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ABSTRACT 

 

This thesis examined the change in skeletal muscle architecture with contractile force 

production, the relationship of architecture with muscle strength parameters and if muscle 

tendinous tissue stiffness determines in vivo explosive strength (i.e. rate of torque 

development, RTD).  Muscle and tendinous tissue adaptations to contrasting strength training 

regimes, and the potential capacity of these tissues to adapt following chronic strength 

training were also explored. Quadriceps femoris fascicle length (FL) decreased, while the 

pennation angle (PA) increased in a curvi-linearly manner from rest to maximal voluntary 

contraction (MVC) torque. Consequently, effective physiological cross-sectional area 

(effPCSA) during MVC was 27% greater than at rest, although effPCSA measured at rest and 

during MVC had similar correlations to maximal strength. In the earliest phase of 

contraction, FL, but not PA, was negatively related (R2=0.187) to voluntary RTD. Neither FL 

nor PA was related to maximal isometric or dynamic strength. Muscle-tendon unit (MTU) 

and patellar tendon (PT) stiffness were unrelated to voluntary and evoked RTD. Relative PT 

stiffness was also unrelated to relative RTD, although relative MTU stiffness was related to 

voluntary RTD (25-55%MVT, R2≤0.188) and evoked RTD (5-50%MVT, R2≤0.194). MTU 

stiffness increased after sustained-contraction (SCT, +21%), though not explosive-

contraction strength training (ECT). PT stiffness increased similarly after ECT (+20%) and 

SCT (+16%), yet neither induced tendon hypertrophy. SCT produced modest muscle (+8%) 

and aponeurosis (+7%) hypertrophy. Chronic strength trained (CST: >3 years) males had 

substantially greater muscle and aponeurosis size, but similar tendon size as untrained 

controls (UNT) and short-term (12 weeks) strength trained (STT) individuals. Between these 

groups, at the highest common force, MTU stiffness was indifferent, while PT stiffness was 

similarly greater in STT and CST than UNT. These results suggest FL and PA have little 

influence on muscle strength and tendon stiffness has no influence on RTD. Maximum 

strength negated any qualitative influence of MTU stiffness on in vivo RTD. Component 

MTU tissues (muscle-aponeurosis vs. external tendon) adapt differentially depending on the 

strength training regime. Specifically, free tendon appeared to adapt to high magnitude 

loading, while loading duration is also an important stimulus for the muscle-aponeurosis. 

However, chronic strength training was not concordant with greater higher force MTU 

stiffness, and does not further increase higher force PT stiffness beyond the adaptations that 

occur after 12 weeks of strength training. Finally, no evidence was found for tendon 

hypertrophy in response to strength training. 
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Strength defines the skeletal muscle force or torque produced under a given set of conditions 

and is fundamental to human physical capabilities. Various strength parameters can be 

characterised with careful laboratory measurements. Maximal isometric strength has been the 

most extensively studied aspect of neuromuscular function, and may relate well to athletic 

performance, or simply carrying out activities of daily living. Alternatively, maximal 

dynamic strength is considered more relevant to the performance of functional tasks such as 

balance, mobility and locomotion. In addition, the ability to increase torque as quickly as 

possible from low or resting levels (explosive strength, i.e. rate of torque development 

[RTD]) is considered particularly important in situations where the time to develop torque is 

limited: for instance, during athletic tasks such as sprinting and jumping (Weyand et al. 2010; 

Tillin et al. 2013a) and in injury-related situations (Izquierdo et al. 1999; Krosshaug et al. 

2007). Further RTD deficits have a deleterious impact on physical function in 

musculoskeletal patients (e.g. osteoarthritis: Maffiuletti et al. 2010), and may predispose 

injury risk (Opar et al. 2013; Kline et al. 2015). 

 

Skeletal muscle architecture refers to the spatial arrangement of muscle fibres and is 

commonly measured in in vivo as fascicle length (FL) and pennation angle (PA). FL is 

considered a major determinant of muscle’s contractile speed and force-velocity properties 

(Lieber and Fridén 2000), though an anticipated positive relationship of FL to either RTD or 

high-velocity dynamic strength has not been demonstrated in the minimal number of in vivo 

investigations. Any possible influence of PA on dynamic strength (Azizi et al. 2008) or RTD 

is poorly documented. While the contractile elements of skeletal muscle ultimately generate 

the force to produce joint torque, this force is transmitted to the bone via the tendinous tissues 

(intramuscular aponeurosis and external free tendon) in order to produce torque and 

resultantly movement. The mechanical stiffness (resistance to deformation) of the tendinous 

tissues determines MTU interaction and modulates the contractile conditions (length and 

velocity); thus muscle force and joint torque production (Roberts 2002; Litchwark and 

Barclay 2010). Notably, greater tissue stiffness is thought to facilitate a higher RTD (Bojsen-

Møller et al. 2005; Waugh et al. 2013), though evidence for this association in vivo is 

inconclusive.  

 

An appreciation of tendon function has prompted relatively recent investigations into the 

adaptive response of tendinous tissues to altered patterns of mechanical loading (Magnusson 

et al. 2008; Heinemeier and Kjaer 2011). Most prominently the possibility of increased 
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tendinous tissue stiffness via strength training has been of interest, with studies examining 

relatively short-term (8-14 week) adaptations (Bohm et al. 2015; Wiesinger et al. 2015). 

However, the relative efficacy of contrasting training regimes, which impose distinct tissue 

mechanical loading patterns, to stimulate tendon adaptations has received minimal attention. 

Further, the potential capacity of tendons to continue to adapt to chronic strength training has 

been largely unexplored.  

 

In vivo muscle architecture can be reliably estimated via ultrasonography. Substantial 

changes in FL (decreases) and PA (increases) occur even during isometric (constant length) 

contractions (Narici et al. 1996; Maganaris et al. 1998), and these changes may have 

important implications for our understanding of in vivo muscle function. The quadriceps 

femoris (QF) is a functionally important muscle group, however the architecture changes 

during contraction have only been reported within the component vastus lateralis muscle. 

Furthermore, the FL and PA changes during contraction result in an increase in the effective 

physiological cross-sectional area (effPCSA) of a muscle (Narici et al. 1996a). The functional 

significance being that effPCSA is proportional to the maximal isometric contractile force that 

can be exerted upon the tendon (Powell et al. 1984). Hitherto, in vivo studies have only 

established the relationship between isometric maximal voluntary torque (MVT) and effPCSA 

measured at rest. It is possible that effPCSA quantified during maximal voluntary contraction 

(MVC) may better reflect the inter-individual differences in muscle morphology during 

contraction and thus provide a better determinant of strength. The primary aim of study one 

was to document the architectural and effPCSA changes that occur within all four constituents 

of the QF and subsequently the whole muscle group throughout isometric contraction from 

rest to MVC. The secondary aim was to test whether there was stronger relationship between 

MVT and effPCSA measured during an MVC than for effPCSA measured at rest (Chapter 3). 

 

Despite theoretical rationale, the influence of FL and PA on in vivo muscle strength 

characteristics has not been substantiated. A larger angle of fibre pennation permits a greater 

quantity of contractile material to attach to the aponeurosis, thus increases a muscles 

effPCSA. In this case, a greater PA may positively relate to higher MVT and might also be 

expected to influence later phase RTD, which is known to be dependent on MVT (Aagaard 

and Andersen 2006; Folland et al. 2014) and has similar physiological determinants as MVT 

(e.g. muscle size; Erskine et al. 2014). While there is some evidence supporting a moderate 

positive relation between PA and MVT (e.g. Wakahara et al. 2013; Ando et al. 2015), any 



  Chapter 1: General introduction           

 4 

relation of PA to RTD has not been tested. A possible influence of PA on dynamic strength 

(Azizi et al. 2008) is unclear and any in vivo relationship has received minimal attention. 

Alternatively, FL is anticipated to have a profound influence on dynamic strength as longer 

fascicles possess more sarcomeres in-series which results in higher maximal shortening 

velocity potential and can thus likely generate a greater proportion of isometric with 

increasing contraction velocity (Bodine et al. 1982; Wickiewicz et al. 1984; Lieber and 

Fridén 2000). However, evidence to support an influence of FL on in vivo higher velocity 

dynamic strength is limited; a couple of studies report no correlation (Blazevich et al. 2009b; 

Baxter and Piazza 2014). Further to longer fascicles being capable of faster shortening, the 

time taken to stretch series elastic structures can slow RTD (Edman and Josephson 2007), 

and therefore longer fascicle might be positively associated with explosive strength. 

Contrarily, a preliminary report noted a negative association between the changes in FL 

(inferred from shifts in the optimal angle to develop joint torque) and RTD following strength 

training, implying longer fascicles slow torque development (Blazevich et al. 2009b). The 

second study aimed to directly assess the relationship between in vivo quadriceps femoris 

muscle architecture (measured at rest) and knee extension strength characteristics; maximal 

and explosive isometric strength, and dynamic strength at different velocities (Chapter 4). 

 

Whether MTU and tendon stiffness are physiological determinants of RTD is 

unsubstantiated. During isometric contractions, the rate of muscle force production is slowed 

by the necessity of the muscle to shorten in order to stretch the tendinous tissues (Hill 1951; 

Edman and Josephson 2007); in accordance with the muscle force-velocity relationship 

(Wilkie 1949). Stiffer tissues also theoretically transmit force more quickly. Yet, these 

mechanisms may be inconsequential in vivo. To date no studies have examined whether 

tendon stiffness is related to human RTD. There is evidence of moderate positive correlations 

between MTU stiffness and RTD (R2~0.10-0.30; Bojsen-Møller et al. 2005; Wang et al. 

2012; Waugh et al. 2013; Hannah and Folland 2015), however these studies are mired by 

methodological issues (Seynnes et al. 2015). In particular, estimations of tissue stiffness have 

been acquired from tendon force-elongation measurements recorded under conditions of 

variable loading rates and within an absolute tendon force range relative to maximal strength 

(e.g. 50-90% MVT). Greater absolute forces and a faster RTD yield a stiffer tissue response, 

therefore the previous findings could be spurious owing to an inherent bias towards greater 

stiffness measurement in stronger (>MVT) individuals that also tend to display higher a 

RTD. The third study aimed to comprehensively examine the relationship between both 
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tendon and MTU stiffness, with voluntary and evoked RTD measurements of explosive 

strength recorded in duplicate measurement sessions. Correlations were performed between 

absolute and relative stiffness (to remove the influence of maximum strength) acquired from 

constant loading-rate ramp contractions, and RTD variables measured over the same torque 

range (Chapter 5). 

 

Sustained-contraction strength training (SCT: ≥2 s duration) utilising high relative loads 

(>70% MVT) increases MTU (Kubo et al. 2001; 2006b; Arampatzis et al. 2007a, 2010; 

Bohm et al. 2014) and tendon stiffness after 8-14 weeks (Reeves et al. 2003; Kongsgaard et 

al. 2007; Seynnes et al. 2009; McMahon et al. 2013). Studies have typically assessed either 

MTU or tendon so the concordant changes are unclear. Interestingly a couple of studies have 

reported that explosive-contraction strength training (ECT: brief contractions [<1-second] 

with maximal/near maximal RTD) increased MTU stiffness after merely four (Tillin et al. 

2012) or six weeks training (Burgess et al. 2007), suggesting ECT may be a time-efficient 

approach for providing a potent stimulus for tendon tissue adaptation. However, the efficacy 

of ECT vs. SCT has not been established. In addition, whether increased tissue stiffness is 

partially consequent to tendon/aponeurosis hypertrophy remains opaque. An increase in 

tendon CSA is controversial: a few studies found modest region-specific hypertrophy 

(Kongsgaard et al. 2007; Seynnes et al. 2009; Arampatzis et al. 2007a), while others showed 

no change (Arampatzis et al. 2010; Kubo et al. 2012; Bloomquist et al. 2013). A solitary 

report documents a small within-group increase in aponeurosis width after 12 weeks dynamic 

SCT (Wakahara et al. 2015). In contrast, tendon stiffness changes after SCT do appear to 

correspond with an improvement in tendon Young’s modulus (material stiffness). The effect 

of ECT on tissue size and tendon Young’s modulus is yet to be documented. The fourth study 

aimed to compare the mechanical (MTU stiffness, PT stiffness and PT Young’s modulus), 

and morphological (quadriceps femoris muscle, VL aponeurosis and PT size) adaptations of 

the quadriceps MTU to 12 weeks isometric ECT vs. SCT vs. an untrained control group 

(Chapter 6). 

 

A possible explanation for the uncertainty regarding tendon hypertrophy is the relatively slow 

turnover of tendon collagen (Smith and Rennie 2007; Heinemeier et al. 2013b). Modest 

changes in tendon size after 8-14 weeks may be on the threshold of what can be detected. 

More demonstrable hypertrophy could be evident after chronic (years) strength training. 

However, whether MTU and tendon stiffness undergo continued adaptation in response to 
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chronic exposure to high mechanical load is largely unexplored. The one published study 

found chronic strength trained males to have greater patellar tendon stiffness (measured at an 

equal absolute force), but similar Young’s modulus compared to recreationally active males 

(Seynnes et al. 2013). The purpose of the fifth study was to compare the mechanical and 

morphological properties of the patellar tendon (stiffness, Young’s modulus, CSA [mean and 

regional]) and quadriceps femoris muscle-tendon unit (stiffness, muscle volume, vastus 

lateralis aponeuroses area), between untrained controls, short-term strength trained (post-12 

weeks training) and chronic-strength trained (>3 years of systematic training) groups 

(Chapter 7).                                                  
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2.1. Introduction 
The present thesis initially aimed to improve our understanding of the importance of muscle 

architecture to in vivo muscle strength characteristics, as well address the confusion regarding 

the influence of musculotendinous tissue stiffness as a determinant of explosive strength. 

Subsequently the effects of contrasting training regimes upon muscle-tendon unit (MTU) and 

tendon adaptations (morphology and stiffness) were examined, and finally the potential for 

tendinous tissue adaptations to chronic strength training was investigated. As pertinent to 

these aims, the theoretical influence and in vivo evidence to support muscle-tendon unit 

morphology and tendinous tissues stiffness as determinants for in vivo strength parameters 

will be outlined. In addition the MTU adaptations to strength training will be highlighted. 

The principal focus will be to appreciate the increasing evidence regarding the capacity of the 

tendon tissues to adapt to strength training and the possible training characteristics implicated 

in stimulating an adaptive response. Skeletal muscle and tendon structure and mechanical 

properties are covered in brief. 

 

2.2. Basic Muscle-Tendon Unit Structure and Function 
2.2.1. Muscle Structure  

The functional unit that produces motion at a joint consists of the muscle and the tendon that 

attaches the muscle to the bone (i.e. the muscle-tendon unit). Skeletal muscle (Figure 2.1) is 

composed of the fibres that are linked together by a three-level network of collagenous 

intramuscular connective tissue: endomysium surrounds individual muscle fibres; 

perimysium collects bundles of fibres into fascicles; and epimysium ensheathes the entire 

muscle (Enoka 2008). The connective tissue connects muscle fibres to the tendon. Muscles 

fibres are long cylindrical, multi-nucleated cells filled with smaller units of filamentous 

structures, myofibrils. Myofibrils are composed of subunits, sarcomeres, arranged end to end 

the length of the myofibril. The sarcomere is the basic functional unit of muscle and contains 

thick and thin myofilaments composed of the contractile proteins myosin and actin. The 

sliding of actin myofilament on the myosin chain is the basic mechanism of muscle 

contraction (Oatis 2009).  

 

2.2.2. Connective Tissue Structure  

Skeletal muscle forces generated by the contractile apparatus are transmitted to the bone (to 

generate movement) via collagenous connective tissues:  
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Figure 2.1. (A) An overview of the hierarchical structure of skeletal muscle from the whole 
muscle to the myofibril, and (B) the internal arrangement of the myofilaments within a 
sarcomere (Adapted from Jones et al. 2004). 
 
 
2.2.2.1. Intramuscular Connective Tissues  

Intramuscular connective tissues form the classical anatomical entities of endo-, peri-, and 

epimysium surrounding individual muscle fibres, bundles of muscle fibres (fascicles), and the 

whole muscle, respectively (Figure 2.2). Each muscle cell is surrounded by it’s own plasma 

membrane and basement membrane. Filling the intervening region between the basement 

membrane and two adjacent muscle cells is the more substantial reticular layer comprised of 

a network of fine collagen fibrils and fibres (Purslow 2010). The collagen fibres form a 

seemingly quasi-random network of irregular wavy fibres; fibres appearing to run at all 

angles relative to the muscle fibre long axis (Purslow 2010). Though there is a preferred 

direction in the wide distribution of collagen fibre orientation that changes with muscle 

length, with more fibres being orientated to the long axis of the muscle fibres at longer 

lengths (Kovanen 2002; Purslow 2010). Different to the mesh-like structure of the 

endomysium, the perimysium consists of well-ordered sheets of wavy/crimped collagen 
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fibres (larger than endomysium) in a cross plied arrangement, all fibres within a ply being 

parallel to each other and lying at a common angle (±55°) to the muscle fibre direction at 

resting length (Purslow 2002). Collagen fibre orientation changes from 20-80° with short-

long sarcomere lengths (Purslow 2002). The perimysium is considered continuous with the 

tendon (Gilles and Lieber 2010), as is the epimysium, which consists of two layers of large 

wavy collagen fibres aligned more parallel to the long axis of the muscle forming a dense 

sheet-like surface layer (Kjaer 2004; Gilles and Lieber 2010; Purslow 2010). The epimysium 

contains predominantly Type I collagen, perimysium Types I and III, and endomysium Types 

I, III, and V (Kovanen 2002).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 
Figure 2.2. Scanning electron (SEM) micrographs of intramuscular connective tissue of 
bovine semitendinous muscle. Muscle samples have been treated by the cell-maceration 
method, which allows the examination of the three-dimensional arrangement of collagen 
fibrils in tissue sections. Perimysium (P) (panel A, left) is composed of several sheets of 
collagen fibres. Loose networks of collagen fibrils (arrows) appear to connect perimysium 
and endomysium (E). (Panel B, left). Higher magnification of perimysium showing bundles 
of collagen fibres in an extremely wavy pattern and covered with loose networks (arrow) of 
collagen fibrils. (Panel C, left) Higher magnification of the wavy perimysium shows the 
arrangement of collagen fibrils, some of them branching off the fibre and fusing into the 
adjacent fibre. (Panel A, right) Endomysium is a cylindrical sheath housing individual muscle 
fibres. The endomysial sheaths are membranous (panel B, right). (Panel C, right) A closer 
view of the endomysial sheath shows the arrangement of collagen fibrils (Kovanen 2002). 
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2.2.2.2. Tendinous Tissues (Aponeurosis and Tendon) 

The sheet-like aponeurosis (internal tendon) surrounds the muscle belly and provides the 

attachment area for the muscle fibres. The external ‘free’ tendon provides the in-series 

structural link between the muscle and bone. The collagenous structure is considered similar 

in both aponeurosis and free tendon (Scott and Loeb 1995; Azizi et al. 2009) as both these 

tissues are primarily composed of collagen (mostly type I) organised in a hierarchical manner 

(collagen molecule [triple helix tropocollagen), micro-fibril, fibril, fibre, and fascicle; Screen 

2009 [Figure 2.3]) primarily oriented along the longitudinal axis of the tendon. The collagen 

structure and biochemical composition of the tendon is considered principally responsible for 

the mechanical properties of tendinous tissues with the collagen fibril being the most basic 

load-bearing unit of the tendon (Kjaer 2004). The fibril consists of bundles of micro fibrils 

held together by biochemical bonds (cross-links) between the collagen molecules. In an 

unloaded condition collagen fibres display a characteristic wavy pattern (crimp) that 

disappears upon tendon stretch and collagen fibres straighten. The resistance to deformation 

provided by tendinous tissues is referred to as mechanical ‘stiffness’, which governs the 

effectiveness of tendons to transmit force and dictates muscle-tendon interaction. 

 
 
 

  

 

 

 

 

 

 

 

 

 

 
Figure 2.3. Schematic of the tendon hierarchical structure, highlighting the different collagen 
structures with a rough indication of the diameter (Adapted from Screen 2009). 
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2.2.3. Muscle Mechanical Properties 

Muscle force production is intimately governed by the instantaneous contractile conditions 

determined by muscle fibre length (Gordon et al. 1966) and the rate of length change 

(velocity; Hill 1938; Katz 1939). In vivo, muscle force-length and force-velocity properties 

are transformed into torque-angle and torque-velocity relationships. Muscle moment arm 

(perpendicular distance from the line of action of muscle to the joint centre of rotation) 

transforms the linear movement of the muscle into rotation about the joint. The externally 

measurable quantity of torque results from the cross product of moment arm and force 

developed by the muscle.  Muscle moment arm varies throughout the range of joint motion 

(Enoka 2008) and determines the muscle length change during joint rotation (Oatis 2009). In 

the relationships below, whole-muscle force-length/velocity properties are assumed to reflect 

those of scaled-up muscle fibres, which in turn are considered scaled versions of sarcomere 

properties. 

 

2.2.3.1. Force-Length Relationship  

In this relationship (Figure 2.4) skeletal muscle active force production is defined in terms of 

myofilament overlap, i.e. in terms of sarcomere length. At optimal length, where actin-

myosin interactions (cross-bridges) are maximal, muscles generate force. As sarcomere 

length increases, force decreases owing to the decreasing number of interactions between 

actin and myosin myofilaments. At lengths shorter than the optimum, force decreases owing 

to the double interdigitation of actin filaments with both myosin and actin filaments from 

opposite sides of the sarcomere (Lieber and Ward 2011). At the muscle level, the active range 

force depends on number of sarcomeres in series. It is important to appreciate that the active 

force-length relationship is not a continuous curve and represents discrete data points 

observed when the muscle is held at different lengths and activated maximally. In vivo 

isometric torque-angle relationships are determined from maximal voluntary contractions 

performed at multiple joint angles throughout the range of motion. 

 

2.2.3.2. Force-Velocity Relationship 

This relationship (Figure 2.5) describes the dependence skeletal muscle force production on 

contraction velocity. When contraction velocity equals zero the maximal isometric force is 

developed. As contraction velocity increases during shortening (concentric) contractions 

during there is non-linear (hyperbolic) decrease in muscle force in accordance with a reduced 

probability of actin-myosin interactions (Lieber and Ward 2011); finite time is required for 
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cross-bridge attachment and detachment. At the muscle level, maximal shortening velocity 

depends on the number of sarcomeres in series. During lengthening (eccentric) contractions, 

increased contraction velocity yields greater contractile force than in isometric contractions, 

with a plateau of 1.5-1.9 times greater eccentric force regardless of further increases in 

lengthening velocity (Katz 1939). Force enhancement during active lengthening is thought to 

be most probably associated with the increased strain of attached cross-bridges as the 

sarcomeres are forcibly stretched (Edman 1999, Zatsiorsky and Prilutsky 2012). In vivo, the 

torque-velocity relationship is typically assessed using isovelocity dynamometry, and is 

formed from the maximum torques recorded during discrete contractions at distinct constant 

angular velocities. Volitional in vivo maximal eccentric torque may be similar to or slightly 

greater than maximal isometric torque, presumably due to neural inhibitory mechanism 

(Westing et al. 1988, 1990, 1991; Dudley et al. 1990; Seger and Thorstennsson 2000). 

(Figure 2.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 The isometric sarcomere force-length relationship obtained using sequential 
isometric contractions in single muscle fibres (solid line). Dotted line represents passive 
muscle tension borne by the muscle without activation. Number s above the active curve 
represent the three main regions of the force-length curve: (1) ascending region, (2) plateau 
and (3) descending region (Adapted from Lieber and Ward 2011). 
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Figure 2.5. The muscle force-velocity relationship obtained using sequential contractions. (1) 
The circles numbers represent the force and velocity data from two concentric contractions 
(1, 2) and one eccentric contraction (3). Po, maximal isometric force. (Adapted from Lieber 
and Ward 2011). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2.6. Example In vivo torque-velocity relationship obtained from discrete isovelocity 
knee extension maximal voluntary contractions. (Adapted from Dudley et al. 1990)  
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2.2.4. Basic Mechanisms of Tendon Elongation 

In classical in-vitro mechanical tensile tests, the tendon force-elongation relationship displays 

a characteristic non-linearity at lower levels (slope increases) called the toe-region where 

relatively little force induces elongation. This region is associated with a structural change in 

fibril organisation from a crimped (wavy planar pattern) to a more straightened, parallel 

arrangement (Butler et al. 1978). Continued elongation elicits a stiffer response; greater 

increases in force are required for equivalent elongations, and there is a progressive 

recruitment of individual collagen fibrils at varying degrees of crimp (Zatsiorsky and 

Prilutsky 2012). With the increase in force additional collagen fibrils experience elongation, 

which accounts for the non-linearity (Hansen et al. 2002). With further applied force, a linear 

region (constant slope) is reached. This region reflects the stretching of the pre-aligned 

collagen fibers (Zatsiorsky and Prilutsky 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.7. Schematic of the tendon force-elongation/stress-strain relationship (Adapted from 
Wang 2006).  
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2.3. Relation to Strength 
The present thesis investigates maximal and explosive strength and adopts the following 

definitions: maximal strength (isometric and dynamic) is the greatest torque exerted during 

maximal voluntary contraction (i.e. Maximal Voluntary Torque [MVT]); explosive strength 

is the capability to increase torque from low or resting levels as quickly as possible as 

measured under isometric conditions and expressed as the rate of torque development (RTD) 

derived from the rising phase (i.e. slope) of the contraction torque-time curve. This section of 

the review outlines the determinants of strength to be examined in the ensuing experimental 

work.  

 

2.3.1. Muscle Size  

Muscle physiological cross-sectional area (PCSA) is the total cross-sectional area of the 

muscle fibres perpendicular to their line of action and represents the maximal number of 

sarcomeres in parallel; hence the possible number actin-myosin cross-bridges that can be 

formed. Accordingly, in vitro, the maximal tetanic tension transmitted along the tendon (i.e. 

the maximal isometric contractile force) is directly proportional to the PCSA once accounting 

for the angulation of the fibres relative to the muscle line of action (R2 = 0.99; Powell et al. 

1984). This effective (eff) PCSA is therefore theoretically the most important determinant of 

maximal torque in vivo. Indeed studies have found strong correlations between PCSA and 

maximal isometric and concentric torque: plantar flexors r = 0.71 (Bamman et al. 2000); 

elbow flexors and extensors r = 0.91 and 0.95 (Fukunaga et al. 2001); knee extensors r = 0.72 

and 0.62 (Blazevich et al. 2009b). A difficulty of estimating effPCSA in vivo is that it is a 

composite measure, calculated from the ratio of muscle volume (typically measured via 

magnetic resonance imaging) to fascicle length multiplied by the cosine of pennation angle, 

which can be measured via ultrasound imaging. Multiple measurement errors may affect the 

accuracy of the in vivo estimate and underpin why effPCSA may be no better a predictor of 

maximal strength than measures of total contractile material quantity. Further, effPCSA may 

be under or over estimated if regional FL and PA variation throughout the muscle volume is 

not captured and the generalized architectural data from single ultrasound images is used to 

derive effPCSA. 

 

Measures of gross muscle size; anatomical cross-sectional area (ACSA; cross-sectional area 

perpendicular to the muscle length) and muscle volume, are essentially a structural proxy for 
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the effPCSA; thus number of parallel sarcomeres and hence maximal contractile force and 

resultant torque. Unsurprisingly, strong correlations have been equally reported between 

maximal isometric and concentric strength vs. ACSA: plantar flexors r = 0.73 (Bamman et al. 

2000); elbow flexors and extensors r = 0.71 - 0.91 (Fukunaga et al. 2001; Akagi et al. 2009); 

knee extensors r = 0.73 (Blazevich et al. 2009b), and muscle volume: plantar flexors r = 0.47 

– 0.65 (Bamman et al. 2000; Baxter and Piazza 2014); elbow flexors and extensors r = 0.76 – 

0.94 (Fukunaga et al. 2001; Akagi et al. 2009; Erskine et al. 2014); knee extensors r = 0.55 – 

0.86 (Blazevich et al. 2009b; Evangelidis et al. 2016); knee flexors r = 0.62 – 0.74, 

(Evangelidis et al. 2016). Though not typically considered, it is possible that the unaccounted 

for inter-individual differences in muscle fibre-type composition may partially confound the 

muscle strength-size (either volume, ACSA or effPCSA) relationship; potential differences in 

fibre-type specific force (force per unit cross-sectional area). 

 

Muscle cross-sectional (anatomical and physiological) and volume will quantitatively impact 

explosive strength indirectly by virtue of the strong contribution of muscle size to maximal 

strength (Mirkov et al. 2004). Presuming equivalence of the other determinants of explosive 

strength and the resulting identical relative RTD (%MVT.s-1), absolute explosive strength 

will merely scale with maximal strength. Maximal strength will exert a greater influence on 

explosive strength measured over longer durations/ later time periods as contraction 

approaches the peak of the torque-time curve, as stronger muscles will still be on the rising 

whereas the torque of a weaker muscle will be beginning the plateau as the contraction 

approaches the maximal voluntary level. Evidently the correlation coefficients between 

voluntary RTD (measured from 0-10, 0-20, … etc. up to 0-250 ms) and maximal strength 

increased as the time from the contraction onset increased, such that at time intervals later 

than 90 ms from contraction onset maximal strength could account for 52-81% of the 

variance in voluntary RTD (Andersen and Aagaard. 2006). Similarly, Folland et al. (2014) 

showed that maximal strength was correlated increasingly strongly with explosive strength 

(measured as force at specific times) as contraction progressed (r = 0.59-0.95), and explained 

75 and 90% of later phase (100 and 150 ms) explosive strength. One study (Erskine et al. 

2014) has reported lesser correlations for muscle size vs. explosive strength independent of 

maximal strength, with explosive strength during the initial phase of contraction (50 ms) 

being unrelated to muscle volume or ACSA, but the muscle size indices were increasingly 

correlated to explosive strength as the contraction progressed (100 ms: muscle volume r = 

0.391; ACSA r = 0.428; 150ms: muscle volume r = 0.693; ACSA r = 0.725). 
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2.3.2. Muscle Architecture  

In vivo skeletal muscle architecture is described by the spatial arrangement of muscle 

fascicles. Ultrasonography is typically used to visualise the greyscale contrast between 

intramuscular connective tissues and muscle tissue to reveal fascicle orientation. Fascicles 

either extend along the direction of the muscle (parallel muscles) or are orientated at an angle 

(pennate muscles). In a muscle of given volume a parallel arrangement can result in longer 

FL as fascicles extend the length of the muscle belly, where as in pennate muscles the 

fascicle angulation necessitates that fascicles only extend part of the muscle belly length 

(Narici and Maganaris 2006). This structural consequence results if fascicles follow a purely 

linear trajectory, however in pennate muscles there may evidently be some degree of muscle 

fascicle curvature (reciprocal of the radius of the fascicle circle; increased with contractile 

force and greater at shorter muscle lengths [Muramatsu et al. 2002]) that might somewhat 

dissociate the reciprocal relationship between fascicle angle and length. FL is the principal 

determinant of muscle maximal shortening velocity potential as it is considered coincidental 

with fibre length and thus number of sarcomeres in series (Lieber and Fridén 2000). Since 

pennation may result in a reduced muscle FL (in muscle of definite volume), pennate muscles 

are likely to have a slower maximal shortening velocity than parallel muscles. Some of this 

possible reduction in muscle shortening velocity secondary to reduced FL can be offset by 

the rotation of fascicles (about their insertion into the aponeurosis) that occurs in pennate 

muscle during contraction, which serves to amplify muscle shortening for a given degree of 

fascicle shortening (Narici 1999; Azizi et al. 2008).  

 

FL defines the potential length change that can occur within a muscle: i.e. the summed 

displacement of more sarcomeres in-series equates to greater cumulative length change and 

subsequently dictates maximal shortening velocity because of the summed displacement of 

sarcomeres in series within a given time resulting in longer fascicles being able to shorten at 

higher velocities (Enoka 2008). For sarcomeres within longer fascicles, each individual 

sarcomere can operate at lower relative velocity for a given whole muscle shortening 

compared to sarcomeres of shorter, slower fascicles (Blazevich and Sharpe 2005); hence 

longer fascicles facilitate the maintenance of a higher proportion of isometric force capacity 

over boarder range of velocities. As such longer FL may positively influence in vivo dynamic 

strength, particularly as angular velocity increases. However, there is minimal evidence to 

affirm this postulation. A couple of studies reported no correlation between FL and dynamic 

strength (vastus lateralis FL vs. maximal concentric knee extension torque at 30 and 300º.s1, 
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Blazevich et al. 2009b; medial gastrocnemius FL vs. maximal plantar flexion torque at 30, 

120 and 210º.s-1, Baxter and Piazza 2014). Alternatively, the longer fascicle lengths exhibited 

in sprinters than distance runners and controls (Abe et al. 2000), and the findings that greater 

FL was inversely correlated with 100-m sprint performance (vastus lateralis, r = -0.44 – -0.51 

and gastrocnemius, r = -0.40 – -0.54; Kumagai et al. 2000; Abe et al. 2001), indirectly 

suggests that longer fascicles may benefit high velocity strength. 

 

Equally as muscles shorten rapidly during the initial phases of explosive contractions owing 

to connective tissues compliance, a greater capacity for high velocity force production 

consequent to longer fascicle length may allow a higher RTD. The time taken to stretch the 

tissue compliance can account for ~40% of isometric force rise time in isolated muscle fibres 

(Edman and Josephson 2007) implying that longer, faster fascicles could theoretically 

facilitate explosive strength. Conversely, preliminary indirect evidence in vivo indicates a 

possible negative impact of longer muscle fascicle length on explosive strength. An inverse 

association was observed between the strength training induced shifts in the quadriceps 

femoris force-length relation towards longer muscle lengths (used as a measure of fascicle 

length changes) and increase in RTD in the initial 30 ms of an explosive isometric knee 

extensor contraction (R2  = 0.50; Blazevich et al. 2009a). This finding was explained on the 

premise of longer fascicles possessing greater in series compliance, thereby slowing RTD. 

 

Pennation permits a greater number of fascicles (or fascicles with greater cross sectional area) 

to be attached to a given tendon area thus increasing the number of parallel sarcomeres 

(Narici 1999). This increases the maximal isometric force the fascicles can exert on the 

tendon. However, only a component of the fascicle force that is exerted onto the tendon is 

transmitted in the longitudinal direction as a function of the cosine of the angle of pennation.  

The influence of pennation on the maximal isometric force generating capacity of a muscle is 

thus a trade-off between the increase in contractile material and the loss in fascicle force with 

increasing pennation angles.  There is a net increase in muscle isometric force with increasing 

PA up to 45°, where the force transmission efficiency is reduced to effect of cancelling the 

force-augmenting effect of increased effPCSA (Alexander and Vernon 1975; Kawakami 

2005). Muscle pennation angles are typically less than 30º (Ward et al. 2009), potentially 

leading to a net positive influence of PA on effPCSA and thus maximal strength in-vivo. 

Some studies have reported positive correlations (r = 0.471– 0.68) between maximal strength 

and the PA of the agonist muscles (Nagayoshi et al. 2003; Strasser et al. 2013; Wakahara et 
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al. 2013; Ando et al. 2015), which is indirect association owing to that greater PA’s are 

generally concordant with larger muscle size (Kawakami et al. 2006). Presuming PA 

influences maximal strength, it is possible there will be a relationship between greater PA and 

later-phase RTD; however this has not been tested.  

 

A functional consequence of the rotation of the fibres (increase PA) that occurs during 

muscle shortening is that muscle fascicles can shorten less and at a lower proportion of their 

maximal shortening capacity for a given muscle shortening velocity allowing greater force 

(Azizi et al 2008; Wakeling et al. 2011) and equally operate closer to the optimal length 

range that is conducive to sarcomere actin-myosin overlap (i.e. greater force). This 

mechanism is thought to be greater in muscles with higher resting PA’s and be more 

prominent with increased contraction velocity (Brainerd and Azizi 2005; Azizi et al. 2008). 

Substantial architectural changes occur during muscle contraction, as the muscle shortens 

during force generation (Narici and Maganaris 2006; Azizi et al. 2008; Wakeling et al. 2011). 

Muscle shortening is accomplished via both muscle fascicle shortening and rotation (about 

their aponeurotic insertion), such that FL decreases (30-60%) and PA increases (60-160%) in 

the transition from rest to maximal voluntary force during isometric (constant muscle-tendon 

unit length) contractions (Herbert and Gandevia 1995; Narici et al. 1996a; Maganaris et al. 

1998; Kawakami et al. 1998; Maganaris and Baltzapopoulos 1999; Hodges et al. 2003). 

Some studies report architectural changes to occur in a curvi-linear manner with the increase 

in contraction intensity; relatively greater changes are observed at lower forces and smaller 

changes at higher forces (Herbert and Gandevia, 1995; Ichinose et al. 1997; Maganaris et al. 

1998; Hodges et al. 2003). Also, owing to the maintenance of muscle volume during 

contraction and the architecture changes, effPCSA will increase during isometric and 

concentric contractions (Narici et al. 1996a). Perhaps examining effPCSA during MVC will 

yield a higher correlation between effPCSA and MVT, than is reflected by effPCSA at rest.  

 

2.3.3. Tendinous Tissue Stiffness 

2.3.3.1. In Vivo Estimation of Stiffness 

Muscle-tendon unit (including aponeurosis and tendon) and external ‘free’ in-series tendon 

force-elongation relationships are obtained in vivo by combining tissue elongation visualised 

via ultrasonography, with force measurements recorded during a ramp isometric contraction 

in which force is developed gradually up to maximal. The longitudinal displacement of either 

a muscle fascicle-aponeurosis cross-point or muscle-tendon junction (Bojsen-Møller et al. 
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2003; Maganaris et al. 2003; Stafilidis et al. 2005; Arampatzis et al. 2007a) defines muscle-

tendon unit (MTU) elongation distal to the ultrasound measurement site. The typical 

capturing of ultrasound recordings to quantify aponeurosis elongation has the limitation that 

measurements are restricted to two-dimensional visualisation of longitudinal displacement, 

whereas aponeurosis deformation also occurs in the plane transverse (Iwanuma et al. 2011; 

Farris et al. 2013). Moreover, there may be heterogeneously distributed longitudinal 

displacement along the length of the aponeurosis and the observation that some parts of the 

aponeurosis may shorten during contraction (Finni et al. 2003; Kinugasa et al. 2008) 

questions the validity of using single point estimates of muscle aponeurosis elongation to 

derive MTU stiffness. 

