32 

2.38 ± 0.19 

 

2.15 ± 0.44 

2.26 ± 0.56 

1.87 ± 0.72 

 

0.37 ± 0.15 

0.35 ± 0.17 

0.49 ± 0.35 

 

0.90 ± 0.03 

0.91 ± 0.04 

0.88 ± 0.07 

 

2.35 ± 0.34 

2.39 ± 0.34 

2.38 ± 0.26 

PLA, Placebo group; CAF, Caffeine group. CHO ox, carbohydrate oxidation; Fat ox, fat oxidation; RER, respiratory exchange ratio; VO2, oxygen uptake. There were no 
significant trial x group (P>0.472), time x group (P>0.189), trial x time (P>0.784) or trial x time x group (P>0.142) interactions for any variable. Values are mean ± SD. 



101 
 

6.5 Discussion  

This study examined whether four-weeks of controlled caffeine intake could influence 

endurance performance in a group of recreationally active men with low-habitual caffeine 

intakes. The results of the present investigation demonstrate that chronic supplementation 

with a titrated low dose of caffeine developed tolerance to the ergogenic effect a 

subsequent acute caffeine dose. While these results contrast with previous studies that 

have examined effects of sub-chronic caffeine supplementation (Irwin et al. 2011), this is 

the first study to investigate the effects of a prolonged period of controlled caffeine intake 

typical of the general population (Fitt et al. 2013). This suggests that supplementation 

protocols in previous studies (Irwin et al. 2011) were too short to influence mechanisms that 

develop tolerance.  

Previous research demonstrated caffeine prolonged exercise capacity due to enhanced fat 

oxidation late in exercise with a subsequent sparring of muscle glycogen (Costill et al. 1978). 

The results of the present study are contrary to this as substrate oxidation was not 

influenced either by acute or chronic caffeine supplementation (Table 6.4). Alternatively, 

chronic caffeine intake could influence caffeine metabolism (Svenningsson et al. 1999). This 

might lead to an increase in the concentrations of paraxanthine and theophylline, caffeine’s 

primary metabolites (Svenningsson et al. 1999). As these possess a greater affinity for 

adenosine receptors than caffeine (Fredholm et al. 1999), this could result in enhanced 

development of tolerance. However, caffeine concentrations were similar between the 

precaf and postcaf trials in the caffeine group (Table 6.2), suggesting the habituation 

protocol did not influence caffeine metabolism. Although paraxanthine and theophylline 

concentrations were not measured, these methylxanthines do not penetrate the blood-

brain-barrier with the same efficacy as caffeine (Svenningsson et al. 1999). Therefore, any 

subtle change in the peripheral concentrations of these metabolites attributable to the 

chronic supplementation protocol is unlikely to explain the development of tolerance.  

Serum cortisol and prolactin were assessed as these are indirect indicators of central 

noradrenergic (Tsigos and Chrousos, 2002) and dopaminergic (Ben-Jonathan and Hnasko, 

2001) activity, respectively. Chronic caffeine supplementation did not influence the 

circulating concentrations of these hormones (Table 6.2), suggesting that neurotransmitter 
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release along these neural pathways does not explain the development of tolerance. Direct 

analysis of neurotransmitter release with microdialysis (Acquas et al. 2002; De Luca et al. 

2007) and PET (Volkow et al. 2015) also support this hypothesis. Although high acute 

caffeine doses increase striatal dopamine release (i.e. 30 mg·kg−1; Solinas et al. 2002), lower 

doses (i.e. 0.25-5 mg·kg−1), typically consumed by the general population (Fitt et al. 2013), 

have not influenced dopamine release both in rat (Acquas et al. 2002; De Luca et al. 2007) 

and human (Volkow et al. 2015) striatum. Therefore, an alternative mechanism is likely 

responsible. Chronic caffeine supplementation has been associated with changes in A2A 

expression across several brain regions (Svenningsson et al. 1999). However, a cross-

tolerance to the A1 receptor probably plays a more important role in mediating the 

development of tolerance (Karcz-Kubicha et al. 2003). This could involve a functional change 

in the striatal A1/A2A heteromer (Ciruela et al. 2006), while others have reported changes in 

A1 receptor expression throughout the brain after chronic caffeine supplementation 

(Johansson et al. 1993). A recent PET study demonstrated that almost half of in vivo cerebral 

A1 receptors were occupied by caffeine when participants received an intravenous dose of 

4.3 mg·kg−1, which corresponded to a plasma concentration of ~8 μg·mL-1 (Elmenhorst et al. 

2012). Participants in the present study were habituated to daily doses of 3 mg·kg−1 from 

days 8 to 28, resulting in serum concentrations of approximately 3.5 μg·mL-1 (Table 6.2). 

Based on these observations, it could be that the 3 mg·kg−1 caffeine dose administered in 

the present study resulted in the occupation of approximately a quarter of cerebral A1 

receptors. This suggests supplementation with larger daily caffeine doses (i.e. 6-9 mg·kg−1), 

which will ultimately occupy more A1 receptors, results in accelerated and/or total 

development of tolerance. 

The influence of caffeine habituation of participants is often overlooked in many studies, 

despite evidence which demonstrates that this influences performance after acute 

supplementation (Bell and McLellan, 2002). To minimise this confounder, all participants in 

the present study were low caffeine consumers before participation. Differences in habitual 

caffeine consumption are associated with single nucleotide polymorphisms (SNP’s) in the 

ADORA2A gene encoding for the A2A receptor (Cornelis et al. 2007). This study reported that 

individuals with the homozygous recessive (TT) genotype consumed less caffeine than their 

homozygous dominant (CC) counterparts (Cornelis et al. 2007). Recently, TT carriers 
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performed better during a short performance task (10 min) than CC carriers when 

supplemented with an acute 5 mg·kg−1 caffeine dose (Loy et al. 2015). Perhaps this could 

explain the small between-group difference in total external work produced during the 

precaf trial (28.7 ± 74.8 kJ; ES=0.44), with more TT carriers present in the caffeine group. 

However, genotype determination was not undertaken in the present study, which limits 

the extent to which this relationship can be inferred. 

Well-trained individuals produce more reliable performance data during cycle-based TT than 

their recreationally active counterparts (Zavorsky et al. 2007). However, recreationally 

active individuals produced a CV of 1.7% (Zavorsky et al. 2007) and 0.7% (Fleming and 

James, 2014) during cycle-and running-based TT’s, respectively. Furthermore, similar 

performance tests to that in the present study elicit a CV of approximately 3% (Jeukendrup 

et al. 1996; Sewell and McGregor, 2008). This variability is less than the percentage increase 

in performance during the precaf trials (caffeine: 12.0 ± 7.4%; placebo: 6.7 ± 4.2%) and the 

percentage decrease in performance during the postcaf trial compared with precaf in the 

caffeine group (-7.3 ± 6.3%). Therefore, neither the participant group nor the performance 

test used in the present study adversely influenced the validity of the performance data. 

Ideally, the study design would have incorporated a post-supplementation placebo trial, 

hence providing a direct comparison with the postcaf trial after the chronic 

supplementation protocol. It was deemed difficult to implement as timing both trials to 

occur at the end of the supplementation period was not possible. For example, two 

randomised trials, undertaken seven days apart, means the supplementation period before 

the postcaf trial would be twenty-eight days for half the participants and thirty-five days for 

the remaining participants. Importantly, peak power output and maximal oxygen uptake 

were similar between the two V�O2peak tests. Furthermore, heart rate and oxygen uptake 

during the fixed-intensity exercise was similar during all three trials. This suggests 

participants maintained similar fitness throughout the study period and exercise intensity 

was matched before the performance task during each of the experimental trials. Hence, 

any influence on performance during the postcaf trial in either supplementation group is 

likely due to participants receiving caffeine or placebo during the chronic supplementation 

period. 
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In conclusion, the present findings demonstrate that chronic ingestion of a titrated low dose 

of caffeine results in the development of tolerance in a group of healthy, recreationally 

active males with low-habitual caffeine intakes. This occurred despite no difference before 

or after the supplementation protocol in circulating caffeine, hormonal concentrations or 

substrate oxidation. The influence of chronic caffeine intake should be examined in well-

trained individuals with low-habitual caffeine intakes. In addition, futures studies should 

identify when the tolerance to caffeine occurs and examine whether supplementation with 

larger daily doses (i.e. 6-9 mg·kg−1) influences the rate and extent of the development of 

tolerance. 
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Chapter 7 

Octopamine Supplementation Does Not Influence 

Endurance Cycle Performance  

7.1 Abstract 

Octopamine is a naturally occurring compound found in low concentrations in plasma and 

throughout the central nervous system. It has previously been demonstrated to increase 

locomotor activity in rats and induce lipolysis by stimulating β3 adrenoreceptors.  Hence, the 

aim of this study was to examine the influence of octopamine supplementation on 

endurance performance and exercise metabolism. Ten healthy, recreationally active men 

(Mean ± SD; age: 24 ± 2 years; body mass: 78.4 ± 8.7 kg; VO2peak: 50.5 ± 6.8 ml·kg−1·min−1) 

completed one VO2peak test, one familiarisation trial and two experimental trials. After an 

overnight fast, participants ingested either a placebo or 150 mg of octopamine 60 min 

before exercise. Trials consisted of 30 min of cycle exercise at 55% Wmax, followed by a 30 

min performance task. Performance was similar between the experimental trials (placebo: 

352.8 ± 39 kJ; octopamine: 350.9 ± 38.3 kJ; Cohen’s d effect size=0.05; P=0.380). Substrate 

oxidation and circulating concentrations of free fatty acids, prolactin and cortisol were 

similar between trial conditions (all P>0.05). There were also no differences across trials for 

heart rate or perceived exertion during exercise (both P>0.05). The present results indicate 

that acute octopamine supplementation fails to influence endurance performance, which 

could be due to the low serum concentrations observed. Future studies should examine the 

influence of larger doses during exercise both in temperate and high environmental 

conditions. 
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7.2 Introduction 

The prevalence of dietary supplement use is becoming increasingly widespread among 

athletes (Knapik et al. 2016) and university students (Lieberman et al. 2015). This has 

contributed to an increase in global sales, which was estimated at approximately £73 billion 

in 2012 (Nutrition Business Journal, 2014). One of the primary reasons athletes consume 

supplements is to enhance performance (Lieberman et al. 2015), yet only a few appear to 

be ergogenic. Of these, caffeine has been consistently demonstrated to improve 

performance in laboratory-based studies (Burke, 2008), which is likely due to its ability to 

stimulate the CNS (Fredholm et al. 1999). This led to other drugs which possess stimulant-

like properties to be investigated for their ergogenic potential (Earnest et al. 2004). 

However, some of these may be unsafe, especially when taken in combination with other 

stimulants (Williams, 2006). In addition, many supplements contain deleterious compounds 

not declared on the label (Maughan, 2005), while the use of potentially dangerous 

pharmacological agents by endurance athletes have increased in recent years (Machnik et 

al. 2009). Given these observations, it would be of interest to identify a safe and novel 

supplement capable of improving endurance performance.  

Octopamine is a naturally occurring amine structurally similar to the neurotransmitter 

noradrenaline (Farooqui, 2012). It was first isolated from the salivary glands of the octopus 

(Erspamer, 1948) and is synthesised from the amino acid tyrosine with tyramine as an 

intermediate (Brandau and Axelrod, 1972). The function of octopamine has been well 

characterised in invertebrates, where it modulates signal transduction processes through 

the activation of octopamine receptors (Farooqui, 2012). Vertebrates, including humans, are 

absent of these receptors, which led to the suggestion that endogenous octopamine exerts 

no major role in human physiology (Farooqui, 2012). However, low circulating 

concentrations are present in plasma (D’Andrea et al. 2010), leading octopamine to being 

classified as one of the primary trace amines (Burchett and Hicks, 2006). A unique group of 

G protein-coupled receptors known as trace amine-associated receptors (TAAR) have been 

identified in recent years (Borowsky et al. 2001; Bunzow et al. 2001). Importantly, 

octopamine has been shown to bind to the TAAR1 subtype (Borowsky et al. 2001), a 

receptor which modulates the release of monoamines from presynaptic terminals in the 

brain (Liberles, 2015). This confirms previous reports of the presence of octopamine in 
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mammalian nerve tissues and brain (Ibrahim et al. 1985). Furthermore, octopamine has 

been suggested to play a role in the pathogenesis of migraine and the early stages of 

Parkinson’s disease (D’Andrea et al. 2010; D’Andrea et al. 2012). Therefore, octopamine 

may, in part, modulate normal and abnormal neurophysiological processes (Burchett and 

Hicks, 2006) and possess stimulant-like properties capable of influencing exercise 

performance (Stohs, 2014; WADA, 2015). Given that caffeine influences the CNS (Fredholm 

et al. 1999) and enhances performance in temperate (Burke, 2008; chapter 6) and warm 

(chapters 4 and 5) ambient conditions, it would be of interest to determine the performance 

effects of octopamine following acute supplementation. 

Octopamine was studied as a therapeutic agent to treat hypotensive disorders, with doses 

of 450-600 mg·day−1 resulting in mild increases in systolic blood pressure without the 

presence of adverse effects (Kuske, 1969; Ziegelmayer, 1972). Subsequent studies 

demonstrated the ability of octopamine to activate β3 adrenoreceptors and stimulate 

lipolysis (Carpéné et al. 1999), suggesting octopamine could influence fat metabolism. 

Furthermore, intracerebroventricular administration of octopamine increased locomotor 

activity in rats (Jagiełło-Wójtowicz, 1979). Despite these observations, no human study has 

examined the influence of octopamine on exercise performance or substrate metabolism. 

Therefore, the aim of the study was to determine whether an acute oral dose of octopamine 

could influence endurance performance and/or exercise metabolism in a group of healthy 

volunteers.  

 

7.3 Methods  

Ten healthy, recreationally active men (age: 24 ± 2 y; body mass: 78.4 ± 8.7 kg; height: 1.81 

± 0.07 m; VO2peak: 50.5 ± 6.8 ml·kg−1·min−1; Wmax: 295 ± 41 W) participated in this study, 

which employed a double-blind, randomised, counter-balanced, cross-over design. All 

participants completed one incremental maximal exercise test, one familiarisation trial and 

two experimental trials. The initial visit consisted of incremental cycle exercise to volitional 

exhaustion on an electronically braked cycle ergometer (Lode Corival, Groningen, Holland) 

to determine Wmax and the power output required to elicit 55% and 75% of Wmax. Following 
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this, participants completed a familiarisation trial. All visits to the laboratory were separated 

by 5-7 days.  

The trial overview is illustrated in figure 7.1. The pre-trial dietary and activity 

standardisation requirements are outlined in chapter 3.5. No additional dietary caffeine (i.e. 

above habitual intake) was permitted during the 24 hours prior to the familiarisation and 

experimental trials. Participants arrived at the laboratory in the morning (7-9am) and post-

void nude body mass was recorded. After 15 min of seated rest, a 21-g cannula was inserted 

into an antecubital vein to enable repeated blood sampling. A baseline venous sample (12 

mL) was collected before participants ingested a capsule containing either 150 mg of 

octopamine (Blackburn Distributions, Lancashire, UK) or 150 mg of starch (placebo; BDH Ltd, 

Poole, UK) with 50 mL of plain water. The purity of octopamine was certified at >99% (HFL 

Sport Science, Fordham, UK; Ref: LGC255966). The 150 mg dose was chosen to avoid 

hypertensive effects previously reported after oral intakes of 450-600 mg in hypotensive 

patients (Kuske, 1969; Ziegelmayer, 1972). All capsules were visually identical and blinded 

by an external party not involved in any stage of data collection. Following ingestion of the 

capsules, participants rested in a comfortable environment for 60 min; this timeframe is 

sufficient to elicit peak octopamine concentrations in the blood (Hengstmann et al. 1974). 

After the rest period a second venous sample (12 mL) was collected before participants 

began cycle exercise for 30 min at a workload corresponding to 55% Wmax. During this 

period heart rate and RPE (Borg, 1982) were recorded every 5 and 10 min, respectively. 

Expired air samples (1 min) were collected at 15 and 30 min to determine the rates of 

substrate oxidation (Peronnet and Massicotte, 1991). After each sample, participants were 

provided with 100 mL of plain water. At 30 min a third venous sample (12 mL) was collected 

while participants remained seated on the ergometer.  