 

Some studies have measured patellar tendon elongation as either the displacement of the 

patella apex relative to an echo absorptive marker placed mid-tendon (Reeves et al. 2003) or 

as the increase in distance between the patella apex and tibia (Hansen et al. 2006). The 

former method however underestimates tendon elongation, as it does not capture tibial 

displacement. Tissue elongation (corrected for displacement due to joint angle rotation) 

measurements are plotted against the corresponding tendon force (corrected for antagonist 

co-activation) to derive a tendon force-tendinous tissue elongation relationship, the slope of 

which is defined as stiffness. Most commonly the slope between 50-90/100% MVT has been 

used to calculate the representative value of stiffness. It has been suggested that stiffness is 

linear over the high force range (Kubo et al. 2002b) and some studies similar report linear 

force-elongation relationships (Arampatzis et al. 2007b; Stenroth et al. 2012; Waugh et al. 

2013). Measuring in a so-called linear region is in keeping with in vitro mechanical tensile 

tests where there is a distinct linear portion of the force-elongation curve that is used to 

define the elastic characteristics (stiffness) of tendon tissues (Butler et al. 1978). However, 

while the tendon-force elongation relationship may well fundamentally have a linear region, 

whether that region can always be expressed in vivo is uncertain. The tendons are capable of 

bearing much greater force than can be exerted by the muscle, thus the examined portion of 

the force-elongation curve during mechanical tests in vivo is dependent upon voluntary 

muscle strength. Therefore, adopting a measurement of stiffness over a narrow force range in 

the upper end of the voluntary force-elongation relationship provides the closest obtainable 

approximation of a linear value (e.g. 80-100%, Carroll et al. 2008; 90-100%, Seynnes et al. 

2009).  
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2.3.3.2. Normalisation for Tendon Dimensions 

As tendon dimensions markedly influence tendon stiffness, the tendon force-elongation 

relationship is typically normalised to tendon CSA and length respectively to yield a stress 

(F/CSA)-strain (elongation/initial resting length) relationship. The slope of which defines a 

dimensionless property referred to as the elastic modulus or Young’s modulus. A difficultly 

with deriving accurate estimates of Young’s modulus in vivo is the non-uniformity of tendon 

cross-sectional along the length of the tendon; e.g. patellar and achilles tendon CSA increases 

proximal-distal (Seynnes 2009; Arampatzis et al. Bohm et al. 2014). The Young’s modulus 

defines the material stiffness and reflects the intrinsic tensile resistance of the tendon as 

determined by the tendons ultrastructure and composition: most prominently collagen 

content, collagen fibril size and collagen cross-links concentration (Buchanan and Marsh 

2002; Heinemeier and Kjaer 2011; Kjaer et al. 2015). In particular, a greater proportion of 

larger collagen fibrils is associated with a stiffer tendon, owing to the greater possibility of 

cross-link formation between collagen molecules, while greater cross-link concentration 

likely increases intrinsic stiffness by preventing the slippage of the collagen molecule during 

mechanical loading (Heinemeier and Kjaer 2011).  

 

2.3.3.3. Muscle-Strength Dependency 

The maximal tendon strain prior to failure is considered a physiologically conserved (more or 

less constant) property (Matson et al. 2012). Therefore, greater muscle strength can 

expectedly necessitate a stiffer tendinous tissue to constrain tendon elongation to within sub-

failure physiological limits. While an association between maximal strength and tendon 

stiffness is yet to be clearly documented, several cross-sectional studies report strong positive 

correlations between maximal voluntary isometric strength and MTU stiffness (r = 0.58-

0.817: Arampatzis et al. 2007b; Kubo et al. 2011; Stenroth et al. 2012; Hannah and Folland 

2015). However in these studies stiffness measurements correlated to strength were obtained 

over a force range relative to maximal (50-100% MVT, Arampatzis et al. and Kubo et al. or 

10-80% MVT, Stenroth et al. 2012), and from force-elongation data acquired during constant 

ramp contraction times rest to peak e.g. 5-10 seconds). These approaches likely introduce a 

methodological artefact.  For instance, due to the curvi-linear nature of the force elongation 

relationship in vivo: progressively increasing gradient of the in-vivo tendon tissue force-

elongation relationship; e.g. tibialis anterior, Maganaris and Paul 1999; gastrocnemius, 

Maganaris and Paul 2002; patellar, Reeves et al. 2003), stronger individuals will inherently 

have a greater stiffness calculation.  



   Chapter 2: Literature review         

 23 

2.3.3.4. Loading Rate-Sensitivity  

The ramp isometric contractions performed to establish tendon stiffness are typically 

performed over a defined period (~3-10 seconds), however for obtaining comparative values 

across studies and also between individuals of vastly differing strength level, it is prudent to 

utilise a constant loading-rate. A few in vivo studies have addressed the postulation that 

tendinous tissue mechanical stiffness is strain-rate sensitive/ loading-rate dependent; meaning 

the estimated stiffness value is greater when the rate of force application during ramp 

contractions (i.e. shorter time to peak force), with conflicting results. Neither medial 

gastrocnemius muscle aponeurosis elongation nor Achilles tendon stiffness showed 

differences when calculated during ramp isometric plantar flexion contractions lasting 1-10-s 

(Kubo et al. 2002b; Peltonen et al. 2013). In contrary Achilles tendon did exhibit lower strain 

when maximal plantar flexion contractions were performed in minimal time (as fast as 

possible) as oppose to 1.5 s (Gerus et al. 2011). A further study indicated maximal patellar 

tendon elongation to be 42% lower during short (3 s) vs. long (10 s) maximal ramp isometric 

knee extensions, with patellar tendon stiffness calculated to be ~77% greater during short vs. 

long (Pearson et al. 2007). While controlling the contraction time is one step towards a 

standardised loading rate, individuals of differing strength will exhibit a greater rate of force 

development, therefore constant time contractions likely still lead to speciously stiffer tendon 

values in stronger individuals. Most recently, patellar tendon stiffness and modulus were 

demonstrated to be loading rate (ramp contraction RTD [Nm.s-1]) dependent: stiffness and 

Young’s modulus were significantly higher at 80 Nm.s-1 (21.4% and 21.6%, respectively) 

and at 110 Nm.s-1 (32.5% and 32.0%, respectively) than at 50 Nm.s-1. Similarly, stiffness and 

Young's modulus were 9.9% and 8.8% higher, respectively, at 110 Nm.s-1 than at 80 Nm.s-1 

(Kösters et al. 2014). 

 

2.3.3.5 Muscle-Tendon Unit Interaction 

During isometric muscle contraction, contractile force results in tendinous tissue elongation, 

the extent of which is determined by the tissue stiffness (> stiffness, less elongation).  For a 

given contractile force, a more compliant (reciprocal of stiffness) tendon will allow the 

muscle to shorten more. This extra shortening would cause a shortening in the sarcomere of 

muscles, meaning that if the sarcomere is operating in the ascending limb of the force-length 

relation, having a more compliant tendon would result in lower force In contrast, if the 

sarcomere operates in the descending limb of the force-length relation, having a more 

complaint tendon would result in an increase in contractile force (Maganaris et al. 2008). In 
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effect, greater tendinous tissue compliance results in a rightward shift in the force-length 

relationship, towards longer optimal muscle lengths (Lieber et al. 1992; Lemos et al. 2008). 

Moreover, the rate of skeletal muscle isometric contractile force production is slowed by the 

necessity of the muscle to shorten in order to stretch the elastic components that transmit 

muscle force (Hill 1951; Edman and Josephson 2007). Stiffer tissues experience less 

elongation response to muscle force (provide greater mechanical resistance) and therefore 

constrain muscle shortening during the initial stages of contraction, permitting muscle fibres 

to operate in the higher force region of the force-velocity relationship (Wilson et al. 1994). 

Greater mechanical tendinous tissue stiffness could expectedly be associated with faster RTD 

in vivo. Hitherto no studies have examined the relationship of tendon stiffness to in vivo 

RTD. Some studies report moderate correlations between MTU stiffness and explosive 

strength: knee extensors (RTD 0-100ms r = 0.65 and 0-200ms r = 0.69 across divergent 

athletic subgroups, Bojsen-Møller et al. 2005; time taken to develop 150-300N external force 

r = -0.35 – -0.54, across equal n = male and females, Hannah and Folland 2015), and plantar 

flexors (in children of different ages RTD 0-50/200ms r = 0.42/0.42, and adult males and 

females RTD 0-50/200ms r = 0.45/0.47). However this evidence is unconvincing as these 

studies utilised either a relative force range for stiffness measurement and/or a constant time 

ramp contraction to acquire force-elongation data. As referred to (in sections 2.3.3.3 and 

2.3.3.4.), such methods predispose stronger individuals to higher stiffness values. Relating 

biased estimated stiffness values to explosive strength, a variable known to be related to 

maximal strength (Andersen and Aagaard 2006; Folland et al. 2014), most likely renders a 

spurious relationship between stiffness and RTD.  Indeed once examined with both variables 

expressed in relative terms, such relationships were abolished (Hannah and Folland 2015). 

This suggests that the relationships found between absolute MTU stiffness and explosive 

strength were coincidental and due to the influence of maximal strength on both RTD and a 

confounding effect on stiffness measurement. 

 

2.4. Responses to Strength Training 
Conventional strength training utilises high loads (≥70% MVT), with contractions performed 

in a controlled manner typically >2 s. This sustained-contraction strength training 

characteristically increases maximal strength (Rich and Cafarelli, 2000; Aagaard et al. 2002; 

Holtermann et al. 2007; Blazevich et al. 2008; Del Balso et al. 2007; Pucci et al. 2010; 

Andersen et al 2010; Tillin et al. 2011), with uncertainty as to the effectiveness on explosive 
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strength (Aagaard et al 2002; Del Balso et al. 2007; Blazevich et al, 2008; Andersen et al 

2010; Tillin et al. 2011). Alternatively explosive-contraction strength training, focusing on 

brief contractions (~1 s) performed with maximal/near maximal RTD can induce observable 

improvements in maximal strength (though of lesser extent than sustained-contraction 

strength training) and substantially improves explosive strength (Van Cutsem et al. 1997; 

Barry et al. 2005; Geertsen et al. 2008; Tillin et al. 2012; Balshaw et al. 2016).  

 

2.4.1. Muscle-Tendon Unit Hypertrophy 

2.4.1.1. Muscle  

The characteristic increase in muscle contractile material quantity (muscle size) following 

strength training is extensively reported in the literature: increases in muscle ACSA and 

volume are of around 5-15% with 8-14 weeks training (Narici et al. 1989, 1996: Roman et al. 

1993; Aagaard et al. 2001; Wilkinson et al. 2006; Blazevich et al. 2007; Erskine et al. 2010). 

A significant hypertrophic response can be observed in as little as three weeks (Seynnes et al. 

2007). A selective hypertrophic response has been observed, in terms of greater increases in 

ACSA at particular locations along the length of a given muscle and also larger gains ACSA 

and volume between constituent muscles of a muscle group (Folland and Williams 2007). 

Regional ACSA changes suggest that an accurate index of hypertrophy requires CSA 

measurements at multiple sites pre-post training, with muscle volume measurements 

providing the most thorough assessment. Whole muscle hypertrophy results primarily from a 

training-induced increase in muscle fibre CSA. A common finding is a preferential 

hypertrophy of type II fibres; type II fibre hypertrophy occurring in a shorter period of time 

and to a greater extent than type I (Roman et al, 1993; Andersen and Aagaard 2000; Aagaard 

et al. 2001, Wilkinson et al. 2006; Andersen and Aagaard 2010). 

 

2.4.1.2. Intramuscular Connective Tissue  

An increased muscle fibre CSA intimately necessitates an expansion of the intramuscular 

collagen network. In coordination with myofribrillar protein synthesis, resistance exercise 

stimulates an increased skeletal muscle collagen synthesis (Moore et al. 2005; Holm et al. 

2010). Training-induced hypertrophy of muscle fibres will be accompanied by a proportional 

increase in intramuscular connective tissue.  Evidently, there was remarkable similarity in the 

percentage of biceps brachii muscle samples comprised of connective tissue in bodybuilders 

and untrained controls (~13%: MacDougall et al. 1984). Likewise, biceps brachii connective 

tissue concentration was unchanged (~12%) after 12 weeks of heavy resistance elbow flexor 
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training in elderly males (Housh et al. 1992). Finding of a constant proportion of connective 

tissue regardless of muscle size or state of training indicates a greater absolute amount of 

collagen/ connective tissue after strength training.  

  

2.4.1.3. Aponeurosis 

An increase in muscle fibre CSA with strength training necessitates an increased quantity of 

contractile material to be attached to the aponeurosis. While the greater PA observed after 

strength training can partly accomplish this (Kawakami et al. 1995; Aagaard et al. 2001), it 

has been posited that a possible increase in aponeurosis size maybe needed to accommodate 

the greater fibre CSA (Abe et al. 2012). Supportively, a strong correlation between 

quadriceps femoris muscle volume and vastus lateralis deep aponeurosis area (r = 0.85), and 

the greater (32%) aponeurosis area in weightlifters than recreational active individuals was 

suggestive of a strength training adaptation in aponeurosis size (Abe et al. 2012). 

Subsequently, a solitary study found a small increase (1.9%) in vastus lateralis aponeurosis 

width to accompany an increased (10.7%) vastus lateralis ACSA after 12 weeks of dynamic 

(80% concentric one-repetition maximum) knee extension training (Wakahara et al. 2015). 

However, this study included a small cohort (n = 11) and reported only within-group (no 

comparison to the control group) changes that were deduced from paired-t-tests performed 

with no correction for multiple tests, and the result was of borderline statistical significance 

(P = 0.05). More robust evidence is required to affirm if aponeurosis hypertrophy is an 

adaptation to strength training. 

 

2.4.1.4. Tendon  

An increase in tendon stiffness could arise from an increase in tendon cross-sectional area 

(CSA: tendon stiffness will scale directly to CSA if all other structural and compositional 

factors influencing stiffness are equal; Butler et al. 1978). Hypothetically, strength training 

could increase tendon size via increases in strength imposing progressively greater 

mechanical load to the tendons which could initiate signalling cascades that stimulates cells 

located in the tissue to increase their production of extracellular matrix proteins, ultimately 

leading to tendon hypertrophy (Svensson et al. 2016). The evidence for tendon hypertrophy 

in response to strength training is rather equivocal. Using magnetic resonance imaging 

(MRI), several studies have documented modest increases in either Achilles or patellar 

tendon CSA (Kongsgaard et al. 2007; Arampatzis et al. 2007a; Seynnes et al. 2009; Farup et 

al. 2014; Bohm et al. 2014). Initially, Kongsgaard et al. 2007 suggested tendon hypertrophy 
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may be region specific (localised to proximal or distal regions). However it is important to 

appreciate that this conclusion is rather limited as the analysis was only performed at three 

specific sites along the PT length: proximal CSA, +6%; mid CSA, no change, distal CSA, 

+4% after 12 weeks heavy dynamic knee extensor training. Data from other studies are not so 

conducive. After 9 weeks dynamic knee extensor training, Seynnes et al. 2009 noted 

increases in patellar tendon CSA at 20-30, 60 and 90-100% of tendon length. Farup et al. 

2012 measured patellar cross-sectional area pre-post 12-weeks training in accordance with 

the methods of Kongsgaard, finding only increased CSA at the proximal site. However, the 

data from Farup et al. indicate that patellar tendon CSA increased to a greater extent than 

quadriceps femoris muscle size, which given the slower tissue turnover of muscle vs. tendon 

(Miller et al. 2005; Smith and Rennie 2007; Heinemeier et al. 2013b), the finding seems 

dubious. Negatively each of these studies of the patellar tendon has neglected the inclusion of 

a control group. Following 14 weeks isometric plantar flexion strength training (90% MVC 

for 3 seconds), Achilles tendon hypertrophy was observed only at 60-70% (Arampatzis et al. 

2007), while in response to the same protocol as Arampatzis et al. (2007a), Bohm et al. found 

AT hypertrophy across most of the tendon length (20-100%). 

 

Conversely, a few other MRI studies found no changes in either patellar or Achilles tendon 

CSA measured at multiple sites along the lengths of the tendons (Arampatzis et al. 2010; 

Kubo et al. 2012; Bloomquist et al. 2013). In addition, there are multiple studies that equally 

report no change in Achilles, quadriceps or patellar tendon CSA after months of strength 

training (Kubo et al. 2001; 2006a, 2006b, 2007), although only a limited number of specified 

tendon were examined. Further these studies were deemed insufficient (Kongsgaard et al. 

2007), based on their use of lower resolution MRI (≤ 0.5 Tesla) as oppose to the more 

commonly used 1.5 Tesla MRI. There are more studies that identified no change in patellar 

tendon CSA; albeit at selected locations (25, 50 and 75% of tendon length) which may not be 

conducive to hypertrophy (Reeves et al. 2003; Malliaras et al. 2012; McMahon et al. 2013; 

Kubo et al. 2009, 2010). Also these studies adopted ultrasound imaging for tendon CSA 

measurement. The accuracy of ultrasound has been questioned and suggested to be 

potentially unreliable owing to the perceived difficulty to precisely delineate the tendon 

boundary from surrounding tissue, and may not be a suitable method to detect relatively 

modest change in tendon size (Heinemeier and Kjaer 2011; Ezikos et al. 2013). Although 

good inter-day reliability has been reported in some studies (Rieder et al. 2015; Kruse et al. 

2017). 
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2.4.2. Increased Tendinous Tissue Stiffness 

2.4.2.1. Muscle-tendon unit (MTU: tendon-aponeurosis) and/ or ‘free’ tendon stiffness 

It is a consistent observation that conventional strength training induces an increase in MTU 

stiffness (+16-60% [plantar flexor or knee extensor MTU] after 8-14 weeks: Arampatzis et al. 

2007, 2010; Bohm et al. 2014; Kubo et al. 2001, 2002, 2006a, 2006b, 2010a, 2010b, 2012; 

Waugh et al. 2014).  Interestingly, two studies reported notable increases in MTU stiffness 

following merely four (+34% [knee extensor MTU]: Tillin et al. 2012) and six weeks (+62% 

[plantar flexor MTU]; Burgess et al. 2007) of explosive strength training. Further, several 

studies have exclusively examined the patellar tendon adaptation to conventional strength 

training, likewise reporting a substantially increased stiffness after 8-14 (+15-83%:  Reeves et 

al. 2003; Kongsgaard et al. 2007; Carroll et al. 2008; Seynnes et al. 2009; Malliaras et al. 

2012; McMahon et al. 2013). Whether explosive strength training increases tendon stiffness 

is unknown. Hitherto, only a few serial studies (same group of authors) have simultaneously 

examined the changes in MTU and free tendon stiffness, showing inconsistent findings for 

the knee extensor MTU and PT stiffness after 12 weeks: isoinertial unilateral knee extension 

training (80% 1-RM) increased MTU, but not PT stiffness (Kubo et al. 2006a); isometric bi-

lateral leg press training (70% MVC) increased knee extensor MTU but not PT stiffness 

(Kubo et al. 2006c), yet isometric and isoinertial knee unilateral extension training increased 

both PT and MTU (Kubo et al. 2009).  

 

Evidently there is a wide variability in the findings from the cited studies. While this could to 

some extent simply be a consequence of inter-individual differences in the participants, it is 

also possible that the complexity of measuring in vivo tendon mechanical behaviour could 

contribute, along with a likely influence of the diversity of methods (Heinemeier and Kjaer 

2011). Notable methodological differences between studies include: partial or full tissue 

length imaging and ramp contraction duration and loading rates. Further it is typical to 

calculate stiffness across an absolute force range that is expressed relative to maximal 

strength (e.g. 50-100% MVT) which means post strength training stiffness values will be 

calculated over higher absolute forces, exacerbating the stiffness changes. Differences in 

studies could thus be contingent upon strength changes. Further methodological discrepancies 

arise within the context of estimating tendon force in terms of the degree of control for 

antagonist co-activation and the validity of tendon moment arm measurements (Heinemeier 

and Kjaer 2011): e.g. direct MRI measure vs. estimation from limb length via cadaver data. A 

potential relative effectiveness of the varying training protocols employed notwithstanding.  
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2.4.2.2. Young’s Modulus (material stiffness) 

In the absence of changes in tendon size; and the disproportionate changes in tendon size and 

stiffness in studies finding tendon hypertrophy, the increased tendon stiffness post strength 

training appears predominantly ascribable to the approximately parallel improvement in the 

intrinsic material stiffness typically observed: similar increases in both tendon stiffness and 

Young’s modulus; 65 and 69%, Reeves et al. 2003; 14.6 and 12.2% (only a tendency), 

Kongsgaard et al. 2007; +24 and 20%, Seynnes et al. 2009; +70.6 and 70.6%, Malliaras et al. 

2012; +50 and 48%, McMahon et al. 2013).  

 

2.4.2.3. Tendon Morphology and Composition Changes with Strength Training  

As alluded to, the tendon collagenous structure and composition implicitly influence Young’s 

modulus, however studies attempting to examine changes in collagen fibril morphology and 

cross-link density; that could be readily explicable mechanisms conferring the improved 

modulus, are sparse. Collagen concentration and inter-molecular crosslinks concentration was 

unchanged in patellar tendon biopsy samples from tendinopathy patients who underwent 12 

weeks heavy slow resistance training  (Kongsgaard et al. 2009). A further study in patellar 

tendinopathy patients equally showed no change in collagen concentration after 12 weeks 

HSR, although there was a notable change in collagen fibril morphology; fibril density 

increased while fibril mean area decreased (Kongsgaard et al. 2010). Whether healthy 

tendons likewise respond to strength training with alterations in collagen fibril morphology 

and cross-links concentration is yet to be investigated. Cross-link concentration changes 

maybe particularly important, as indicatively despite a 34% lower collagen concentration in 

old vs. young men, their in vivo patellar tendon Young’s modulus was similar which was 

seemingly the result of a compensatory greater concentration of cross-links in the old men 

(Couppé et al. 2009). 

 

2.4.2.4. Collagen Synthesis and Strength Training  

Presumably alterations in tendon size and/or collagenous structure and composition would 

require an upregulation of tendon collagen synthesis. There is some evidence that increased 

mechanical loading can induce an increased collagen turnover (net synthesis: Langberg et al. 

2001; Miller et al. 2005), though a collagen synthetic response after an acute bout of exercise 

is not a consistent finding (Dideriksen et al. 2013; Heinemeier et al. 2013b). However, more 

pertinently, an acute bout of resistance exercise (3 x 10 dynamic knee extensions at 70% one 

repetition maximum) was shown to not result in an increase in patellar tendon collagen 
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messenger RNA expression 24 hours post (Sullivan et al. 2009). Furthermore, the 

concentration of a peritendinous (outer region of tendon) tissue biomarker of collagen 

synthesis was reportedly unchanged after 12 weeks isoinertial squat training (Bloomquist et 

al. 2013).  

 

2.4.2.5. Mechanical Loading Factors Influencing Tendinous Tissue Stiffness Changes  

Changes in tendinous tissue stiffness (mechanical and material) may result from alterations in 

extracellular matrix protein (principally collagen) content and composition. Such changes 

necessitate the upregulation of protein expression by the resident tendon cells (tenocytes). 

Cellular responses ensue from the mechanotransduction pathways initiated by the cellular 

strain (Lavagnino et al. 2008). The important characteristics of the strength-training stimulus 

that will impact the loading (strain) applied to the tendon are magnitude and time-dependent: 

(i.e. rate and duration) loading characteristics (Lavagnino et al. 2008).  

 

2.4.2.5.1. Magnitude  

A couple of studies have compared the effects of high vs. lower relative intensity training (% 

MVT) finding only the high magnitude training induced tendon adaptation (Arampatzis et al. 

2007a, 2010; Kongsgaard et al. 2007). In two different studies of isometric plantar flexion 

training (both n=11, 14 weeks, 4 times per week) involving contractions (either 3-s loading 

with 3-s relaxation, Arampatzis et al. 2007a or 1-s loading with 1-s relaxation, Arampatzis et 

al. 2010) of one leg at 55% maximal voluntary contraction (low strain, 2.5-3%) and the other 

leg at 90% maximal voluntary contraction (high strain, 4.5-5.0%) with matching training 

volume (equal accumulated torque-time integral), found an increase in Achilles tendon 

(aponeurotic and free tendon portions) stiffness of 36% (3-s protocol) and 16% (1-s protocol) 

in the high strain trained leg, with no significant changes in the low strain trained leg. 

Likewise, 12 weeks unilateral concentric-eccentric knee extensor training resulted in an 

increase (+15%) in patellar tendon stiffness in a heavy-load (70% 1-repetition maximum 

[RM]) vs. no change in a light load (40% 1-RM) trained leg. These studies are indicative of 

the need to utilise a relatively high loading intensity/magnitude in accordance with a 

supposed requirement to overcome an internal tendon strain threshold in order disturb the 

homeostasis of tenocytes and initiate mechanotransduction pathways (Arampatzis et al. 

2009). Though the in vivo threshold has not been specifically defined studies showing an 

increase in tendon stiffness typically adopt ≥ 70% of maximum isometric/dynamic strength 

(Bohm et al. 2015). The importance of higher strain as a stimulus for adaptation is further 
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demonstrated by greater increases in tendinous tissue stiffness in response to strength training 

at longer muscle-tendon unit lengths (i.e. > strain: Kubo et al. 2006a; McMahon et al. 2013).  

 

2.4.2.5.2. Rate  

The findings of substantial increases in muscle-tendon unit stiffness in response to isometric 

explosive training utilising maximal/near maximal rates of force development (+62% after 6 

weeks, Burgess et al. 2007; +34% after 4 weeks, Tillin et al. 2012) is suggestive that the 

imposed tendon strain rate is potentially a potent stimulus for tissue adaptation. However 

these studies investigated explosive training exclusively and could not directly compare the 

effects observed with explosive training to a contrastingly slower force-rise protocol. It was 

recently suggested that only a tendency for an increase in Achilles-tendon (aponeurosis and 

free tendon portions) stiffness in response to a high-strain rate training protocol in 

comparison to the increase in stiffness (+57%) after a reference protocol (isometric plantar 

flexion’s: 3-s at 90% maximal voluntary force [time to target force, as short as possible]) was 

evidence that strain rate had a limited influence on tendon adaptation (Bohm et al. 2015). The 

high strain rate training was performed via multiple one-legged hops and the estimated 

tendon force was also 90% maximal voluntary isometric force with the number of 

contractions such to match the force-time integral of the reference training group. While 

perhaps indicative that higher strain rate may not necessarily be a beneficial mechanical 

stimuli for tissue adaptation, it is possible that the plyometric type exercise performed 

requires the tendinous tissues to function more in accordance with the requirement to store 

and release elastic energy. This mechanism could be potentially insufficient to promote 

adaptation towards force transmission effectiveness (i.e. stiffness). Incidentally, other studies 

examining the effects of plyometric training on tendon tissue adaptations have produced 

largely inconsistent findings (Burgess et al. 2007; Kubo et al. 2007; Foure et al. 2010, 2011).  

 

2.4.2.5.3. Duration  

Intuitively a greater loading duration may be expected to facilitate greater tendinous tissue 

adaptation. Surprisingly, there appears to be no apparent in vivo data that directly attempts to 

establish an association between total loading duration and subsequent changes in MTU or 

tendon stiffness. However, studies have been conducted that compared the effects of two 

muscle contraction duration protocols on MTU stiffness changes, while the free tendon has 

not been separately examined. Importantly in each study the contraction magnitude (%MVT) 

was matched in the contrasting duration conditions. Across two separate studies (Arampatzis 
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et al. 2007a, 2010 [details referred to previously]), 3-s contractions resulted in greater 

increase in Achilles tendon (combined soleus aponeurosis and free tendon components) 

stiffness than 1-s contractions, (+36 and 16% respectively). Subsequently 3-s loading was 

shown to be more effective than longer 12-s contractions (Achilles tendon stiffness, +57 vs 

25%; Bohm et al. 2014). Collectively, these results indicated that a few seconds of constant 

force (isometric force hold) application is likely beneficial for promoting a tendon adaptive 

response. Importantly, in both these instances of comparison of the effects of contraction 

duration on tendinous tissue stiffness changes, the studies matched the total accumulated 

contraction duration (equated to 60-s) by varying the number of contractions (repetitions) 

performed per training set: Arampatzis et al. 2007a, 5 sets x 4 reps x 3-s vs. Arampatzis et al. 

2010, 5 sets x 12 reps x 1-s; and Bohm et al. 2014, reference protocol 5 sets x 4 reps x 3-s vs. 

long duration protocol 5 sets x 1 reps 12-s). Therefore, while these studies indicated that 

accumulating an equivalent total contraction duration by partitioning the loading into 

repetitive briefly sustained efforts is perhaps more optimal that very brief or prolonged 

contractions, the question of whether differences is total loading duration influence tendinous 

tissue stiffness changes has not been appropriately established.   

 

2.4.3. Chronic Strength Training Adaptations  

Changes in tendon Young’s modulus are suggested to be a short-term adaptive response to 

increased loading (strain in response to muscle contractile force), whereas tendon 

hypertrophy is considered more likely an accumulated adaptation that may require a 

prolonged period of time to manifest (Heinemeier and Kjaer 2011; Wiesinger et al. 2015; 

Kjaer et al. 2015). The supposition that tendon hypertrophy maybe a prolonged process is 

highlighted by a cross-sectional study (Couppé et al. 2008) comparing patellar tendon size 

and mechanical properties of the lead and non-lead extremity, in elite badminton and fencers 

expressing a ≥15% contralateral knee extension maximal strength imbalance showed that the 

greater muscle strength (average 22%) of the lead extremity was concordant with a 20-28% 

greater patellar tendon CSA (measured at proximal, mid and distal regions from MRI). PT 

mechanical stiffness measured between 90-100% of the highest common (all participants 

could achieve) tendon force was 36.4% higher in the lead extremity, whereas there was no 

difference in PT Young’s modulus between extremities.  The results of this study (Couppé et 

al. 2008) suggested that continued gains in strength with habitual training could promote 

long-term tendon adaptations. However, the tendon loading history experienced by the 

participants of the Couppé et al. study is predominantly of higher volume, and relatively 



   Chapter 2: Literature review         

 33 

lower magnitude than would be elicited in regular strength training, and thus may not 

necessary reflect the potential of strength training to elicit tendon hypertrophy.  

 

One published study has documented a 34% larger PT CSA in chronic strength trained (> 5 

years) than untrained males; though measured via ultrasound (Seynnes et al. 2013). The PT 

stiffness at a common force level (3600-4000N) had a tendency (+21%, P = 0.06) to be 

greater in the chronic strength trained, which was probably precluded from significance as a 

result of the small cohorts (n = 8). Conversely, PT Young’s modulus at the common force 

level was equivalent between chronic trained and untrained (Seynnes et al. 2013). However, 

though not discussed by the authors, no difference in Young’s modulus could be consequent 

to the 33.7% lower stress reported at the common force level in the chronic strength than 

untrained. The curvi-linear nature of the stress-strain relationship potentially confounds the 

result. Alternatively this lack of difference in Young’s modulus is possibly linked to the 

finding of no differences in the collagen content or collagen cross-link in the patellar tendon 

of chronically strength trained vs. untrained men shown in another study (LeMoine et al. 

2009). Converse to earlier findings, Fukutani and Kurihara (2015) found that the tendon CSA 

in 5/6 MRI locations (Achilles, patellar and triceps brachii proximal and distal tendon sites) 

were no different in chronically strength trained (~10 years) vs. untrained controls. Therefore 

whether even chronic strength training can induced tendon hypertrophy is controversial. 

Alternatively, there is some limited suggestion of aponeurosis hypertrophy (see 2.4.1.3), data 

regarding tendon hypertrophy is more equivocal Studies to indicate MTU stiffness changes 

have been neglected.   

 

2.5. Literature Review Summary 

In summary, the importance of muscle architecture for in vivo muscle strength characteristics 

has not been well documented. Further, the influence of tendinous tissue stiffness to in vivo 

RTD is not wholly clear and a more methodological stringent study si required. Following 

recent findings that explosive contraction strength training maybe a potent stimulus to 

increase MTU stiffness, the relative efficacy of explosive vs. sustained contraction strength 

training needs to be established. In particular, external tendon adaptations (size and stiffness) 

to explosive strength training are yet to be documented. Currently, there is a lack of cross-

sectional data concerning the MTU properties of chronic strength trained athletes which 

could provide insight into the potential further capacity of tendinous tissues to adapt 

increased mechanical load (muscle force induced tendon strain). Additional, robust tendon 
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size data are needed to affirm tendon hypertrophy as a potential adaptive response to strength 

training.   

 

Therefore, the ensuing experimental chapters were designed in an attempt to: appropriately 

examine the relationship of in vivo muscle architecture to muscle strength; reconcile the 

influence of stiffness on RTD; establish the efficacy of explosive-contraction strength 

training to promote muscle-tendon unit adaptation; and appreciate whether tendinous tissues 

to continue to adapt to extended periods of strength training via cross-sectional comparison 

between groups of untrained, short-term strength trained and chronic strength trained 

individuals.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



           

 35 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

 

Influence of contractile force on the architecture and 

morphology of the quadriceps femoris 
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3.1. INTRODUCTION 

A skeletal muscle’s force production capabilities are principally dependent on its 

architectural and morphological characteristics (Powell et al. 1984; Burkholder et al. 1994; 

Lieber and Fridén 2000). However the precise influence of these structural properties on 

function remains to be fully understood, perhaps because of the extensive changes in muscle 

architecture that occur during contraction. Therefore documenting the changes in muscle 

architecture and morphology during contraction may enhance our understanding of muscle 

function. 

 

Several in vivo studies utilising ultrasonography have reported substantial changes in 

architectural parameters (fascicle length [FL] and pennation angle [PA]) in various skeletal 

muscles during contraction. Even during isometric contractions with constant muscle-tendon 

unit length, fascicles shorten and rotate about their aponeurotic insertion resulting in a 

reduction in FL (-30 to -60 %) and an increase in PA (+60 to +160%) during the transition 

from rest to maximal voluntary contraction (MVC) (Herbert and Gandevia 1995; Narici et al. 

1996a; Maganaris et al. 1998; Kawakami et al. 1998). Fascicle shortening influences force 

production potential due to muscle fibre force-length relationship. An increase in the PA 

likely attenuates the extent of fascicle shortening (Azizi et al. 2008), but may compromise the 

transmission of force to the aponeurosis. The changes in architecture during contraction and 

their expected influence on muscle force production have implications for the accuracy of 

musculoskeletal models (Zajac, 1989) and the assessment of in vivo muscle mechanical 

properties (e.g. active force-length relationship; Ichinose et al. 1997; Muroaka et al. 2001). It 

is therefore crucial to have a thorough understanding of how architecture changes with 

contractile force.  

 

The quadriceps femoris (QF) is a functionally important muscle group commonly studied in 

research, yet hitherto no studies have documented the architectural changes in this muscle 

group as contractile force increases. The QF comprises four constituent muscles; vastus 

lateralis (VL), vastus intermedius (VI), rectus femoris (RF) and vastus medialis (VM) whose 

tendons merge to form the patellar tendon and thus act collectively as knee extensors. Some 

studies have determined the FL and PA changes occurring in the component VL muscle 

(Ichinose et al. 1997; Chauhan et al. 2013), however, the architectural changes within the 

other constituent muscles remain unknown and it is unclear how the architecture changes 
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occurring in VL reflect those of the other constituent muscles and subsequently the whole 

QF. 

 

Muscle size at rest is widely measured as it is considered a key physiological determinant of 

function. However a muscle’s effective physiological cross-sectional area (effPCSA = muscle 

volume divided by FL x cosine PA; Lieber and Fridén 2000) is clearly influenced by the 

changes in architecture that occur during contraction. Only one study has documented the 

change in effPCSA during isometric contraction from rest to MVC, and these authors found a 

substantial increase in the effPCSA of the muscle (+35% in the gastrocnemius medialis; 

Narici et al. 1996). This increase appears functionally significant given the direct 

proportionality observed between skeletal muscle effPCSA and maximal isometric force-

generating capacity in vitro (r = 0.99; Powell et al. 1984). In-vivo studies have identified a 

weaker but still clear association between muscle effPCSA and isometric maximal voluntary 

force/torque (MVF/T; r = 0.71–0.95; Fukunaga et al. 1996; Bamman et al. 2000; Fukunaga et 

al. 2001; Blazevich et al. 2009b). These in vivo studies assessed effPCSA at rest, and it is 

possible that this relationship with isometric strength could be even stronger if effPCSA were 

measured during a maximal voluntary contraction but this possibility has not been examined. 

Alternatively, if effPCSA measured during MVC did not explain a greater proportion of the 

variance in isometric strength than effPCSA at rest, this may validate the use of effPCSA 

measured at rest.  

 

The primary aim of present study was to document the architectural and effPCSA changes 

that occur within all four constituents and thus the whole QF muscle throughout isometric 

contraction from rest to MVC.  The secondary aim was to test whether there was stronger 

relationship between MVT and effPCSA measured during an MVC than for effPCSA 

measured at rest.  