Subsequently, there was a 2-3 min delay while the ergometer was set up for the 

performance task. Participants were instructed to complete as much work (kJ) as possible 

within 30 min. Participants began exercise at a workload corresponding to 75% Wmax, but 

were free to adjust the intensity of exercise as desired from the outset. Heart rate was 

recorded every 5 min and RPE at 10 and 20 min, respectively. A final venous sample (12 mL) 

was collected upon completion of exercise while participants remained seated on the 

ergometer. After this, the cannula was removed.  
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Whole blood (2 mL) was used to determine plasma glucose, Hb, and Hct. Further details 

regarding handling and analysis are described in chapter 3.7.  An additional 5 mL was used 

to yield serum for the subsequent determination of cortisol and prolactin with ELISA (DRG 

diagnostic, Germany) and octopamine with reverse-phase HPLC (Wood and Hall, 2000). The 

remaining 5 mL was used for the subsequent determination of FFA by colorimetric methods 

(described in chapter 3.7). The intra-assay CV for serum prolactin, cortisol, octopamine, and 

FFA’s was 5.1%, 4.0%, 2.5%, and 3.6%, respectively.   

All data were analysed using IBM SPSS statistics version 21.0. Normality was assessed with 

the Shapiro Wilk test. To evaluate differences in exercise performance, pre-exercise nude 

body mass, and fasting plasma glucose across trial conditions, a paired t-test was employed. 

Cohen’s d effect size for differences in total work produced during the performance task 

was also determined ([mean 1 - mean 2]/pooled SD) and interpreted as trivial (0-0.19), small 

(0.2-0.49), medium (0.5-0.79) or large (>0.8) as previously described (Cohen, 1992). 

Variables measured throughout each trial were analysed using a two-way (trial x time) 

repeated-measures ANOVA. Where the assumption of sphericity had been violated, the 

degrees of freedom were corrected with a Greenhouse-Geisser as appropriate. Main effects 

and interactions were followed up with Bonferroni adjusted paired t-tests for normally 

distributed data or Bonferroni adjusted Wilcoxon Signed Rank tests for non-normally 

distributed data. Data are presented as means ± SD throughout. Statistical significance was 

accepted at P<0.05. 
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Figure 7.1 Trial overview 

 

7.4 Results 

Mean environmental temperature was similar between trials (placebo: 20.0 ± 0.8 oC; 

octopamine: 20.0 ± 0.8 oC; P=0.903). There were no differences across trials for pre-exercise 

nude body mass (placebo: 78.6 ± 8.8 kg; octopamine: 78.7 ± 8.9 kg, P=0.602) or fasting 

plasma glucose (placebo: 4.4 ± 0.5 mmol·L-1; octopamine: 4.4 ± 0.5 mmol·L-1, P=0.483), 

suggesting participants began each trial in a similar physiological state.  

All ten participants completed both experimental trials, no adverse effects were reported. 

There was no clear difference in total work produced during the performance task, with 

mean values of 352.8 ± 39 kJ and 350.9 ± 38.3 kJ recorded during the placebo and 

octopamine trials, respectively (d=0.05; P=0.380; Figure 7.2).  

Finish Start 

Performance task 
(30 min) 55% Wmax (30 min) 

Rest (60 min) 

Octopamine/placebo Heart rate RPE  

Water Expired air Venous sample 
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Figure 7.2 Mean (bars) and individual (lines) work produced (kJ) during the performance task. Values 
are mean ± SD. 
 

Serum octopamine concentrations remained below the limit of detection for all time points 

during the placebo trial and for the baseline sample during the octopamine trial. During the 

octopamine trial, serum concentrations increased throughout exercise (P<0.05; Figure 7.3). 

No pair-wise differences were identified from 60 to 120 min post-ingestion (P>0.725).  

 

Figure 7.3 Serum octopamine concentrations. Values are mean ± SD. 
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Circulating cortisol showed a main effect of time (P<0.05), but no main effect of trial 

(P=0.334) or a trial x time interaction (P=0.080; Figure 7.4A). There was a main effect of time 

for serum prolactin (P<0.05), with higher values recorded at 30 and 60 min compared with 

baseline (P<0.08; Figure 7.4B). No main effect of trial (P=0.833) or interaction effect was 

observed (P=0.288).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 Circulating cortisol (A) and prolactin (B) during the experimental trials. *denotes a 
significant difference (P<0.05) from -60. Values are mean ± SD. 
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FFA concentrations remained similar compared with baseline during both trials, with no 

main effect of time (P=0.783), trial (P=0.351) or trial x time interaction (P=0.412; Figure 

7.5A) apparent. Glucose concentrations showed a main effect of time (P<0.05), with higher 

values at 30 and 60 min compared with baseline (P<0.05; Figure 7.5B). No main effect of 

trial (P=0.240) or a trial x time interaction (P=0.704) occurred. There was a main effect of 

time for blood and plasma volume (P<0.05), but no main effects of trial (P>0.231) or 

interaction effects (P>0.504).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 Plasma FFA’s (A) and glucose (B) during the experimental trials. *denotes a significant 
difference (P<0.05) from -60. Values are mean ± SD. 
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For carbohydrate oxidation there was no main effect of trial (P=0.661), time (P=0.148) or an 

interaction effect (P=0.419). There was a main effect of time for fat oxidation (P=0.026), but 

no main effect of trial (P=0.597) or trial x time interaction (P=0.387; Table 7.1). Oxygen 

uptake showed a main effect of time (P=0.001), with higher values at 30 min compared with 

15 min (P<0.05; Table 7.1). No main effect of trial (P=0.927) or trial x time interaction 

(P=0.382) was observed. For RER there was no main effect of trial (P=0.775), time (P=0.121) 

or an interaction effect (P=0.366; Table 7.1).  

 

Table 7.1 Substrate oxidation and oxygen uptake during the fixed-intensity exercise 
 Treatment 15 30 

CHO ox (g·min−1) 

 

Fat ox (g·min−1) 

 

RER 

 

VO2 (L·min−1) 

Placebo 

Octopamine 

Placebo 

Octopamine 

Placebo 

Octopamine 

Placebo 

Octopamine 

2.46 ± 0.35 

2.44 ± 0.38 

0.19 ± 0.08 

0.20 ± 0.04 

0.95 ± 0.02 

0.94 ± 0.01 

2.22 ± 0.30 

2.21 ± 0.31 

2.46 ± 0.37 

2.51 ± 0.33 

0.23 ± 0.08 

0.21 ± 0.05 

0.94 ± 0.02 

0.94 ± 0.01 

2.29 ± 0.31* 

2.29 ± 0.30* 

ValuesCHO ox, carbohydrate oxidation; Fat ox, fat oxidation; RER, respiratory exchange ratio; VO2, oxygen 
uptake. *denotes significantly greater (P<0.05) than 15 min. Values are mean ± SD.  
 

Heart rate showed a main effect of time during the fixed-intensity exercise (P<0.05) and 

during the performance task (P<0.05). No main effects of trial (P>0.240) or interaction 

effects (P>0.168) were observed (Figure 7.6).  
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Figure 7.6 Heart rate during the experimental trials. PT, performance test. Values are mean + SD. 
 

There was a main effect of time for RPE during the fixed-intensity exercise (P=0.01) and 

during the performance task (P<0.05). No main effects of trial (P>0.177) or trial x time 

interactions (P>0.241) occurred (Figure 7.7).  

 

Figure 7.7 Perceived exertion during exercise. PT, performance test. Values are mean + SD. 
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7.5 Discussion 

The present study was the first to examine whether octopamine supplementation could 

influence endurance performance or exercise metabolism in a group of healthy, 

recreationally active male participants. The results of the present investigation demonstrate 

that an acute 150 mg dose of octopamine failed to enable participants to increase the 

amount of work produced during a 30 min performance task compared with a placebo 

condition. Furthermore, there were no differences between trials in the estimated rates of 

fat and carbohydrate oxidation or in the peripheral concentrations of FFA’s, prolactin and 

cortisol.  

While the mechanism of action of octopamine is well established in invertebrates (Farooqui, 

2012), its precise function in humans remains elusive (Burchett and Hicks, 2006: Stohs, 

2014). However, low concentrations have been observed in plasma (D’Andrea et al. 2010) 

and throughout the central nervous system (Burchett and Hicks, 2006; Ibrahim et al. 1985 

Liberles, 2015). Previous work demonstrated that octopamine can bind to TAAR1 (Borowsky 

et al. 2001), a receptor which modulates neurotransmitter release across several brain 

regions (Liberles, 2015). However, the EC50 values for TAAR1 from human, rat and mouse 

transfected-cell lines are in the range of 2-20 μM (Lindemann et al. 2005). These values are 

greater than the serum concentrations reported in the present study (0.95 to 1.24 μM; 

Figure 7.3), suggesting a larger dose of octopamine may be required to influence this 

receptor. Furthermore, octopamine is rapidly metabolised after oral ingestion, with eleven 

times more conjugated octopamine present in the urine compared with intravenous 

infusion (Hengstmann et al. 1974). This might explain the contrast between the present 

study and a previous animal model (Jagiełło-Wójtowicz, 1979), as octopamine was directly 

introduced into the brain of rats and therefore not subjected to extensive hepatic first-pass 

metabolism. Moreover, endurance performance in the heat is influenced by 

pharmacological manipulation of central catecholamines (Roelands and Meeusen, 2010). 

Hence, the provision of a larger dose of octopamine coupled with a high ambient 

temperature could provide conditions by which octopamine might enhance performance; 

this hypothesis warrants investigation in future studies. 
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Previous research demonstrated that octopamine can selectively and potently bind to β3 

adrenoreceptors and stimulate lipolysis in mammalian fat cells (Carpéné et al. 1999), while 

expressing little affinity for the α-adrenergic receptors (Brown et al. 1988). These 

observations suggest that octopamine supplementation might influence fat metabolism in 

humans. However, no differences were observed between the two trials in the estimated 

rates of fat and carbohydrate oxidation or in the peripheral concentrations of FFA’s. While 

these findings contrast with previous in vitro data (Carpéné et al. 1999), the doses required 

to induce lipolysis in these experiments ranges from 10 μM to 1 mM (Carpéné et al. 1999; 

Visentin et al. 2001). Therefore, observations from in vitro models may not translate to the 

effects observed after oral intake in humans. Furthermore, even chronic ingestion (4 weeks) 

of a dose approximately seven times greater than the present study (15.3 mg·kg−1) failed to 

induce higher FFA, glycerol or triglyceride concentrations in rats (Bour et al. 2003). For an 80 

kg human, this would correspond to a daily dose of approximately 1,200 mg, which is twice 

the dose previously demonstrated to induce hypertensive effects (Kuske, 1969; Ziegelmayer, 

1972). Hence, low-dose octopamine supplementation is unlikely to influence fat metabolism 

in humans. 

The present study was the first to examine whether octopamine could enhance endurance 

performance or exercise metabolism. It was demonstrated that an acute oral dose failed to 

influence performance, substrate oxidation or the peripheral concentrations of FFA’s, 

cortisol and prolactin. These finding are likely due to the low serum concentrations 

observed. Therefore, future studies should examine whether supplementation with larger 

doses (i.e. 300-400 mg), yet still below those reported to induce hypertensive effects 

(Kuske, 1969; Ziegelmayer, 1972), can influence performance. Given the training status of 

the participants in the present study (recreationally active), it would be of interest to 

investigate the influence of octopamine in well-trained individuals. Furthermore, as central 

catecholaminergic neurotransmission can modulate endurance performance in the heat 

(Roelands and Meeusen, 2010), the influence of a high ambient temperature on the 

ergogenic potential of octopamine should be investigated. Nevertheless, the results of the 

present study may be of interest to the WADA, given octopamine is currently on the list of 

prohibited substances, meaning its use is banned in competition by athletes.  
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Chapter 8 

General Discussion 

8.1 Overview of experimental chapters 

Few studies have investigated the performance and physiological effects of caffeine during 

prolonged exercise in the heat. Furthermore, despite the observed differences in endurance 

performance and metabolic responses in low-and high-habitual caffeine users, no study had 

examined these effects following a prolonged period of controlled caffeine intake typical of 

the general population. Finally, despite reports from in vitro models demonstrating 

stimulant-like and lipolytic effects of octopamine, these responses have not been examined 

during prolonged exercise in humans. Therefore, the aim of the work described in this thesis 

was to examine the performance and physiological effects of caffeine and octopamine 

supplementation during prolonged cycle exercise. The main objectives were as follows. 

• To investigate the performance and physiological responses following acute 

supplementation with low (Chapter 4) and moderate (Chapter 5) caffeine doses 

during prolonged exercise in the heat 

• To examine the influence of a prolonged period of controlled caffeine intake on 

endurance cycle performance and exercise metabolism (Chapter 6) 

• To determine the performance and metabolic effects of acute octopamine 

supplementation during prolonged exercise (Chapter 7) 

 

The main findings of the current thesis are presented in table 8.1 and the results of each 

investigation are discussed relative to the outcome variables in chapters 8.2-8.6. 
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Table 8.1 Summary of experimental protocols and main findings from experimental chapters 

Chapter Participants Experimental protocol  Acute dosing protocol Main outcomes 
4 
 
 
 
 
 

 
 

 
5 
 
 

 
 

6 
 

 
 
 
 
 

 
 

7 
 
 

 

Ten recreationally 
active males (VO2Peak: 
49.0 ± 3.4 
mL·kg−1·min−1) 
 
 
 
 
 
Eight recreationally 
active males (VO2Peak : 
55.9 ± 5.8 
mL·kg−1·min−1) 
 
Eighteen recreationally 
active males (VO2Peak : 
51.4 ± 8.7 
ml·kg−1·min−1) 
 
 
 
 
 
Ten recreationally 
active males (VO2Peak : 
50.5 ± 6.8 
ml·kg−1·min−1) 

60 min preload @ 60% VO2Peak + 30 min TT 
in 30oC and 50% RH 
 
 
 
 
 
 
 
60 min preload @ 55% Wmax + 30 min TT in 
30oC and 50% RH 
 
 
 
Two groups (n=9) completed 3 trials: 
• Two before chronic caffeine (28 days 

of 1.5-3 mg·kg·day−1) or placebo 
(Starch: 250 mg·day) ingestion (precaf 
and testpla)  

• One on day 29 (postcaf)  
• 60 min preload @ 60% VO2Peak + 30 

min TT in approx. 20oC and 50% RH  
 

30 min preload @ 55% Wmax + 30 min TT in 
aprox. 20oC and 50%RH 
 
 

1 x 1.5 mg·kg−1 caffeine 60 
min and immediately 
before exercise (split-dose) 
1 x 3 mg·kg−1 caffeine 60 
min before exercise 
(single-dose) 
 
 
 
1 x 6 mg·kg−1 caffeine 60 
min before exercise 
 
 
 
1 x 3 mg·kg−1 caffeine 60 
min before exercise 
(precaf and postcaf) 
 
 
 
 
 
 
1 x 150 mg octopamine 60 
min before exercise  

• Both caffeine trials enhanced performance versus placebo 
(d>0.42; P<0.029). The split-dose trial further enhanced 
performance than the single-dose protocol (d=0.32; P=0.059) 

• Thermoregulatory and metabolic responses during the 
preload were similar across trials (P>0.05) 

• RPE was lower during the preload after caffeine intake versus 
placebo (P<0.048). No difference was observed between the 
two caffeine trials (P=0.506) 

 
• Caffeine enhanced performance (d=0.22; P=0.004) 
• Caffeine did not influence thermoregulation, blood variables 

or substrate oxidation rates (P>0.05) 
• Caffeine reduced RPE during the preload (P=0.033) 
 
• Chronic caffeine intake developed tolerance to an acute dose 

(d=0.31; P=0.025) 
• No change in blood variables, substrate oxidation rates or RPE 

during the preload 
 
 
 
 
 
• Octopamine did not enhance performance (d=0.05; P=0380) 
• No change in blood variables, substrate oxidation or RPE 

during exercise (P>0.05) 

Note: All studies provided a placebo trial for comparison. VO2Peak, peak oxygen uptake; TT, time-trial; RH, relative humidity; RPE, rating of perceived exertion; precaf; pre-
supplementation caffeine trial; testpla, pre-supplementation placebo trial; poscaf, post-supplementation caffeine trial; d, Cohen’s d effect size. 
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8.2 Endurance performance 

While caffeine supplementation consistently enhances performance during prolonged exercise 

in temperate environmental conditions (20oC; Burke, 2008), the influence of a high ambient 

temperature on the ergogenic effect of caffeine has received less attention (Armstrong et al. 