 

3.2. METHODS 

3.2.1. Participants  

Fifteen healthy young males (mean ± SD: age 20 ± 2 years, height 179 ± 7 cm, body mass 72 

± 7 kg) who gave their written informed consent prior to their participation in this study, 

which was approved by the Loughborough University Ethical Advisory committee and 

conformed to the declaration of Helsinki. Participants were free from musculoskeletal injury 

to the lower limb, had a low-moderate level of recreational physical activity (total ≤1500 
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Metabolic Equivalent [MET] minutes per week) as measured via the International Physical 

Activity Questionnaire: Short Format (Craig et al. 2003) and had not performed lower body 

strength/ power training in the previous 12 months. The present study included an original 

cohort of n = 31, although poor muscle image clarity during contraction for 16/31 meant only 

data for n = 15 were acquired in full.  

 

3.2.2. Experimental Design 

This study involved four separate laboratory visits; familiarisation, two test sessions and a 

magnetic resonance imaging (MRI) scan. During familiarisation participants practiced all 

tasks assessed during functional test sessions. The two muscle function and architecture 

measurement sessions were 7 days apart and conducted at a consistent time of day (between 

11:00 and 18:00 hours), following at least 36 h without strenuous exercise with participants 

having consumed their normal diet. These sessions involved participants being seated in a 

custom-built isometric strength testing chair and completing a series of maximal and ramp 

(gradual increase in force level; test 1 only) voluntary knee extensor contractions of the 

dominant leg (defined as the leg that would be preferentially used as the kicking leg). 

Maximal voluntary contractions (MVCs) were performed to assess knee extension maximal 

voluntary torque (MVT). Ramp contractions involved a gradual increase in knee extensor 

torque up to >80% MVT over 8 s. Ultrasound images of the four constituent muscles of the 

quadriceps femoris were recorded at rest, throughout the ramp contractions and during the 

MVCs Architectural parameters (fascicle length [FL] and pennation angle [PA]) were 

measured from the ultrasound images during later off-line analysis. Architecture 

measurements at rest and MVC were averaged across the two test sessions. One week 

following the second muscle function and architecture session, an MRI scan of the upper leg 

(dominant leg used in functional testing) was conducted to assess quadriceps femoris muscle 

anatomical cross sectional area and volume. 

 

3.2.3. Knee Extension Torque Measurement 

Participants were firmly secured to the strength-testing chair with straps tightly fastened 

across the pelvis and shoulders to prevent any extraneous movement.  Hip and knee angles at 

rest were 105° and 120° (180° = full extension), respectively. Extensive pilot work showed 

knee joint movement of ≤5° from rest to MVC. An ankle strap was placed 15% of tibial 

length proximal to the medial malleolus in series with a calibrated strain gauge (FBB 

universal S-Beam tension-compression load cell [linear response up to 1500 N], Force Logic, 
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Berkshire, UK) positioned perpendicular to the tibia. The distance from the centre of the 

ankle strap to the knee joint centre was measured in order to calculate knee extension torque. 

The force signal was amplified (A50 universal load cell amplifier, Force Logic UK) and 

sampled at 2000 Hz with an analogue-to-digital converter (Micro 1401, CED, Cambridge, 

UK) interfaced with a PC utilising Spike 2 software (CED). Prior to analysis, force signals 

were low-pass filtered at 500 Hz using a fourth order zero-lag Butterworth filter, and notch 

filtered in both directions at 50 Hz to remove mains frequency noise (q-factor = 10). To 

provide gravity correction baseline resting torque was subtracted from all contraction torque 

recordings.  

 

3.2.4. Protocol  

3.2.4.1. Knee extension maximal voluntary contractions 

Participants performed a series of warm-up contractions at 50 (x3), 70 (x2) and 90% (x1) of 

perceived maximal voluntary effort before completing six MVCs, each separated by ~1 min 

rest. Participants were instructed to push as hard as possible for 3-5 s with verbal 

encouragement provided during contractions. Real-time force was displayed on a computer 

monitor in front of the participant to provide visual feedback during and between each MVC. 

The highest instantaneous torque achieved during any maximal contraction was defined as 

knee extension maximal voluntary torque (MVT) for that session. Ultrasound images were 

recorded during all six MVCs. Each of three muscle sites (see muscle architecture below), 

capturing images for different constituent muscles, was recorded twice (in consecutive 

efforts) during the series of MVCs in a consistent order:  VL, RF & VI, and VM. 

 

3.2.4.2. Knee extension ramp voluntary contractions (test session 1 only) 

Participants performed six ramp contractions, each separated by a 30 s rest. Each contraction 

involved a progressive increase in torque from rest up to 80% MVT over 8 s by following a 

target line on the monitor.  Ultrasound images were recorded from each recording site during 

2 ramp contractions. The order of muscle imaging was the same as during MVCs. 

 

3.2.5. Muscle Architecture   

A 6 cm (8-MHz) linear array transducer was used to acquire B-mode ultrasound images (6-8 

cm depth with imaging frequencies of 39-31 Hz; Toshiba Power Vision 6000, SSA-370A: 

Otawara-Shi, Japan). The transducer (coated with water soluble transmission gel) was held 

firmly over the skin, with minimal applied pressure. Images were recorded with the 
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transducer placed on the median longitudinal line of the muscle while positioned on the skin 

above the VL, VM and RF at 50, 25 and 60% of femur length (from the knee joint space to 

the greater trochanter), respectively. These positions correspond to the expected site along the 

femur where the anatomical cross-sectional area of each muscle was greatest (Erskine et al. 

2009). The vastus intermedius was assessed from the images recorded over the rectus 

femoris. The transducer was orientated perpendicular to the lower aponeurosis and parallel to 

the fascicular path. Parallel fascicle alignment was presumed when transducer orientation (tilt 

and rotation angle; Bérnard et al. 2009) produced an image whereby the aponeuroses and the 

fascicle perimysium trajectory were clearly identified with no visible fascicle distortion at the 

image edges. The image recording sites were marked on the skin with a permanent marker. 

Participants were asked not to wash off the marks so that transducer placement could be 

accurately replicated during the second session. An echo absorbent marker (elastic band) was 

taped to the skin in the axial plane in order to provide a reference in the images of any 

transducer movement relative to the skin. Video output from the ultrasound machine was 

transferred (via S-video cable) to a digital video camcorder (Sony Walkman, GV-D900E) and 

images were recorded at 25 Hz and synchronised with force data via a pulse generated by the 

Micro 1401 and recorded in the ultrasound image. Images were imported into public domain 

software (Image J, v.1.46, National Institutes of Health, Bethesda, USA) to measure fascicle 

length (FL), pennation angle (PA). FL was measured as the length of the fascicular path 

between the superficial and deep aponeurosis. Any visible fascicle curvature was taken into 

account. If the fascicle extended off the image the missing portion was estimated via linearly 

extrapolating the fascicle and aponeuroses (Figure 3.1). Manual (fascicular line tracing) 

linear extrapolation approach was adopted from Muroaka et al. (2001). PA was measured as 

the angle between the fascicular path and their insertion into the deep aponeurosis. FL and 

PA were measured on three separate fascicles within a selected frame and the average of 

these fascicles accepted as the architecture measurement. Ultrasound frames selected for 

analysis were, 1) at rest - the image which had the clearest view of the fascicles and 

aponeurosis, 2) at each 20% torque increment during the ramp contraction (i.e. 1 frame at 

each of 20, 40, 60 and 80%MVT) and 3) during the two MVCs recorded at each site – 

ultrasound image recorded at the same time instant as peak torque during that MVC. Of the 2 

MVCs per muscle, the MVC with the highest peak torque was analysed. Peak torque during 

architecture measurement was typically slightly less than actual MVT. For each individual, to 

calculate their whole quadriceps femoris muscle architecture measurements, their FL and PA 

of each constituent muscle was multiplied by their ratio of its respective effective PCSA 
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(effPCSA) to total Quadriceps Femoris (QF) effPCSA (see below; muscle morphology). The 

sum of these values represented QF FL and PA expressed as the weighted mean of the 

constituent muscles based on their relative contribution to QF effPCSA.  E.g., if FL (mm) of 

the constituent muscles was VL 100, VI 90, RF 85 and VM 105 mm and we utilise the 

average effPCSA ratios just indicated, QF FL as a weighted mean would equal, Σ (100*0.317) 

+ (90*0.321) + (85*0.158) + (105*0.205). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. An ultrasound image of the rectus femoris and vastus intermedius muscles depicting the 
method used to measure architecture. Pennation angle, PA = the angle between the fascicular path and 
the deep aponeurosis. Fascicle length = length of the fascicular path between the aponeuroses. 
Typically fascicles extended off the image and the non-visible portion of the fascicle was estimated 
via manual linear extrapolation of the visible part of the fascicle and the aponeurosis. The scale on the 
left side of the image shows the ultrasound scan depth with each tick being 1 cm. 
 

 

3.2.6. Muscle Morphology  

Muscle anatomical cross sectional area (ACSA) and volume were measured from axial plane 

images generated from T1-weighted MRI scans (1.5 T Signa HDxt, GE Healthcare). Two 

overlapping scans of the thigh of each individual’s dominant leg were recorded from the 

anterior superior iliac spine (ASIS) to mid-thigh, and mid-thigh to the knee joint space. Scans 

were taken at rest in the supine position with the knee of the scanned leg fully extended. 

Scans were performed with the following parameters:  time of repetition = 600 ms, time to 

echo = 14 ms, image matrix = 512 x 512 pixels, field of view = 260 x 260 mm, slice 

thickness = 5 mm, inter-slice gap = 0 mm. The scans overlapped at mid-thigh and oil filled 

capsules were placed on the lateral aspect at mid-thigh. During analysis the capsules and 

 PA 

Fascicular path  PA 

Aponeuroses  
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anatomical landmarks facilitated identification of identical slices within the two scans.  MRI 

images were imported into OsiriX DICOM viewer (OsiriX v. 4.0; Pixmeo, Geneva, 

Switzerland). The ACSA of each of the four constituent muscles of the quadriceps femoris 

muscle (VL, VI, RF, and VM) was manually outlined (excluding visible external fat and 

connective tissue) on every third slice, starting from the most proximal axial MRI slice where 

the muscle could be outlined (Blazevich et al. 2009b; Erskine et al. 2009). Clear delineation 

of the individual vastii muscles was not always possible in the proximal parts of the muscle, 

therefore the muscle boundaries were estimated based on distal images where the muscle 

perimeters were easily identifiable. A cubic spline curve was fitted to the ACSA data points 

for each constituent muscle and the component muscle volume calculated as the area under 

the spline curve. Total quadriceps femoris muscle volume was provided by the sum of the 

four constituent muscle volumes. For each constituent muscle, the cross-sectional area of the 

muscle fascicles perpendicular to their line of action (i.e. physiological cross-sectional area, 

PCSA) was calculated by dividing its volume by its FL.  Subsequently the effPCSA for each 

constituent muscle was determined by multiplying the PCSA of the muscle by its respective 

cosine PA (Erskine et al. 2009). Total quadriceps femoris effPCSA was provided by the sum 

of the constituent muscles respective effPCSA’s.  

 

3.2.7. Statistical Analysis  

The reliability of architecture measures (VL, VI, RF, VM FL and PA) acquired in duplicate 

test sessions (at rest and during MVC) was calculated as the within-subject participant 

coefficient of variation (CVw, %, {[SD (test1-2)/Mean (test1-2)] x 100}). The architectural 

variables measured during duplicate test sessions were averaged to produce criterion values 

for statistical analysis. The reliability of the architecture measures was good at rest (CVw, FL 

& PA: VL 2.8 & 4.8, VI 4.5 &5.3, VM 4.7 & 5.5, RF 5.0 & 4.2%) and during MVC (CVw 

%, FL & PA: VL 2.0 & 4.2, VI 2.6 & 3.0, VM 2.1 & 2.6, RF 3.0 & 2.6%). QF LF, PA and 

effPCSA values at different torque levels (%MVT) and also relative (percentage) changes in 

FL/ PA/ effPCSA from rest to MVC between constituent muscles were compared using 

repeated measures one-way analysis of variance (ANOVA; within subject factor %MVT). 

Significant ANOVA were followed up with Bonferroni corrected pairwise comparisons to 

determine differences in FL, PA and effPCSA between specified torque levels. Second-order 

polynomial curves were used to describe the relationship between torque and FL, PA and 

effPCSA. Bivariate correlations were performed between QF FL vs. PA at rest, as well as FL 

vs. PA absolute and relative changes during the transition from rest to MVC. Bivariate 
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relationships were assessed with Pearson’s product moment correlation (e.g. MVT and 

effPCSA measured at rest and MVT). Statistical significance test were conducted using SPSS 

version 19 (SPSS inc., Chicago, IL, U.S.A.) and a P < 0.05 denoted statistical significance. 

Descriptive statistics referred to in the text, table 1 and presented in figures (3.2 and 3.3) are 

mean ± standard deviation (SD). 

 

3.3. RESULTS 

Knee extension MVT was 268 ± 36 N.m. Architecture measurements during the MVCs were 

made when the torque level was 98.3 ± 0.018 (VL), 97.0 ± 0.018 (RF & VI), 97.5 ± 0.019 

%MVT (VM), and on average 97.6 ± 0.018% MVT (QF).  Group mean (± SD) constituent 

muscle effPCSA to total QF effPCSA ratios were VL 0.317 (0.030), VI 0.321 (0.036), RF 

0.158 (0.026), VM 0.205 (0.027).  

 

Within the constituent muscles of the QF (Figure 3.2), as torque production increased, FL 

decreased, PA increased and there was a resultant increase in effPCSA (Table 3.1.) From rest 

to MVC similar relative (%) decreases in FL occurred within each constituent muscle 

(ANOVA, % change P = 0.214). In contrast relative changes in PA between rest and MVC 

were smaller in VL than the other muscles (Bonferroni, P < 0.001 – 0.05), with no 

differences between RF, VI and VM (P = 0.471 – 0.999). Bonferroni pairwise comparisons 

indicated relative changes in effPCSA were greater in the VL than RF and VM (P = 0.03 and 

0.004), while no other differences existed between any constituent muscles (P = 0.058 – 

0.999). 

 

Within the whole quadriceps femoris, as isometric knee extension torque increased, FL 

decreased and PA increased in a curvi-linear manner (Figure 3.3). From rest to MVC FL 

decreased from 93.7 ± 5.5 to 72.1 ± 3.4 mm (–23.5 ± 3.3%), while PA increased from 14.8 ± 

1.3 to 20.3 ± 1.3º (+39.7 ± 6.6 %). Analysis of variance indicated a main effect of torque 

level on both FL and PA (P < 0.001) with differences in both measures of architecture 

observed between each incremental torque level; except FL at 40 vs. 60 %, P=0.056 (Figure 

2). QF FL and PA at rest were highly inversely correlated (r = – 0.845, P < 0.001). During the 

transition from rest to MVC, no correlation existed between absolute changes in FL (mm) vs. 

PA (°), (r = 0.303, P = 0.273), although the relative (%) individual changes in FL vs. PA were 

positively related (r = 0.517, P = 0.048). The relative changes in architecture and morphology 
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from rest to MVC showed relatively limited variation between participants: between-

participant coefficients of variation for FL 14.2%, PA 16.6% and effPCSA 21.3%. 

 

QF effPCSA also increased curvi-linearly with torque level (Figure 3.3), with an increase 

from 192.5 ± 15.4 to 242.8 ± 18.9 cm2 during the transition from rest to MVC (+26.5 ± 5.7 

%). There was a main effect of torque level on effPCSA (P < 0.001), with significant 

differences between the effPCSA at each incremental torque level (P ≤ 0.002).  

 

There was a moderate correlation between MVT and effPCSA measured at rest (r = 0.519; P 

= 0.047), which was similar for MVT and effPCSA measured during MVC (r = 0.530; P = 

0.042), (Figure 3.4). effPCSA measured at rest was highly correlated with effPCSA measured 

during MVC (r = 0.853, P <0.0001). 

 

 

Table 3.1. Percentage changes in muscle architecture and morphology within the constituent muscles 
of the quadriceps femoris (QF) muscle and whole QF during the transition from rest to isometric knee 
extension MVC. 

Data are mean ± SD for n=15. VL = vastus lateralis, VI = vastus intermedius, RF = rectus femoris, VM = 
vastus medialis, QF = quadriceps femoris. QF effective physiological cross-sectional area (effPCSA) was 
measured (cm2) as the sum of the effPCSA’s of the constituent muscles. Percentage change data represent 
the change in the sum of the effPCSA’s values of each constituent muscle. Significantly different to VL, 
***P ≤0.001, **P<0.01, *P<0.05 
 

 

 

 

 

 

 

 

 

 VL VI RF VM QF 
Fascicle Length 

 
– 24.1 ± 5.1 – 24.7 ± 6.3 – 20.6 ± 6.5 – 21.6 ± 6.0 – 23.5 ± 3.3 

Pennation Angle 
 

+ 24.1 ± 8.4 
+ 47.1 ± 
13.3*** 

+ 58.6 ± 
22.6*** 

+ 45.1 ± 22.2* + 39.7 ± 6.6 

Effective PCSA + 30.1 ± 9.0 + 29.5 ± 10.4 + 18.3 ± 8.8* + 23.1 ± 9.5** +26.5 ± 5.7 
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Figure 3.2.  Muscle architecture (fascicle length and pennation angle) and morphology (effective 
physiological cross-sectional area, effPCSA) of the constituent muscles of the quadriceps femoris in 
relation to isometric knee extension torque (MVT = Maximal Voluntary Torque).  Data are mean 
values at each torque level for n=15. The ‘MVC’ torque at which architecture/morphology 
measurements were made was on average ~98.3% (VL), 97.0% (RF & VI) and 97.5%MVT (VM). 
Vastus Lateralis (VL), Vastus Intermedius (VI), Rectus Femoris (RF) and Vastus Medialis (VM). 
Data points and error bars to the right of MVC show the mean standard deviation across torque levels. 
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Figure 3.3 Quadriceps Femoris muscle architecture (fascicle length and pennation angle) and 
morphology (effective physiological cross-sectional area, effPCSA) in relation to isometric knee 
extension torque (MVT = Maximal Voluntary Torque). Data are mean ± SD (n =15); the mean values 
are fitted with a second order polynomial. ‘MVC’ torque level corresponds to the average %MVT 
achieved during the MVC’s from which architecture was measured (97.6%MVT). 
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Figure 3.4. Scatterplot of the relationships between maximal voluntary torque and quadriceps femoris 
effective physiological cross-sectional area (effPCSA) measured at rest (black circles) or during 
isometric knee extension maximal voluntary contractions (grey circles) and (n = 15).  
 

 

3.4. DISCUSSION 

In the present study, within the whole QF muscle, as torque increased from rest up to MVC, 

there was a decrease in FL and increase in PA that occurred in a progressive curvi-linear 

manner. Resulting from these architectural changes, there was a corresponding curvi-linear 

relationship between torque and QF effPCSA (increase) during contraction. The relationship 

between MVT and effPCSA measured during an MVC was very similar to the relationship 

between MVT and effPCSA measured at rest, and thus effPCSA measured at rest appears a 

valid index of muscle size. 

 

A number of studies have described substantial fascicle shortening and PA increase during 

isometric contractions in several muscles: triceps surae (Narici et al. 1996a; Maganaris et al. 

1998; Kawakami et al. 1998), tibialis anterior (Ito et al. 1998; Maganaris et al. 1996; Hodges 

et al. 2003), biceps brachii and brachialis (Herbert and Gandevia 1995; Hodges et al. 2003) 

and vastus lateralis (Ichinose et al. 1997; Chauhan et al. 2013). Whilst no previous studies 

have examined the architectural changes within the whole quadriceps with contractile force, 

we found FL/ PA to be 24% shorter/greater at MVC than at rest in VL, which is comparable 

to previously reported values (FL, 20-35% and PA, 15-37%: Ichinose et al. 1997; Chauhan et 

al. 2013). However the relationship between force/torque and architecture in VL was not 
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representative of the changes in PA and effPCSA of the other constituent muscles of the QF 

group. Our study uniquely detailed the architecture changes within each constituent muscle 

(Figure 3.3) and therefore represents the first study to report to the architectural changes 

occurring in the whole QF (Figure 3.4). During an isometric MVC, QF FL was 24% shorter 

and PA 40% greater than at rest. The curvilinear changes in QF architecture with increased 

contraction intensity (i.e. greater changes at low torques and lesser changes at high torques) 

in the current study are in accordance with earlier reports (Herbert and Gandevia 1995; 

Ichinose et al. 1997; Ito et al. 1998; Maganaris et al. 1998; Hodges et al. 2003). Architecture 

changes reflect muscle shortening, which is thought to occur because of the initial slack and 

compliance of the force-transmitting tendinous tissues (Ito et al. l998; Maganaris et al. 2002). 

Therefore our torque–architecture relationship data conforms to the characteristic curvi-linear 

force-elongation relationship exhibited by tendinous tissues; greater elongation at lower 

forces with increased stiffness and resultant lower elongation at higher forces (Ito et al. 1998; 

Kubo et al. 2002b; Pearson et al. 2007). 

 

Given the reciprocal relationship between muscle shortening and tendon elongation, the 

fascicle shortening and concurrent increase in PA that we have documented during 

contraction, are attributed to tendinous tissue compliance. Thus these changes in architecture 

would be expected to alter in proportion with tendinous tissue strain (elongation relative to 

initial length). Some previous studies have estimated muscle shortening by quantifying the 

difference in adjusted fascicle length (FL x cosine PA) between rest and MVC (Narici et al. 

1996a; Ichinose et al. 1997; Kawakami et al. 1998). For our data this calculation yielded a 

group mean QF muscle shortening of ~7%. An appreciation of the fascicle/muscle 

shortening-tendinous tissue elongation interaction is important as it directly influences FL 

and thus force production via the force-length relationship. This has implications for the 

optimal muscle FL and thus the joint angle at which maximal voluntary torque is produced.  

For instance alterations in tendon stiffness (e.g. aging, resistance training or immobilisation) 

may increase/decrease the extent of muscle fascicle shortening and influence the angle-torque 

relationship. An additional concept to be aware of is how pennation angle changes effectively 

decouple fascicle and muscle displacements (muscle gearing), although such architectural 

interaction is principally considered a mechanism to augment force production during 

dynamic contractions (Azizi et al. 2008). 
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The effPCSA is considered the principal determinant of muscle force capability with previous 

studies finding 50-90 % of the variance in maximal muscle strength explained by the resting 

state effPCSA (Bamman et al. 2000; Fukunaga et al. 2001; Blazevich et al. 2009b). Our data 

indicate only a moderate albeit statistically significant association between effPCSA and 

MVT. This might reflect the fact that the current study involved a relatively small and 

homogenous cohort. Nevertheless, as consequence of the muscle architecture changes we 

have documented, and assuming a constant muscle volume during contraction (Azizi et al. 

2008), QF effPCSA during an MVC was 26.5% greater than at rest.  

 

We tested whether there was a stronger relation between MVT and effPCSA measured during 

an MVC, than effPCSA measured at rest. The measurement of effPCSA in a maximally 

contracted state (i.e. during an MVC) might be expected to more accurately reflect the actual 

effective force generating capacity of the sarcomeres (essentially the number of cross-bridges 

in parallel and their transmission of force in line with the tendon), and thus MVT, than 

effPCSA measured at rest. However, this was not the case, as MVT showed similar moderate 

correlations to both QF effPCSA measured at rest and during knee extension MVC. Therefore 

effPCSA during an MVC did not capture the variability in force generating capacity any 

better than effPCSA measured at rest. This may be because these two measures of muscle size 

are very highly correlated (R2 = 0.728) and exhibited similar between participant variability 

(CV: effPCSA at rest 8.0%, effPCSA during an MVC 7.8%). Essentially the changes in 

architecture seemed relatively consistent for all individuals leading to a largely systematic 

change in effPCSA. The consistency of the change in effPCSA is likely due to the fact that 

tendon lengthening/muscle shortening are in proportion to relative force (%MVT) rather than 

being greater for stronger muscles. Tendon stiffness/compliance have been strongly 

correlated with maximal muscle strength (Arampatzis et al. 2007b; Stenroth et al. 2012; 

Hannah and Folland 2015), such that stronger muscles have stiffer tendons with less tendon 

lengthening/muscle shortening at the same absolute force, but equivalent length changes at 

the same relative force. This implies that muscle shortening and consequent architecture 

changes at MVT are similar for a range of different muscles. Furthermore if the architecture 

changes during contraction were similar for all participants it is not surprising that effPCSA 

measured at rest and during MVC were equally related to MVT. Evidently, compared to 

effPCSA at rest, measuring effPCSA during MVC did not improve the relationship with MVT, 

with the important implication of this finding being that it appears unnecessary to invest the 

additional time required to measure effPCSA during MVC if the aim is merely to utilise 
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effPCSA as a morphological descriptor of strength capability. Incidentally a recent study has 

reported practically very similar correlations between elbow flexor anatomical cross-sectional 

area measured at rest and at various sub-maximal torque levels, and maximal strength (Akagi 

et al. 2015). In summary resting measures of muscle size remain appropriate and no less 

relevant or valid for determining function than muscle size measured during MVCs.  

 

The difficulty in clearly identifying the fascicular path in the constituent RF and VM muscles 

during contraction could have contributed to why effPCSA measured during MVC was no 

more predictive of MVT than resting muscle effPCSA. In addition muscle architecture was 

measured in 2-D within a single portion of each constituent muscle, which may be a 

significant oversimplification of the 3-D changes in architecture throughout each constituent 

muscle (Lee et al. 2015). Further work could establish the relationship between muscle 

strength and effPCSA derived from measurements of three-dimensional architecture. 

 

In conclusion, the present study showed that quadriceps femoris FL, PA and effPCSA 

exhibited curvi-linear relationships with knee extension torque level. Consequently there 

were large substantial changes in FL (-24%), PA (+40%) and effPCSA (+27%) from rest to 

MVC. Interestingly, measuring effPCSA during a MVC was not related to MVT to a greater 

extent than measuring effPCSA under resting conditions, likely due to there being similar 

muscle shortening and architecture changes in all individuals during the transition from rest 

to MVC. Therefore resting measures of muscle size remain appropriate and no less relevant 

or valid, than muscle size measured at MVC, for determining function. 
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4.1. INTRODUCTION  

Skeletal muscle architecture (the spatial arrangement of muscle fibres) is considered an 

important determinant of a muscle’s contractile properties (Lieber and Ward 2011). Unlike 

other muscle structural features (size and fibre-type), few studies have examined if 

architecture (fascicle length, FL; pennation angle, PA) is related to in vivo muscle function. 

Maximal isometric strength is the most commonly characterised aspect of neuromuscular 

function and relates well to performance of athletic (Stone et al. 2002), as well as daily life 

activities (Rantanen et al. 1994; Avlund et al. 1994; Schultz 1995). However, dynamic 

strength is widely considered to be more relevant to the performance of functional tasks such 

as mobility, locomotion and balance (Skelton et al. 2002; Bean et al. 2003; Cuoco et al. 

2004). Further there has been a growing appreciation of the functional significance of the 

ability to increase torque as quickly as possible from low or resting levels (explosive 

strength), particular in situations where the time to generate torque is limited; for instance in 

sprinting and jumping (Weyand et al. 2010; Tillin et al. 2013a) and during injury related 

situations (e.g. anterior cruciate ligament tears in ≤50ms: Krosshaug et al. 2007; Koga et al. 

2010). The importance of muscle architecture to inter-individual differences in these different 

measures of muscle function has not been well investigated. 

 

The maximal isometric strength of isolated muscle is proportional to the muscle’s 

physiological cross-sectional area (Powell et al. 1984). Pennation (angulation of muscle 

fibres) permits a greater amount of contractile material to attach to the aponeurosis thus 

increasing muscle physiological cross-sectional area (for a given muscle volume). Greater PA 

may therefore indirectly positively relate to maximal strength in vivo, although such evidence 

is not well documented. Assuming greater PA confers a higher maximal strength implies that, 

given the strong relationship between maximal and explosive strength, especially over 

extended time periods (Andersen and Aagaard 2006; Folland et al. 2014), PA may positively 

relate to later phase explosive strength, though this possibility has not been investigated. 

Further greater PA’s are associated with more fascicle rotation (increase PA) during 

contraction that can amplify muscle-shortening velocity and allows fascicles to shorten at 

relatively slower velocities thereby permitting force production (Brainerd and Azizi 2005; 

Azizi et al. 2008). However, whether such a mechanism could noticeable enhance explosive 

and dynamic strength is unclear. 
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In vivo FL is thought to reflect muscle fibre length (Lieber and Fridén 2000) and thus serial 

sarcomere number; that largely dictates a muscles maximal shortening velocity (Bodine et al. 

1982; Lieber and Fridén 2000). Long fascicles with a high maximal shortening velocity have 

an extended force-velocity relationship, compared to shorter slower fascicles, and 

consequently muscles with long fascicles can generate a relatively high proportion of 

isometric force at any given sub-maximal velocity (Wickiewicz et al. 1984; Lieber 

and Fridén 2000). On this basis the inter-individual differences in dynamic strength, both at 

high velocity and the ratio of strength at high to low velocity maybe partly explained by FL. 

Contrarily the couple of in vivo studies to date found no correlations between FL and high 

velocity strength (Blazevich et al. 2009b; Baxter and Piazza 2014). However only FL from 

one muscle contributing to joint torque was measured, which may not represent the whole 

muscle group.  

 

Theoretically a muscle capable of higher shortening velocity might be expected to develop 

torque faster even in an isometric situation by more quickly taking up the inherent slack and 

compliance present within in-series force-transmitting structures (Edman and Josephson 

2007). Preliminary indirect evidence actually suggests longer FL may negatively impact 

explosive strength; greater changes in FL with strength training have been associated with 

lesser increase in early phase explosive strength (Blazevich et al. 2009a). A direct 

investigation is now required. While much work has delineated neural and contractile 

determinants of explosive strength (Aagaard and Andersen 2006; Folland et al. 2014; 

Maffiuletti et al. 2016), the influence of muscle architecture has received little attention. Any 

influence of architecture on explosive strength might be expected to be most pronounced for 

evoked contractions that bypass the voluntary nervous system and drive the muscle at its 

maximal possible rate of force development (de Ruiter et al. 2004; Folland et al. 2014).  

 

The present study aimed to assess the relationship between in vivo quadriceps femoris muscle 

architecture and knee extension strength capabilities; maximal and explosive isometric 

strength and dynamic strength at different velocities (50 and 350°s-1). We hypothesized that 

fascicle length would be positively related to explosive strength; particularly during the initial 

phase of contraction, whereas pennation angle was expected to influence later phase 

explosive strength in accordance with positive correlations to maximal strength. Longer 

fascicle lengths were expected to facilitate greater higher velocity dynamic torque and 

subsequently positively relate to a high-low velocity strength ratio. 
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4.2. METHODS 

4.2.1 Participants  

Thirty-one healthy young males (mean ± SD: age 20 ± 2 years, height 179 ± 7 cm, body mass 

72 ± 7 kg) gave their written informed consent prior to their participation in this study, which 

was approved by the Loughborough University Ethical Advisory committee. Participants had 

a low-moderate level of recreational physical activity (≤1500 MET minutes per week, 

measured via the International Physical Activity Questionnaire: Short Format (Craig et al. 

2003), had not participated in any form of lower body strength/ power training in the 

previous 12 months and were free from musculoskeletal injury.  

 

4.2.2. Experimental Design  

Participants visited the laboratory for ~90 minutes on three separate occasions to complete a 

range of strength measurements of the knee extensors (dominant leg; preferred kicking leg). 

Each visit was 7 days apart and at a consistent time of day (between 11:00 and 18:00 hours), 

following at least 36 hours without strenuous exercise. Visit one involved familiarisation with 

the isometric and isovelocity contractions. Visit two involved (in this order): muscle 

architecture measurements (fascicle length, FL; pennation angle, PA) of all constituent 

muscles of the quadriceps femoris; isometric maximal voluntary contractions (MVCs); 

isometric voluntary and evoked explosive contractions, as well as a second familiarisation 

with the isovelocity contractions. Visit three was identical to visit 2, facilitating duplicate 

measurements of architecture and isometric contractions, but also included isovelocity 

strength measurements at high and low velocities.  

 

4.2.3. Measurements 

4.2.3.1. Muscle Architecture 

In vivo FL and PA of the four constituent muscles of the quadriceps femoris group was 

measured from ultrasound images recorded at rest while participants were positioned in the 

strength-testing chair, prior to any contractions.  Real-time B-mode ultrasound images were 

acquired with a 6 cm (8-MHz) linear array transducer (Toshiba Power Vision 6000, SSA-

370A: Otawara-Shi, Japan). Image depth was 6 or 8 cm. The transducer (coated with water 

soluble transmission gel) was held firmly over the skin, but with only minimal pressure 

applied on the dermal surface. Separate images were recorded from the vastus lateralis (VL), 

vastus medialis (VM) and simultaneously from the rectus femoris (RF) and vastus 

intermedius (VI), with the transducer placed on the median longitudinal line of each 
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superficial muscle belly at 50 (VL), 25 (VM) and 60% (RF & VI) of femur length (greater 

trochanter to the tibio-femoral contact point [knee joint space]).  These positions correspond 

to the expected site along the femur where the anatomical cross sectional area of the 

underlying muscles is greatest (Erskine et al. 2009). The transducer was orientated 

perpendicular to the lower aponeurosis and parallel to the fascicular path. Appropriate 

transducer orientation (tilt and rotation angle; Bénard et al. 2009) was defined as the 

orientation resulting in an image with the aponeuroses and the perimysium trajectory of 

several fascicles being clearly identifiable with no visible fascicle distortion at the edge of the 

image. Image acquisition sites were marked on the skin with a permanent marker. 

Participants were asked to not wash off the marks so ultrasound transducer placement could 

be accurately replicated during the second session. Video output from the ultrasound machine 

(S video cable) were recorded by a digital video camcorder (Sony Walkman, GV-D900E), 

and later imported into public domain software (Image J, v.1.46, National Institutes of 

Health, Bethesda, USA) for measurement of FL and PA. FL was measured as the length of 

the fascicular path between the superficial and deep aponeurosis. Any visible fascicle 

curvature was manually taken into account. In instances when fascicles extended off the 

acquired image, the missing portion was estimated via manual linear extrapolation of the 

fascicle and aponeurosis. PA was measured as the angle between the fascicular path and their 

insertion into the deep aponeurosis. FL and PA were measured on 2-3 clearly discernible 

fascicles within a selected ultrasound image, which was the image with the clearest view of 

the fascicles and aponeurosis. The average of these fascicles was the accepted architecture 

measurement. To provide a representative measure of whole quadriceps femoris muscle 

architecture, FL and PA of each constituent muscle was first multiplied by the fraction of 

total Quadriceps Femoris (QF) effective PCSA provided by that constituent muscle (VL = 

0.317, VI = 0.321, RF = 0.158, VM = 0.205; Massey et al. 2015). The sum of these values 

represented QF FL and QF PA. 

 

4.2.3.2. Isometric Torque 

Participants were firmly secured to a custom built isometric strength-testing chair with tightly 

fastened straps placed across the pelvis and shoulder to prevent any extraneous movement.  

Hip and knee angles were 105° and 120° (180° = full extension), respectively. An ankle strap 

was placed 2 cm proximal to the medial malleolus in series with a calibrated strain gauge 

(FBB universal S-Beam tension-compression load cell [linear response up to 1500 N], Force 

Logic, Berkshire, UK) positioned perpendicular to the tibia. The distance from the center of 
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the ankle strap to the knee joint center was measured in order to calculate knee extension 

torque. The strain gauge signal was amplified (A50 universal load cell amplifier, Force Logic 

UK) and sampled at 2000 Hz with an analogue to digital converter (Micro 1401, CED, 

Cambridge, UK) interfaced with a PC utilising Spike 2 software (CED). In offline analysis 

force signals were systematically notch filtered in both directions 50 Hz (q-factor = 10) and 

low-pass filtered at 500 Hz using a fourth order zero-lag Butterworth filter, gravity corrected 

by subtracting baseline resting force and multiplied by external moment arm; the distance 

from the center of the ankle strap to the knee joint space, to calculate torque values. 

 

4.2.3.3. Isovelocity Torque  

Participants were seated on an isovelocity dynamometer (Con-Trex MJ, CMV AG, 

Dübendorf, Switzerland) with a hip angle of 120° (180° = full extension). Two 3-point belts 

secured the torso and additional straps tightly secured the pelvis and the distal thigh of their 

dominant leg to limit extraneous movement. A brace was placed in front of the non-involved 

leg. The knee joint center was aligned with the dynamometer rotational axis during isometric 

contractions of >50% maximal effort at a knee joint angle of ~115°. The dynamometer’s shin 

brace was placed anterior to the shank ~2 cm above the medial malleolus before the shank 

was tightly secured to the dynamometer lever arm. An additional moulded rigid plastic shin 

pad, lined with 2 mm of high-density foam, was tightly secured to the tibia to avoid any 

discomfort to the shin during maximal contractions. Passive torque measurements were 

recorded while the tested leg was passively moved through the full range of motion. 

Thereafter active torque values were corrected for passive torque. Torque, crank angle and 

crank velocity signals were amplified (x1000) with an analogue-to-digital converter (Micro 

1401-3, CED, Cambridge, UK) and sampled at 2000 Hz with a PC using Spike 2 software 

(CED, Cambridge, UK). The data were filtered at 15 Hz.  

 

4.2.4. Protocol 

Following a brief warm-up (3-s contractions at 50 [x3], 70 [x2] and 90% [x1] of perceived 

maximal) measurement contractions were performed in the following order: 

 

4.2.4.1. Isometric Maximal Voluntary Contractions 

Participants performed three MVCs (separated by ~1 min rest) and were instructed to push as 

hard as possible for 3-5 s with verbal encouragement provided during all MVCs. Real-time 

torque was displayed on a computer monitor in front of the participant to provide visual 
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feedback during and between each MVC. The highest instantaneous torque achieved during 

any maximal (or explosive) contraction was defined as knee extension maximal voluntary 

torque (MVT).  

 

4.2.4.2. Isometric Explosive Voluntary Contractions 

Participants performed a series of 10 explosive voluntary contractions each separated by 15 s. 