2007). The studies in chapters 4 and 5 investigated whether low-to-moderate caffeine doses (3-

6 mg·kg−1), which consistently enhance performance in temperate conditions (Burke, 2008; 

Ganio et al. 2009b), also confer performance benefits in the heat (30oC and 50% RH). Despite 

some researchers suggesting that a high ambient temperature negates the capacity for caffeine 

to enhance performance in the heat (Cheuvront et al. 2009; Roelands et al. 2011), the results of 

chapters 4 and 5 demonstrate that total work produced during a 30 min performance task was 

increased after caffeine intake versus a placebo condition. These findings support previous 

studies which demonstrated a beneficial effect of caffeine intake (3-6 mg·kg−1) when exercise 

was performed in the heat (Del-Coso et al. 2008; Cureton et al. 2007; Ganio et al. 2011; 

Pitchford et al. 2014).  

The results of chapter 4 demonstrate that 3 mg·kg−1 caffeine, administered either as a single-or 

split-dose (2 x 1.5 mg·kg−1) prior to exercise, improved endurance cycle performance. The 

performance benefit during the single-caffeine trial supports the results of Pitchford et al 

(2014), whereby trained cyclists completed an energy-based TT 7% quicker after ingesting 3 

mg·kg−1 caffeine. To date, these are the only studies to investigate the ergogenic effect of 3 

mg·kg−1 caffeine and suggest that even low doses are sufficient to benefit performance in the 

heat. An interesting finding of chapter 4 was that dividing the caffeine bolus appeared to confer 

an even greater performance benefit than single-dose administration (d=0.32; P=0.059; 78.5% 

likelihood of benefit). This additive benefit is not observed when exercise is performed in 

temperate conditions (Conway et al. 2003; Cox et al. 2002), suggesting the addition of a high 

ambient temperature might provide an environment more suitable for repeated caffeine doses 

to further enhance performance. The precise mechanism mediating this response is not clear, 

but may reflect a change in adenosine receptor sensitivity or function during exercise. Acute 

bouts of exercise can influence the adenosine receptor-mediated response to insulin (Langforf 
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et al. 1993), while exercise and adenosine receptor antagonists interact to regulate antioxidant 

responses in cardiac tissue (Husain and Somani, 2005). In rats, repeated versus single injections 

of cocaine differentially influenced calcium signalling in striatum (Kim et al. 2009). Intracellular 

calcium regulates the function of the striatal A2A/D2 heteromer (Navarro et al. 2014), a primary 

target of caffeine (Ferré, 2008). Hence, calcium-mediated changes in striatal A2A/D2 signalling 

might result in enhanced motor cortex excitability and thus stronger efferent projections to the 

motor neurons innervating the locomotor muscles during the split-caffeine trial, thereby 

enabling a higher power output during the performance task. However, this is purely 

speculative.  

The results of chapter 5 demonstrate that 6 mg·kg−1 caffeine administered 60 min prior to 

exercise is sufficient to enhance performance in the heat. This supports the findings of Ganio et 

al (2011), who examined the ergogenic effect of 6 mg·kg−1 caffeine in cool (11oC) and high 

(33oC) ambient conditions in the same participant group. These authors reported 

improvements in 15 min TT performance after caffeine supplementation independent of the 

ambient temperature. Furthermore, Del-Coso et al (2008) reported improvements in VA after 

exercise when 6 mg·kg−1 caffeine was ingested either without fluid, with water to replace 97% 

of sweat loss, or with the same volume of a 6% carbohydrate-electrolyte drink, versus these 

treatments without caffeine. To date, the only study which failed to report an ergogenic effect 

of 6 mg·kg−1 caffeine was that of Roelands et al (2011). These authors supplemented 

participants with caffeine 60 min before prolonged exercise and reported similar performance 

times during an energy-based TT (approx. 30 min). These data clearly contrast with the results 

of chapter 5 and those of Ganio et al (2011), which could be due to differences in the core 

temperature response during exercise (discussed in chapter 8.3). Alternatively, performance 

benefits after caffeine intake can be highly variable during exercise in temperate conditions 

(Jenkins et al. 2008), which may also occur when exercise is performed in the heat. Therefore, 

more non-responders to caffeine may have been present in the study of Roelands et al (2011) 

than in Ganio et al (2011) and chapter 5. Finally, the contrasting findings between studies 

(Ganio et al. 2011; Roelands et al. 2011) might be due to the dosing strategy employed. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
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Whereas Roelands et al (2011) administered caffeine as a single bolus before exercise, Ganio et 

al (2011) administered a 3 mg·kg−1 caffeine dose 90 min before and 45 min during exercise.  

Despite the widespread intake of caffeine (Desbrow and Leveritt, 2006; Fitt et al. 2013; 

Fredholm et al. 1999), few studies have investigated the influence of habituation on exercise 

performance (Bell and McLellan, 2002; Dodd et al. 1991; Irwin et al. 2011; Roti et al. 2006). The 

performance benefit of an acute 5 mg·kg−1 caffeine dose was less pronounced in regular 

caffeine users versus their caffeine naive counterparts (Bell and McLellan, 2002), while chronic 

caffeine intake influenced the metabolic response to steady-state exercise (Bangsbo et al. 

1992). However, a four-day period of controlled caffeine intake failed to influence the 

ergogenic effect of a subsequent acute caffeine dose (Irwin et al. 2011), suggesting the 

habituation protocol was too short to influence mechanisms that develop tolerance. 

Accordingly, chapter 6 investigated whether a more prolonged period of controlled caffeine 

intake could influence endurance cycle performance. In contrast with previous studies (Irwin et 

al. 2011; Roti et al. 2006), chronic caffeine intake resulted in the development of tolerance. The 

ergogenic effect of an acute 3 mg·kg−1 caffeine dose was less pronounced after the habituation 

period, while performance was unchanged in the placebo group.  

Several mechanisms are proposed to explain the development of tolerance. In rats, long-term 

caffeine treatment is associated with an increased expression of adenosine A1 and A2A 

receptors in several brain regions (Johansson et al. 1993; Svenninggsson et al. 1999). However, 

changes in adenosine receptor density does not affect the binding potency of an antagonist 

(Holtzman et al. 1991), while tolerance to caffeine can occur without any change in adenosine 

receptor expression (Georgiev et al. 1993). There is evidence to suggest that chronic caffeine 

intake (14 days) attenuates the caffeine-mediated increase in striatal dopamine release (Quarta 

et al. 2004), although very high doses were administered (130 mg·kg·day−1). Chronic exposure 

to caffeine in the drinking water of rats resulted in partial tolerance to the performance benefit 

of a selective A1 but not an A2A antagonist (Karcz-Kubicha et al. 2003). These data suggest a 

cross-tolerance to the A1 receptor plays an important role in the development of tolerance and 

that the residual ergogenic effects of caffeine is mostly due to A2A blockade. The lack of 
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tolerance after repeated administration of a selective A2A antagonist (Halldner et al. 2000) 

provides further support for this hypothesis. The cross-tolerance to A1 blockade may involve a 

functional change in the striatal A1/A2A heteromer in the presence of increased extracellular 

adenosine (Ferré et al. 2008). Chronic exposure to caffeine augments circulating adenosine 

(Conway et al. 1997), which occupies a greater concentration of A2A receptors in this heteromer 

(Ciruela et al. 2006). This inhibits A1 function through an intramembrane interaction, thus 

attenuating caffeine-mediated blockade of the A1 receptor (Ciruela et al. 2006; Ferré et al. 

2008). The accumulation of cerebral adenosine following chronic caffeine administration 

(Conway et al. 1997) impairs running performance in rats (Davis et al. 2003), likely through a 

decrease in neuronal firing rates (Fredholm et al. 1999). Therefore, tolerance to caffeine may 

result in a decrease in central motor output during exercise due to enhanced adenosinergic 

neurotransmission in the motor-related areas of the brain where A1 receptors are densely 

expressed (Fredholm et al. 1999; Table 2.3). Under these conditions, a larger dose of caffeine 

will be required to tonically antagonise the same concentration of adenosine receptors. 