Participants were instructed to extend their knee ‘as fast and as hard as possible’; with the 

emphasis on ‘fast’, for ~1 s from a relaxed state upon hearing an auditory signal. 

Contractions involving visible countermovement or pre-tension were discarded and another 

attempt made. To indicate if a countermovement or pre-tension had occurred, resting force 

was displayed on a sensitive scale. During each explosive contraction participants were 

required to exceed 80% MVT, which was depicted on screen with a horizontal cursor. To 

provide performance feedback the time taken to reach 80% MVT was shown after each 

contraction and the slope of the rising force-time curve (1 ms time constant) was displayed 

throughout contractions with the peak slope of the best effort indicated with an on-screen 

cursor. The three best explosive contractions (highest torque at 100 ms) and no discernible 

countermovement or pre-tension (change in baseline torque >0.17 Nm in the preceding 250 

ms) of were analysed in detail. Contraction onset was defined as the last trough before the 

torque signal permanently deflected away from the envelope of the baseline noise; identified 

via manual inspection by a trained investigator using a systematic method, in accordance 

with previously published methods (Tillin et al. 2010). Manual onset detection is considered 

to provide greater accuracy and reliability than an automatic approach (see Tillin et al. 

2013b). Briefly, the torque signal was initially viewed with y and x-axis scales of 0.34 Nm 

and 250 ms respectively (so the envelope of the baseline noise could be clearly discerned) 

and a vertical cursor placed on torque onset. Accurate placement of the cursor was verified 

by viewing the signal with a higher resolution. Voluntary explosive torque was measured at 

50, 100 and 150 ms from contraction onset and rate of torque development (RTD; 

ΔTorque/ΔTime) calculated over sequential time periods 50-100 and 100-150ms. Values 

recorded from each of the three best contractions were averaged.  

 

4.2.4.3. Isometric Evoked Contractions 

The femoral nerve was electrically stimulated (constant current, variable voltage stimulator; 

DS7AH, Digitimer Ltd., UK) with square-wave pulses (0.2 ms duration) to elicit involuntary 

contractions of the knee extensors.  Electrical stimuli were applied via a cathode stimulation 
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probe (1 cm diameter; Electro Medical Supplies, Wantage, UK) protruding 2 cm 

perpendicular from the center of a plastic base (4 x 5 cm), pressed into the femoral triangle 

and held firmly in position throughout contractions. An anode (carbon rubber electrode, 7 

x10 cm; Electro Medical Supplies, Wantage, UK) was taped to the skin over the greater 

trochanter. The precise location of the cathode was determined as the position that evoked the 

greatest twitch response to single pulses applied at a particular submaximal electrical current. 

Twitch contractions were elicited at incremental currents until a maximal twitch force 

(plateau) occurred. Thereafter, the electrical current was reduced and octet stimulation (8 

pulses at 300 Hz) was delivered in step-wise increments up to a supramaximal current (120% 

of the maximal twitch/plateau current).  Real-time inspection of octet force and the slope of 

the rising force-time curve confirmed a plateau in both peak octet force and peak RFD during 

the incremental stimulation. Subsequently, three supramaximal (120% maximal current) octet 

contractions were elicited, separated by 12 s. Evoked octet torque was measured at 50 ms 

from contraction onset. Values recorded from each supramaximal contraction were averaged.  

 

4.2.4.4. Isovelocity Contractions 

After completing a standardised warm-up of five submaximal contractions of progressively 

higher intensity, participants performed 3 sets of 2, and 3 sets of 3, maximal concentric-

eccentric contractions at 50°s-1 and 350°s-1 respectively (in this order), over ~100° range of 

motion. There was ≥ 1 min rest between each set and ≥ 2 min rest between velocities. 

Concentric-eccentric contractions were used to ensure full activation during the concentric 

phase of the movement. Participants were instructed to grasp the handles next to the seat 

during maximal contractions. Verbal encouragement was given and online visual feedback of 

the crank torque was provided on a computer screen. During later analysis, the acceleration 

and deceleration phases were excluded in order to disregard torque overshoot during these 

phases (Schwartz et al. 2010) and the constant isovelocity period (within ± 10% of the 

prescribed crank angular velocity) was identified. The highest instantaneous torque recorded 

within the isovelocity period of the concentric contractions at that velocity was defined as 

maximal torque. The ratio between concentric maximal torques at 350°s-1 vs. 50°s-1 was 

defined as the high velocity torque ratio (ConT350:T50). Reciprocal eccentric-concentric 

contractions were performed to ensure muscle-pre-activation prior to concentric phase 

initiation to maximise contractile performance and limit any differences of muscle neural 

activation between participants. 
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4.2.5. Statistical Analysis  

Test re-test reliability of dependent variables measured during both test sessions (FL, PA, 

MVT, Torque at times) was calculated as within subject co-efficient of variation (CVw, %). 

Specifically, individual CVw’s were calculated ([test 1 and 2 standard deviation / test 1 and 2 

mean]*100) and the average of each participants value gave the group mean CVw. Prior to 

determining relationships between architecture and explosive torque, values recorded from 

the two test sessions were averaged and this value used in statistical tests. Pearson product 

moment bivariate correlations were performed to assess the relationship between quadriceps 

femoris muscle architecture (FL, PA) and the torque (absolute and relative) developed at 

specified time points during explosive voluntary and evoked octet contractions. Pearson’s 

correlations were performed between architecture variables and isovelocity torques and the 

high-velocity torque ratio. Statistical analysis was conducted using SPSS version 20 (SPSS 

inc., Chicago, IL, U.S.A.). P<0.05 denoted a statistically significant correlation. Descriptive 

statistics are mean ± standard deviation (SD). Variability between subjects for architecture 

and strength measures is expressed as a co-efficient of variation (CVb, %).  

 

4.3. RESULTS 

4.3.1. Reliability of Measurements 

Architecture measurements of the individual muscles during the two test sessions were highly 

reliable (CVw: FL 2.7 – 4.7%, PA 4.3 – 5.6%). Subsequently whole QF architecture also had 

excellent reliability (QF FL 2.6%, QF PA 2.2%). Likewise, isometric MVT had excellent 

reliability (CVw 2.3%). However, between-session reliability was not as good for early phase 

explosive voluntary torque at 50 ms (CVw 10.7 and 10.9%), though this improved for 

measurements later in the contraction (100 ms 4.7%, 150 ms 4.2%). Evoked octet torque 

(Nm) at 50ms had excellent reliability (CVw 3.1%).  

 

4.3.2. Quadriceps Femoris (QF) Architecture (Table 4.1) 

Fascicles lengths of individual muscles ranged from 83.6 ± 10.7 (VI) to 105.7 ± 17.7 mm 

(VM) and the between participant variability (CVb) was 12.0–16.7%. However whole QF FL 

showed less variability (91.7 ± 6.8 mm, CVb 7.4%). constituent muscles PA’s were 13.7 – 

17.8° and varied within muscles by 12.5 – 17.0% (CVb), whereas whole QF PA (group mean 

= 15.7°) showed less variability (CVb 8.8%). VI has equally the shortest fascicles and 

narrowest PA’s. VL architecture (94.6 mm and 15.6°) was rather intermediate of the other 

constituent muscles and thus most resembled that of the whole QF. For each of the individual 
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muscles FL and PA had strong (RF, r = -0.745, P < 0.001; VM (r = -0.723, P < 0.001) or 

moderate inverse relationships (VL, r = -0.468, P = 0.008; VI, r = -0.382, P = 0.034). Whole 

QF FL and QF PA were also inversely related (r = -0.508, P = 0.005). The architecture values 

of individual muscles were unrelated; i.e. the FL/ PA of one muscle was not related to the 

FL/ PA of any other muscles (FL, r = -0.292 to 0.273; all P > 0.05; PA, r = -0.013 to 0.339, 

all P > 0.05).  

 
Table 4.1. Architectural characteristics of the vastus lateralis (VL), vastus intermedius (VI), rectus 
femoris (RF), vastus medialis (VM) and whole quadriceps femoris (QF). Fascicle length and 
pennation angle measured at rest. QF architecture was calculated as a weighted mean of the 
constituent muscles based on each muscles contribution to total effective PCSA. Data are mean ± SD 
(n = 31). 
Architecture      

 Muscle: VL VI RF VM QF 
Fascicle Length (mm)      

Mean 94.6 83.8 83.6 105.7 91.7 
SD 11.4 10.2 10.7 17.7 6.8 

CVb (%) 12.0 12.2 12.8 16.7 7.4 
Range  75.9 - 121 68.6 - 118.1 58.3 - 101.9 76.6 - 150.8 80.5 - 105.5 

       Pennation Angle  (°)      
Mean 15.6 13.7 17.2 17.8 15.7 
SD 1.9 2.2 2.9 3.0 1.4 

CVb (%) 12.5 16.1 16.6 17.0 8.8 
Range 12.3 - 19.8 9.5 - 19.3 13.0 - 25.5 12.4 - 25.0 12.9 -18.5 

CVb = between subject coefficient of variation. Range (minimum - maximum values). 
 

4.3.3. Maximal and Explosive Isometric Strength  

Isometric MVT was 283 ± 41 Nm (range 213 – 388 Nm; CVb = 14.0%). The between 

participant variability in explosive voluntary torques (Figure 4.1) was greatest in the early 

phase of contraction for absolute and relative torque but decreased as the contractions 

progressed. Absolute and relative torques at 50ms during evoked octet contractions (120.4 ± 

21.7 Nm, CVb 18.0% and 42.5 ± 4.5% MVT, CVb 10.6%) was 2.5-fold greater and exhibited 

2-3 times less variability than voluntary torques at 50 ms. 

 

4.3.4. Maximal Dynamic Strength 

Knee extension maximal concentric torques at 50 and 350°s-1 were 166.5 ± 29.4 Nm (range 

96.8 – 222.8 Nm; CVb 17.7%) and 97.4 ± 15.8 Nm (range 58.8 – 123.4 Nm; CVb 16.2%) 

respectively. The high-low velocity torque ratio (Con T350:T50) was 0.59 ± 0.07 (range 0.44 – 

0.76; CVb 12.1%). 
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Figure 4.1. Absolute (Nm [A]) and Relative (%MVT [B]) torque developed at 50 ms intervals from 
torque onset during explosive voluntary contractions of the knee extensors. Black line and circles 
(bars) represent mean (± SD) and the dotted and dashed lines depict the minimum and values 
respectively (n = 31). 
 

 

 

4.3.5. Bivariate Correlations: Relationships between Architecture and Muscle Strength 

Isometric MVT was not related to QF FL nor PA (Both r ≤ 0.017 and P ≥ 0.926). Likewise, 

maximal concentric torque produced at 50°s-1, 350°s-1 or Con T350:T50 were unrelated to 

neither QF FL nor PA (all r ≤ 0.273 and P ≥ 0.137). However, FL was inversely related to 

explosive voluntary absolute and relative torque at 50 ms (Figure 4.2 A and B) but was not 

subsequently related to absolute or relative torque at later times during the contraction or 

RTD (Table 4.2). Conversely FL was not related to absolute or relative evoked torque (tables 

2). PA was similar unrelated to absolute and relative explosive voluntary torque and RTD, 

and absolute and relative evoked torque (Table 4.2).  
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Table 4.2. Pearson’s product moment correlation coefficient (r-values) between quadriceps femoris 
architecture and measures of explosive strength: absolute (Nm) and relative (% maximal voluntary 
torque) isometric knee extension torque and sequential rate of torque development (RTD, Nm.s-1 and 
%MVT.s-1) developed at specific time points during explosive voluntary contractions and evoked 
octet contractions (n = 31). 
  Muscle Architecture  
  Fascicle Length    Pennation Angle 

 
r p   r p 

Explosive Voluntary  
     Torque (Nm) at 50 ms -0.433* 0.015  

0.118 0.529 
Torque (Nm) at 100 ms -0.176 0.343  

0.096 0.606 
Torque (Nm) at 150 ms -0.105 0.574 

 
0.087 0.643 

RTD (Nm.s-1) 50-100 ms 0.144 0.440 
 

0.034 0.854 
RTD (Nm.s-1) 100-150 ms 0.130 0.486 

 
0.015 0.938 

    
  Torque (%MVT) at 50 ms -0.442* 0.013 

 
0.073 0.697 

Torque (%MVT) at 100 ms -0.227 0.219 
 

0.070 0.708 
Torque (%MVT) at 150 ms -0.228 0.218 

 
0.123 0.511 

RTD (%MVT.s) 50-100 ms 0.236 0.201 
 

0.017 0.927 
RTD (%MVT.s) 100-150 ms 0.093 0.618 

 
0.081 0.665 

      Evoked Octet  
     Torque (Nm) at 50 ms 0.079 0.673 

 
0.176 0.345 

Torque (%MVT) at 50 ms  0.005 0.828   0.299 0.102 
Significant *P<0.05 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2. Scatterplots depicting the relationship between quadriceps (QF) fascicle length (FL) and 
absolute (A) and relative (B) torque produced at 50 ms during explosive voluntary isometric knee 
extension contractions (n = 31). 
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4.4. DISCUSSION  

The present study investigated the relationship between quadriceps femoris (QF) in vivo 

muscle architecture (fascicle length [FL], pennation angle [PA]) and neuromuscular function, 

specifically maximal and explosive isometric knee extension strength, as well as dynamic 

strength; isovelocity concentric torque (50 and 350°s-1) and the high-low velocity torque ratio 

(Con T350:T50). We found FL was negatively related to early phase (0-50 ms) absolute and 

relative explosive voluntary torque, though not evoked torque. Alternatively PA was 

unrelated to explosive voluntary or evoked torque and neither FL nor PA was related to 

maximal isometric or dynamic strength.  

 

4.4.1 Quadriceps Femoris Muscle Architecture  

Our data for in vivo QF architecture (Table 4.1) are in general agreement with the range of 

values typically observed (Blazevich et al. 2006, 2007b; O’Brien et al. 2010; Ema et al. 2013; 

Strasser et al. 2013; Ando et al. 2015). We found moderate inter-individual variability in FL 

and PA of the individual muscles (12 – 17% CVb, FL and PA) that was larger than the 

surprisingly low variability observed for the whole QF (FL and PA = 7-9 % CVb). The lower 

variability of whole QF architecture than the individual muscles is intriguing as variability of 

the whole muscle might be expected to be similar to the average variability of the individual 

constituent muscles. The relatively low variability in whole QF architecture may in part be 

due to the lack of relationship between the corresponding FL/PA of the constituent muscles. 

Such architectural dissimilarity between QF constituent muscles has been reported 

(Blazevich et al 2006). Though perhaps counterintuitive, architectural variability amongst 

muscles within a synergistic group is considered a design feature that broadens the functional 

capabilities of the muscle group (Lieber and Ward 2011).  

 

4.4.2. Relationships between Muscle Architecture and Maximal Strength 

An initial observation was the lack of correlation between PA and isometric MVT. As a 

higher PA increases a muscles effective physiological cross-sectional area; which is 

proportional to maximal isometric force in vitro (Powell et al. 1984), we might expect at least 

an indirect association between PA and maximal isometric strength in vivo. However the QF 

PA’s measured in this study were quite acute (<20º), therefore the impact on muscle PCSA is 

likely limited. In contrast a few studies report positive correlations between maximal strength 

and the PA of the agonist muscles (r = 0.471 – 0.68: Nagayoshi et al. 2003; Strasser et al. 

2013; Wakahara et al. 2013; Ando et al. 2015). Interestingly, QF studies found only lateral VI 
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PA was related to knee extension isometric strength, though these studies (Strasser et al. 

2013; Ando et al. 2015) did not derive a whole QF measure as we did. We conducted a 

posteriori correlations in our data between individual constituent muscles PA and MVT, 

which yielded no significance.  

 

Additionally PA had no apparent influence on maximal dynamic strength. The PA increases 

that occur during concentric contractions amplify the shortening of the muscle (Zuurbier et 

al. 1992), resulting in the possibility that a given muscle shortening velocity can be achieved 

with lesser contribution from fascicle excursion. This mechanism would subsequently allow 

greater force production and is hypothesised to be more prevalent in muscles possessing 

greater initial PA (Brainerd and Azizi 2005; Azizi and Brainerd 2007). Also, this effect of 

dissociating muscle and fascicle length/velocity is theoretically greater with increasing 

contraction velocity (Azizi et al. 2008; Wakeling et al. 2011). Likely the narrow PA’s (and 

limited variability) we found induce a relatively small rotational effect, that subsequently has 

negligible influence on fascicle length changes during contraction as previously suggested 

(Ichinose et al. 2000), thus underpinning our findings. Furthermore it has been articulated 

that the initial PA is not independently responsible for a fascicle rotation effect. Instead 

fascicle shortening is driven principally by the extent of actual muscle shortening that is 

attributable to tendon compliance (Muraoka et al. 2001; Wakeling et al. 2011; Randhawa et 

al. 2013; Hauraix et al. 2013). Therefore a seeming inconsequentiality of PA is reasonable. 

 

Similarly FL had no correlation with dynamic strength. Longer FL was hypothesized to 

facilitate dynamic strength as reflected by greater higher velocity torque and thus a higher 

torque ratio. However we found no such relationship. While theoretically counterintuitive 

(Wickiewicz et al. 1984), our data support other correlational studies that equally reported FL 

was unrelated to higher velocity torque (vastus lateralis FL vs. knee extension torque, 

Blazevich et al. 2009b; gastrocnemius medialis FL vs. plantar flexor torque, Baxter and 

Piazza 2014) or a high-low velocity torque ratio (30:300º-s-1: Blazevich et al. 2009b). These 

studies although only measured architecture from just one of the muscles contributing to joint 

torque. We can consider our inclusion of FL measures from each of the constituent muscles 

of the QF and subsequently the whole muscle group as a more representative measure. A 

mechanical premise to expect longer FL to facilitate greater higher velocity torque and ratio 

is that longer fascicles (faster shortening potential) could operate (more specifically the 

sarcomeres of longer fascicles; Lieber and Ward 2011) at relatively lower shortening 
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velocities during joint rotations at a given velocity, and thus maintain a greater proportion of 

slow velocity torque at higher velocities. However recent a study using high frame ultrasound 

to record actual fascicle shortening velocities during joint rotations at varying velocities (30-

330º-s-1) showed that possessing longer fascicles was not necessarily associated with a lower 

fascicle velocity for a given joint angular velocity: normalisation of fascicle velocity for 

resting fascicle length did not reduce the inter-individual difference in fascicle velocity 

(Hauraix et al. 2013). This finding perhaps accounts for why there was a theoretical and 

empirical discord in the present studies results. Also it is important to consider that the ‘high’ 

velocity utilised in the present study; in accordance with isovelocity dynamometry 

limitations, is essentially far removed from real-world joint velocities (e.g. ~750-1200ºs-1 

knee extension angular velocity in jumping [Bobbert et al. 1986] and sprinting [Higashihara 

et al. 2010]) where longer fascicle lengths may expectedly influence performance. For 

instance longer FL’s have been found in sprinters (athletes with an obvious propensity for 

high velocity torque) vs. distance runners and controls (Abe et al. 2000), and subsequently 

longer FL was related to faster sprint times (Kumagai et al. 2000; Abe et al. 2001). 

 

4.4.3. Relationship between Muscle Architecture and Explosive Strength 

In contrary to our hypothesis that FL would positively relate to explosive strength, we found 

an adverse association between FL and torque produced in the initial phase of explosive 

voluntary contraction (0-50 ms); with no subsequent relation thereafter, and no relation of FL 

to evoked torque. Our finding is however concordant with the negative correlation found 

between changes in fascicle length (though indirect inferred via torque-angle data) towards 

longer fascicles and changes in voluntary isometric RTD (Blazevich et al. 2009a). The 

inverse correlation was ascribed to a theoretical determinism equating longer fascicles to 

greater muscle compliance; longer fascicles possess more sarcomeres in series (each 

sarcomere having compliance). Greater compliance would reduce RTD (Wilkie 1949) and 

thus longer fascicles would exhibit lower RTD. Neither, Blazevich et al. nor our study 

measured muscle compliance, so the articulated supposition is untested. Incidentally, we are 

unaware of any study examining any architecture-muscle compliance association. It is 

sensible that our finding was localised to the earliest phase of the contraction, considering 

this is when compliance would be greatest as muscle forces are relatively low and therefore 

the need to stretch the compliance tissues will likely influence RTD. 
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A relation between FL and voluntary, but not evoked torque at 50 ms is perhaps surprising 

because evoked contractions bypass the nervous system to reveal MTU contractile capacity 

and highlight the influence of morphological and mechanical characteristics. A more 

profound relation of FL to evoked than voluntary explosive strength could thus have been 

expected. Overtly this was not the case. A possible explanation is that the substantially faster 

RTD in response to the octet stimulation will subsequently remove the tissue slack and 

compliance much sooner. This means that by the time (50 ms) evoked torque measures are 

then taken, contractile forces are much higher than in voluntary contractions, and evidently 

any influence of longer FL induced compliance is irrelevant to how quickly higher torques 

are produced. Thus the different findings for the voluntary and evoked contractions are 

effectually a measurement artefact. This explanation suggests that a possible implication of 

our finding is that by improving the capacity to rapidly activate the muscle at the onset of the 

voluntary contraction such that the RTD more replicates that possible under evoked 

condition, the small negative influence of FL on initial voluntary explosive strength we have 

documented could potentially be negated. Such improvements can be readily achieved with 

specific explosive training (Tillin et al. 2012; Balshaw et al. 2016). Interestingly, in the study 

by Blazevich et al. (2009a), the training program that induced supposed FL change had no 

impact on the rate of muscle activation.  

 

A final simple hypothesis was that PA might be related to later phase voluntary explosive 

strength owing to a potential relationship to maximal strength and the known influence of 

maximal strength on RTD. However greater PA was not associated with higher voluntary 

RTD or later-phase explosive force, which is deemed ascribable to the lack of relation 

between PA and MVT. 

 

4.4.4. Limitations  

In the present study, resting architecture measures where acquired with the knee joint in a 

flexed position that is likely close to the optimal joint angle for joint production, with the 

view that such architecture measures would subsequently be deemed of particular functional 

relevance. However, it is possible that because muscle architecture variables are influenced 

by knee joint angle, any inter-individual differences in the extent of muscle stretch from the 

anatomical position (straight leg) to the knee joint angle of measurement in this study (120°) 

could adversely influence the validity of the acquired architecture measures to reflect true 

physiological differences between participants and subsequently the relationship to functional 
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performance. For instance, it is not necessarily clear whether a longer fascicle length reflects 

more sarcomeres in series or simply a greater stretch of existing sarcomeres. Finally, the QF 

muscle architecture measures derived in this study are a generalised estimate that may limit 

their applicability to complex whole muscle performance.  

 

4.4.5. Conclusion 

In conclusion, QF FL was negatively related to the explosive voluntary torque at the earliest 

measured time (50 ms), maybe due to previously postulated relation of FL to tissue 

compliance presumed to slow initial RTD. FL did not relate to voluntary torque/RTD after 50 

ms, and was likewise unrelated to evoked torque at 50 ms. The difference between voluntary 

and evoked relations to FL is potentially a consequence of the supramaximal stimulation 

eliciting such a high (maximal) RTD to remove slack and compliance extremely quickly so 

evoked torque measures are performed at higher torque levels where earlier compliance has 

no residual influence. However FL was not related to high-velocity strength, potentially 

because the hypothesised mechanism to account for an expected relationship is secondary to 

the influence of muscle-tendon interaction driven by tendon compliance.   Also we cannot 

preclude the possibility that the ‘high’ isovelocity was simply insufficiently rapid to detect a 

hypothesised influence of FL (or maybe PA) on high-velocity strength. Finally PA was 

inconsequential to in vivo muscle strength characteristics, possible due to the acuteness of the 

values measured indeed having genuinely minimal functional effect. The low inter-individual 

variability in FL and PA could additionally account for an overall limited relation of skeletal 

muscle architecture to in vivo muscle strength. 
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5.1. INTRODUCTION 

Explosive strength is the ability to increase torque from low or resting levels as quickly as 

possible. It is commonly examined under isometric conditions and expressed as the rate of 

torque development (RTD) derived from the rising phase (i.e. slope) of the contractile torque-

time curve. Explosive strength is considered important in situations where the time to 

develop torque is limited: for instance in athletic activities such as sprinting and jumping 

(Weyand et al. 2010; Tillin et al. 2013a); and in injury-related situations such as maintaining 

balance (Izquierdo et al. 1999; Robinovitch et al. 2002) or stabilizing joints (e.g. anterior 

cruciate ligament tears [ACL] in ≤50ms: Krosshaug et al. 2007; Koga et al. 2010) following 

mechanical perturbation. Further, RTD deficits have a deleterious impact on physical 

function in musculoskeletal patients (e.g. osteoarthritis: Maffiuletti et al. 2010; Winters and 

Rudolph 2014) and impaired RTD post-ACL injury may increase the risk of developing post-

traumatic osteoarthritis (Kline et al. 2015), and thus RTD is an important outcome for muscle 

function rehabilitation (Angelozzi et al. 2012). Developing a greater understanding of the 

determinants of RTD could therefore have potentially widespread functional and clinical 

implications.  

 

During isometric contractions, the rate of skeletal muscle contractile force production is 

slowed by the necessity of the muscle to shorten in order to stretch the elastic components 

that transmit muscle force (Hill 1951; Edman and Josephson 2007). The mechanical stiffness 

(resistance to elongation) of the muscle-tendon unit (MTU) and particularly its tendinous 

tissue components (external ‘free’ tendon and aponeurosis) are therefore widely hypothesised 

to influence in vivo RTD (Wilson et al. 1994; Kubo et al. 2001; Reeves et al. 2003).  Stiffer 

tissues are thought to provide greater mechanical resistance that can constrain muscle 

shortening during the initial stages of contraction thereby permitting muscle fibres to operate 

in the higher force region of the force-velocity relationship (Wilson et al. 1994). Moreover, 

the force transmission time of stiffer tissues is theoretically shorter (Waugh et al. 2013). This 

rationale suggests that stiffer tissues exert a substantial influence on explosive strength, 

however, the quantitative contribution of tendon and MTU stiffness to explosive strength 

remains opaque (Maffiuletti et al. 2016). In contrast, tissue elongation during the rising 

torque-time curve maybe sufficiently negligible and the duration of force transmission 

through connective tissues of such brevity (Nordez et al. 2009; DeWall et al. 2014), that the 

inter-individual differences in tendon/MTU stiffness could be practically irrelevant to the 

inter-individual variation in RTD. 
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To date no studies have examined the relationship of tendon stiffness to in vivo RTD. The 

relationship between MTU stiffness and RTD has been examined by several studies, typically 

reporting positive correlations (R2~0.10-0.30) for cohorts incorporating heterogeneous 

subgroups: divergent athletic groups (Bojsen-Møller et al. 2005), tendinopathic and healthy 

limbs (Wang et al. 2012), children of different ages (Waugh et al. 2013), adult males and 

females (Waugh et al. 2013; Hannah and Folland 2015). However, these subgroups likely 

exhibit discrete characteristics (e.g. neuromuscular activation, maximal strength, muscle fibre 

type composition and pain) that are known to influence RTD (Maffiuletti et al. 2016) and 

may confound the relationship between tissue stiffness and RTD. One recent study found 

absolute MTU stiffness and explosive strength were correlated, at least at higher forces (i.e. 

later-phase RTD), though once the influence of maximal strength (maximal voluntary torque, 

MVT) was removed (via partial correlation or relative values) there was no independent 

relationship of stiffness and explosive strength (Hannah and Folland 2015). This suggests that 

the relationship of absolute MTU stiffness and explosive strength is coincidental and due to 

the influence of maximal strength on both variables.  

 

Furthermore studies of musculotendinous tissue stiffness are mired by methodological 

shortcomings (Seynnes et al. 2015).  In particular, the loading-rate sensitivity of stiffness 

measurements (i.e. faster rate yields greater stiffness: Lieber et al. 2000; Pearson et al. 2007; 

Theis et al. 2012; Kösters et al. 2014) necessitates a constant RTD during the ramp 

contractions used to measure stiffness. Nonetheless previous studies have tended to 

standardise contraction duration, which leads to different loading rates according to each 

individual’s MVT and may bias stiffness measurements to stronger individuals contracting at 

higher loading rates (Bojsen-Møller et al. 2005, Wang et al. 2012; Waugh et al. 2013; 

Hannah and Folland 2015). Obtaining reliable measures of tissue stiffness requires numerous 

efforts (Schulze et al. 2013), though a limited number of contractions (~2), usually from just 

one test session, have been commonly used (Wang et al. 2012; Waugh et al. 2013; Hannah 

and Folland 2015). Further to circumvent the difficulty of judging the consistency of grey-

scale ultrasound patterns for the points of interest and possible experimenter bias in tissue 

elongation measurements, some degree of automated analysis is recommended (Seynnes et 

al. 2015), though studies have often relied on manual procedures (Wang et al. 2012; Waugh 

et al. 2013; Hannah and Folland 2015).  
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Of specific concern for studies that have investigated the link between stiffness and RTD is 

that tissue stiffness is known to increase with torque (increasing gradient of the torque-

elongation relationship; Maganaris and Paul 1999, 2002; Reeves et al. 2003). Yet stiffness 

has often been measured over a high torque increment (e.g. 50-90% MVT, Bojsen-Møller et 

al. 2005; 50-100%MVT, Kubo et al. 2001, Wang et al. 2012) even though RTD is usually 

measured from the lowest possible torque - rest (e.g. 0-50% MVT). Thus the relevance of 

high torque measures of stiffness to functional measurements starting from rest or low levels 

of torque, that are known to involve markedly lower stiffness properties, appears 

questionable. To avoid this dissociation between measured and functionally relevant 

stiffness, both variables could be measured over the same torque increment.  

 

Any influence of tissue stiffness on explosive strength might be expected to be more 

pronounced for evoked contractions that drive the muscle at its maximal possible RTD 

(Deutekom et al. 2000; de Ruiter et al. 2004; Folland et al. 2014) and depend entirely on the 

characteristics of the MTU rather than the voluntary nervous system. The influence of tendon 

stiffness on evoked RTD has not been investigated and only Hannah and Folland (2015) have 

examined the relationship between MTU stiffness and evoked explosive strength, finding a 

stronger correlation for evoked than voluntary RTD.  

 

The present study aimed to comprehensively examine the relationship between both tendon 

and MTU stiffness, with voluntary and evoked RTD measurements of explosive strength. All 

relationships between stiffness and RTD variables were examined over the same torque 

increment for both variables. In addition to evaluating the relationship of absolute measures 

of stiffness and RTD, the association of relative measures was examined to remove any 

influence of maximal strength. A large cohort of healthy young men were assessed in 

duplicate measurement sessions, with tendon and MTU stiffness determined during multiple 

ramp contractions performed at a constant loading rate.  

 

5.2. METHOD 

5.2.1. Participants  

Fifty-two young men (age 25 ± 2 years, height 176 ± 7 cm, weight 72 ± 9 kg) provided 

written informed consent before participating in this study, which was approved by the 

Loughborough University Ethical advisory committee. Participants were healthy, free from 

musculoskeletal injury, and recreationally active (2160 ± 1309 MET minutes per week, 
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International Physical Activity Questionnaire short format; Craig et al. 2003), but not 

involved in any form of systematic training in the 18 months prior to the study.  

 

5.2.2. Experimental Design  

Participants completed a familiarisation session, involving practice of all voluntary 

contractions performed during subsequent measurement sessions and habituation with evoked 

(electrically stimulated) contractions, followed by two duplicate measurement sessions 

separated by 7-10 days. Measurement sessions involved a series of unilateral isometric 

contractions of the knee extensors of the dominant (preferred kicking) leg in the following 

order: maximal voluntary (MVCs) and explosive voluntary contractions, electrically evoked 

octet contractions (second measurement session only) and voluntary ramp contractions. 

Finally, knee flexor MVCs were also completed. Knee joint torque was recorded throughout 

contractions, and knee flexor surface electromyography (EMG) was recorded during knee 

flexor MVCs and knee extensor ramp contractions. MVT was determined from MVCs, while 

voluntary and evoked RTD measurements of explosive strength were determined from 

explosive voluntary and evoked octet contractions, respectively. Ramp contractions were 

performed to permit tissue stiffness measurements from simultaneous torque and elongation, 

via ultrasound imaging, recordings. Measurement sessions with each individual were 

performed at a consistent time of the day, and all sessions started between 12:00-19:00 hours. 

Participants were instructed not to participate in strenuous physical activity or consume 

alcohol for 36 hours, and refrain from caffeine consumption for 6 hours, before measurement 

sessions. On a separate occasion, sagittal plane MRI images of the knee joint were acquired 

to measure patellar tendon (PT) moment arm in order to convert external torques to tendon 

force. 

 

5.2.3. Torque Measurement 

Participants were positioned in an isometric strength-testing chair with knee and hip angles of 

115° and 126° (180° = full extension), respectively. Adjustable straps were tightly fastened 

across the pelvis and shoulders to prevent extraneous movement.  An ankle strap (35 mm 

width reinforced canvas webbing) was placed ~15% of tibial length (distance from lateral 

malleolus to knee joint space) above the medial malleolus, and positioned perpendicular to 

the tibia and in series with a calibrated S-Beam strain gauge (Force Logic, Berkshire, UK). 

The analogue force signal was amplified (x370; A50 amplifier, Force Logic UK) and 

sampled at 2,000 Hz using an A/D converter (Micro 1401; CED, Cambridge, UK) and 
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recorded with Spike 2 computer software (CED). In offline analysis, force signals were low-

pass filtered at 500 Hz using a fourth order zero-lag Butterworth filter, gravity corrected by 

subtracting baseline force, and multiplied by lever length, the distance from the knee joint 

space to the center of the ankle strap, to calculate torque. 

 

5.2.4. Knee Flexor Electromyography (EMG)  

Surface EMG recordings over the biceps femoris (BF) and semitendinosus (ST) were made 

with a wireless EMG system (Trigno; Delsys Inc, Boston, MA) were made during knee 

flexor MVCs and knee extensor ramp contractions. Following preparation of the skin 

(shaving, abrading and cleansing with alcohol) single differential Trigno standard EMG 

sensors (1-cm inter electrode distance; Delsys Inc, Boston, MA) were attached over each 

muscle using adhesive interfaces. Sensors were positioned parallel to the presumed frontal 

plane orientation of the underlying muscle fibres at 45% of thigh length (distance from the 

greater trochanter to the lateral knee joint space) measured from the popliteal crease. EMG 

signals were amplified at source (x300; 20-450 Hz bandwidth) before further amplification 

(overall effective gain x 909) and sampled at 2000 Hz via the same A/D converter and 

computer software as the force signal, to enable data synchronization. In offline analysis, 

EMG signals were corrected for the 48-ms delay inherent to the Trigno EMG system and 

band-pass filtered (6-500 Hz) using a fourth-order, zero-lag Butterworth digital filter.  

 

5.2.5. Knee Extension and Flexion Maximal Voluntary Contractions  

Following a brief warm-up (3 s contractions at 50% [x3], 75% [x3] and 90% [x1] of 

perceived maximal), participants performed 3-4 MVCs and were instructed to either ‘push as 

hard as possible’ (knee extension) or ‘pull as hard as possible’ (knee flexion) for 3-5 s and 

rest ≥ 30 s. A horizontal cursor indicating the greatest torque obtained within the session was 

displayed for biofeedback and verbal encouragement was provided during all MVCs. The 

highest instantaneous torque recorded during any MVC was defined as MVT. During knee 

flexor MVCs EMG amplitude was calculated as the root mean square (RMS) of the filtered 

EMG signal of the BF and ST over a 500 ms epoch at knee flexion MVT (250 ms either side) 

and averaged across the two muscles to give EMGMAX. 
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5.2.6. Explosive Voluntary Contractions 

Participants performed a series of 10 explosive voluntary contractions each separated by 15 s. 

Participants were instructed to extend their knee ‘as fast and as hard as possible’; with the 

emphasis on ‘fast’, for 1 s from a relaxed state upon hearing an auditory signal. Contractions 

involving a visible countermovement or pre-tension were discarded and another attempt 

made. To indicate if a countermovement or pre-tension had occurred, resting torque was 

displayed on a sensitive scale. During each explosive contractions participants were required 

to exceed 80%MVT, which was depicted by an on-screen marker. To provide performance 

feedback the time taken to reach 80%MVT was shown after each contraction and the slope of 

the rising torque-time curve (10 ms time constant) was displayed throughout these 

contractions with the peak slope of their best attempt indicated with an on-screen cursor. The 

three best explosive contractions (highest torque at 100 ms) and no discernible 

countermovement or pre-tension (change in baseline force <0.34 Nm in the preceding 300 

ms) were analysed in detail. Contraction torque onset was defined as the last trough before 

the torque signal permanently deflected away from the envelope of the baseline noise; 

identified via manual inspection using a systematic standard method by the same trained 

investigator, in accordance with previously published methods (Tillin et al. 2010). Manual 

onset detection is considered to provide greater accuracy and reliability than an automatic 

approach (Tillin et al. 2013b). The torque signal was initially viewed with y and x-axis scales 

of 0.68 Nm and 300 ms respectively and a vertical cursor placed on torque onset. Accurate 

placement of the cursor was verified by viewing the signal with a higher resolution. RTD 

(ΔTorque or Δ%MVT /ΔTime) measurements of explosive strength were calculated from the 

time taken between contraction onset and absolute (50, 100 and 150 Nm [Vol RTD0-50Nm, 

Vol RTD0-100Nm, Vol RTD0-150Nm) and relative (25, 50 and 75%MVT [Vol RTD0-25%MVT, Vol 

RTD0-50%MVT, Vol RTD0-75%MVT]) torques, as well as RTD between sequential torque levels 

(absolute 50-100 and 100-150 Nm [Vol RTD50-100Nm and Vol RTD100-150Nm]; relative 25-50 

and 50-75% MVT [Vol RTD25-50%MVT, Vol RTD50-75%MVT]). Values recorded from each of 

the three analysed (best) contractions were averaged.  

 

5.2.7. Evoked Octet Contractions  

The femoral nerve was electrically stimulated (constant current, variable voltage stimulator; 

DS7AH, Digitimer Ltd., UK) with square-wave pulses (0.2 ms duration) to elicit involuntary 

contractions of the knee extensors whilst the participant was voluntarily passive.  Electrical 

stimuli were applied via a cathode probe (1-cm diameter; Electro Medical Supplies, Wantage, 
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UK) protruding 2 cm perpendicular from the center of a plastic base (4 x 5 cm). The cathode 

and an anode (carbon rubber electrode, 7 x10 cm; Electro Medical Supplies, Wantage, UK) 

were coated with electrode gel and securely taped to the skin over the femoral nerve in the 

femoral triangle and the greater trochanter respectively. The precise location of the cathode 

was determined as the position that evoked the greatest twitch response to a submaximal 

electrical current. Twitch contractions were elicited at incremental currents (~15 s apart) until 

a simultaneous plateau in peak torque and the peak slope of the rising twitch torque was 

observed. Thereafter, the electrical current was lowered and octet stimulation (8 pulses at 300 

Hz) was delivered in step-wise increments until the stimulation intensity that elicited twitch 

force plateau (defined as the maximal stimulation intensity/ current) was reached.  Real-time 

inspection of octet peak force and peak rate of force development (10 ms epoch) confirmed a 

plateau in both variables with incremental stimulation. Subsequently, three supramaximal 

(120% maximal current) octet contractions were elicited. Absolute and relative RTD 

(ΔTorque or Δ%MVT/ΔTime) measurements of evoked explosive strength were calculated 

from the time taken between contraction onset and absolute (50 and 100 Nm [Oct RTD0-50Nm 

and Oct RTD0-100Nm) and relative (25 and 50%MVT [Oct RTD0-25%MVT and Oct RTD0-

50%MVT]) torques, as well as RTD between sequential torques (absolute 50-100Nm [Oct 

RTD50-100Nm]; relative 25-50%MVT [Oct RTD25-50%MVT]). Values recorded from each of the 

three supramaximal contractions were averaged. Evoked measures were not acquired for 

three participants who did not tolerate the discomfort associated with the octet stimulation.  

 

5.2.8. Ramp Contractions for Determination of Tissue Stiffness 

Tissue stiffness was derived from synchronous recordings of torque and tissue elongation 

(see below, corrected for passive tissue displacement via video recording of knee joint 

changes) during isometric knee extension ramp contractions (experimental set-up; Figure 

5.1). Participants completed two sub-maximum practice ramp contractions prior to five 

maximum attempts with 90 s rest between contractions. Prior to each ramp contraction 

participants were shown a target torque-time trace on a computer monitor that increased at a 

constant gradient (50 Nm.s-1 loading rate) from zero up to MVT. They were instructed to 

match the target trace as closely as possible for as long as possible (i.e. up to MVT), and real-

time torque was displayed over the target torque-time trace for feedback. The preceding knee 

extensor MVCs and sub-maximal contractions were considered sufficient to elicit tissue 

preconditioning. The three most suitable ramp contractions, according to highest peak torque, 
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the closeness to the target loading rate and ultrasound image clarity, were analysed and 

measurements averaged across these three contractions. 

 

5.2.9. Measurement of Tissue Elongation  

Video images from two ultrasound machines and one video camera were captured to obtain 

tissue and knee joint displacements during ramp contractions. An ultrasound probe (7.5 MHz 

linear array transducer, B-mode, scanning width 60mm and depth 50 mm; Toshiba Power 

Vision 6000, SSA-370A: Otawara-Shi, Japan) was fitted into a custom made high-density 

foam cast that was strapped to the lateral aspect of the thigh with the mid-point of the probe 

positioned at ~50 % thigh length. The probe was aligned so the fascicles inserting into the 

vastus lateralis (VL) muscle deep aponeurosis could be visualized at rest and during 

contraction. An echo-absorptive marker (multiple layers of transpore medical tape) was 

placed beneath the ultrasound probe to provide a reference for any probe movement over the 

skin. Another ultrasound probe (5-10 MHz linear array transducer, B-mode, scanning width 

92 mm and depth 65 mm, EUP-L53L; Hitachi EUB-8500) was fitted into a custom made 

high-density foam cast that was held firmly over the anterior aspect of the knee with the 

probe aligned longitudinal to the patellar tendon such that the patella apex and insertion of 

the posterior tendon fibres at the tibia could be visualized at rest and throughout the 

contraction. The ultrasound machines were interfaced with the computer collecting torque 

data in Spike 2 and the video feeds were recorded synchronously with torque using Spike 2 

video capture at 25 Hz. During off-line analysis tissue elongation was tracked frame-by-

frame using public-domain semi-automatic video analysis software: Tracker, version 4.86 

(www.cabrillo.edu/~dbrown/tracker). VL fascicle deep aponeurosis cross point displacement 

relative to the skin marker provided a measure of muscle-tendon unit (MTU) elongation 

(Figure 5.1). Patellar tendon elongation was determined by the longitudinal displacement of 

the patella apex and the tendon tibial insertion (Figure 5.1). The distal insertion of the patellar 

tendon was not monitored for the purpose of estimating overall MTU elongation. To enable 

correction of tissue displacement due to joint angle changes during ramp contractions 

individual ratios of tissue displacement relative to joint angular displacement (mm/°) were 

obtained from passive movements (i.e. plotting the tissue displacement-knee joint angle 

relationship). This ratio was used to determine tissue displacement resulting from knee angle 

change during ramp contractions, which was subsequently subtracted from total measured 

displacement. Corrections were only applied to aponeurosis displacement. Tendon elongation 

under passive conditions was deemed negligible. Passive movements were conducted prior to 

http://www.cabrillo.edu/%7Edbrown/tracker
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the ramp contractions. Participants were instructed to completely relax as their knee was 

moved through 90 to 130°. During passive movements and ramp contractions, knee joint 

angle (angle between visible markers placed on the greater trochanter, lateral knee joint space 

and lateral malleolus) was derived from sagittal plane video recorded using a camera 

mounted on a tripod positioned (1.5 m) perpendicular to the strength-testing chair. The video 

camera was interfaced with a computer and recorded using spike 2 video capture at 25 Hz 

(simultaneously with force, EMG, and ultrasound images during the ramp contractions) and 

analysed via Tracker software.  

 

5.2.10. Calculation of Tendon Force  

PT force was calculated by dividing external absolute knee extensor torque by the patellar 

tendon moment arm length. The latter was measured from sagittal plane T1-weighted MR 

(1.5 T Signa HDxt, GE) images (time of repetition/time to echo 480/14, image matrix 512 x 

512, field of view 160 x 160 mm, pixel size 0.313 x 0.313, slice thickness 2 mm, inter-slice 

gap = 0 mm) as the perpendicular distance from the PT line of action to the tibio-femoral 

contact point, which was the midpoint of the contact distance between the tibia and femur. 

Due to constraints in the size of the knee coil, sagittal images were acquired in an extended 

knee position (~163°).  Moment arm length for any specific knee angle measured at rest or 

during ramp contraction was estimated from previously published data fitted with a quadratic 

function (Kellis and Baltzopoulos 1999), scaled to each participant’s measured moment arm 

length at 163°. Absolute internal knee extensor torque was given by summing net knee 

extension torque and the estimated knee flexor co-contraction torque. Antagonist knee flexor 

torque was estimated by expressing the average knee flexor EMG amplitude (RMS 50 ms 

moving window) during ramp contractions relative to the knee flexor EMGMAX and 

multiplying by the knee flexor MVT (assuming a linear relationship between EMG amplitude 

and torque). During analysis, torque and EMG amplitude were down-sampled to 25 Hz to 

match the ultrasound video frequency. 

 

5.2.11. Calculation of Muscle-Tendon Unit and Patellar Tendon Stiffness  

MTU (corrected for passive tissue displacement) and PT elongation were plotted (for each 

ramp contraction analysed) against tendon force. Tendon force-elongation plots were fitted 

with a second-order polynomial forced through zero. Using the associated quadratic 

equations MTU and PT elongation was determined at specific absolute (50, 100 and 150 Nm) 

and individual relative knee extension torques (25, 50 and 75% MVT). Absolute stiffness (Δ 
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tendon force [N]/Δ elongation [mm]; N.mm-1) was calculated over 0-50, 0-100 and 0-150 Nm 

torque increments (MTU/PT k0-50Nm, MTU/PT k0-100Nm, MTU/PT k0-150Nm) and sequential 

torque increments of 50-100 and 100-150 Nm (MTU/PT k50-100Nm and MTU/PT k100-150Nm). 

MTU and PT elongation at relative torques were converted to strain (ε, %; ratio of Δ tissue 

length to resting tissue length). Relative stiffness (Δ%MVT/Δε [%MVT.ε-1]) was calculated 

over relative 0-25, 0-50, 0-75%MVT increments (MTU/PT k0-25%MVT, MTU/PT k0-50%MVT, 

MTU/PT k0-75%MVT) and sequential increments 25-50 and 50-75%MVT (MTU/PT k25-50%MVT 

and MTU/PT k25-75%MVT). The stiffness measures derived from each of the three ramp 

contractions analysed was averaged to give each individuals representative values. MTU 

resting length was assessed with a tape measure over the surface of the skin from the tibial 

tuberosity to center of the measurement site over VL. PT length was taken as the distance 

between the patella apex and the insertion of the posterior fibres of the tendon on the tibia, 

measured from ultrasound images acquired at rest prior to the ramp knee extensions.  

 

5.2.12. Statistical Analysis  

MVT, RTD and tissue stiffness (k) measures from duplicate measurement sessions were 

averaged for criterion measures used in statistical tests. Using SPSS Version 20.0 (IBM 

Corp., Armonk, NY), Pearson’s product moment bivariate correlations were performed to 

examine the relationships between absolute or relative RTD (voluntary or evoked) vs. tissue 

stiffness variables (MTU or PT) measured over equivalent torque increments; e.g. absolute 

PT k0-100Nm vs. Vol RTD0-100Nm, relative MTU k0-50%MVT vs. Vol RTD0-50%MVT. Absolute 

stiffness measures were also correlated against MVT. Additional (a posteriori) correlations 

were performed between matched relative torque increment voluntary/evoked octet RTD and 

MTU stiffness over 5% increments from contraction onset (e.g. Vol RTD50-55%MVT [%MVT.s-

1] vs. MTU k50-55%MVT [%MVT.ε-1]), to more specifically characterise the relationships found 

between the relative RTD and relative MTU stiffness. Statistical significance level was 

P<0.05. Descriptive data are presented as mean ± standard deviation (SD). To provide an 

index of measurement reliability average within participant coefficient of variation (CVw, %) 

was calculated between the two measurement sessions, although it is worth noting that the 

criterion values (averaged across two sessions) will have higher reliability than each 

individual session. Inter-individual variability is reported as between participant coefficient 

of variation (CVb, %) of criterion measures. 
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Figure 5.1. The experimental set-up and ultrasound imaging during ramp contractions. Participants 
were tightly fastened to a rigid isometric strength-testing chair with resting knee and hip angles of 115 
and 126° respectively (A). Unilateral knee extensor torque, video of knee joint angle, antagonist 
muscle (biceps femoris [BF], semitendinosus [ST]) surface electromyography and ultrasound video 
images were recorded during constant-loading rate isometric ramp knee extensor contractions 
(example in B). Ultrasound images are of the patellar tendon (PT, C) and vastus lateralis (VL, D) 
muscle at rest (top) and at peak ramp torque (bottom) and indicate the measurement of PT (tibia-
patellar displacement, ΔT + ΔP) and MTU (VL deep aponeurosis fascicle-cross point proximal 
displacement [ΔM] relative to the echo-absorptive skin marker) elongation. 
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5.3. RESULTS  

5.3.1. Measurement Reliability 

Within-participant test-retest reliability was excellent for MVT (CVw 3.0%), and good for 

voluntary RTD (CVw ≤ 8.6% for absolute and relative measures). Matched MTU and PT k 

measures were not as reliable, but improved at higher torque increments: MTU k and relative 

MTU k, CVw 15.4 to 9.7% and 14.1 to 11.0%; PT k and relative PT k, CVw 13.9 to 8.8% 

and 13.6 to 8.1%. 

 

5.3.2. Inter-individual Variability  

Knee extension MVT was 245.0 ± 41.8 Nm (CVb 17.1%, 2.3-fold range). Voluntary torque-

time curves (Figure 5.2 A and C) exhibited similar between participant variability in absolute 

and relative RTD measures CVb of 14.4 to 20.5% (1.8- to 2.9-fold range). Voluntary 

sequential RTD was more variable (CVb 32.0-33.0%) as was relative sequential RTD (CVb 

24.0-25.0%). Evoked octet torque-time curves (Figure 5.3 B and D) showed octet RTD and 

relative octet RTD varied much less than voluntary RTD0-50Nm and 0-25%MVT. Octet sequential 

RTD/relative RTD was highly variable (CVb was 37.4 and 45.3%). 

 

There was large inter-individual variability in external torque-elongation/strain relationships 

for both the PT and MTU as shown in Figure 5.3. The variability in elongation was greatest 

at the initial torque increment (50 Nm: MTU 7.6-fold range; PT 3.7-fold range), which 

progressively reduced at higher torque increments and sequential torques (e.g. 100-150 Nm: 

MTU 3.2-fold range; PT 2.4-fold range). Similarly, relative knee extensor torque-MTU/PT 

strain curves (Figure 5.4 C/D) showed tissue strain to be most variable at the initial relative 

torque level (25%MVT: MTU 6.6-fold range; PT 3.5-fold range), with less inter-individual 

variability at higher and sequential relative torques (e.g. 50-75%MVT: MTU 3.2-fold range; 

PT 2.4-fold range). PT elongation was 20% of MTU elongation at all torque increments. 

Alternatively, PT strain was 1.45-fold greater than MTU strain. For clarity, whilst the 

external torque-elongation/strain relationships are shown for illustrative purposes, individual 

stiffness values were derived from tendon force-elongation/strain relationships. 

 

5.3.3. Bivariate Correlations of PT Stiffness and Explosive Strength 

Voluntary and evoked RTD were unrelated to PT k measured over matching torque 

increment (r = 0.02 to 0.242, P ≥ 0.094 [Figure 5.4]; e.g. scatterplot in Figure 5.5 B). 

Likewise, relative voluntary and evoked RTD were also unrelated to relative PT k (r = 0.048 
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to 0.255, P = 0.069 to 0.736; Figure 5.6). PT k measures were also unrelated to MVT (r = 

0.094 to 0.127, all P ≥ 0.371). 

 

5.3.4. Bivariate Correlations of MTU Stiffness and Explosive Strength 

Voluntary and evoked RTD were unrelated to MTU k measured over the same torque 

increment (r = 0.038 to 0.191, P ≥ 0.184; e.g. scatterplot in Figure 5.5 A). In contrast, some 

voluntary and evoked relative RTD measures were positively associated with relative MTU k 

(Figure 6) e.g. relative Vol RTD25-50%MVT r = 0.374, P = 0.007 (Figure 5.7 A) and Oct RTD25-

50%MVT r = 0.353, P = 0.014 (Figure 5.7 B). Following these associations a more detailed 

secondary analysis using 5%MVT increments (relative MTU k and relative RTD again 

measured over the same increments) showed that relative MTU k was positively related to 

relative voluntary RTD for the increments from 35-55%MVT (r = 0.312 to 0.434, P ≤ 0.026; 

Figure 5.8). Relative evoked RTD was also positively related to relative MTU k from 5-45% 

MVT (r = 0.315 to 0.461, P ≤ 0.029; Figure 5.8). Finally MTU k measures were unrelated to 

MVT (MTU, r = -0.124 to -0.09, all P ≥ 0.388). 
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Figure 5.2. Inter-individual variability of torque-time curves during explosive voluntary (A, C; n=52) 
and evoked octet (B, D, n=49) contractions of the knee extensors expressed in absolute (Nm; A, B) 
and relative (% maximal voluntary torque, MVT; C, D) terms. Black line and circles (bars) are mean 
(± SD) and the dotted and dashed lines depict the minimum and maximum torque values respectively. 
Italic numbers give the between participant co-efficient of variation (CVb %) for the rate of torque 
development (absolute, ΔTorque/ΔTime [A and B]; relative, Δ%MVT/ΔTime [C and D]) calculated 
from 0 to the specified torque increment.  
 
 
 
 
 
 

To
rq

ue
 (N

m
) 

Explosive Voluntary Evoked Octet 

0

50

100

150

0 40 80 120 160
Time (ms) 

(A) CVb (%) 

18.3 

20.5 

16.0 

0

50

100

150

0 10 20 30 40 50 60 70
Time (ms) 

(B) 

8.9 

CVb (%) 

15.8 

0

25

50

75

0 40 80 120 160 200

To
rq

ue
 (%

M
VT

) 

Time (ms) 

(C) 

14.4 

17.8 

15.7 

  CVb (%) 
 

(D) 

0

25

50

75

0 20 40 60 80 100
Time (ms) 

8.2 

19.8 

CVb (%) 



                                         Chapter 5: Musculotendinous tissue stiffness and explosive strength        

 83 

0

500

1000

1500

2000

2500

3000

3500

0

50

100

150

0 4 8 12 16 20 24

T
en

do
n 

Fo
rc

e 
(N

) 

To
rq

ue
 (N

m
) 

 Elongation (mm) 

0

50

100

150

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Te
nd

on
 F

or
ce

 (N
) 

T
or

qu
e 

(N
m

) 

Elongation (mm) 

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0

25

50

75

0 2 4 6 8

T
en

do
n 

Fo
rc

e 
(N

) 

To
rq

ue
 (%

M
VT

) 

Strain (ε,%) 

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0

25

50

75

0 2 4 6 8 10 12

T
or

qu
e 

(%
M

V
T

) 

Strain (ε,%) 

(A) (B) 

(C) (D) 

36.1 

28.7 

25.9 

CVb (%) 

30.3 

23.4 

20.7 

CVb (%) 

29.9 

21.8 

18.5 

CVb (%) 

38.2 

29.8 

26.3 

CVb (%) 

Muscle-Tendon Unit Patellar Tendon 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3. Inter-individual variability in absolute torque-tissue elongation and relative torque 
(%MVT)-tissue strain curves for the muscle-tendon unit (MTU; A and C) and patellar tendon (PT; B 
and D). Data acquired during isometric ramp knee extensor contractions. Black line and circles (bars) 
are mean (± SD) torque-elongation/strain curve, while dotted and dashed lines depict individuals with 
the minimum and maximum values of elongation/strain respectively. Italic numbers give between 
participant co-efficient of variation (CVb %) for elongation and strain measured from 0 to the 
specified torque level. Stiffness measurements were subsequently derived from individual tendon 
force-elongation/strain relationships 
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Figure 5.4. Pearson’s product moment correlation coefficients between the rate of torque 
development (RTD) during explosive voluntary or evoked octet contractions and the muscle-tendon 
unit (MTU, black diamonds) and patellar tendon (PT, white squares) absolute stiffness (k; N.mm-1) 
calculated across absolute tendon forces at the equivalent torque increment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5. Example scatterplots showing bivariate relationships between the rate of torque 
development (RTD; Nm.s-1) during explosive voluntary (A, [n=51]) contractions and the equivalent 
torque increment stiffness (k; N.mm-1) of the muscle-tendon unit (MTU, A) and patellar tendon (PT, 
B).  
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Figure 5.6. Pearson’s product moment correlation coefficients between the relative rate of torque 
development (RTD) during explosive voluntary and evoked octet contractions and the muscle-tendon 
unit (MTU) and patellar tendon (PT) relative stiffness (k; %MVT/ε-1) calculated across strain values 
determined at corresponding relative torques.  **P<0.01, *P<0.05. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.7. Scatterplots of the bivariate relationships between the relative rate of torque development 
(RTD; %MVT.s-1) during explosive voluntary (Vol; A [n = 51]) and evoked octet (Oct; B [n = 48]) 
contractions and the equivalent relative torque increment relative stiffness (k; %MVT/ε-1) of the 
muscle-tendon unit (MTU). 

 

0

0.1

0.2

0.3

0.4

0.5

0-25 0-50 0-75 25-50 50-75 0-25 0-50 25-50

MTU PT

* 

* 

*
* * 

Co
rr

el
at

io
n 

co
ef

fic
ie

nt
 (r

): 
 

Re
la

tiv
e 

RT
D 

vs
. R

el
at

iv
e 

k 
 

Explosive Voluntary Evoked Octet 

Relative Torque Increment (%MVT) 

0

500

1000

1500

2000

2500

3000

10 20 30 40

(B) 

r = 0.353,  R2 = 0.125, P = 0.039 

MTU k 25-50% MVT (%MVT/ε-1) 

O
ct

et
 R

TD
 2

5-
50

%
M

VT
 (%

M
VT

.s
-1

) 



                                         Chapter 5: Musculotendinous tissue stiffness and explosive strength        

 86 

 

 

 

 

 

 

 

 

 

 
Figure 5.8. Bivariate correlations between relative RTD (%MVT.s-1) and relative MTU K (%MVT/ε-

1) during matching %MVT torque increment. Correlations performed with n = 51 for voluntary [Vol] 
and n = 48 for evoked octet (Oct) contractions. Statistical significance level: *P<0.05, **P<0.01, 
***P<0.001.  

 

 

5.4. DISCUSSION 

The present study carefully investigated whether both PT and MTU stiffness (k) were related 

to voluntary and evoked explosive muscle strength in vivo, with both variables assessed over 

the same torque increment, and expressed in absolute and relative terms. Bivariate 

correlations revealed no relationships between absolute PT and MTU k and voluntary and 

evoked RTD. Likewise relative PT k was unrelated to relative voluntary or evoked RTD. 

However, relative MTU k had modest positive relationships to some measures of relative 

RTD during explosive voluntary (Vol RTD0-75%MVT, R2 = 0.101; Vol RTD25-50%MVT, R2 = 

0.140), and evoked octet (Oct RTD0-50%MVT, R2 = 0.081; Oct RTD25-50%MVT, R2 = 0.125) 

contractions. Subsequent correlations between relative RTD and MTU k in 5%MVT 

increments showed relative MTU k contributes to explaining voluntary relative RTD between 

35-55%MVT (R2 = 0.097 – 0.188), and relative RTD throughout evoked octet contraction (5-

45%MVT; R2 = 0.099 – 0.194).  
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Our finding of no relationships between MTU k and RTD measures is contrary to earlier 

work that generally supported weak-moderate positive relationships between MTU k and 

RTD (Bojsen-Møller et al. 2005; Waugh et al. 2013; Hannah and Folland 2015). However 

these studies used loading rates that were dependent upon and thus may have been 

confounded by MVT, did not match the torque increments of stiffness and RTD measurement 

(Bojsen-Møller et al. 2005; Waugh et al. 2013), and included heterogeneous sub-groups 

exhibiting differences in potentially confounding variables (Bojsen-Møller et al. 2005; 

Waugh et al. 2013; Hannah and Folland et al. 2015). These methodological issues may have 

skewed previous stiffness measurements in favour of stronger individuals who also tend to 

have higher RTD values (Andersen and Aagaard 2006; Folland et al. 2014). For example, 

calculating stiffness over a tendon force increment that is relative to maximal strength (e.g. 

50-90%MVT, Bojsen-Møller et al. 2005; 50-100%MVT Wang et al. 2012; 10-80% MVT, 

Waugh et al. 2013) means the force increment for stiffness determination is higher for 

stronger individuals. As there is a well-documented force-stiffness relationship this method 

creates a methodological artefact whereby stronger individuals will inherently be measured to 

have a greater stiffness. In addition use of inconsistent loading rates, as a consequence of 

standardized duration ramp contractions to different force increments for each individual, 

would produce higher stiffness values for the higher loading rates of stronger individuals 

(Pearson et al. 2007; Theis et al. 2012; Kösters et al. 2014). 

 

In contrast, stiffness measurements in the present study were more thorough: duplicate 

measurement sessions each involving multiple, standardised loading ramp contractions, 

measurements of stiffness and RTD over the same torque increment for all individuals, and 

use of a large cohort of exclusively young males with similar physical activity status.  

Nevertheless this approach revealed wide inter-individual variability in MTU k, yet such 

differences did not manifest into a noticeable association with absolute RTD. Seemingly the 

lack of relationship between MTU k and RTD could be ascribed to our avoidance of a 

specious association mediated by the confounding influence of maximal strength. 

 

Some measures of relative MTU k and relative RTD were significantly associated. 

Specifically, during the initial analysis relative MTU k was related to Vol RTD0-75%MVT and 

relative Vol RTD25-50%MVT, and during the secondary analysis of 5% torque increments 

relative MTU k and relative RTD were associated during the between 35-55%MVT. This 

contrasts with the results of a previous study that found no relationship between relative 
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MTU k and relative RTD (Hannah and Folland 2015). However, this previous study involved 

ramp contractions with a constant duration and thus variable loading rates that may introduce 

a bias as well as males and females that exhibit a number of distinct differences that might 

confound the relationship. In the current study the consistent significant relationship between 

relative MTU k and voluntary relative RTD from 35-55%MVT suggest a genuine systematic 

relationship, although the explained variance was small (≤18.8%). The logical explanation 

for these volitional relationships was via an effect of relative MTU k on the contractile 

capability for relative RTD as shown by the finding that relative MTU k was also 

significantly related to octet relative RTD; specifically octet RTD0-50%MVT, octet RTD25-

50%MVT and subsequently from the 5% torque increments RTD from 5-50%MVT. 

Furthermore the torque increment over which voluntary relative RTD was associated with 

relative MTU k (25-55%MVT) was on average 52-93 ms into the explosive contraction, 

which is consistent with the steepest phase of the voluntary contractions (50-100 ms) where 

voluntary RTD is primarily determined by the contractile capacity for RTD (Folland et al. 

2014). The finding that relative RTD was in part explained by relative MTU k, despite no 

corresponding relationships for absolute measures suggests an overwhelming influence of 

maximal strength on absolute RTD that seemingly negated any qualitative influence of MTU 

k. Finally, the rather limited explained variance of relative octet RTD by MTU k (≤19.4%) 

indicates that contractile RTD is largely determined by other factors; such as activation 

kinetics (Edman and Josephson 2007), contractile protein composition (Harridge et al. 1996). 

 

The present study was thus the first attempt to investigate if there is a relationship between in 

vivo free tendon k and RTD. We found PT k was not related to voluntary or evoked knee 

extensor RTD. The PT exhibited minimal elongation (~3 mm) that seems unlikely to 

appreciably influence muscle length changes and thus force-generating potential. Also, the 

rate of force transmission through tendons is exceptionally rapid (Nordez et al. 2009; DeWall 

et al. 2014) especially for short tendons such as the PT (length ~45-50mm), and likely 

explains the lack of a relationship between PT k and RTD. Furthermore PT k was unrelated 

to MVT and it is notable that we found no relation between relative PT k and 

voluntary/evoked relative RTD measures. Research with isolated muscles has found the force 

rise time under isometric conditions of fixed sarcomere length was not appreciably faster than 

during muscle-tendon unit fixed-end contractions, indicating a negligible impact of tendon 

compliance on isometric rate of force development (Haugen and Sten-Knudsen 1987). 

Similarly, Kawakami and Lieber (2000) showed that the internal sarcomere shortening during 
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fixed-end contractions of an isolated MTU was unchanged once the proximal and distal ends 

of the aponeurosis where clamped, indicating that the tendon did not impact muscle internal 

shortening during isometric force production. Whether our results can be generalised to other 

MTU’s where the tendon may contribute more significantly to the overall MTU stiffness is 

uncertain and requires further research.  

 

Our results imply the relationships we found between relative MTU k and RTD are due to the 

contribution of elastic tissues proximal to the tendon. Conceptually our method reflects the 

elongation of distal (to the ultrasound measurement site) tendinous tissues (aponeurosis-

tendon). Thus our findings regarding relative MTU k and relative RTD are presumably 

consequent to aponeurosis force-length characteristics. Indeed, modelling studies 

demonstrate that greater aponeurosis stiffness results in a reduction in its stretch that 

decreases muscle fibre strains (Rehorn and Blemker 2010; Rahemi et al. 2014). Lesser strain 

permits slower fibre shortening and possibly places fibres at longer lengths on the ascending 

limb of their force-length curves (Lieber et al. 1992; Lemos et al. 2008), and may facilitate a 

more efficient longitudinal force transmission. More favourable fibre contractile conditions 

for force production permitted by a stiffer aponeurosis could account for our evidence of 

greater relative RTD (both voluntary and evoked) being associated with a stiffer relative 

MTU.  

 

In conclusion, absolute MTU and PT k were not associated with voluntary or evoked RTD, 

and this was also the case for relative PT k and relative RTD. However greater relative MTU 

k was related to higher relative voluntary and evoked RTD. These results suggest a 

differential influence of MTU tissue components (muscle-aponeurosis vs. tendon) on relative 

RTD. An overriding influence of maximal strength is presumed to negate any relationship 

between absolute MTU k and RTD.  
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6.1. INTRODUCTION  

The mechanical stiffness (resistance to deformation) of musculotendinous tissues is integral 

to the effectiveness of these tissues to transmit skeletal muscle force to the bone and thus 

generate movement. Stiffer tissues may be protective in injury-related situations, for instance 

maintaining balance in response to mechanical perturbation (Onambélé et al. 2006). 

Moreover, stiffer tendons are ultimately stronger (Matson et al. 2012; LaCroix et al. 2013), 

and undergo less strain in response to a given stress, which reduces their susceptibility to 

damage (Ker 1988; Buchanan and Marsh 2002). Likewise, stiffer tissues may limit injury risk 

by providing greater joint stability and theoretically reduce the loading imposed on passive 

joint tissue (meniscus, cartilage, ligaments) structures (McNair et al. 1992; Wojtys et al. 

2002; Karamanidis et al. 2008; Blackburn et al. 2013; Lipps et al. 2014). A particular concern 

is that joint injuries predispose to degenerative disease (i.e. osteoarthritis), which constitutes a 

substantial burden to the quality of life. In overview, increasing muscle-tendon unit (MTU) 

stiffness may have widespread functional and clinical implications.  

 

MTU stiffness has been repeatedly found to increase following conventional strength training 

with sustained contractions (≥2 s duration with loads of >70% maximal), e.g. 16-54% after 

12-14 weeks (Arampatzis et al. 2007a, 2010; Kubo et al. 2001, 2006b, 2010, 2012). 

Interestingly, two recent studies reported that training with brief explosive-contractions (<1-

s) characterised by maximal/near maximal rate of force development produced notable 

increases in MTU stiffness after merely four (34%; Tillin et al. 2012) and siz weeks (62%; 

Burgess et al. 2007) of training. This type of explosive-contraction strength training (ECT) 

appears to be a highly time-efficient training regime that is also relatively non-fatiguing and 

thus offers the possibility of better training adherence for older adults and patient groups (e.g. 

osteoarthritis, tendinopathy). These preliminary results suggest that ECT may be a potent 

stimulus for increasing MTU stiffness. However, a comprehensive longer-term investigation 

is required to validate the efficacy of ECT to increase musculotendinous tissue stiffness in 

comparison to more conventional sustained-contraction strength training (SCT). This may 

permit further understanding of the influence of loading rate (high for ECT, low for SCT) and 

loading duration (high for SCT, low for ECT) as mechanical stimuli for increases in tissue 

stiffness. Our previous work has found the contrasting mechanical stimuli of ECT vs. SCT to 

elicit distinct functional and neural adaptations (Tillin et al. 2014; Balshaw et al. 2016), 

suggesting the possibility that these alternate tissue-loading patterns may induce different 

musculotendinous adaptations.  
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Whilst changes in MTU stiffness in response to strength training have received considerable 

attention, which component of the MTU is responsible for this adaptation is unclear. For 

example, whether increased MTU stiffness is accompanied by changes in stiffness of the free 

tendon remains opaque with the only two studies reporting a simultaneous increase (Kubo et 

al. 2009) or no change (Kubo et al. 2006c) in patellar tendon (PT) stiffness.  These studies 

however had only small numbers (n=8/10) and no control group, therefore the possible 

contribution of changes in PT stiffness to increased quadriceps MTU stiffness in response to 

any form of strength training remains to be elucidated.   

 

Changes in MTU and tendon stiffness after strength training may depend upon the increase in 

the size of these tissues. Muscle hypertrophy is a well-recognised characteristic response to 

conventional strength training regimes (Hubal et al. 2005; Folland and Williams 2007; 

Erskine et al. 2010) that is suggested to be coincident with an increase in aponeurosis size 

(Abe et al. 2012), but changes in aponeurosis size are largely unknown. A solitary report 

documented a 1.9% increase in vastus lateralis aponeurosis width to accompany a 10.7% 

increase in quadriceps muscle size after 12 weeks of dynamic SCT (Wakahara et al. 2015). 

Evidence for tendon hypertrophy after SCT is much more equivocal. While some studies 

utilising magnetic resonance imaging have detected a modest increase in tendon cross-

sectional area (~4-5%: Arampatzis et al. 2007a; Kongsgaard et al. 2007; Seynnes et al. 2009; 

Bohm et al. 2014) that may be region specific, others have reported no change (Arampatzis et 

al. 2010; Kubo et al. 2012; Bloomquist et al. 2013). The responses of muscle, aponeurosis 

and tendon size to ECT are unknown. Given the marginal changes in tendon size after SCT, 

the increases in tendon stiffness (e.g.15-65%; Reeves et al. 2003; Kongsgaard et al. 2007; 

Seynnes et al. 2009; Malliaras et al. 2012; McMahon et al. 2013) are predominantly 

attributed to the nearly parallel improvement in tendon Young’s modulus (stiffness relative to 

tendon dimensions, i.e. material stiffness), although the changes in tendon modulus after ECT 

are yet to be documented.  

 

The aim of the present study was to compare the mechanical (MTU stiffness, PT stiffness and 

PT Young’s modulus), and morphological (quadriceps femoris muscle, vastus lateralis 

aponeurosis and PT size) adaptations of the quadriceps MTU to 12 weeks isometric ECT vs. 

SCT vs. an untrained control group. 
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6.2. METHODS 

6.2.1. Participants  

Forty-two young, healthy, asymptomatic, males who had not completed lower body-strength 

training for >18 months and were not involved in systematic physical training were randomly 

assigned to ECT (n = 14), SCT (n = 15) or CON (n = 13) groups. Each participant provided 

written informed consent prior to completing this study, which was approved by the 

Loughborough University Ethical advisory committee. Baseline recreational physical activity 

level was assessed with the International Physical Activity Questionnaire (IPAQ, short 

format; Craig et al. 2003). 

  

6.2.2. Experimental Design  

Participants visited the laboratory for a familiarisation session that included measurement of 

muscle strength and body mass to facilitate group allocation, as well as practice isometric 

ramp contractions. Thereafter, two duplicate laboratory measurement sessions were 

conducted both pre (sessions 7-10 days apart prior to the first training session) and post (2-3 

days after the last training session, and 2-3 days later). MRI scans of the thigh and knee were 

conducted pre (5 days prior to the start of the first training session) and post (3 days after the 

final training session) to measure knee extensor MTU tissues size (quadriceps femoris muscle 

volume, vastus lateralis [VL] aponeurosis area, patellar tendon [PT] cross-sectional area) and 

PT moment arm. Measurement and training sessions were performed on the same isometric 

apparatus. Training for ECT and SCT groups involved unilateral isometric contractions of 

both legs three times a week for 12 weeks (36 sessions in total), whereas CON participants 

attended only the measurement sessions and maintained their habitual activity. All 

participants were instructed to maintain their habitual physical activity and diet throughout 

the study. Measurement sessions involved a series of contractions in the following order: 

maximal voluntary contraction (MVCs to establish maximal voluntary torque [MVT]); ramp 

voluntary contractions of the knee extensors to establish tendinous tissue properties, and knee 

flexor MVCs of the dominant (preferred kicking) leg. Knee joint torque was recorded 

throughout contractions. Knee flexor surface electromyography was recorded during knee 

flexor MVCs and knee extensor ramp contractions. Ultrasound images of the VL and PT 

were recorded to assess tissue elongation during the ramp contractions in order to derive 

force-elongation relationships (to determine stiffness) of the distal MTU and PT, as well as 

stress-strain relationships for the PT (to determine Young’s modulus). Measurement sessions 

were at a consistent time of day and started between 12:00-19:00 hours. 
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6.2.3. Training  

After a brief warm-up of sub-maximal contractions of both legs, participants completed four 

sets of ten unilateral isometric knee-extensor contractions of each leg; with sets alternating 

between legs. Each set took 60 s with 2 min between successive sets on the same leg. ECT 

involved short, explosive contractions with participants instructed to perform each 

contraction “as fast and hard as possible” up to ≥80%MVT for ~1 s, and then relax for 5 s 

between repetitions. A computer monitor displayed RTD (10 ms time epoch) to provide 

biofeedback of explosive performance, with a cursor indicating the highest peak RTD 

achieved throughout the session, participants were encouraged to achieve a higher peak RTD 

with each subsequent contraction. The torque-time curve was also shown: with a horizontal 

cursor at 80%MVT (target torque) to ensure sufficiently forceful contractions; and on a 

sensitive scale baseline torque was highlighted in order to observe and correct any pre-

tension or countermovement. SCT involved sustained contractions at 75%MVT, with 2-s rest 

between contractions. In order to control the RTD these participants were presented with a 

target torque trace 2-s before every contraction and instructed to match this target, which 

increased torque linearly from rest to 75%MVT over 1-s before holding a plateau at 

75%MVT for a further 3-s. All training participants (ECT and SCT) performed three 

maximal voluntary isometric contractions (MVCs, see below) at the start of each training 

week in order to re-establish MVT and prescribe training torques. Torque data from the first 

session of weeks 1, 6 and 12 were analysed for all training participants (i.e. ECT and SCT) in 

order to quantify peak loading magnitude (peak torque), loading rate (peak RTD [Nm.s-1], 50 

ms epoch), and loading duration (defined as time >65%MVT). All repetitions from the 

selected training sessions were analysed and an average across the three sessions determined 

for these loading indices. 