However, this hypothesis has yet to be investigated, and no study has demonstrated that 

elevated cerebral adenosine impairs endurance performance in humans. 

Despite octopamine being placed on the WADA list of prohibited substances (WADA, 2015) and 

data from animal models (Jagiełło-Wójtowicz, 1979) and cell-lines (Borowsky et al. 2001) 

suggesting stimulant-like properties, no study had investigated the performance effects of 

octopamine in humans. Therefore, chapter 7 investigated the whether an acute 150 mg dose of 

octopamine administered 60 min before prolonged exercise could benefit endurance 

performance. Compared with a placebo condition, octopamine supplementation did not enable 

participants to produce more work during a 30 min performance task. Therefore, at the dose 

prescribed, it seems octopamine is not ergogenic to endurance cycle performance in temperate 

conditions.  

Humans do not possess specific octopamine receptors, yet the identification of the TAAR’s has 

identified a potential central role for octopamine (Borowsky et al. 2001; Bunzow et al. 2001). 

While the precise function and distribution of these receptors is still being elucidated, 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferr%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1488111
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octopamine binds to TARR1 with highest affinity (Borowsky et al. 2001). This receptor is located 

throughout the brain (Borowsky et al. 2001; Linderman et al. 2008; Xie et al. 2007) and is 

interconnected with the monoamine neurotransmitter systems (Pei et al. 2016; Xie et al. 2007; 

Xie and Miller, 2009). Specifically, TARR1 has been implicated in dopamine release and 

reuptake inhibition (Miller, 2011). However, due to the high turnover rate of octopamine via 

monoamine oxidase, cerebral concentrations are several hundred-fold lower than classical 

monoamine neurotransmitters (Berry, 2004). As such, octopamine is unlikely to directly 

influence the firing rate of postsynaptic neurons (Lindermann and Hoener, 2005). In support, 

Berry (2004) argues that physiologically relevant doses of octopamine do not change the 

electrical activity of a postsynaptic neuron, but instead modify the action of a coexisting 

neurotransmitter. This was demonstrated for the trace amine tyramine on rat mid-brain GABA 

neurons (Federici et al. 2005). Furthermore, octopamine is rapidly conjugated after oral 

ingestion, resulting in a larger concentration of inactive by-products several hours post-

ingestion (Hengstmann et al. 1974). Given these observations, it seems the combination of high 

cerebral turnover rates, extensive metabolism in the periphery, and the provision of a relatively 

low dose precluded any performance effect of octopamine. Therefore, while octopamine 

possesses stimulant-like properties in vitro (Borowsky et al. 2001; Xie and Miller, 2009), these 

effects doe not translate to a performance benefit following low dose oral ingestion in humans.    

 

8.3 Thermoregulation  

There is evidence to suggest that caffeine elevates core temperature during prolonged exercise 

in the heat (Ely et al. 2011; Cheuvront et al. 2009; Roelands et al. 2011), although this response 

is not always observed (Ganio et al. 2011; Pitchford et al. 2014). While larger caffeine doses (>9 

mg·kg−1) induce consistent elevations in core and body temperature (Cheuvront et al. 2009; Ely 

et al. 2011), the influence of lower doses (3-6 mg·kg−1) are less clear (Ganio et al. 2011; 

Pitchford et al. 2014; Roelands et al. 2011). Given these divergent findings, core and skin 

temperature was measured at rest and during prolonged exercise following low (chapter 4) and 

moderate (chapter 5) caffeine intakes.  
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The results of chapter 4 demonstrate that 3 mg·kg−1 caffeine, whether administered as a single 

3 mg·kg−1 bolus or 2 x 1.5 mg·kg−1 doses before exercise, does not influence core or skin 

temperature during 60 min of fixed-intensity exercise versus a placebo condition. The core 

temperature data supports the results of a recent cycle TT study conducted in a hot, dry 

environment (35oC and 25% RH; Pitchford et al. 2014). However, these authors did not include 

a period of fixed-intensity exercise before the TT, thus changes in self-selected power output 

could have masked subtle changes in core temperature during exercise. Furthermore, skin 

temperature was not measured, which is suggested to play a key role in the development of 

fatigue during prolonged exercise in the heat (Cheuvront et al. 2010). Therefore, chapter 4 was 

the first study to measure core and skin temperature during exercise at a fixed work-rate. The 

results suggest that, unlike larger caffeine doses (Cheuvront et al. 2009; Ely et al. 2011), intakes 

of 3 mg·kg−1 do not adversely influence thermoregulation when endurance exercise is 

performed in the heat. 

Similar to chapter 4, the core temperature data from chapter 5 suggests that moderate caffeine 

doses (6 mg·kg−1) do not influence thermoregulation during prolonged exercise in the heat 

versus placebo. Ganio et al (2011) also reported that 6 mg·kg−1 caffeine did not alter core or 

skin temperature responses to exercise in cool (11oC) and warm (33oC) ambient conditions. To 

date, the only study to report a caffeine-induced increase in core temperature in the heat 

without carbohydrates was that of Roelands et al (2011). These authors reported a greater 

increase in core temperature during 60 min of fixed-intensity exercise after supplementation 

with 6 mg·kg−1 caffeine compared with placebo. The difference in core temperature responses 

between this study and those of chapter 5 are not clear, but it should be noted that the 

caffeine-induced increase in core temperature in the study of Roelands et al (2011) did not 

impair subsequent TT performance. Furthermore, Del-Coso et al (2009) reported a 0.2-0.3oC 

increase in core temperature during 120 min of fixed-intensity exercise in 36oC when 6 mg·kg−1 

caffeine was ingested with a 6% carbohydrate-electrolyte solution versus the drink without 

caffeine. However, these authors did not observe any difference in core temperature when 

caffeine and water was co-ingested versus isolated water intake. The results of chapter 5 

support these latter findings, as participants received caffeine and water without additional 
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carbohydrates during the experimental trials. Finally, similar to the performance differences 

discussed in chapter 8.2, the contrasting thermoregulatory findings between studies (Ganio et 

al. 2011; Roelands et al. 2011) might be due to the dosing strategy employed (i.e. single-versus 

split-dose administration). The similar core temperature values observed during the 60 min 

preload in the single-and split-caffeine trials in chapter 4 provide some support for this 

hypothesis. However, further research is required.  

 

8.4 Hormonal concentrations 

Serum cortisol and prolactin were measured during each investigation as these hormones 

provide an indirect assessment of central noradrenergic (Tsigos and Chrousos, 2002) and 

dopaminergic (Ben-Jonathan and Hnasko, 2001) activity, respectively. Cerebral noradrenaline 

and dopamine are implicated in regulating arousal, motivation, reinforcement and reward 

(Girault and Greengard, 2004; Sara and Bouret, 2012), thus influencing the activity of one or 

both of these neurotransmitters would be expected to influence performance.     

Despite data from animals models demonstrating that caffeine administration increases 

dopamine release in striatal (Borycz et al. 2007; Solanis et al. 2002; Quarta et al. 2004) and non-

striatal (Zheng et al. 2014) regions, the lack of change in circulating prolactin in chapters 4, 5, 

and 6 suggest that caffeine ingestion doses not influence dopamine release in humans. The 

findings from this thesis support those of two previous PET studies conducted on resting human 

participants following acute supplementation with 200-300 mg caffeine (Kaasinen et al. 2004; 

Volkow et al. 2015). The difference between human and animal models might be explained by 

several factors: 1) the doses administered in previous animal models (30 mg·kg−1; Solanis et al. 

2002) are much higher than necessary to enhance endurance performance in humans (3-6 

mg·kg−1; Desbrow et al. 2012), 2) the route of administration (i.e. oral ingestion versus 

intraperitoneal injection), 3) differences in adenosine receptor distribution and binding 

affinities between species (Fredholm et al. 1999; Fredholm et al. 2011), and 4) rodents and 

humans differ in their thermoregulatory physiology (Gordon, 1990), thus limiting the 

extrapolation of the findings obtained from one system to another (chapters 4 and 5). 
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Furthermore, while caffeine ingestion was shown to increase noradrenaline turnover in rats 

(Miñana and Grisolía, 1986), more recent studies using microdialysis techniques have failed to 

report any change in cerebral noradrenaline after caffeine administration (Zheng et al. 2014; 

Zheng et al. 2016). The lack of change in circulating cortisol in chapters 4, 5 and 6 support these 

latter observations. However, no human PET study has investigated the influence of caffeine 

intake on central noradrenaline release. 

Similar to the findings discussed above, octopamine supplementation did not influence 

peripheral prolactin concentrations in chapter 7. Despite the link between octopamine, TAAR1 

and central dopaminergic activity in vitro (Pei et al. 2016; Xie et al. 2007; Xie and Miller, 2009), 

doses of 2-20 μM are typically required to influence TAAR1 on mammalian transfected cell-lines 

(Lindemann et al. 2005). These concentrations are much larger than the serum levels observed 

during the experimental trials (0.95 to 1.24 μM). Similarly, octopamine supplementation did not 

influence serum cortisol, suggesting no effect on central noradrenaline release. While one 

rodent study reported a decrease in GABAeric neurotransmission following octopamine 

administration (Jagiełło-Wójtowicz and Chodkowska, 1984), no animal or human studies have 

directly assessed cerebral noradrenaline activity after acute octopamine supplementation. 

  

8.5 Substrate oxidation  

Whole-body fat and carbohydrate oxidation rates and RER were estimated during 60 min 

(chapters 4, 5 and 6) or 30 min (chapter 7) of fixed-intensity exercise before the performance 

task.  

Despite promising results form early studies (Costill et al. 1978; Essig et al. 1980; Ivy et al. 

1979), there is little doubt that caffeine exerts little to no influence on skeletal muscle 

metabolism during exercise (Graham et al. 2008). This has been shown with stable-isotopic 

tracer (Hulston and Jeukendrup, 2008) and muscle biopsy techniques (Graham et al. 2008). 

There was no difference in fat and carbohydrate oxidation or RER values across trials in 

chapters 4 and 5, suggesting the addition of a high ambient temperature exerts no influence on 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Mi%C3%B1ana%20MD%5BAuthor%5D&cauthor=true&cauthor_uid=2874191
https://www.ncbi.nlm.nih.gov/pubmed/?term=Grisol%C3%ADa%20S%5BAuthor%5D&cauthor=true&cauthor_uid=2874191


128 
 

caffeine’s effects on substrate metabolism during prolonged exercise. In support, Ganio et al 

(2011) also reported no effect of caffeine on RER during exercise in cool and warm 

environmental conditions. Furthermore, the results of chapter 6 suggest that neither acute (3 

mg·kg−1) nor chronic (1.5-3 mg·kg−1) supplementation of caffeine induced any change in 

estimated substrate oxidation rates. While previous studies and the findings from this thesis 

strongly suggest that caffeine does not influence substrate metabolism during exercise, the 

prevalence of specific SNP’s across individuals may partly explain some small differences 

reported (Graham et al. 2008). However, these findings are from investigations conducted in a 

temperate environment, and no study has assessed the influence of different SNP’s on 

substrate metabolism following a prolonged period of controlled caffeine intake. 

Observations from in vitro models suggest that octopamine can selectively and potently bind to 

β3 adrenoreceptors and stimulate lipolysis in mammalian fat cells (Carpéné et al. 1999), while 

expressing little affinity for the α-adrenergic receptors (Brown et al. 1988). Thus, octopamine 

supplementation could influence fat metabolism in humans. However, no differences were 

observed across trials for fat and carbohydrate oxidation or circulating FFA concentrations. 

Similar to TAAR1 activity discussed in chapter 8.4, the contrasting findings between studies is 

likely due to the low serum levels of octopamine; in vitro models typically require 

concentrations of 10 μM to 1 mM to induce lipolysis (Carpéné et al. 1999; Visentin et al. 2001). 

Furthermore, when rats were administered with daily injections of 15.3 mg·kg−1 octopmaine, no 

change in circulating FFA’s, glycerol or triglyceride concentrations were observed (Bour et al. 

2003). Therefore, based on these observations, it is unlikely that low oral doses of octopamine 

influence fat metabolism in humans. However, the influence of larger acute doses and chronic 

supplementation has not been investigated.  

 

8.6 Perceptual variables 

Caffeine consistently attenuates RPE during prolonged exercise in temperate conditions 

(Doherty and Smith, 2005), while other stimulant-based compounds such as reuptake inhibitors 

can influence perceptual variables during endurance exercise in temperate and warm 
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environmental conditions (Roelands and Meeusen, 2010). Therefore, RPE was recorded during 

each of the investigations in this thesis. Furthermore, perceived thermal stress was measured 

when caffeine was ingested prior to exercise in the heat (chapters 4 and 5). 

During self-paced cycle exercise in the heat, caffeine intake enables participants to maintain a 

higher power output despite a similar RPE (Pitchford et al. 2014). This suggests a reduced 

relative perception of effort during exercise. Furthermore, caffeine intake reduces absolute RPE 

values during exercise at a fixed-work rate in temperate conditions (Doherty and Smith, 2005). 

Chapter 4 was the first study to investigate whether 3 mg·kg−1 caffeine could reduce RPE during 

exercise at a fixed work-rate in warm ambient conditions and demonstrates that even low 

doses are sufficient to attenuate perception of effort during prolonged exercise. A similar 

response was observed in chapter 5 when a 6 mg·kg−1 caffeine dose was ingested before 

exercise. However, in chapter 6, an acute 3 mg·kg−1 caffeine dose did not influence RPE 

responses during 60 min of fixed-intensity exercise before or after a chronic supplementation 

period, despite an increase in performance. While the RPE responses during the preload were 

not different across trials, absolute RPE values were also similar during the performance task. 

Therefore, when caffeine enhanced performance (precaf trial in both groups and postcaf trial in 

the placebo group) the relative perception of effort was lower (i.e. higher work-rate for the 

same RPE). Conversely, when there was a reduction in performance (i.e. postcaf versus precaf 

trial in the caffeine group) the relative perception of effort increased (i.e. lower work-rate for 

the same RPE). In contrast to the above observations, octopamine supplementation did not 

influence RPE values during the fixed-intensity exercise or the performance task (chapter 7).  

Perception of effort during exercise is believed to reflect changes in central motor command 

(de Morree et al. 2012). Specifically, RPE is centrally generated from forwarding neural signals, 

or corollary discharges, from motor to sensory areas of the cerebral cortex (Marcora, 2009). 

Therefore, when inducing muscle fatigue with epidural anaesthesia (Kjaer et al. 1999; Smith et 

al. 2003), it is not surprising that the increase in central motor drive required to exercise at the 

same power output is perceived as increased effort. Thus, using this model, reducing RPE would 

be expected to enhance performance. The results of a recent brain imaging study support this 
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hypothesis, as 6 mg·kg−1 caffeine reduced the activity of pre motor and motor areas of the 

cerebral cortex in association with a reduction in RPE, despite a similar power output versus 

placebo (de Morree et al. 2014). The results of this thesis also support these findings, and 

suggest that low (chapter 4) and moderate (chapter 5) caffeine doses are capable of reducing 

RPE during fixed-intensity exercise with a subsequent increase in endurance performance, even 

when exercise is performed in the heat. Furthermore, it was suggested that adenosine 

accumulation in the pre-supplementary area of the motor cortex could partly explain the higher 

RPE values reported during a mentally-engaging task (Pageaux et al. 2013; Pageaux et al. 2014; 

Pageaux et al. 2015). Given that chronic caffeine intake increases cerebral adenosine 

concentrations (Conway et al. 1997), the increased relative perception of effort reported after 

chronic caffeine intake in chapter 6 (i.e. postcaf versus precaf trial) may be partly due to 

enhanced adenosinergic neurotransmission and a corresponding increase in central motor 

command (thus increasing RPE). Finally, the similar RPE values and lack of performance benefit 

reported after octopamine supplementation in chapter 7 would suggest this purported 

stimulant-based compound did not affect the neural substrates of perception of effort during 

exercise.    