 

6.2.4. Torque Measurement 

Measurement and training sessions were completed in the same custom-made isometric 

strength-testing chair with knee and hip angles of 115° and 126° (180° = full extension), 

respectively. Adjustable straps were tightly fastened across the pelvis and shoulders to 

prevent extraneous movement.  An ankle strap (35 mm width reinforced canvas webbing) 

was placed ~15% of tibial length (distance from lateral malleolus to knee joint space) above 

the medial malleolus, and positioned perpendicular to the tibia and in series with a calibrated 

S-Beam strain gauge (Force Logic, Berkshire, UK). The analogue force signal was amplified 

(x370; A50 amplifier, Force Logic UK) and sampled at 2,000 Hz using an A/D converter 
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(Micro 1401; CED, Cambridge, UK) and recorded with Spike 2 computer software (CED). In 

offline analysis, force signals were low-pass filtered at 500 Hz using a fourth order zero-lag 

Butterworth filter, gravity corrected by subtracting baseline force, and multiplied by lever 

length, the distance from the knee joint space to the centre of the ankle strap, to calculate 

torque values.  

 

6.2.5. Knee Flexor Electromyography (EMG)  

Surface EMG recordings over the biceps femoris (BF) and semitendinosus (ST) were made 

with a wireless EMG system (Trigno; Delsys Inc, Boston, MA) were made during knee 

flexor MVCs and knee extensor ramp contractions. Following preparation of the skin 

(shaving, abrading and cleansing with alcohol) single differential Trigno standard EMG 

sensors (1-cm inter electrode distance; Delsys Inc, Boston, MA) were attached over each 

muscle using adhesive interfaces. Sensors were positioned parallel to the presumed frontal 

plane orientation of the underlying muscle fibres at 45% of thigh length (distance from the 

greater trochanter to the lateral knee joint space) measured from the popliteal crease. EMG 

signals were amplified at source (x300; 20-450 Hz bandwidth) before further amplification 

(overall effective gain x 909) and sampled at 2000 Hz via the same A/D converter and 

computer software as the force signal, to enable data synchronization. In offline analysis, 

EMG signals were corrected for the 48 ms delay inherent to the Trigno EMG system and 

band-pass filtered (6-500 Hz) using a fourth-order, zero-lag Butterworth digital filter.  

 

6.2.6. Knee Extension and Flexion Maximal Voluntary Contractions  

Following a brief warm-up (3 s contractions at 50% [x3], 75% [x3] and 90% [x1] of 

perceived maximal), participants performed 3-4 MVCs and were instructed to either ‘push as 

hard as possible’ (knee extension) or ‘pull as hard as possible’ (knee flexion) for 3-5 s and 

rest ≥ 30 s. A horizontal cursor indicating the greatest torque obtained within the session was 

displayed for biofeedback and verbal encouragement was provided during all MVC’s. The 

highest instantaneous torque recorded during any MVC was defined as MVT. During knee 

flexor MVCs EMG amplitude was calculated as the root mean square (RMS) of the filtered 

EMG signal of the BF and ST over a 500 ms epoch at knee flexion MVT (250 ms either side) 

and averaged across the two muscles to give knee flexor EMGMAX. 
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6.2.7. MRI measurement of Muscle Tendon Unit Morphology and Moment Arm  

T1-weighted MR (1.5 T Signa HDxt, GE) images of the dominant leg (thigh and knee) were 

acquired in the supine position at a knee angle of 163° (due to constraints in knee coil size) 

and analysed using OsiriX software (Version 6.0, Pixmeo, Geneva, Switzerland). Using a 

receiver 8-channel whole body coil, axial images (time of repetition/time to echo 550/14, 

image matrix 512 x 512, field of view 260 x 260 mm, pixel size 0.508 x 0.508 mm, slice 

thickness 5 mm, inter-slice gap 0 mm) were acquired from the anterior superior iliac spine to 

the knee joint space in two overlapping blocks. Oil filled capsules placed on the lateral side 

of the thigh allowed alignment of the blocks during analysis. The quadriceps femoris (QF) 

muscles (vastus lateralis [VL] vastus intermedius [VI], vastus medialis, and rectus femoris) 

were manually outlined in every third image (i.e. every 15 mm) starting from the most 

proximal image in which the muscle appeared. The volume of each muscle was calculated 

using cubic spline interpolation (GraphPad Prism 6, GraphPad Software, Inc.). Total QF 

volume (QUADSvol) was the sum of the individual muscle volumes. As previously described 

(Abe et al. 2012), the deep aponeurosis of the VL muscle was defined as the visible dark 

black segment between the VL and VI muscles in the thigh MRI images. The tangent line of 

the VL muscle and the dark black segment in each cross-sectional image was traced 

manually. The length of the black line was defined as VL aponeurosis width and was 

measured on every third image (i.e. every 15 mm), starting in the most distal image were the 

aponeurosis was visible. Width measures were plotted against aponeurosis length (distance 

between most proximal and distal image where the aponeurosis was visible). The area under 

a spline curve fitted to data points was defined as the VL aponeurosis area (Apon Area).  

 

Immediately after thigh imaging, a lower extremity knee coil was used to acquire axial (time 

of repetition/time to echo 510/14, image matrix 512 x 512, field of view 160 x 160 mm, pixel 

size 0.313 x 0.313, slice thickness 2 mm, inter-slice gap 0 mm) and sagittal images (time of 

repetition/time to echo 480/14, image matrix 512 x 512, field of view 160 x 160 mm, pixel 

size 0.313 x 0.313, slice thickness 2 mm, inter-slice gap 0 mm) of the knee joint. Contiguous 

axial images spanned patellar tendon length, which during analysis, were reconstructed to be 

aligned perpendicular to the line of action of the patellar tendon. Images spanned from 2 cm 

superior to the patella apex to 2 cm inferior to the tendon tibial insertion (Figure 6.1 A). 

Patellar tendon CSA was measured on each contiguous image along the tendon’s length (first 

image where the patellar was no longer visible to the last image before the tibial insertion). 

Images, viewed in greyscale, were sharpened (Figure 6.1 B) and the perimeter manually 



                                                                                                  Chapter 6: Tendinous tissue adaptations 

 97 

 (A) (B) 

(C) 
Patellar 
Tendon 

outlined (Figure 6.1 C). Mean tendon CSA (mm2) was defined by the average of all measured 

images (14 to 24 images). Sagittal plane images were used to determined patellar tendon 

moment arm, the perpendicular distance from the patellar tendon line of action to the tibio-

femoral contact point, which was the midpoint of the distance between the tibio-femoral 

contact points of the medial and lateral femoral condyles (Figure 6.2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1. Patellar Tendon (PT) Cross-Sectional Area (CSA, mm2) measurement. Axial MRI images 
spanning tendon length in contigous 2 mm thick slices aligned perpendicular to the tendon (A). In 
each axial image (e.g. B), the perimeter of the PT which was manually outlined (C). 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2. Sagittal MRI image of the knee joint: Patellar tendon (PT) moment arm was defined as 
the perpendicular distance between the tendon line of action and the tibio-femoral contact point 
(TFCP).  
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6.2.8. Ramp Contractions for Determination of Tissue Stiffness 

Tissue stiffness was derived from synchronous recordings of torque and tissue elongation 

(see below, corrected for passive tissue displacement via video recording of knee joint 

changes) during isometric knee extension ramp contractions (experimental set-up; Figure 

6.3). Participants completed two sub-maximal practice ramp contractions prior to five 

maximal attempts with 90-s rest between contractions. Prior to each ramp contraction 

participants were shown a target torque-time trace on a computer monitor that increased at a 

constant gradient (50 Nm.s-1 loading rate) from zero up to MVT. They were instructed to 

match the target trace as closely as possible for as long as possible (i.e. up to MVT), and real-

time torque was displayed over the target torque-time trace for feedback. The preceding knee 

extensor MVCs and sub-maximal contractions were considered sufficient to elicit tissue 

preconditioning. The three most suitable ramp contractions, according to highest peak torque, 

the closeness to the target loading rate and ultrasound image clarity, were analysed and 

measurements averaged across these three contractions.  

 

6.2.9. Measurement of Tissue Elongation  

Video images from two ultrasound machines and one video camera were captured to obtain 

tissue and knee joint displacements during ramp contractions. An ultrasound probe (7.5 MHz 

linear array transducer, B-mode, scanning width 60mm and depth 50 mm; Toshiba Power 

Vision 6000, SSA-370A: Otawara-Shi, Japan) was fitted into a custom made high-density 

foam cast that was strapped to the lateral aspect of the thigh with the mid-point of the probe 

positioned at ~50 % thigh length. The probe was aligned so the fascicles inserting into the 

vastus lateralis (VL) muscle deep aponeurosis could be visualized at rest and during 

contraction. An echo-absorptive marker (multiple layers of transpore medical tape) was 

placed beneath the ultrasound probe to provide a reference for any probe movement over the 

skin. Another ultrasound probe (5-10 MHz linear array transducer, B-mode, scanning width 

92 mm and depth 65 mm, EUP-L53L; Hitachi EUB-8500) was fitted into a custom made 

high-density foam cast that was held firmly over the anterior aspect of the knee with the 

probe aligned longitudinal to the patellar tendon such that the patella apex and insertion of 

the posterior tendon fibres at the tibia could be visualized at rest and throughout the 

contraction. The ultrasound machines were interfaced with the computer collecting torque 

data in Spike 2 and the video feeds were recorded synchronously with torque using Spike 2 

video capture at 25 Hz. During off-line analysis tissue elongation was tracked frame-by-

frame using public-domain semi-automatic video analysis software: Tracker, version 4.86 
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(www.cabrillo.edu/~dbrown/tracker). VL fascicle deep aponeurosis cross point displacement 

relative to the skin marker provided a measure of muscle-tendon unit (MTU) elongation 

(Figure 3). Patellar tendon elongation was determined by the longitudinal displacement of the 

patella apex and the tendon tibia insertion (Figure 6.3). The distal insertion of the patellar 

tendon was not monitored for the purpose of estimating overall MTU elongation To enable 

correction of tissue displacement due to joint angle changes during ramp contractions 

individual ratios of tissue displacement relative to joint angular displacement (mm/°) were 

obtained from passive movements (i.e. plotting the tissue displacement-knee joint angle 

relationship). This ratio was used to determine tissue displacement resulting from knee angle 

change during ramp contractions, which was subsequently subtracted from total measured 

displacement. Corrections were only applied to aponeurosis displacement. Tendon elongation 

under passive conditions was deemed negligible. Passive movements were conducted prior to 

the ramp contractions. Participants were instructed to completely relax as their knee was 

moved through 90 to 130°. During passive movements and ramp contractions, knee joint 

angle (angle between visible markers placed on the greater trochanter, lateral knee joint space 

and lateral malleolus) was derived from sagittal plane video recorded using a camera 

mounted on a tripod positioned (1.5 m) perpendicular to the strength-testing chair. The video 

camera was interfaced with a computer and recorded using spike 2 video capture at 25 Hz 

(simultaneously with force, EMG, and ultrasound images during the ramp contractions) and 

analysed via Tracker software.  

 

6.2.10. Calculation of Tendon Force  

PT force was calculated by dividing external absolute knee extensor torque by the patellar 

tendon moment arm length. Direct measures of moment arm where acquired at rest from MRI 

images as indicated above (MRI measurement). Due to constraints in the size of the knee coil, 

sagittal images were acquired in an extended knee position (~163°).  Moment arm length for 

any specific knee angle measured at rest or during ramp contraction was estimated from 

previously published data fitted with a quadratic function (Kellis and Baltzopoulos 1999), 

scaled to each participant’s measured moment arm length at 163°. Absolute internal knee 

extensor torque was given by summing net knee extension torque and the estimated knee 

flexor co-contraction torque. Antagonist knee flexor torque was estimated by expressing the 

average knee flexor EMG amplitude (RMS 50 ms moving window) during ramp contractions 

relative to the knee flexor EMGMAX and multiplying by the knee flexor MVT (assuming a 

http://www.cabrillo.edu/%7Edbrown/tracker
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linear relationship between EMG amplitude and torque). During analysis, torque and EMG 

amplitude were down-sampled to 25 Hz to match the ultrasound video frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3. The experimental set-up and ultrasound imaging during ramp contractions. Participants 
were tightly fastened to a rigid isometric strength-testing chair with resting knee and hip angles of 115 
and 126° respectively (A). Unilateral knee extensor torque, video of knee joint angle, antagonist 
muscle (biceps femoris [BF], semitendinosus [ST]) surface electromyography and ultrasound video 
images were recorded during constant-loading rate isometric ramp knee extensor contractions 
(example in B). Ultrasound images are of the patellar tendon (PT, C) and vastus lateralis (VL, D) 
muscle at rest (top) and at peak ramp torque (bottom) and indicate the measurement of PT (tibia-
patellar displacement, ΔT + ΔP) and MTU (VL deep aponeurosis fascicle-cross point proximal 
displacement [ΔM] relative to the echo-absorptive skin marker) elongation. 
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6.2.11. Calculation of Tissue Stiffness and Tendon Young’s Modulus  

For each of the three best ramp contractions analysed, MTU (corrected for passive tissue 

displacement) and PT elongation were plotted against total tendon force (corrected for 

antagonist force). Force-elongation plots were fitted with a second-order polynomial. Both 

pre and post-training, tissue stiffness for each individual was calculated as the slope of the 

force-elongation curve over an absolute tendon force range that equated to 70-80% of pre-

training MVT. Tendon stress was obtained by dividing tendon force by mean tendon CSA. 

Tendon strain was the percentage tendon displacement relative to the resting tendon length. 

Individual PT stress-strain curves were plotted and PT Young’s modulus calculated for each 

individual as the slope of the stress-strain curve derived over a stress range that corresponded 

to 70-80% of pre-training MVT. The stiffness and modulus measured from each of the three 

analysed ramps were averaged to give a representative value.  

 

6.2.12. Statistical Analysis  

Data are reported as mean ± standard deviation (SD). Statistical significance tests were 

conducted using SPSS Version 20.0 (IBM Corp., Armonk, NY), and significance was 

accepted at P<0.05. One-way analysis of variance (ANOVA) tests were conducted on all pre-

training variables to determine whether baseline differences existed between groups. 

Unpaired t-tests were used to assess differences in training variables (loading rate, duration, 

and magnitude) between ECT and SCT. Within-group changes (absolute values) were 

evaluated with paired t-tests. Comparison of between-group adaptations to the intervention 

were initially assessed with repeated measures analysis of variance (ANCOVA; group [ECT 

vs. SCT vs. CON] x time [pre vs. post]) with corresponding pre-training values used as 

covariates. When group x time interaction effects displayed P<0.05, least significant 

difference (LSD) post-hoc pairwise comparisons (with Holm-Bonferroni adjustment applied 

to the P-values adjustment applied to the P-values [LSDHB]) of absolute changes (pre to post) 

between groups (i.e. ECT vs. SCT, ECT vs. CON, SCT vs. CON) were performed to 

delineate specific group differences. Effect sizes (ES; specifically Hedges g, incorporating 

correction for small sample bias; Lakens 2013) were calculated for within-group changes and 

between-group comparisons. Effect size magnitude was classified as <0.2 = “trivial”, 0.2-

<0.5 = “small”, 0-5-0.8 = “moderate”, >0.8 = “large” (Cohen 1988). The reproducibility of 

measurements (all muscle and tendon variables) was defined by the average within 

participant co-efficient of variation (CVw, %) calculated between pre-post measurements in 

the control group.   
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6.3. RESULTS 

6.3.1. Group Characteristics at Baseline 

At baseline, no differences (ANOVA, P ≥ 0.579) were observed between groups for age 

(ECT 25 ± 2; SCT 25 ± 2; CON 25 ± 3 years) height (ECT 174 ± 7; SCT 175 ± 8; CON 176 

± 6 cm) body mass (ECT 71 ± 10; SCT 70 ± 8; CON 72 ± 7 kg) or habitual physical activity 

level (ECT 1971 ± 1077; SCT 2084 ± 1256; CON 2179 ± 1588 MET minutes per week). 

Likewise, ANOVA showed similar MVT (P = 0.304), MTU stiffness (P = 0.328), PT 

stiffness (P = 0.215), PT Young’s modulus (P = 0.184), QUADSvol (P = 0.508), VL apon 

area (P = 0.815), and PT mean CSA (P = 0.073). 

 

6.3.2. Reproducibility of Measurements  

The reproducibility of pre and post measures for the CON group over the 12-week 

intervention period was excellent for MVT (CVw 2.9%) and MTU stiffness (3.9%), and very 

good for PT stiffness (7.2%) and Young’s modulus (6.8%). Excellent reproducibility was 

also observed for muscle volume (1.7%), aponeurosis area (2.7%) and PT CSA (2.9%).  

 

6.3.3. Training Characteristics for ECT vs. SCT 

ECT involved a far greater, ~6.2-fold higher, loading rate per repetition than SCT (8.9 ± 1.4 

vs. 1.4 ± 0.1 %MVT.s-1, unpaired t-test P < 0.001). Alternatively, loading duration (time 

>65%MVT) per training session was substantially longer during SCT than ECT (106 ± 12 vs. 

8 ± 8 s, unpaired t-test P < 0.001). Peak loading magnitude was slightly greater in ECT than 

SCT (81 ± 4 vs. 75 ± 2% MVT, unpaired t-test P < 0.001).  

 

6.3.4. Muscle-Tendon Unit Strength and Size (Tables 6.1 and 6.3, Figure 6.4) 

MVT increased after ECT (ES = 1.15 “large”, paired t-test P < 0.001) and SCT (ES = 1.11 

“large”, P < 0.001), but not following CON (ES = 0.01 “trivial”, P = 0.868). The absolute 

increase in MVT was greater than CON for both ECT (ES = 1.90 “large”, LSDHB P < 0.001) 

and SCT (ES = 2.64 “large”, LSDHB P < 0.001), and 45% larger after SCT than ECT (ES = 

0.75 “moderate”, LSDHB P = 0.032). 

 

QUADSvol increased after SCT (ES = 0.47 “small”, paired t-test P = 0.001) but not 

following ECT (ES = 0.17, P = 0.195) or CON (ES = 0.04, “trivial”, P = 0.661). There was a 

group x time effect for QUADSvol (Table 6.1), with the absolute change (Figure 6.4 A) after 

SCT being greater than CON (ES = 1.12, “large”, LSDHB P = 0.021), but not statistically 
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different to ECT (P = 0.074). Absolute changes in QUADSvol after ECT were not greater 

than CON (ES = 0.31 “small”, LSDHB P = 0.479).  

 

VL apon area increased after SCT (ES = 0.32 “small”, paired t-test P = 0.015), and also 

tended to increase after ECT (ES = 0.35 “small”, P = 0.060), while remaining unchanged in 

CON (ES = 0.11 “trivial”, P = 0.408). However there was no group x time effect for VL apon 

area (Table 6.1; Figure 6.4 B).  

 

PT CSA showed a small decrease in CON (ES = 0.27 “small”, paired t-test P = 0.028), and 

after ECT (ES = 0.29 “small”, P = 0.012), but was unchanged following SCT (ES = 0.03, 

“trivial”, t-test P = 0.746). However, there was no group x time effect for PT CSA (Table 6.1; 

Figure 6.4 C). 

 

 

6.3.5. Tissue Mechanical Properties (Tables 6.2 and 6.3) 

6.3.5.1. Patellar Tendon (Figures 6.5, 6.6 and 6.7) 

PT elongation at 80% pre-training MVT was less after ECT (ES = 0.75 “moderate”, paired t-

test P = 0.011; Figure 6.5 A), but was unchanged after SCT (ES = 0.24 “small”, P = 0.246) 

and CON (ES = 0.15 “small”, P = 0.331). No group x time effect was observed (Table 6.2).  

 

PT strain (relative elongation) at 80% pre training MVT was also less after ECT (ES = 0.54 

“moderate”, paired t-test P = 0.01; Figure 6.5 B), but was unchanged after SCT (ES = 0.11 

“trivial”, P = 0.542) and CON (ES = 0.15 “trivial”, P = 0.263). However, there was no group 

x time effect (Table 6.2). 

 

PT stiffness increased after both ECT (ES = 0.88 “large”, paired t-test P = 0.002; 20%) and 

SCT (ES = 0.74 “moderate”, P = 0.019; 16%), but was unchanged in CON (ES = 0.07 

“trivial”, P = 0.711). Group comparison showed changes (Figure 6.7 A) in both ECT (ES = 

1.18 “large”, LSDHB P = 0.030) and SCT (ES = 0.73 “moderate”, LSDHB P = 0.034) were 

greater than CON. Positive effects of ECT and SCT on PT stiffness were similar (ES = 0.21, 

“small”, LSDHB P = 0.830).  

 

PT Young’s modulus increased after ECT (ES = 1.05 “large”, paired t-test P = 0.0004), and 

SCT (ES = 0.57 “moderate”, P = 0.017), and was unchanged in CON (ES = 0.05, “trivial”, P 
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= 0.637). Group comparison showed absolute changes (Figure 6.7 B) were greater in both 

ECT (ES = 1.38 “large”, LSDHB P = 0.012) and SCT (ES = 0.75 “large”, LSDHB P = 0.042) 

than CON. Positive effects of ECT and SCT on PT Young’s modulus were similar (ES = 

0.21, “small”, LSDHB P = 0.830).  

 

6.3.5.2. Muscle-Tendon Unit (Figures 6.8 and 6.9) 

MTU elongation at 80% pre-training MVT increased after ECT (ES = 0.89 “large”, paired t-

test P = 0.003; Figure 6.8 A) but was unchanged after SCT (ES = 0.09 “trivial”, P = 0.428) 

and CON (ES = 0.06 “trivial”, P = 0.637). Consequently, there was a group x time interaction 

effect (P = 0.020; Table 6.1), with changes in ECT being greater than SCT (ES = 1.23 

“large”, LSDHB P = 0.021) and tended to be greater than CON (ES = 0.80 “large”, LSDHB P = 

0.098; Figure 6.9 A).  

 

MTU stiffness increased after SCT (ES = 0.50 “moderate”, paired t-test P = 0.005) but was 

unchanged after ECT (ES = 0.02 “trivial”, P = 0.938) and CON (ES = 0.03 “trivial”, P = 

0.695). Consequently, the absolute change in MTU stiffness (Figure 6.9 B) following SCT 

was greater than ECT (ES = 0.94 “large”, LSDHB P = 0.015) and CON (ES = 1.12, “large”, 

LSDHB P = 0.016), while ECT vs. CON changes were equivalent (ES = 0.02 “trivial”, LSDHB 

P = 0.846).  
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Table 6.1. Muscle-tendon unit maximal strength and size, and patellar tendon moment arm pre and post intervention period in the explosive-contraction 
strength training (ECT), sustained contraction strength training (SCT) and untrained control (CON) groups. 

 ECT SCT CON Two-way ANCOVA  
Interaction Effect (P-value) 

 Pre Post Pre Post Pre Post 

MVT, Nm 234 ± 27 273 ± 36***L 237 ± 49 293 ± 47***L 255 ± 50 256 ± 58 <0.001 

QF Volume, cm3 1778 ± 244 1827 ± 277 1820 ± 273 1967 ± 316***S 1897 ± 282 1909 ± 271 0.018 

VL Apon area, cm2 137.1 ± 16.4 143.1 ± 15.2~
S 136.3 ± 26.1 144.3 ± 21.2*S 138.8 ± 13.7 140.5 ± 15.7 0.242 

PT mean CSA, mm2 98.7 ± 10.0 95.9 ± 8.3*S 97.3 ± 12.9 97.7 ± 13.0 106.5 ± 9.0 103.6 ± 10.7*S 0.129 

PT length, mm 47.5 ± 5.7 47.2 ± 5.7 45.4 ± 5.5 45.1 ± 5.5 47.1 ± 5.7 46.6 ± 6.8 0.829 
PT moment arm, mm 40.6 ± 2.4 40.7 ± 2.3 42.4 ± 2.9 42.5 ± 2.9 41.2 ± 2.9 41.3 ± 2.9 0.902 
Data are mean ± SD. PT MA = moment arm. ECT n = 13; SCT, n = 15 and CON, n = 13.Within-group change: ***Different to pre, P≤0.001, **P<0.01, *P<0.05. ~P=0.051-
0.08. Within-group effect size: S = “small” (0.2-0.5), M = “moderate”, (>0.5-0.8). Interaction effect: group by time. 
 
 
Table 6.2. Patellar Tendon (PT) and Muscle-tendon unit (MTU) mechanical properties pre and post intervention period in the explosive-contraction strength 
training (ECT), sustained contraction strength training (SCT) and untrained control (CON) groups. 

Data are mean ± SD. Elongation and Strain at 80% pre-training MVT. ECT n = 13; SCT, n =14/15 for MTU/PT and CON, n = 13/12 for MTU/PT. ***Different to pre, 
P≤0.001, **P<0.01, *P<0.05. Effect size: S “small” (0.2-0.5), M = “moderate”, (>0.5-0.8).  Interaction effect: group by time. 
 

 ECT SCT CON Two-way ANCOVA  
Interaction Effect (P-value) 

Pre Post Pre Post Pre Post  
PT        
Elongation at 80% pre-MVT, mm 3.17 ± 0.52 2.82 ± 0.42**M 3.23 ± 0.54 3.07 ± 0.64 3.12 ± 0.62 3.02 ± 0.63 0.270 
Stiffness, N.mm-1 2605 ± 446 3122 ± 632**L 2835 ± 444 3239 ± 575*M 2534 ± 501 2569 ± 413 0.018 
Strain at 80% pre MVT, % 6.8 ± 1.7 6.0 ± 1.1**M 7.2 ± 1.4 6.9 ± 1.7 6.6 ± 1.1 6.4 ± 1.1 0.093 
Young's Modulus, GPa 1.23 ± 0.18 1.49 ± 0.27***L 1.32 ± 0.27 1.51 ± 0.36*M 1.14 ± 0.27 1.16 ± 0.20 0.012 
        
MTU        
Elongation at 80% pre-MVT, mm 15.0 ± 2.6 17.4 ± 2.2 **L 16.9 ± 4.6 16.4 ± 5.3 16.3 ± 5.7 16.6 ± 4.4 0.020 
Stiffness, N.mm-1 592 ± 118 595 ± 101 560 ± 177 687 ± 285**M 507 ± 130 511 ± 116 0.007 
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Figure 6.4. Pre to post absolute changes (Δ) in (A) Quadriceps Femoris muscle volume (QUADSvol), 
(B) vastus lateralis aponeurosis area (VL Apon Area), and (C) Patellar Tendon mean cross-sectional 
area (PT mean CSA) in response to isometric knee extension explosive-contraction (ECT, n = 13) or 
sustained-contraction strength training (SCT, n = 14) interventions and in an untrained control (CON) 
group (n = 13). Symbols indicate group differences: *SCT vs. CON, P<0.05; †ECT vs. SCT, trend 
0.05<P<0.09. Letter denotes effect size magnitude: M = moderate (0.5-0.8), L = large (>0.8). Data are 
mean ± SD. 
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Figure 6.5. Tendon force-patellar tendon (PT) elongation relationships pre (black diamonds) and post 
(grey squares) 12 weeks isometric knee extension explosive-contraction strength training (ECT, n = 
13 [A]) or sustained-contraction strength training (SCT, n = 15 [B]) interventions and in an untrained 
control group (CON, n = 12 [C]). Data are group mean and SD. Data points are plotted at the 
elongation corresponding to tendon forces at 10% increments of pre-training maximal voluntary 
torque (MVT). Within-group effect, PT elongation at 80% pre-training MVT, different to pre 
**P<0.01. Letter denotes effect size magnitude: M = moderate (>0.5-0.8). 
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Figure 6.6. Tendon stress-patellar tendon (PT) strain relationships pre (black diamonds) and post 
(grey squares) 12 weeks isometric knee extension explosive-contraction strength training (ECT, n = 
13 [A]) or sustained-contraction strength training (SCT, n = 15 [B]) interventions and in an untrained 
control group (CON, n = 12 [C]). Data are group mean and SD. Data points are plotted at the 
elongation corresponding to tendon forces at 10% increments of pre-training maximal voluntary 
torque (MVT). Within-group effect, PT elongation at 80% pre-training MVT, different to pre 
**P<0.01. Letter denotes effect size magnitude: M = moderate (>0.5-0.8). 
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Figure 6.7. Pre to post absolute changes (Δ) in (A) Patellar Tendon (PT) stiffness and (B) PT 
Young’s Modulus, in response to isometric knee extension explosive-contraction strength training 
(ECT, n = 13) or sustained-contraction strength training (SCT, n = 15) interventions and in an 
untrained control (CON) group (PT n = 12). Symbols indicate group differences: §ECT vs. CON 
P<0.05; *SCT vs. CON, P<0.05; †ECT vs. SCT P<0.05.  Letter denotes effect size magnitude: M = 
moderate (>0.5-0.8), L = large (>0.8). Data are mean ± SD.  
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Figure 6.8. Tendon force-muscle-tendon unit (MTU) elongation relationships pre (black diamonds) 
and post (grey squares) 12 weeks isometric knee extension explosive-contraction strength training 
(ECT, n = 13 [A]) or sustained-contraction strength training (SCT, n = 15 [B]) interventions and in an 
untrained control group (CON, n = 13 [C]). Data are group mean and SD. Data points are plotted at 
the elongation corresponding to tendon forces at 10% increments of pre-training maximal voluntary 
torque (MVT). Within-group effect, MTU elongation at 80% pre-training MVT, different to pre 
**P<0.01. Letter denotes effect size magnitude: L = Large (>0.8). 
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Figure 6.9. Pre to post absolute changes (Δ) in (A) knee extensor muscle-tendon unit (MTU) 
elongation at pre-training MVT and (B) MTU stiffness (PT) stiffness, in response to isometric knee 
extension explosive-contraction strength training (ECT, n = 13) or sustained-contraction strength 
training (SCT, n = 14) interventions and in an untrained control (CON) group (n = 13). Symbols 
indicate group differences: †ECT vs. SCT P<0.05, *SCT vs. CON, P<0.05; †ECT vs. SCT P<0.05. 
Letter denotes effect size magnitude: L = large (>0.8). Data are mean ± SD.  
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Table 6.3. Summary of within-group changes and between-group differences from pre to post 
training in maximal voluntary strength, muscle-tendon unit hypertrophy and tissue stiffness indices 
after explosive-contraction strength training, sustained-contraction strength training, and control 
interventions. 

  Within-group changes  Between-group differences 
  ECT SCT CON 

 Maximal Strength 
   

 
 

MVT, Nm  +17%  +24%  
 

ECT & SCT  > CON 

    
 

 
Hypertrophy 

   
 

 
QUADSvol, cm3   +8%  

 
SCT  > CON 

VL Apon Area, cm2   +7%  
 

- 
PT mean CSA, mm2  -3%   -3% 

 
- 

    
 

 
Tissue Stiffness Indices 

   
 

 
PT Elongation at 80% pre-MVT, mm  -10%   

 
- 

PT Strain at 80% pre-MVT, %   -11%   
 

- 
PT Stiffness, N.mm-1  +20%  +16%  

 
ECT & SCT  > CON 

PT Young's Modulus, GPa  +22%  +16%  
 

ECT & SCT  > CON 

    
 

 
MTU elongation at 80% pre-MVT  +17%   

 
ECT  > SCT 

MTU Stiffness, N.mm-1   +21%    SCT  > ECT & CON 
The directions of the group changes are shown by  or  with the percentage change in the group 
mean also shown. Non-significant within-/between changes are indicated by ↔/-. ECT, explosive-
contraction strength training; SCT, sustained-contraction strength training; CON, control.  
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6.4. DISCUSSION  

The present study compared the efficacy of 12 weeks of ECT vs. SCT to increase PT stiffness 

and Young’s modulus and knee extensor MTU stiffness, as well as elicit tissue (muscle, 

aponeurosis, and tendon) hypertrophy. Both ECT and SCT similarly increased PT stiffness 

and modulus (20 and 22% vs. 16 and 16%) whereas only SCT increased MTU stiffness 

(21.3%). Likewise only SCT increased QUADSvol (8%). A within group increase in VL 

apon area was also observed after SCT, although this change was not statistically greater to 

either ECT or CON. Finally, neither ECT nor SCT induced tendon hypertrophy. 

 

SCT produced a distinct increase in tendon stiffness, as has been commonly reported in 

response to similar conventional SCT regimes (see Wiesinger et al. 2015 review; mean 

change ~27%). Uniquely we found ECT was equally effective as SCT for promoting tendon 

adaptation; increases in PT stiffness were similar after ECT (+20%) and SCT (+16%), and 

both increased by more than CON, with both interventions increasing the gradient of the 

force-elongation relationship, particularly at high forces. However, neither training 

intervention induced PT hypertrophy.  Thus the increases in PT stiffness were independent of 

tendon size adaptations. While no previous studies have examined if ECT can induce changes 

in tendon size, our finding of no change in PT mean CSA with SCT is in agreement with 

previous studies who equally reported increased tendon stiffness in the absence of altered 

tendon CSA after a comparable length period of SCT (Arampatzis et al. 2010; Kubo et al. 

2012; Bloomquist et al. 2013). In contrast, others have reported small increases in tendon 

CSA following similar strength training regimes (Arampatzis et al. 2007a; Kongsgaard et al. 

2007; Seynnes et al. 2009; Bohm et al. 2014). Though reasons for the discrepant findings are 

unclear, with regards to our PT CSA data, it is unlikely that our measurements simply failed 

to detect a change. Pre and post tendon CSA analysis was performed blinded by a single 

investigator, with precise measurements of tendon CSA made along the full length of the 

tendon from MRI images, with excellent reproducibility of the measurement (~3% pre-post 

CVw in CON). 

 

A functionally relevant change in tendon size would manifest from collagen/extracellular 

matrix protein synthesis and accretion. In support of our findings of no effect of either ECT 

or SCT on tendon CSA, a couple of studies indicate that resistance exercise may not 

stimulate in vivo production of collagen/or extracellular matrix proteins. For instance, an 

acute bout of resistance exercise (dynamic knee extension at 70%-RM, 3 x 10 repetitions) 
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was shown to have no effect on collagen type I messenger RNA expression 24 hours post 

exercise (Sullivan et al. 2009). Also, 12 weeks of isoinertial squat training failed to increase 

the concentration of procollagen type 1 N-propetide (biomarker of collagen synthesis) in PT 

peritendinous tissue (Bloomquist et al. 2013: this study observed no change in tendon CSA). 

However, there is some evidence that mechanical loading of tendon tissue can induce an 

increased collagen synthesis measured by peritendinous tissue procollagen peptide levels 

(Langberg et al. 1999) and via the uptake of labelled amino acids (Miller et al. 2005). 

Although a collagen synthetic response following an equivalent bout of exercise is not a 

consistent finding (Didrieksen et al. 2013; Heinemeier et al. 2013a). Therefore, the current 

evidence suggests mechancial loading in vivo does not necessarily trigger the appropriate 

biochemical response needed to stimulate tendon growth. 

 

In the absence of tendon hypertrophy the increase in PT stiffness with ECT and SCT were 

due to material stiffness changes, with both interventions producing greater changes in PT 

Young’s modulus than CON. These changes after SCT are in accordance with multiple 

previous studies (Seynnes et al. 2009; Malliaras et al. 2012; McMahon et al. 2013), although 

the present study was the first to document increased tendon quality after ECT. Young’s 

modulus changes are thought to reflect the functional consequences of alterations in internal 

tendon collagenous structure and biochemical composition (Buchanan and Marsh 2002:  

collagen content, cross-link density, fibril size). However, evidence for changes in tissue 

intrinsic structure/composition after strength training are lacking, and therefore further 

investigations to uncover the specific mechanisms for increases in Young’s modulus are 

required. 

 

The similar increases in PT stiffness and Young’s modulus for both types of training could 

perhaps be due to the high loading magnitude in ECT and SCT. Other in vivo studies have 

noted the importance of high loading magnitude for stimulating tendon adaptation (i.e. 

increased tendon modulus only observed in high vs. low force SCT (Kubo et al. 2003; 

Kongsgaard et al. 2007; Arampatzis et al. 2007), and it is well recognised that in vitro 

mechanotransduction responses of tenocytes (resident tendon cells responsible for 

extracellular matrix remodelling) are highly strain magnitude dependent (Arnoczky et al. 

2002; Lavagnino et al. 2008). It is perhaps surprising that SCT was not associated with a 

greater increase in tendon stiffness and modulus than ECT as intuitively a 13-fold greater 

loading duration in SCT vs. ECT could be expected to induce a more pronounced 
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mechanostimulatory effect. However, there is currently no in vivo data that shows that a 

greater overall duration of loading is associated with a more pronounced increase in free 

tendon stiffness. Importantly therefore, our data indicate that brief explosive contractions up 

to a high loading magnitude are an efficient means of increasing tendon stiffness and 

Young’s modulus, which circumvents any need for sustained, fatiguing muscular 

contractions to stimulate tendon adaptation. The seeming potency of ECT to elicit an increase 

in tendon stiffness could be consequent to a greater collagen fibril strain exhibited in 

response to higher tendon strain rates (Clemmer et al. 2010). Greater fibril strain conceivably 

provides a greater stimulus to the resident tendon cells to initiate the processes (alterations in 

extracellular matrix protein composition) that presumably leads to the adaptation of increased 

tendon stiffness. Our finding therefore highlights that ECT is an efficacious approach to 

increase tendon stiffness and the less demanding nature of ECT likely makes this training 

modality preferentially tolerable to older adults and patient groups (e.g. osteoarthritis, 

tendinopathy) who incidentally may exhibit lesser tendon quality. Moreover, PT strain was 

reduced after ECT, but not after SCT or CON. Lesser tendon strain in response to a defined 

stress likely could reduce the susceptibility of the tendon to fatigue damage and overload 

injury (Ker et al. 1988, 2000; Buchanan and Marsh 2002). ECT may therefore be a useful 

training modality to adopt to reduce tendon pathology risk and facilitate tendon injury 

rehabilitation. 