Perceived thermal stress was also recorded during the investigations in chapters 4 and 5. In 

contrast to the RPE data, caffeine supplementation did not influence perceived thermal stress 

during the fixed-intensity exercise. This is not surprising given that core and skin temperature 

values were similar across trials in both investigations. However, higher core temperatures 

were achieved during the performance task after caffeine intake (due to increased work-rate), 

with similar thermal stress responses versus placebo in both studies. This was also 

demonstrated for the dual dopamine-noradrenaline reuptake inhibitor bupropion (Watson et 

al. 2005a), with these authors suggesting attenuated afferent feedback from peripheral tissues 

during exercise. While the PO/AH receives input from numerous systems during exercise, 

including peripheral and spinal thermoreceptors, as well as skin, core and blood temperature 

(Boulant, 2000), the increased afferent feedback during the performance task (i.e. elevated 

core temperature due to increased work-rate) did not adversely influence performance. These 

data suggest that the conscious self-regulation of power output during exercise, and not 
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afferent feedback from peripheral systems, is more important in determining endurance cycle 

performance (Marcora, 2009).  

 

8.7 Limitations and directions for future research 

While the studies contained within thesis have provided novel findings relating to the 

performance and physiological effects of caffeine and octopamine during prolonged exercise, 

several limitations should be addressed. Firstly, all studies were performed on recreationally 

active participants and therefore it is not clear if these results would translate to the effects 

observed in well-trained cyclists; this should be explored in future studies. Secondly, each 

investigation required participants to exercise in a fasted state. While this isolates the 

performance and physiological effects of the intervention without other potential confounding 

factors (i.e. carbohydrates), this is not how individuals would nutritionally prepare for an 

endurance event on race day. Therefore, future studies should investigate a more sport-specific 

nutrition strategy and how this influences the performance and physiological effects of caffeine 

and octopamine supplementation. Thirdly, all investigations were performed in a laboratory 

environment. While this enables a tighter control of potential confounding factors (i.e. changes 

in temperature), this environment is far different from a field setting where other variables are 

likely to influence performance (i.e. pacing by other competitors). Therefore, field studies are 

necessary to truly elucidate the performance effects of caffeine and octopamine. Fourthly, each 

investigation employed a self-paced performance task as the performance measure. While this 

is a sensitive and reliable test (Sewell and McGregor, 2008), a time to exhaustion protocol also 

provides a valid measure of performance (Laursen et al. 2007). Therefore, future studies should 

employ different exercise models to further explore the performance effects of caffeine and 

octopamine.      

The results of chapters 4 and 5 demonstrate performance benefits of caffeine for individuals 

not accustomed to exercise in the heat. While it seems logical to suggest that these effects 

would translate to heat-acclimatised individuals due to the additional physiological mechanisms 

in place to attenuate the detrimental effects of heat strain (i.e. plasma volume expansion, 
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increase in sweat rate, lower resting core temperature etc), this has yet to be investigated. 

Furthermore, a limitation of the investigation in chapter 6 was that the post-supplementation 

caffeine trial (postcaf) was not performed after 24-hours of caffeine withdrawal in accordance 

with the previous experimental trials (testpla and precaf). However, this was unlikely to have 

adversely influenced the performance data, as several days of caffeine withdrawal are required 

to re-sensitise individuals to the acute effects of the drug (Fisher et al. 1986). Furthermore, the 

experimental protocol in chapter 6 could not determine when the tolerance to caffeine 

occurred, or the mechanisms which mediated this response. Therefore, future studies could 

include more frequent trials (i.e. every 7-days) and employ direct measurements of brain 

function similar to previous studies (de Morree et al. 2014) to determine the neurophysiological 

responses to acute caffeine intake before and after chronic supplementation. Furthermore, as 

the study in chapter 6 examined low-caffeine consumers, the influence of a prolonged period of 

controlled caffeine intake should be investigated in participants with varied habitual caffeine 

intakes. Finally, the study in chapter 7 examined the influence of a low dose of octopamine in 

temperate conditions. Therefore, larger doses of octopamine should be investigated in 

temperate and high ambient conditions.  

 

8.8 Practical applications 

Despite the limitations mentioned above, the results from the studies contained within this 

thesis have several important implications. Firstly, the results from chapters 4 and 5 suggest 

that acute supplementation with low-to-moderate caffeine doses are sufficient to benefit 

endurance performance in the heat, without adversely influencing thermoregulation or 

cardiovascular function during exercise. Furthermore, caffeine appears to attenuate perceived 

exertion during prolonged fixed-intensity exercise. These responses support the results of 

studies conducted in temperate conditions (Burke, 2008; Doherty and Smith, 2005) and suggest 

that heat strain does not negate the efficacy of caffeine supplementation. An interesting finding 

of chapter 4 was that dividing the 3 mg·kg−1 caffeine bolus in to 2 x 1.5 mg·kg−1 doses appeared 

to confer an additional performance benefit (d=0.32), although this did not quite reach 
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significance (P=0.059). These data suggest that ingesting repeated low-doses of caffeine may 

potentiate the efficacy of the same total caffeine dose when exercise is performed in the heat. 

Chapter 6 demonstrated a performance decrement to an acute 3 mg·kg−1 caffeine dose 

following long-term supplementation in low-habitual caffeine consumers. Therefore, the 

negative influence of habitation on endurance performance may only be relevant to a small 

portion of individuals, given the high prevalence of caffeine intake in the general population 

(Fitt et al. 2013) and by athletes during competition (Desbrow and Leveritt, 2006). Nonetheless, 

individuals with low-habitual intakes should refrain from chronic caffeine supplementation in 

order to maximise the ergogenic effect attained from acute supplementation.  

The findings reported in chapter 7 suggest that low doses of octopamine do not influence 

endurance performance or exercise metabolism. While the influence of larger doses (>150 mg) 

are unknown, individuals should refrain from ingesting this compound until more studies have 

examined the effects of larger doses across different ambient conditions in recreationally active 

and well-trained participants.  

 

8.9 Conclusions 

The work presented in this thesis has attempted to further explore the ergogenic and 

physiological effects of caffeine during prolonged exercise, while aiming to elucidate a potential 

ergogenic role for octopamine. Acute supplementation with low and moderate caffeine doses 

benefits endurance cycle exercise in the heat, without augmenting core temperature versus 

placebo. Therefore, caffeine doses which consistently enhance improve performance in 

temperate conditions (Burke, 2008; Ganio et al. 2009b) also benefit endurance performance in 

the heat. Chronic supplementation with a titrated low-dose of caffeine induces the 

development of tolerance in low-habitual caffeine users. These findings confirm the results 

when comparing low-and high-habitual caffeine users (Bell and McLellan, 2002), but contrast 

with studies which employed sub-chronic supplementation protocols (Irwin et al. 2011; Roti et 

al. 2006). Therefore, relatively short habituation protocols do not appear to influence the 
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mechanisms which develop tolerance. Finally, an acute 150 mg dose of octopamine did not 

influence endurance performance, substrate oxidation, circulating hormonal concentrations or 

RPE. Therefore, at the dose prescribed, octopamine does not appear to benefit endurance 

performance or alter the metabolic or perceptual response to prolonged cycle exercise in 

temperate conditions. 

 

Key points:  

1) A single and divided low dose of caffeine improves endurance cycle performance in the 

heat without adversely influencing thermoregulation during exercise. A greater 

performance benefit may be attained form dividing the caffeine bolus, although further 

work is required to confirm this observation. 

 

2) A moderate caffeine dose improves endurance cycle performance in the heat without 

augmenting core temperature during prolonged exercise at a fixed work-rate. 

 

3) Chronic supplementation with a titrated low dose of caffeine results in the development 

of tolerance in low-habitual caffeine users.  

 

4) An acute oral dose of octopamine does not influence endurance cycle performance, 

estimated substrate oxidation rates or the peripheral concentrations of FFA’s, cortisol 

and prolactin. 
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Appendix 

Perceived thermal stress scale 

-10 Cold impossible to bear 

    -9 

    -8 Very cold, shivering hard 

    -7 

    -6 Cold, light shivering 

    -5  

    -4 Most areas of the body feel cold 

    -3 

    -2 Some areas of the bold feel cold  

    -1  

    0 Neutral  

    1 

    2 Some areas of the body feel warm 

    3 

    4 Most areas of the body feel hot 

    5 

    6 Very hot, uncomfortable  

    7  

    8 Extremely hot, close to limit  

    9 

    10 Heat impossible to bear 
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