 

Alternative to the tendon responses, ECT was not an effective stimulus for increasing MTU 

stiffness measured at high forces. An interesting observation was actually that the force-

elongation relationship post ECT was shifted to the right (greater elongation at defined 

forces). The change in elongation in response to the same high force (80% pre-training MVT) 

after ECT was greater than after SCT and tended to be greater than the CON group change. 

This suggests that ECT may be leading towards an overall greater compliance in the MTU. 

The rightward shift in the force-elongation curves after ECT appears to result from a change 

in elongation at the initial level (10%MVT), that persists throughout the rise in tendon force, 

as after 10%MVT the gradients of the force-elongation relationships pre-post ECT are 

equivalent. Nevertheless, consistent with our data, there is some evidence that sprint trained 

athletes (inherently perform explosive contraction type training) display greater knee 

extensor MTU compliance at the lowest levels of force (<20%MVT), with subsequent greater 

elongation values throughout the measured force range (Kubo et al. 2000, 2011). It is 

possible that this reduction in low force MTU stiffness (i.e. 0-10%MVT) after ECT with no 
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changes at higher forces indicates changes in tissue collagenous structure/composition that 

are specific to the highest (earliest) compliance region of the force-elongation relationship. 

Further work is needed to elucidate whether compliance/force level specific changes in 

stiffness are possible with different interventions, and whether there is any mechanistic basis 

for this supposition. 

 

SCT did increase MTU stiffness at the high force level (70-80% pre-training MVT) with 

greater changes than after ECT or CON, concomitant with a general increase in the gradient 

of the force-elongation relationship. Alternatively SCT produced no apparent change in the 

elongation values at a constant high force (80% pre-training MVT), suggesting SCT did not 

cause a substantial change in stiffness across the whole force range. As per the previous 

paragraph any influence of SCT on high force stiffness appears to have been diluted by more 

consistent responses for lower regions of the force-elongation relationship resulting in no 

change in overall elongation. The increased MTU stiffness in the high force range after SCT 

is consistent with previous findings (Kubo et al. 2001, 2012; Arampatzis et al. 2007a, 2010; 

Bohm et al. 2014). The increased MTU stiffness after SCT and not ECT is perhaps due to the 

substantially longer loading duration in SCT. Previous work has showed greater changes in 

MTU stiffness after longer vs. short contractions, even though the total loading duration was 

matched (Kubo et al. 2001; Arampatzis et al. 2007a, 2010; Bohm et al. 2014). Our finding of 

no change in MTU stiffness after ECT contrasts with two previous studies that reported 

increased MTU stiffness after merely 4-6 weeks ECT (Burgess et al. 2007; Tillin et al. 2012). 

It is possible that the increased plantar flexor MTU stiffness observed by Burgess et al. could 

reflect adaptation of the Achilles tendon, as it accounts for a substantial portion of plantar 

flexor MTU stiffness (Farcy et al. 2013).  Our finding perhaps differs to Tillin et al. because 

of the different training knee joint angles (115° in our study, vs. 85° in Tillin et al.). Training 

at longer muscle lengths (more acute angle) has been shown to result in greater MTU 

stiffness changes (Kubo et al. 2006a). 

 

Collectively, our findings that PT stiffness, but not MTU stiffness increased after ECT, 

whereas SCT increased both PT and MTU stiffness, indicates a differential adaptive response 

in the tendinous tissues according to the contrasting loading regime. Further work could 

attempt to more precisely delineate the specific loading characteristics that could account for 

the differential adaptations. The contrasting response of PT and MTU stiffness to ECT 

indicates that MTU stiffness changes are seemingly independent of PT stiffness changes. 
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This interpretation is reinforced by the simple observation of the small proportion (e.g. 19% 

pre & post in the SCT group) of MTU elongation being due to the PT, which also suggests a 

minor contribution of changes in stiffness of the PT, to that of the MTU. Thus MTU stiffness 

changes perhaps reflect adaptations in the aponeurosis component of the MTU, although the 

methodology of the present study is insufficient to specifically decipher aponeurosis stiffness 

changes and could be interesting to explore in future work. However, in accordance with 

MTU stiffness changes, SCT produced an increase in VL apon area (+7%). This within group 

increase in VL apon area extends the notion that aponeurosis hypertrophy can occur with 

SCT, as found in a previous solitary dynamic SCT 12 week intervention (Wakahara et al. 

2015). Aponeurosis hypertrophy is thought to be necessary to accommodate an increase in 

muscle cross-sectional area that occurs in response to strength training (Abe et al. 2012). 

Consistent with this view, only SCT resulted in an increase in QUADSvol (+8%). 

Considering the differences in loading characteristics between ECT and SCT, the muscle 

hypertrophic response to SCT but not ECT is likely a consequence of the greater loading 

duration (also referred to as time under tension in the wider literature) with SCT. 

Supportively, in response to bouts of isoinertial knee extensions with equivalent load, a 

greater loading duration increases the acute amplitude of muscle myofibrillar protein 

synthesis (Burd et al. 2012). The limited loading duration during ECT therefore seems to 

account for the lack of muscle hypertrophy in response to this training modality.  

 

In conclusion, while neither ECT nor SCT induced tendon hypertrophy, ECT was equally 

effective as SCT for stimulating improvements in tendon quality (i.e. material stiffness 

[Young’s modulus]) and stiffness. However, ECT was relatively ineffective for inducing 

muscular adaptations, as only SCT increased MTU stiffness, and muscle and aponeurosis 

size. Our results therefore indicate a differential adaptation of MTU component tissues 

(tendon vs. muscle-aponeurosis) depending upon the loading characteristics of the training 

completed. Specifically, tendon stiffness changes appeared to be primarily driven by 

achieving a high loading magnitude, whereas for the muscle and aponeurosis (hypertrophy 

and stiffness), the duration of loading seemed to be the more important stimulus.  
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Size and stiffness of the muscle-tendon unit and tendon: 
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7.1. INTRODUCTION 

The contractile force generated by skeletal muscles is transmitted to the bone via collagenous 

tendinous tissues (intramuscular aponeurosis and external tendon). The effectiveness of 

tendons to transmit force is determined by their mechanical stiffness (resistance to 

deformation). As such we expect that increases in muscle strength induced via training would 

be accompanied by an increase in tendinous tissue stiffness. Greater tissue stiffness in 

accordance with stronger muscles would likely be necessary to maintain muscle and tendon 

force-length interaction, increase tissue maximal tolerable load and restrain the muscle 

contraction-induced maximal tissue strain within constrained sub-failure physiological limits 

(Matson et al. 2012; LaCroix et al. 2013).  

 

Short-term strength training (up to 14 weeks) utilising high load sustained contractions has 

consistently increased both muscle-tendon unit (MTU: Kubo et al. 2001, 2012; Arampatzis et 

al. 2007a; 2010; Bohm et al. 2014) and external ‘free’ tendon stiffness (Reeves et al. 2003; 

Kongsgaard et al. 2007; Seynnes et al. 2009; McMahon et al. 2013). These changes in 

stiffness of these tendinous tissues could be due to either hypertrophy of the component 

tissues and/or an increase in their material stiffness. Evidence for aponeurosis hypertrophy is 

limited and unclear (Wakahara et al. 2015). Whilst the change in tendon size after strength 

training has been documented by a number of studies, the findings to date are equivocal with 

reports showing region specific hypertrophy (Kongsgaard et al. 2007; Arampatzis et al. 

2007a; Seynnes et al. 2009; Bohm et al. 2014) and no change in tendon size (Arampatzis et 

al. 2010; Kubo et al. 2012; Bloomquist et al. 2013; Chapter 6). One possible explanation for 

this controversy is the relatively slow turnover of collagenous tissues (Smith and Rennie 

2007; Heinemeier et al. 2013b) such that changes in tendinous tissue size after 8-14 weeks of 

training are on the threshold of what can be accurately detected. In this case longer durations 

of training may confirm the potential for tendon hypertrophy in response to strength training. 

In contrast, numerous studies have shown approximately proportional increases in Young’s 

modulus and tendon stiffness (Reeves et al. 2003; Seynnes et al. 2009; Malliaras et al. 2012; 

McMahon et al. 2013; Waugh et al. 2014) after short-term strength training, suggesting that 

changes in material stiffness are the primary adaptation that contributes to the increase in 

tissue mechanical stiffness. However the potential for further changes in tissue stiffness 

(mechanical and material) over longer-term periods of training remains largely unexplored.  
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Long-term intervention studies (>14 weeks) are logistically problematic, therefore an 

alternative approach is the cross-sectional comparison of chronically strength trained 

(>5years) vs. untrained males (Weisinger et al. 2013). These authors reported that chronically 

trained individuals had a 21% greater PT stiffness commensurate with 34% larger tendon 

CSA (via ultrasound), because Young’s modulus was equivalent compared to recreationally 

active males (Seynnes et al. 2013). However, this study involved small cohorts (n = 8) and 

measured Young’s modulus at a greater tendon stress level (+34%) in the untrained than 

chronically-trained individuals, which may have confounded the comparison as stress-strain 

relationships are curvi-linear (e.g. Maganaris and Paul 2000, 2002). Moreover, a more recent 

study found that tendon CSA measured by MRI for 4/5 different tendons around the body 

(proximal and distal achilles, patellar and triceps brachii) was no different between strength 

trained (~10 years) and untrained males despite substantial differences in muscle volume 

(Fukutani and Kurihara 2015), contrarily implying chronic strength training may therefore 

not necessarily induce tendon hypertrophy. More robust evidence would ideally measure 

tendon CSA along the full length of the tendon from MRI (gold standard method: Couppe et 

al. 2014) images, employing careful segmentation. At present, there is insufficient data to 

affirm or refute whether high load strength training performed systematically for a number of 

years is associated with larger tendons. Further there is meagre evidence to show that chronic 

strength training may clearly induce aponeurosis hypertrophy, with just one study of greater 

aponeurosis size in weightlifters vs. recreationally active males (Abe et al. 2012). Finally 

whether MTU stiffness continues to adapt to prolonged strength trained is currently 

unknown.  

 

The purpose of this study was to compare the mechanical and morphological properties of the 

patellar tendon (stiffness, Young’s modulus, CSA [mean and regional]) and quadriceps 

femoris muscle-tendon unit (stiffness, muscle volume, vastus lateralis aponeuroses area), 

between untrained controls, short-term strength trained (post-12 weeks training) and chronic-

strength trained (>3 years of systematic training) groups.  

 

7.2. METHODS 

7.2.1. Participants  

Seventy young men provided written informed consent before completing this study, which 

was approved by the Loughborough University Ethical advisory committee. All participants 

were healthy and free from musculoskeletal injury with no previous history of tendon 
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pathology. An untrained control group (UNT) comprised n = 39 males (no lower body 

strength training in the >18 months). A short-term strength trained group (SST, n = 15 males) 

was measured post 12-weeks supervised isometric knee extension strength training (3 x wk, 

40 reps of 3-s at 75% MVT). A chronic strength-trained (CST) group comprised n = 16 males 

with 4.0 ± 0.8 (mean ± SD) years systematic heavy-resistance training experience (~3 x wk 

of quadriceps sessions; typical exercises were squat, lunge, step-up, leg press). Each CST 

participant reported some nutritional supplement consumption (predominantly whey protein 

and creatine), although none declared illegal performance-enhancing substance use. The short 

format International Physical Activity Questionnaire (IPAQ) was used to assess the regular 

physical activity of each group (UNT 3661 ± 2404; STT 3510 ± 2124; CST 5558 ± 1460 

MET-minutes/week). 

 

7.2.2. Experimental Design 

Participants visited the laboratory for a familiarisation session, (STT were familiarised pre-

training) and two duplicate measurement sessions. Participants were seated in a custom-built 

isometric strength-testing chair and completed a series of maximal voluntary contractions 

(MVCs) and ramp voluntary contractions of the knee extensors as well as knee flexor MVCs 

of the dominant leg (preferred kicking leg). MVCs established maximal voluntary torque 

(MVT) and ramp contractions were performed to permit tissue stiffness estimation. Knee 

joint torque was recorded throughout contractions. Knee flexor surface electromyography 

was recorded during knee flexor MVCs and knee extensor ramp contractions. Ultrasound 

images of the vastus lateralis and patellar tendon were recorded throughout the ramp 

contractions to assess tissue elongation. Measurement sessions were performed at a 

consistent time of the day (± 2 hrs), separated by at least 2-3 days and started between 12:00–

19:00 p.m. Participants were instructed not to participate in strenuous physical activity, 

consume alcohol/refrain from caffeine consumption in the 36/6 hours before measurement 

sessions. All participants were instructed to maintain their habitual physical activity and diet 

throughout the study. For the SST group, post-measurement sessions one and two took place 

3-5 and 6-8 days following the last training session. Magnetic resonance imaging (MRI) was 

performed to assess quadriceps femoris muscle, vastus lateralis aponeurosis, and patellar 

tendon size. Participants were instructed to refrain from strenuous physical activity in the 24 

hours prior to the MRI scan. For the STT group, MRI was conducted 2-3 days after the final 

training session and prior to post measurement sessions.  
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7.2.3. SST Group: Sustained Contraction Strength Training Intervention 

Training sessions were completed three times per week on the same apparatus used for 

measurement sessions. After a brief warm-up of sub-maximal contractions of both legs, 

participants completed four sets of ten unilateral isometric knee-extensor contractions of each 

leg, with sets alternating between dominant and non-dominant legs until 4 sets per leg had 

been completed. Contractions were sustained at 75%MVT, with 2 s rest between each 

contraction. In order to control the torque rise and hold times, participants were presented 

with a target torque trace 2 s before every contraction and instructed to match this target, 

which increased torque linearly from rest to 75% MVT over 1 s before holding a plateau at 

75%MVT for a further 3 s. MVCs were performed at the start of each training week to re-

establish MVT and prescribe training torques.  

 

7.2.4. Torque Measurement 

Participants were positioned in an isometric strength-testing chair with knee and hip angles of 

115° and 126° (180° = full extension), respectively. Adjustable straps were tightly fastened 

across the pelvis and shoulders to prevent extraneous movement.  An ankle strap (35 mm 

width reinforced canvas webbing) was placed ~15% of tibial length (distance from lateral 

malleolus to knee joint space) above the medial malleolus, and positioned perpendicular to 

the tibia and in series with a calibrated S-Beam strain gauge (Force Logic, Berkshire, UK). 

The analogue force signal was amplified (x370; A50 amplifier, Force Logic UK) and 

sampled at 2,000 Hz using an A/D converter (Micro 1401; CED, Cambridge, UK) and 

recorded with Spike 2 computer software (CED). In offline analysis, force signals were low-

pass filtered at 500 Hz using a fourth order zero-lag Butterworth filter, gravity corrected by 

subtracting baseline force, and multiplied by lever length, the distance from the knee joint 

space to the centre of the ankle strap, to calculate torque values.  

 

7.2.5. Knee Flexor Electromyography (EMG)  

Surface EMG recordings over the biceps femoris (BF) and semitendinosus (ST) were made 

with a wireless EMG system (Trigno; Delsys Inc, Boston, MA) were made during knee 

flexor MVCs and knee extensor ramp contractions. Following preparation of the skin 

(shaving, abrading and cleansing with alcohol) single differential Trigno standard EMG 

sensors (1-cm inter electrode distance; Delsys Inc, Boston, MA) were attached over each 

muscle using adhesive interfaces. Sensors were positioned parallel to the presumed frontal 

plane orientation of the underlying muscle fibres at 45% of thigh length (distance from the 
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greater trochanter to the lateral knee joint space) measured from the popliteal crease. EMG 

signals were amplified at source (x300; 20-450 Hz bandwidth) before further amplification 

(overall effective gain x 909) and sampled at 2000 Hz via the same A/D converter and 

computer software as the force signal, to enable data synchronization. In offline analysis, 

EMG signals were corrected for the 48 ms delay inherent to the Trigno EMG system and 

band-pass filtered (6-500 Hz) using a fourth-order, zero-lag Butterworth digital filter.  

 

7.2.6. Knee Extension and Flexion Maximal Voluntary Contractions  

Following a brief warm-up (3-s contractions at 50% [x3], 75% [x3] and 90% [x1] of 

perceived maximal), participants performed 3-4 MVC’s and were instructed to either ‘push as 

hard as possible’ (knee extension) or ‘pull as hard as possible’ (knee flexion) for 3-5-s and 

rest ≥ 30-s. A horizontal cursor indicating the greatest torque obtained within the session was 

displayed for biofeedback and verbal encouragement was provided during all MVC’s. The 

highest instantaneous torque recorded during any MVC was defined as MVT. During knee 

flexor MVC’s EMG amplitude was calculated as the root mean square (RMS) of the filtered 

EMG signal of the BF and ST over a 500 ms epoch at knee flexion MVT (250 ms either side) 

and averaged across the two muscles to give knee flexor EMGMAX. 

 

7.2.7. MRI measurement of Muscle Tendon Unit Morphology and Moment Arm  

T1-weighted MR (1.5 T Signa HDxt, GE) images of the dominant leg (thigh and knee) were 

acquired in the supine position at a knee angle of 163° (due to constraints in knee coil size) 

and analysed using OsiriX software (Version 6.0, Pixmeo, Geneva, Switzerland). Using a 

receiver 8-channel whole body coil, axial images (time of repetition/time to echo 550/14, 

image matrix 512 x 512, field of view 260 x 260 mm, pixel size 0.508 x 0.508 mm, slice 

thickness 5 mm, inter-slice gap 0 mm) were acquired from the anterior superior iliac spine to 

the knee joint space in two overlapping blocks. Oil filled capsules placed on the lateral side 

of the thigh allowed alignment of the blocks during analysis. The quadriceps femoris (QF) 

muscles (vastus lateralis [VL] vastus intermedius [VI], vastus medialis, and rectus femoris) 

were manually outlined in every third image (i.e. every 15 mm) starting from the most 

proximal image in which the muscle appeared. The volume of each muscle was calculated 

using cubic spline interpolation (GraphPad Prism 6, GraphPad Software, Inc.). Total QF 

volume (QUADSvol) was the sum of the individual muscle volumes. As previously described 

(Abe et al. 2012), the deep aponeurosis of the VL muscle was defined as the visible dark 

black segment between the VL and VI muscles in the thigh MRI images. The tangent line of 
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the VL muscle and the dark black segment in each cross-sectional image was traced 

manually. The length of the black line was defined as VL aponeurosis width and was 

measured on every third image (i.e. every 15 mm), starting in the most distal image were the 

aponeurosis was visible. Width measures were plotted against aponeurosis length (distance 

between most proximal and distal image where the aponeurosis was visible). The area under 

a spline curve fitted to data points was defined as the VL aponeurosis area (Apon Area).  

 

Immediately after thigh imaging, a lower extremity knee coil was used to acquire axial (time 

of repetition/time to echo 510/14, image matrix 512 x 512, field of view 160 x 160 mm, pixel 

size 0.313 x 0.313, slice thickness 2 mm, inter-slice gap 0 mm) and sagittal images (time of 

repetition/time to echo 480/14, image matrix 512 x 512, field of view 160 x 160 mm, pixel 

size 0.313 x 0.313, slice thickness 2 mm, inter-slice gap 0 mm) of the knee joint. Contiguous 

axial images spanned patellar tendon length, which during analysis, were reconstructed to be 

aligned perpendicular to the line of action of the patellar tendon: straight line from the 

tendons posterior fibres insertion at the patellar apex to the posterior fibres tibial insertion. 

Images spanned from 2 cm superior to the patellar apex to 2 cm inferior to the tendon tibial 

insertion (Figure 7.1 A). Patellar tendon CSA (mm2) was measured on each contiguous image 

(e.g. Figure 7.1 B) along the tendons length (first image where the patellar was no longer 

visible to the last image before the tibial insertion). Images, viewed in greyscale, were 

sharpened and the perimeter manually outlined (Figure 7.1 C). A spline curve was fitted to 

the tendon CSA values from each image (Figure 7.1 D) and the average of the spline equated 

to mean patellar tendon CSA (PT mean CSA). The average of the spline CSA’s measured 

over proximal, middle and distal 3rds was defined as proximal, mid and distal PT region CSA 

(Figure 7.1 D). Sagittal plane images were used to determined patellar tendon moment arm, 

the perpendicular distance from the patellar tendon line of action to the tibio-femoral contact 

point, which was the midpoint of the distance between the tibio-femoral contact points of the 

medial and lateral femoral condyles (Figure 7.2). 

 

7.2.8. Ramp Contractions for Determination of Tissue Stiffness 

Tissue stiffness was derived from synchronous recordings of torque and tissue elongation 

(see below, corrected for passive tissue displacement via video recording of knee joint 

changes) during isometric knee extension ramp contractions (experimental set-up; Figure 

7.3). Participants completed two sub-maximal practice ramp contractions prior to five 

maximal attempts with 90 s rest between contractions. Prior to each ramp contraction 
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participants were shown a target torque-time trace on a computer monitor that increased at a 

constant gradient (50 Nm.s-1 loading rate) from zero up to MVT. They were instructed to 

match the target trace as closely as possible for as long as possible (i.e. up to MVT), and real-

time torque was displayed over the target torque-time trace for feedback. The preceding knee 

extensor MVCs and sub-maximal contractions were considered sufficient to elicit tissue 

preconditioning. The three most suitable ramp contractions, according to highest peak torque, 

the closeness to the target loading rate and ultrasound image clarity, were analysed and 

measurements averaged across these three contractions. 

 

7.2.9. Measurement of Tissue Elongation  

Video images from two ultrasound machines and one video camera were captured to obtain 

tissue and knee joint displacements during ramp contractions. An ultrasound probe (7.5 MHz 

linear array transducer, B-mode, scanning width 60mm and depth 50 mm; Toshiba Power 

Vision 6000, SSA-370A: Otawara-Shi, Japan) was fitted into a custom made high-density 

foam cast that was strapped to the lateral aspect of the thigh with the mid-point of the probe 

positioned at ~50 % thigh length. The probe was aligned so the fascicles inserting into the 

vastus lateralis (VL) muscle deep aponeurosis could be visualized at rest and during 

contraction. An echo-absorptive marker (multiple layers of transpore medical tape) was 

placed beneath the ultrasound probe to provide a reference for any probe movement over the 

skin. Another ultrasound probe (5-10 MHz linear array transducer, B-mode, scanning width 

92 mm and depth 65 mm, EUP-L53L; Hitachi EUB-8500) was fitted into a custom made 

high-density foam cast that was held firmly over the anterior aspect of the knee with the 

probe aligned longitudinal to the patellar tendon such that the patellar apex and insertion of 

the posterior tendon fibres at the tibia could be visualized at rest and throughout the 

contraction. The ultrasound machines were interfaced with the computer collecting torque 

data in Spike 2 and the video feeds were recorded synchronously with torque using Spike 2 

video capture at 25 Hz. During off-line analysis tissue elongation was tracked frame-by-

frame using public-domain (www.cabrillo.edu/~dbrown/tracker) semi-automatic video 

analysis software: Tracker, version 4.86. VL fascicle deep aponeurosis cross point 

displacement relative to the skin marker provided a measure of muscle-tendon unit (MTU) 

elongation (Figure 3). Patellar tendon elongation was determined by the longitudinal 

displacement of the patella apex and the tendon tibial insertion (Figure 7.3). The distal 

insertion of the patellar tendon was not monitored for the purpose of estimating overall MTU 

displacement.  To enable correction of tissue displacement due to joint angle changes during 

http://www.cabrillo.edu/%7Edbrown/tracker
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ramp contractions individual ratios of tissue displacement relative to joint angular 

displacement (mm/°) were obtained from passive movements (i.e. plotting the tissue 

displacement-knee joint angle relationship). This ratio was used to determine tissue 

displacement resulting from knee angle change during ramp contractions, which was 

subsequently subtracted from total measured displacement. Corrections were only applied to 

aponeurosis displacement. Tendon elongation under passive conditions was deemed 

negligible. Passive movements were conducted prior to the ramp contractions. Participants 

were instructed to completely relax as their knee was moved through 90 to 130°. During 

passive movements and ramp contractions, knee joint angle (angle between visible markers 

placed on the greater trochanter, lateral knee joint space and lateral malleolus) was derived 

from sagittal plane video recorded using a camera mounted on a tripod positioned (1.5 m) 

perpendicular to the strength-testing chair. The video camera was interfaced with a computer 

and recorded using spike 2 video capture at 25 Hz (simultaneously with force, EMG, and 

ultrasound images during the ramp contractions) and analysed via Tracker software.  

 

7.2.10. Calculation of Tendon Force  

PT force was calculated by dividing external absolute knee extensor torque by the patellar 

tendon moment arm length. Direct measures of moment arm where acquired at rest from MRI 

images as indicated above (MRI measurement). Due to constraints in the size of the knee coil, 

sagittal images were acquired in an extended knee position (~163°).  Moment arm length for 

any specific knee angle measured at rest or during ramp contraction was estimated from 

previously published data fitted with a quadratic function (Kellis and Baltzopoulos 1999), 

scaled to each participant’s measured moment arm length at 163°. Absolute internal knee 

extensor torque was given by summing net knee extension torque and the estimated knee 

flexor co-contraction torque. Antagonist knee flexor torque was estimated by expressing the 

average knee flexor EMG amplitude (RMS 50 ms moving window) during ramp contractions 

relative to the knee flexor EMGMAX and multiplying by the knee flexor MVT (assuming a 

linear relationship between EMG amplitude and torque). During analysis, torque and EMG 

amplitude were down-sampled to 25 Hz to match the ultrasound video frequency. 

 

7.2.11. Calculation of Tissue Stiffness and Tendon Young’s Modulus  

For each of the three best ramp contractions analysed, MTU (corrected for passive tissue 

displacement) and PT elongation was plotted against total tendon force (corrected for 

antagonist force). Force-elongation plots were fitted with a second-order polynomial. MTU 
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and PT stiffness was calculated as the gradient (Δ tendon force [N]/Δ elongation [mm]; 

N.mm-1) of the respective force-strain curve over 80-100% (3360-4200N) of an absolute 

tendon force (4200N) that corresponded to the lowest common force level attained by all 

participants during ramp contractions. Tendon stress was obtained by dividing tendon force 

by mean tendon CSA. Tendon strain was the percentage tendon displacement relative to the 

resting tendon length. A patellar tendon stress-strain curve was plotted and PT Young’s 

modulus (GPa) calculated as the slope (Δ tendon stress [MPa]/Δ tendon strain [%]) of the 

stress-strain curve derived over 80-100% of an absolute common stress (40 MPa). The 

stiffness and Young’s modulus measures derived from each of the three ramp contractions 

analysed was averaged to give each individuals representative values. 

 

7.2.12. Statistical Analysis 

For measurements completed in the duplicate measurement sessions, the average value was 

used for statistical analysis. An a priori significance level of P<0.05 was set for all statistical 

tests which were performed using SPSS Version 20.0 (IBM Corp., Armonk, NY). Descriptive 

data are presented as mean ± standard deviation (SD) and percentage differences in the group 

means are given in the text. The influence of group (UNT, STT, CST) on all muscle and 

tendinous tissue variables was examined by univariate ANOVA. Main group effects were 

followed by least significant difference (LSD) post-hoc paired comparisons to delineate 

between group differences; Holm-Bonferroni corrections were applied to LSD P-values, and 

between group Hedges g effect size (ES) was calculated (Lakens 2013). Effect size 

magnitude was classified as <0.2= “trivial”; 0.2-0.6 = “small”; >0-6-1.2 = “moderate”; >1.2-

2.0 = “large”; >2.0 = “very large” (Hopkins et al. 2009).  
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Figure 7.1. Patellar tendon (PT) cross-sectional area (CSA, mm2) measurement. Axial MRI images 
spanning tendon length in contigous 2 mm thick slices aligned perpendicular to the tendon (A). In 
each axial image (e.g. B), the perimeter of the PT which was manually outlined (C), and the CSA’s 
plotted and fitted with a spline curve (D) to interpolate intermediate CSA values and permit 
standardised regional CSA analysis.. The average of the spline curve in proximal, middle and distal 
thirds was defined as PT proxmal, mid and distal CSA respectively. The average of all spline CSA’s 
gave PT mean CSA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2. Sagittal MRI image of the knee joint: Patellar tendon (PT) moment arm was defined as 
the perpendicular distance between the tendon line of action and the tibio-femoral contact point 
(TFCP). 

Femur 
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Figure 7.3. The experimental set-up and ultrasound imaging during ramp contractions. Participants 
were tightly fastened to a rigid isometric strength-testing chair with resting knee and hip angles of 115 
and 126° respectively (A). Unilateral knee extensor torque, video of knee joint angle, antagonist 
muscle (biceps femoris [BF], semitendinosus [ST]) surface electromyography and ultrasound video 
images were recorded during constant-loading rate isometric ramp knee extensor contractions 
(example in B). Ultrasound images are of the patellar tendon (PT, C) and vastus lateralis (VL, D) 
muscle at rest (top) and at peak ramp torque (bottom) and indicate the measurement of PT (tibia-
patellar displacement, ΔT + ΔP) and MTU distal tissue (VL deep aponeurosis fascicle-cross point 
proximal displacement relative to the echo-absorptive marker, ΔM) elongation 
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7.3. RESULTS  

7.3.1. Group Characteristics  

Age, height and body mass were similar between UNT and STT groups (P = 0.262, P = 0.488 

and P = 0.465 respectively; Table 7.1), while CST were younger, taller and had a larger body 

mass than UNT and STT (all P ≤ 0.003). MTUdt and PT length were similar between UNT 

and STT (P = 0.114 and P = 0.195). CST had longer tissue lengths than both UNT and STT 

(MTUdt: CST 6.5% > UNT and 9.2% > STT, both comparisons P<0.001; PT length CST 

9.8% > UNT P = 0.006 and 15.5% > STT P = 0.022).  

 

 
Table 7.1. Descriptive characteristics of the participants. 

 UNT STT CST ANOVA (P) 
N = 39 15 16  
Age, years 25 ± 2 25 ± 2 22 ± 2 <0.001 
Height, cm 176 ± 6 175 ± 8 183 ± 6 0.001 
Body mass, kg 72 ± 9 70 ± 9 90 ± 10 <0.001 
MTU distal tissue length, mm 336 ± 16 328 ± 17 358 ± 18 <0.001 
PT length, mm 47.7 ± 5.5 45.1 ± 5.5 52.1 ± 5.9 0.005 
PT moment arm, mm 43.8 ± 2.7 44.8 ± 3.1 45.8 ± 2.5 0.054 
Data are mean ± SD. PT = patellar tendon 
 
 
 

7.3.2. Muscle-Tendon Unit Size and Strength  

Maximal voluntary torque (Figure 7.4 A) differed between all three groups, being 

considerably greater in CST than UNT (+58.1%, P < 0.001, ES = 2.90 “very large”) and STT 

(+34.4%, P < 0.001, ES = 1.66 “large”). STT was also stronger than UNT (+17.6%, P = 

0.001, ES = 1.04 “moderate”). Similarly, QUADSvol (Figure 7.4 B) was considerably larger 

in CST than UNT (+55.7%, P < 0.001, ES = 3.55 “very large”) and STT (+46.2%, P < 0.001, 

ES = 2.83 “very large”), though SST was similar to UNT (+7%, P = 0.179, ES = 0.42 

“small”). Correspondingly VL apon area (Figure 7.4 C) was larger in CST than UNT 

(+17.3%, P < 0.001, ES = 1.41 “large”) and STT (+13.5%, P = 0.006, ES = 1.09 “moderate”), 

though STT was not different to UNT (+3.3%, P = 0.331, ES = “small”). In contrast, PT 

mean CSA (Figure 7.4 D) was similar between groups (ANOVA P = 0.169), and this was 

also the case for regional PT CSA (Table 7.2).  
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7.3.3. Patellar Tendon Mechanical Properties (Table 7.3) 

The patellar tendon force-elongation relationships (Figure 7.5 A) indicated that PT elongation 

at the highest common force level (4200N, Figure 7.5 B) was 13.5% less in the CST than 

UNT (2.6 ± 0.5 vs. 3.0 ± 0.6 mm, P = 0.063, ES = 0.75 “moderate”) and 15.4% less in CST 

than STT (3.1 ± 0.6 mm, P = 0.048, ES = 0.86 “moderate”), indicating less compliance over 

the whole force range up to 4200N for CST only, whereas STT and UNT were similar (P = 

0.698, ES = 0.10 “trivial”). However, PT stiffness measured over a common force range 

(3360-4200N; Figure 7.5 C) was greater for SST (+24.5%, P = 0.0004, ES = 1.27 “large”) 

and CST (+16.7%, P = 0.021, ES = 0.85 “moderate”) than UNT, though similar in CST – 

STT (P = 0.287, ES = 0.35 “small”).  

 

Patellar tendon stress-strain relationships (Figure 7.6 A) revealed that at the common stress 

level of 40 MPa (Figure 7.6 B), PT strain was less for CST (5.1 ± 1.0%) than UNT by 24.4% 

(6.4 ±1.4%, P = 0.008, ES = 1.30 “large”) and STT by 19.9% (6.7 ± 1.7%, P = 0.006, ES = 

0.97 “moderate”), indicating less material compliance over the whole stress range up to 40 

MPa for CST only, whereas STT and UNT were very similar (P = 0.369, ES = 0.17 “trivial”). 

However, PT Young’s modulus (Figure 7.6 C) derived over a common stress range (32-40 

MPa) was greater for both SST (+21.9%, P = 0.003, ES = 1.00 “moderate”) and CST 

(+23.3%, P = 0.002, ES = 1.13 “moderate”) than UNT, but was very similar for CST and 

STT (P = 0.855, ES = 0.06 “trivial”). 

  

7.3.4. Muscle-Tendon Unit Mechanical Properties (Table 7.3) 

Tendon force-MTU elongation relationships (Figure 7.7 A) showed that at the common force 

level of 4200 N (Figure 7.7 B), MTUdt elongation exhibited no main group effect (ANOVA, 

P = 0.375), indicating similar overall MTU elongation in both strength trained groups as well 

as the untrained group. Likewise, MTU stiffness (Figure 7.7 C) was not statistically different 

between groups (ANOVA, P = 0.149).  

 

Table 7.2. Regional patellar tendon cross-sectional area (cm2)  
Region UNT (n=39) STT (n=15) CST (n=16) ANOVA (P) 

Proximal 93.0 ± 9.9 92.0 ± 13.5 98.4 ± 13.1 0.216 
Mid 104.4 ± 12.6 97.0 ± 14.3 104.9 ± 13.3 0.146 
Distal 110.4 ± 17.9 101.6 ± 14.3 112.1 ± 15.7 0.141 
Data are mean ± SD    
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Figure 7.4. Group comparisons: Isometric knee extension maximal voluntary torque 
(MVT, A), Quadriceps Femoris (QF) muscle volume (B), Vastus Lateralis (VL) Aponeurosis (Apon) 
area (C) and Patellar Tendon (PT) mean cross-sectional area (CSA, D) for control (UNT, n = 39), 
short-term strength trained (STT, n = 15) and chronic-strength trained (CST, n = 16) groups. Data are 
mean ± standard deviation. Bold numbers are between groups hedges g effect size. Post-hoc tests: 
Least significant difference Holm-Bonferroni corrected P-values. *P<0.05, **P<0.01, ***P<0.001.  

100

200

300

400

500

UNT STT CST

M
VT

 (N
m

) 

Group 

≈ 
 0 

(A) 

***  
1.66  

   ** 
1.04 

*** 2.90 
 

(D) 

70

85

100

115

130

UNT STT CST

PT
 m

ea
n 

CS
A 

(c
m

2 )
 

Group 

≈ 
 0 100

120

140

160

180

200

UNT STT CST

VL
 A

po
n 

Ar
ea

 (c
m

2 )
 

Group 

(C) 

≈ 
 0 

** 
1.09  

*** 1.41 

1000

1500

2000

2500

3000

3500

UNT STT CST
Q

U
AD

Sv
ol

 (c
m

3 )
 

Group 

≈ 
 0 

(B) 

***  
2.83  

*** 3.55 



Chapter 7: Tissue size and stiffness: influence of strength training  

 132 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5

Pa
te

lla
r T

en
do

n 
Fo

rc
e 

(N
) 

Patellar Tendon Elongation (mm) 

UNT STT CST

1500

2000

2500

3000

3500

4000

UNT STT CST

PT
 S

tif
fn

es
s 

(N
.m

m
-1

) 

Group  

(C) * 0.85 
***  

 1.27 

 ≈ 
 0 

 

 

 

 

 

 

 

  

 
 
 
 
 
 
 
 
 
 
Figure 7.5. (A) Non-linear relationships between estimated patellar tendon force (N) during constant loading-rate isometric ramp knee extension contractions 
and the resultant patellar tendon elongation in the untrained control (UNT, n = 37), short-term strength trained (STT, n = 15) and chronic strength trained 
(CST, n = 15) groups. Curves show the group mean relationship. Data points correspond to within group average values for the elongation at 10% intervals of 
group mean maximal voluntary tendon force, plotted up to 80% (highest common level achieved during ramp contractions). Error bars indicate the within-
group standard deviation for force (y-axis bar) and elongation (x-axis bar). Dashed line intercepting the y-axis is the highest common force (4200N) for all 
participants across each group achieved during ramp contractions. (B) And (C) Group comparisons of the PT elongation at the common force level of 4200 
N, and PT stiffness (gradient of curves in A over 80-100% of the highest common force level [3360-4200N]). Bars are mean ± SD. Bold numbers are the 
between groups hedges g effect size. Post-hoc tests: Least significant difference Holm-Bonferroni corrected P-values. *P<0.05, ***P<0.001. 
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Figure 7.6. (A) Non-linear relationships between estimated patellar tendon stress (MPa [N.mm2]) during constant loading-rate isometric ramp knee extension 
contractions and the resultant patellar tendon strain in the untrained control (UNT, n = 37), short-term strength trained (STT, n = 15) and chronic strength 
trained (CST, n = 15) groups. Curves show the group mean relationship. Data points correspond to within group average values for the strain at 10% intervals 
of group mean maximal voluntary tendon stress, plotted up to 80% (highest common level achieved during ramp contractions). Error bars indicate the within-
group standard deviation for stress (y-axis bar) and strain (x-axis bar). Dashed line intercepting the y-axis is the highest common stress (40 MPa) for all 
participants across each group achieved during ramp contractions. (B) And (C) Group comparisons of the PT strain at the common stress level of 40 MPa, 
and PT Young’s modulus (gradient of curves in A over 80-100% common stress level [32-40 MPa]). Bars are mean ± SD. Bold numbers are the between 
groups hedges g effect size. Post-hoc tests: Least significant difference Holm-Bonferroni corrected P-values. **P<0.01. 
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Figure 7.7. (A) Non-linear relationships between estimated patellar tendon force (N) during constant loading-rate isometric ramp knee extension contractions 
and the resultant muscle-tendon unit (MTU) distal tissue elongation in the untrained control (UNT, n = 37), short-term strength trained (STT, n = 14) and 
chronic strength trained (CST, n = 16) groups. Curves show the group mean relationship. Data points correspond to within group average values for the strain 
at 10% intervals of group mean maximal voluntary tendon force, plotted up to 80% (highest common level achieved during ramp contractions). Error bars 
indicate the within-group standard deviation for force (y-axis bar) and strain (x-axis bar). Dashed line intercepting the y-axis is the highest common force 
(4200 N) for all participants across each group achieved during ramp contractions. (B) And (C) Group comparisons of the MTUdt elongation at the common 
force level, and MTU stiffness (gradient of curves in A over 80-100% common force level [3360-4200N]). Bars are mean ± SD.  
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Table 7.3. Summary of group differences in maximal strength, muscle tendon unit (MTU) size and 
tissue (MTU and patellar tendon [PT]) stiffness between chronic strength trained (CST), short-term 
strength trained (STT) and untrained control (UNT) groups. 

 

 

 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Function 
MVT, Nm CST > STT > UNT 

   
MTU size 

QUADSvol, cm3 CST > STT & UNT 
VL Apon Area, cm2 CST > STT & UNT 
PT CSA, mm2 - 

   
Indices of Tissue Stiffness 

PT elongation at 4200 N, mm CST < STT & UNT 
PT stiffness, N.mm-1 CST & STT > UNT 
PT strain at 40 MPa, % CST < STT & UNT 
PT Young's modulus, GPa CST & STT > UNT 

   
MTU elongation at 4200 N, mm - 
MTU stiffness, N.mm-1 - 
Significant group differences groups: greater (>) or less (<) than. 
PT CSA: both mean and regional CSA measures.  



Chapter 7: Tissue size and stiffness: influence of strength training  

 136 

DISCUSSION 

The present study compared the mechanical properties of the patellar tendon (PT) and knee 

extensor muscle-tendon unit (MTU) as well as the size of the MTU components between 

untrained controls (UNT), short-term strength trained (STT) and chronic strength trained 

(CST) young males. The main findings were that despite large differences in muscle strength 

and size, and more modest differences in aponeurosis size, there were no group differences in 

PT CSA. Both STT and CST had greater PT stiffness and Young’s modulus than UNT, 

though PT stiffness and Young’s modulus was similar between STT and CST. Interesting, 

only CST exhibited lesser PT elongation/strain (compliance) at a comparative tendon 

force/stress level. Contrary to these differences in tendon mechanics, MTU stiffness and 

strain was not appreciably divergent between groups.  

 

Greater PT stiffness at high force levels was observed in STT than UNT, and this is 

consistent with the increases in stiffness observed after short-term (8-12 weeks) strength 

training studies (Kongsgaard et al. 2007; Seynnes et al. 2009; McMahon et al. 2013). As 

expected CST also possessed greater PT stiffness than the UNT, which is in accordance with 

a previous cross-sectional study that found a 21% greater PT stiffness in a smaller cohort of 

chronically strength trained vs. untrained males (Seynnes et al. 2013). Interestingly however, 

in the present study the CST did not have greater PT stiffness at high force levels than STT. 

Taken together, these findings suggest that while short-term training results in a stiffer 

tendon, further prolonged exposure to strength training does not necessarily stimulate further 

tendon stiffness adaptation. Therefore the underpinning mechanisms for increased tendon 

stiffness with short-term training are presumably saturated after 12 weeks. In contrast, the 

lesser PT elongation at the common force level (4200N) in CST than STT does indicate that 

chronic strength training impacts the generic stiffness of the tendon across a broader force 

range. This effect would appear to be due to greater stiffness at particularly low force levels 

(<1000 N), as the gradients of the force-elongation relationships after the initial most 

compliant region of tendon deformation were equivalent in STT and CST. These results 

suggest that there may be force-region specific tendon stiffness adaptations to STT and CST. 

While STT was sufficient to elicit similar adaptations in high force stiffness to CST, CST had 

greater stiffness throughout the force-elongation relationship, particularly at low forces, 

which were not observed after STT.  
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In the absence of group differences in PT CSA, the greater PT stiffness of STT and CST vs. 

UNT was ostensibly attributable to the correspondingly greater PT Young’s modulus in STT 

and CST vs. UNT. This affirms that the adaptations in material stiffness are the primary 

mechanism that causes the increase in mechanical stiffness after strength training, in 

accordance with previous work (e.g. Reeves et al. 2003; Seynnes et al. 2009; McMahon et al. 

2013). Further the difference in modulus between STT and UNT was similar to the mean 

increase observed after short-term studies (+22%: Weisinger et al. 2015 review). Consistent 

with the pattern for tendon stiffness measurements, CST had greater Young’s modulus over 

the common stress range (32-40 MPa) than UNT. Our study is the first to document a greater 

tendon modulus in CST than UNT (at an equivalent tendon stress); a single earlier study 

failed to equate the stress level for modulus measurement (Seynnes et al. 2013). Intriguingly, 

CST had similar PT Young’s modulus to STT. Similarly explanatory, PT strain exhibited at a 

comparative stress level was less only in the CST group, thus chronic strength training results 

in greater generic tendon material stiffness as evidenced by greater resistance to deformation 

during the lowest levels of loading (<10 MPa). Alternative tendon modulus adaptations at the 

lowest tendon stresses vs. higher stresses are thus perhaps consequent to different changes to 

internal tendon structure and/or composition (Buchanan and Marsh 2002; Kjaer et al. 2015) 

that independently influence contrasting regions of the tendon stress-strain relationship. 

However, the nature of such changes that can explain an increase in material stiffness (at 

lower and/or higher stresses) after strength training is presently unknown (Kjaer et al. 2015). 

Further, a mechanistic basis for why the Young’s modulus at higher tendon stresses appears 

to plateau after short-term strength training yet increases in material stiffness at the lowest 

stress levels (leading to lesser tendon PT strain at a common stress in CST) presumably occur 

after 12 weeks is unclear, thus more detailed longitudinal investigations are required. 

 

No difference between groups in PT size is perhaps surprising. Intuitively we might expect 

the high muscle strength and size values that had occurred after ~4 years of CST to be 

accompanied by an increase in tendon CSA. However this was not the case with similar PT 

mean and regional CSA values between groups despite substantial differences in isometric 

knee extensor MVT (CST 58.1% > UNT) and QUADSvol (55.7% > UNT). This provides 

convincing evidence that strength training does not induce tendon hypertrophy. Finding no 

greater PT CSA in STT than UNT is not necessarily unexpected as there is contrasting 

evidence for tendon hypertrophy after short-term intervention studies (8-14 weeks). Our 

result corresponds with another isometric strength training study that identified no change in 
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mean or regional Achilles tendon CSA (Kubo et al. 2012 [12 weeks]), though some studies 

reported small (typically ~5-6%) increases in tendon CSA (often only in certain regions): 

patellar (Kongsgaard et al. 2007; Seynnes et al. 2009) and Achilles (Arampatzis et al. 2007a; 

Bohm et al. 2014). Nevertheless because tendon collagen turnover is relatively slow (Smith 

and Rennie 2007; Heinemeier et al. 2013b), data from short-term studies are not conclusive. 

Similar to our data, Fukutani and Kurihara (2015) found that chronic strength trained (~10 

years) males did not exhibit greater tendon CSA in all but 1/5 of tendon MRI sites. Only one 

previous study adopting ultrasound (perhaps less accurate than gold standard MRI; Kruse et 

al. 2017) tendon CSA measurement documents greater tendon CSA in chronic trained vs. 

untrained males (Seynnes et al. 2013). In support of our data, tendon MRI was performed 

along the full length of the tendon and acquired with sensitive spatial resolution (2 mm thick 

images, 0 mm gap, pixel size 0.313 x 0.313 mm), and careful tendon segmentation performed 

on each image by a single blinded investigator.  

 

In support of the present studies data, there is some evidence that indicates resistance exercise 

may not stimulate in vivo collagen synthesis in tendon tissue For instance, an acute bout of 

resistance exercise (dynamic knee extension at 70%-RM, 3 x 10 repetitions) was shown to 

have no effect on collagen type I messenger RNA expression 24 hours post exercise (Sullivan 

et al. 2009). Also, 12 weeks of isoinertial squat training failed to increase the concentration of 

procollagen type 1 N-propetide (biomarker of collagen synthesis) in PT peritendinous tissue 

(Bloomquist et al. 2013: this study observed no change in tendon CSA). However, there is 

some evidence that mechanical loading of tendon tissue can induce an increased collagen 

synthesis measured by peritendinous tissue procollagen peptide levels (Langberg et al. 1999) 

and via the uptake of labelled amino acids (Miller et al. 2005). These findings are congruent 

with other studies showing that chronic training can lead to greater tendon size: larger tendon 

CSA in distance runners vs non-runners (Kongsgaard et al. 2005; Wiesinger et al. 2016) and 

in the dominant vs. non-dominant leg of the same individual (Couppé et al. 2008), which 

contrasts the present findings. Perhaps the contrasting findings indicate that the high stress 

induced during strength training is perhaps not the optimal stimulus for stimulating tendon 

hypertrophy, and that exposing the tendon tissue to higher volumes of loading than 

experienced during strength training is a more effective stimulus for tendon growth.  

 

In contrast to tendon size, CST had a much larger VL apon area than both the UNT (+17.3%) 

and STT (+13.5%). This implies that the substantial muscle hypertrophy in response to many 
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years of strength training is coincident with increases in aponeurosis size. This suggestion is 

coherent with the limited previous work suggestive of aponeurosis hypertrophy after strength 

training (Abe et al. 2012; Wakahara et al. 2015). Between groups differences in QUADSvol 

(CST, +55.7% vs. UNT and +46.2 vs. STT) were disproportionately greater than the 

aforementioned differences in aponeurosis area: CST had 3.2 and 3.4-fold greater muscle 

than aponeurosis size compared to UNT and STT respectively. This is likely attributable to a 

greater absolute rate of intramuscular myofribrillar than connective tissue collagen synthesis 

stimulated in response to resistance exercise (Babraj et al. 2005; Smith and Rennie 2007). 

 

Despite greater aponeurosis size and substantial differences in muscle size, the CST did not 

exhibit a greater MTU stiffness than UNT or STT. Similarly, neither did CST show any 

difference in MTU elongation at the comparative force level (4200 N) than UNT or STT, 

indicating no long-term change in MTU stiffness over the wider force-elongation 

relationship. The present study is the first to document a comparison of MTU stiffness 

measurements in CST vs. UNT. On the other hand, no difference in MTU stiffness measures 

in STT vs. UNT is in contrast to previous short-term interventions studies showing increased 

knee extensor MTU stiffness after 12-14 weeks isometric strength training (Kubo et al. 2001, 

2009; Chapter 6). This contrasting result could perhaps be a consequence of the limitations 

associated with the cross-sectional study design as adopted in the present investigation, as 

opposed to the short-term studies of within-group changes. No differences in MTU stiffness 

for CST are perhaps particularly surprising. However, the absolute common force level for 

MTU stiffness measurement was ~50% MVT for the CST group, and perhaps MTU stiffness 

changes with training occur preferentially at higher force levels. Prior to my earlier work 

(Chapter 6), previous studies have measured MTU stiffness changes at absolute force levels 

relative to maximal strength (e.g. 50-100% MVT). Intriguingly, the present studies result 

could suggest that perhaps with continued training, STT may experience a subsequent 

increased MTU compliance to hence account for an equivalent MTU stiffness in UNT and 

CST. However, a precise explanation for the current studies results is unclear. Detailed 

longitudinal investigations are needed to further understand MTU stiffness adaptation to 

sustained-contraction strength training.  

 

The conclusions from the present study are reinforced by our thorough approach. In 

particular, tissue stiffness estimates were particularly robust; derived from multiple 

standardised loading rate contractions replicated in duplicate measurement sessions. This 



Chapter 7: Tissue size and stiffness: influence of strength training  

 140 

method circumvented introducing bias into stiffness estimates for stronger individuals; 

stiffness would be greater at higher loading rates and stronger individuals would exhibit a 

higher loading rate in constant ramp-time contractions. Group comparisons were made of the 

average of the tissue stiffness/ strain values recorded from both duplicate sessions, which in 

the context of the complicated method, had good test-retest reliability (coefficients of 

variation for PT and MTU stiffness and strain, <10%). Further, direct comparisons were 

facilitated by stiffness/strain measures at equivalent tendon force/stress levels in each group.  

 

In summary, the greater knee extensor MVT and quadriceps size in STT, and in particular, 

CST than UNT young males was not matched with a correspondingly larger tendon size (no 

differences in mean or regional PT CSA), indicating that tendon hypertrophy does not occur 

in response to strength training. However, greater VL aponeurosis area suggests long-term 

strength training can induce aponeurosis hypertrophy commensurate with muscle growth. 

Curiously MTU stiffness and strain was similar between groups, with more detailed 

measurements needed to reconcile this finding. As expected, both STT and CST displayed 

greater PT stiffness and Young’s modulus, at high forces, than UNT although CST was 

similar to STT for both variables.  Alternatively, CST exhibited less compliance and tendon 

elongation/strain throughout the force/stress range than STT and UNT. These results may 

suggest that the time course of tendon stiffness adaptations is force/stress region specific with 

short-term training eliciting increases in high force tendon stiffness, and more prolonged 

training also promoting increased stiffness at lower forces/stresses and consequently more 

holistic changes throughout the force/stress range.  
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The present thesis aimed to: (i) document quadriceps femoris (QF) muscle fascicle length 

(FL) and pennation angle (PA) changes in the transition from rest to isometric maximal 

voluntary contraction (MVC), and establish if the greater QF effective physiological cross-

sectional area (effPCSA) measured during MVC was more strongly correlated, than effPCSA 

at rest, to maximal isometric strength; (ii) investigate the relationships between QF FL and 

PA and maximal (isometric and dynamic) and explosive isometric strength; (iii) 

comprehensively examine whether greater muscle-tendon unit (MTU) and tendon stiffness 

was associated with higher in vivo rate of torque development (RTD); (iv) compare the 

relative efficacy of explosive-contraction (ECT) vs. sustained-contraction (SCT) strength 

training to increase MTU and tendon stiffness, and induce MTU (muscle, aponeurosis and 

tendon) hypertrophy; (v) assess MTU and patellar tendon (PT) size and stiffness in untrained 

(UNT), short-term strength trained (STT [post-SCT]) and chronic strength trained (CST) 

males, to gain insight into the capacity of the tendinous tissues to continue to adapt to 

prolonged exposure to strength training.  

 

The main findings of the five empirical studies conducted were:  

1. QF FL was -24% lower and PA +40% greater during MVC than at rest. Subsequently QF 

effPCSA during MVC was +27% greater than at rest. Correlations between maximal 

strength and effPCSA measured at rest (r = 0.519) and during an MVC (r = 0.530) were 

similar (Chapter 3). 

 

2. Resting measures of QF FL were inversely related to explosive voluntary, but not evoked, 

torque (absolute and relative) in just the initial phase (0-50 ms) of contraction (r = 0.433 

and 0.453), whereas PA was not associated with explosive strength. Likewise neither FL 

nor PA was related to maximal isometric or dynamic strength (Chapter 4).  

 
3. PT stiffness was unrelated to voluntary or evoked RTD in either absolute of relative 

terms. MTU stiffness was also not related to explosive voluntary or evoked octet RTD, 

relative MTU stiffness was associated with relative RTD assessed over matching torque 

increments during both explosive voluntary (R2 = 0.097 – 0.188 between 35 – 55%MVT) 

and evoked (R2 = 0.099 – 0.194 between 5 – 45 % MVT) contractions (Chapter 5). 

 
4. Both ECT and SCT resulted in similar increases in PT stiffness (20 and 16%), which was 

mirrored by the improvements in Young’s modulus (22 and 16%). ECT also reduced PT 
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elongation/strain at the same  (pre-post) absolute force/stress. Only SCT increased MTU 

stiffness (21%), QF muscle volume (8%), and vastus lateralis (VL) aponeurosis area 

(7%). Neither ECT nor SCT induced PT hypertrophy (Chapter 6). 

 

5. Despite substantially greater muscle strength and QF muscle volume in CST than UNT 

and even STT (volume: 46% > STT; 56% > UNT) both PT mean and regional cross-

sectional area were similar between groups, but VL aponeurosis area was greater (17%) 

in CST than UNT. PT stiffness and modulus were correspondingly higher in STT (25 and 

22%) and CST (17 and 23%) vs. UNT, with no difference between training groups. 

However, for the CST group PT elongation/strain at a common force/stress level (4200N 

/40MPa) was less than for both STT (15/20%) and UNT (14/24%). MTU stiffness as well 

as the MTU elongation at a common force level (4200N) was similar between all groups 

(Chapter 7). 

 

8.1. Muscle Architecture Variability  
An interesting observation that warrants briefly reiterating was the curious finding in Chapter 

4 that the intra-individual variability in FL and PA (at rest) within each of the QF component 

muscles (between subject coefficient of variation [CVb] for FL and PA 12 -17%) was greater 

than the variation in the subsequently derived whole QF FL (CVb, 7%) and PA (CVb, 9%). 

This finding suggests that the intra-individual differences in component muscle architecture 

are counterbalanced once an average QF value is derived; e.g. scenario is one individual with 

longer FL in VL and VI, but shorter FL in RF and VM than another individual. The result is 

the average QF FL being more similar between individuals than the inter-individual 

differences in specific component muscles FL. Intriguingly this observation was made in 

untrained individuals suggesting that the effect is an innate characteristic. Coincidentally, 

Chapter 4 also showed that the architecture of component muscles was not related, implying 

that the architecture of the four QF muscle heads is effectually independent of each other. 

Thus relating architecture to muscle function would be best accomplished via a holistic 

muscle architecture appraisal. However, the limited between subject variability in FL and PA 

(Chapter 4) may have implications for delineating any functional effects of architecture 

variables in between subject study designs (Chapter 4). 
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8.2. Determinants of Maximal and Explosive Strength  
8.2.1. Maximal Strength  

A novel aspect of Chapter 3 was the examination of the maximal isometric strength-muscle 

size relationship for muscle size (effPCSA) measured during MVC as well effPCSA measured 

at rest. It was found that QF effPCSA measured during MVC was no more predictive of knee 

extension isometric MVT, than the more straightforward estimate of effPCSA acquired at rest. 

Therefore, resting measures of muscle size remain an appropriate morphological descriptor of 

maximal strength. Following this knowledge, more robust estimates of resting effPCSA than 

obtained in the present thesis should be sought. For instance, FL and PA were only acquired 

at one location along the muscle longitudinal axis in the present thesis, therefore discounting 

any regional heterogeneity. Also, the inability of the planimetric (2-D) ultrasonography to 

capture three-dimensional muscle structure could limit how well the estimates of effPCSA 

relate to maximal strength. In vitro data show the directly proportionality of effPCSA and 

maximal isometric muscle force (R2 = 0.99, Powell et al. 1984). Obtaining more 

comprehensive estimates of effPCSA at rest may help to reconcile the unresolved issue of 

which measure of muscle size (effPCSA, ACSA or volume) is the best morphological 

representative of maximal strength. Capturing three-dimensional muscle architecture 

measures via diffusion tensor MRI would facilitate future investigations.  

 

As opposed to muscle size, Chapter 4 showed that neither FL nor PA was related to isometric 

MVT. In contrast, a few studies have found measures of agonist muscle PA to have moderate 

positive correlations to maximal isometric strength (e.g. Strasser et al. 2013; Ando et al. 

2015), although these relationships are most likely coincidental due to a recognised muscle 

size dependence of PA (Kawakami et al. 2006). Moreover, the finding in Chapter 4 that PA 

was not related to measures of dynamic strength (concentric torque at 50 and 350°s-1), does 

not give credence to a hypothetical mechanism of greater PA enhancing the decoupling of 

muscle and fascicle shortening during concentric muscle contractions, that supposedly 

favours greater force (Azizi et al. 2008). It is possible that the acuteness (<20°) of the PA’s 

evident in Chapter 4 restrict the importance of the hypothetical mechanism. Lesser PA’s 

favour muscle fascicle shortening rather than fascicle rotation (increased PA; Azizi et al. 

2008).  
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Furthermore, Chapter 4 revealed QF FL was unrelated to knee extension concentric torque at 

350ºs-1 or the proportion of low velocity torque developed at 350ºs-1 in accordance with 

couple of earlier studies (Blazevich et al. 2009b; Baxter and Piazza 2014). This finding 

contrasts the idea of longer FL allows a lower relative fascicle shortening velocity for a given 

muscle shortening velocity, which may be expected to facilitate higher velocity force 

production (Blazevich 2006b). However, even though a recent high-frame ultrasound study 

has refuted an association of longer FL and slower relative fascicle velocity (Hauraix et al. 

2013) it is possible that this mechanism is not relevant at the relatively slow velocities tested. 

Potentially a quantitative influence of FL on dynamic torque production could be deduced at 

velocities higher than those tested in chapter 4 and in previous studies. Development of a 

valid method to establish higher-velocity torque in vivo is needed. Alternatively, differences 

in FL may only seem to have an inconsequential influence because other factors (e.g. muscle 

size, neural drive, fibre-type composition) are overwhelming dominant predictors of dynamic 

torque in untrained individuals who incidentally showed limited between subject QF FL 

variability. Therefore identifying relationships between FL and high velocity torque could 

have been hindered by the inclusion of a relatively homogenous cohort in Chapter 4. Perhaps 

FL may represent more of a specialisation for function whose influence could be revealed 

following a period of training, or it could be an important factor in explaining inter-individual 

differences across athletic groups or intra-muscular differences in torque production. 

 

8.2.2. Explosive Strength  

Both Chapters 4 and 5 aimed to improve our understanding of the physiological determinants 

of explosive strength, preferentially expressed as the rate of torque development. The primary 

unique findings were that some measures of voluntary relative RTD were related to both FL 

(Chapter 4), and relative MTU stiffness (Chapter 5).  

 

Chapter 4 revealed that in contrast to the thought that longer FL with higher shortening 

velocity potential would favour faster RTD, longer FL was, perhaps counter intuitively 

shown to negatively influence the earliest phase of voluntary force rise (0-50ms). Curiously 

FL was subsequently found not to relate to evoked RTD (0-50 ms). At face value, these 

findings are surprising, as the muscle architecture would be expected to exert a stronger 

influence on evoked explosive strength. Aside from the suggestion made in Chapter 4; 

possible the earliest phase of the rising voluntary torque0time curve (0-50ms, 48 ± 17 Nm) 

that was related to FL was missed by the first measured time point during the evoked 
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contractions (50 ms, 120 ± 22 ms) when force rises more rapidly, the results present a rather 

puzzling circumstance to explain. It seems most sensible to suggest more thorough 

investigation is required to firmly verify the influence of FL on voluntary and evoked RTD. 

If Chapter’s 4 findings are replicated a possible physiological mechanism would need to be 

confronted.  

 

Alternatively, the clear relation of relative MTU stiffness to evoked relative RTD in Chapter 

5 is consistent with the theoretical understanding that stiffer tissues facilitate RTD by slowing 

muscle shortening and facilitating force production in the lower force region of the force-

velocity relationship (Wilkie 1949; Hill 1951; Edman and Josephson 2007). However the 

limited explained variance (<20%) suggests there are more important determinants of relative 

evoked RTD (e.g. contractile protein composition, Harridge et al. 1996). The relationship of 

relative MTU stiffness to evoked relative RTD seemingly explained why voluntary relative 

RTD was also related to relative MTU stiffness. Contractile properties are known to exert 

their greatest influence on voluntary RTD during the fastest phase of torque development 

(50-100 ms; Folland et al. 2014) that corresponded with the positive correlations between 

relative MTU stiffness and relative RTD.  

 

A positive relation between relative MTU stiffness and relative RTD suggests that an 

increase in relative MTU stiffness after strength training could partially account for any 

improvements in relative RTD if there were large improvements in relative MTU stiffness. 

Given the relatively limited explained variance of relative MTU stiffness to relative RTD 

(25-50%MVT) in Chapter 5, relative RTD changes after SCT and ECT after 12 weeks (e.g. 

Tillin et al. 2012, Balshaw et al. 2016) are unlikely to be accounted for by relative MTU 

stiffness. Indeed, the linear regression equations associated with the results figures (bivariate 

correlation between relative MTU stiffness and RTD between 25-50%MVT) in Chapter 5 

indicated that changes in relative MTU stiffness after SCT (+11%) and ECT (–8.0%) training 

would produce small changes in voluntary and evoked relative RTD between 25-50%MVT: 

+4.1 and 5.7% increase after SCT, whereas ECT would yield a decrease of –3.5% and 5.2% 

respectively. This indication is rather contradictory to a particular importance of MTU 

stiffness on relative RTD. It seems counterintuitive that training to improve RTD via specific 

training (i.e. ECT) would subsequently not improve or potentially decrease an underlying 

physiological determinant.  
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Despite a relationship between relative MTU stiffness and relative RTD in chapter 5, there 

was no relation between absolute measures of MTU stiffness and RTD. This is in contrast to 

previous work (Bojsen-Møller et al. 2005; Waugh et al. 2013; Hannah and Folland 2015). 

The contrary result was suggested to be a consequence of the previous studies positive 

correlations being spurious. As highlighted in chapter 5, earlier studies methods likely 

resulted in a bias towards greater MTU stiffness in stronger individuals that also likely 

display higher RTD. The more rigorous methodology of Chapter 5 circumvented such bias 

and therefore revealed that actually absolute MTU stiffness is not a notable determinant of 

absolute RTD.  

 

Neither QF PA (Chapter 4) nor patellar tendon (PT) stiffness (Chapter 5) related to isometric 

knee extension voluntary or evoked RTD. Chapter 4 and 5 were the first studies to explore 

any possible relation of muscle PA and tendon stiffness to in vivo RTD. The lack of relation 

between PA and RTD was deemed consequent to no relation of PA and MVT (Chapter 4). 

Any hypothetical relation of PA to RTD is not clear apart from a potential indirect link 

between absolute RTD and PA, owing to an anticipated positive effect of greater PA to 

increase effPCSA and thus muscle maximal strength, and the recognised positive influence of 

maximal strength on absolute RTD. As indicated in Chapter 4, the lack of relation between 

PA and MVT, likely underpinned the subsequent lack of relation between PA and RTD. In 

general, the results of Chapter 4 suggest that PA has no discernible influence on the in vivo 

muscle strength characteristics examined. The present findings therefore concur with the 

viewpoint that although PA is a definitive structural descriptor of skeletal muscle, inter-

individual differences in PA are unlikely to exhibit any significant functional consequences 

(Burkholder and Lieber 1994; Lieber and Fridén 2000).  

 

No relation of PT stiffness was attributed to a limited elongation that could not conceivably 

influence muscle contractile conditions and, the force transmission time through such a short 

tendon as the PT, being too rapid to noticeably impair RTD. This finding highlights that 

changes in PT stiffness that occurs after strength training (e.g. Chapter 6 and 7) will not 

account for improvements in RTD in contrary to the postulations of several studies that have 

not measured both RTD and PT stiffness simultaneously (Reeves et al. 2003; De Boer et al. 

2007; Alegre et al. 2016). 
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Next to the aforementioned findings regarding FL and MTU stiffness, there appears to be a 

differential influence of component muscle-tendon unit tissues on RTD. In the context of 

Chapter 5’s method, the relative MTU stiffness relationships, with no apparent influence of 

tendon stiffness, suggests that the force-length characteristics of the muscle-aponeurosis 

component of the MTU affected relative RTD to some small extent. However, the ultrasound 

technique was insufficient to specifically characterise aponeurosis stiffness and delineate its 

contribution to RTD. Further any possible influence of muscle stiffness (possibly related to 

FL) could not be captured. Any relation of in vivo FL and muscle stiffness has not been 

examined and any possible effect of muscle stiffness on RTD has been hitherto neglected in 

the literature, and therefore warrants further consideration. 
 

8.3. Muscle-tendon unit hypertrophic response to strength training  
8.3.1. Muscle 

Greater muscle size is an obvious and widely documented response to conventional strength 

training (Folland and Williams 2007; Erskine et al. 2010), as shown by the substantially 

greater muscle volume in CST individuals (Chapter 7) and the more modest increase in QF 

muscle size after 12 weeks of SCT (8%, Chapter 6).  In contrast the ECT in Chapter 6 was an 

ineffectual stimulus to induce short-term gains in muscle volume. This finding adds to the 

evidence that loading duration is an important training variable dictating muscle size changes. 

Muscle hypertrophy results from the accretion of muscle proteins following repeated bouts of 

resistance exercise that stimulate a net protein synthetic response (Phillips 2014) and this 

process is likely amplified by greater muscle time under tension (Burd et al. 2012). Therefore 

the very limited overall contraction duration inherent to the ECT likely accounts for why it 

was insufficient to elicit muscle growth. Therefore, if muscle hypertrophy is a desired 

adaptation, ECT is an inappropriate training regime and the more traditional SCT training 

would be advantageous. 

 

8.3.2. Aponeurosis 

As the aponeurosis is the attachment site for muscle fibres, muscle hypertrophy may 

implicitly necessitate aponeurosis hypertrophy (Abe et al. 2012). However only one previous 

study had investigated whether an SCT intervention may enlarge the aponeurosis (Wakahara 

et al. 2015). Commensurate with the increase in muscle size after SCT in Chapter 6, there 

was a within-group increase in VL aponeurosis area, which was not observed after ECT. 
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Nevertheless, the greater aponeurosis size in the CST group in Chapter 7 indicates that with 

longer periods of training, there is additional aponeurosis growth. To elucidate the time 

course more detailed longitudinal within-group investigations would be needed to detail 

aponeuroses size changes. There are some emerging suggestions that aponeurosis size may be 

a risk factor for MTU injury risk (Fiorentino et al. 2012; Evangelidis et al. 2015). Therefore 

the evidence in Chapter 6 that aponeurosis size can be increased with appropriate strength 

training, suggests that further attention should be given to elucidating the potential of strength 

training to develop aponeurosis size. 

 

8.3.3. Tendon  

The present thesis found no evidence that strength training elicits tendon hypertrophy. No 

change in tendon CSA occurred with either ECT (uniquely documented) or SCT (Chapter 6). 

Given that tendon collagen turnover is slow, the 12 weeks period of training in Chapter 6 

may not have been of sufficient duration to demonstrate conclusively that strength training 

was not stimulating a gradual accretion of tendon collagen. However, the most robust 

evidence that strength training does not drive tendon growth was the observation that the 

CST group in Chapter 7 had a similar tendon size (both mean and regional CSA) to untrained 

individuals.  Therefore it appears that a repeated bout of high stress over several years is not 

the stimulus for tendon hypertrophy.  

 

Data from multiple short-term intervention studies (small hypertrophy often localised to 

certain tendon locations: Arampatzis et al. 2007a, Kongsgaard et al. 2007; Seynnes et al. 

2009; Bohm et al. 2014, vs. no change across the length of the tendon: Arampatzis et al. 

2010; Kubo et al. 2012; Bloomquist et al. 2013), as well as a couple of cross-sectional studies 

of chronic strength vs. untrained males, (>PT CSA, Seynnes et al. 2013 vs. no differences at 

multiple tendon sites, Kurihara and Fukutani 2015) have provided controversial data as to the 

possibility of some limited tendon growth after strength training. In support of the findings of 

this thesis, PT CSA analysis in Chapters 6 and 7 was conducted with particularly diligence. 

Sensitive spatial resolution (2 mm thickness, 512 x 512 pixels), of tendon MRI (gives high 

contrast between tendon and surrounding tissues) images was acquired along the full length 

of the tendon. Tendon CSA in each image was carefully segmented to yield minimal 

measurement error in mean PT CSA (~3.0% co-efficient of variation in pre-post control 

[Chapter 6]). Further complimentary to the results of this finding of no tendon hypertrophy 

after strength training, is recent evidence that the tendon matrix protein synthesis that would 
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be required to initiate tendon growth (Svensson et al. 2016) is not stimulated via resistance 

exercise: no upregulation of collagen messenger RNA post dynamic resistance exercise 

(Sullivan et al. 2009); and no change in PT peritendinous concentrations of a collagen 

synthesis biomarker post 12 weeks heavy-squat training (accompanied by no change in PT 

tendon CSA; Bloomquist et al. 2013). In contrast, endurance exercise has been found to 

stimulate increases in peritendinous concentrations of collagen synthesis biomarkers 

(Langberg et al. 1999, 2000, 2001), which may explain the evidence for larger tendon CSA in 

habitual distance runners than controls (Rosager et al. 2002; Magnusson and Kjaer 2003; 

Kongsgaard et al. 2005; Wiesinger et al. 2016). The evidence that endurance running and 

intermittent exercise can induce tendon hypertrophy after years of training (Kongsgaard et al. 

2005; Couppé et al. 2008), yet strength training does not (Chapter 7), indicates that tendon 

hypertrophy is in some way consequent to exposing the tendon to a high volume of loading; 

rather than merely high infrequently applied stress. In theory, tendon hypertrophy may result 

from a continuous repair process to restore tendon strength after fatigue induced damage that 

can occur with prolonged cyclic loading at moderate stress levels (Wiesinger et al. 2015).  

 

8.4. Tendinous Tissue Adaptations to Strength Training 
8.4.1. Patellar Tendon  

An interesting novel finding of Chapter 6 was that PT stiffness (in this case measured over 

absolute tendon forces within a high relative force range: 70-80% pre-MVT) was increased 

similarly after SCT and ECT (i.e. ECT was equally effective for increasing tendon stiffness 

as SCT). While SCT has been previously shown to increase PT stiffness (e.g. Seynnes et al. 

2009; McMahon et al. 2013), Chapter 6 is the first study to indicate that ECT can likewise 

increase tendon stiffness. The similar tendon stiffness increase after ECT and SCT appears 

consequent to the similarly high magnitude contractions (≥75% MVT) performed. Neither 

greater loading rate (i.e. RTD, > in ECT) nor longer loading duration (> in SCT) seemed to 

influence tendon stiffness adaptations. However it appears that the short-term improvements 

in PT stiffness after 12 weeks strength training shown in Chapter 6 would not subsequently 

be furthered with continued training. Chapter 7 uniquely showed that the CST cohort had 

similar PT stiffness (at the highest common absolute tendon force range) as post 12 weeks of 

SCT. However, a notable observation in Chapter 6 was that ECT reduced PT 

elongation/strain at a common force/stress level (80% pre-MVT) whereas SCT had no effect. 

Although CST also had lesser PT elongation at the comparative force level (4200N) than the 
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STT group (post SCT). The reduction in tendon elongation implies an increase in the generic 

tendon stiffness across a broader force range. This adaptation appeared consequent to 

stiffness changes in the earliest phase of tendon loading (<10% pre-MVT in Chapter 6; 

<1000N in Chapter 7). Taken together, Chapters 6 and 7 indicate that strength training can 

reduce PT elongation at a common force level, though SCT requires greater than 12 weeks 

whereas this adaptation occurs in a shorter period of time with ECT, suggesting a reduction 

in tendon elongation is an adaptation that occurs faster in response to a high strain rate 

stimulus.  

 

Because neither ECT nor SCT produced tendon hypertrophy, and the CST had no larger 

tendon CSA (than untrained [UNT] or STT), the tendon stiffness adaptations are consequent 

to changes in material stiffness. Accordantly, the PT Young’s modulus improvements after 

ECT and SCT (Chapter 6), as well as the group comparisons in PT modulus in (CST & STT 

> UNT, but CST = STT), coincided with the results for tendon stiffness. Therefore Chapter 6 

was the first study to show that ECT can improve tendon quality. Likewise, Chapter 7 was 

the first study to indicate: tendon modulus is greater in CST than UNT at an equivalent stress 

level; CST and STT have remarkably similar Young’s modulus, suggesting changes in 

tendon Young’s modulus seemingly occur as a reactive response to short-term (12 weeks) 

strength training, with no further improvement beyond the intial 12 weeks stimulated by 

continued exposure to high stress tendon loading. 

 

In an attempt to capture the so-called linear region of the tendon stress-strain relationship 

(>30MPa: Seynnes et al. 2015), Young’s modulus was measured over the highest common 

stress range for each individual pre and post ECT and SCT (Chapter 6), and for all 

participants in each group in Chapter 7. When subjected to high levels of stress, tendon strain 

is thought to result from collagen elongation mechanics (e.g. collagen molecule extension 

and collagen inter-fibre sliding: Screen et al. 2009; Connizzo et al. 2016). These mechanisms 

imply that increased collagen content, inter-molecular cross-link concentration and/or 

collagen fibril size distribution (larger mean fibril diameter) could account for an increased 

Young’s modulus (Buchanan and Marsh 2002; Kjaer et al. 2015). However, whether strength 

training can alter collagen structure and composition is yet to be clearly elucidated. No 

studies have examined if tendon collagen structure/ composition is altered in response to 

strength training in healthy individuals.  Although, no difference in PT collagen content or 

cross-link concentration was found between untrained and chronically (10 ± 1 years) 
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resistance-trained men (LeMoine et al. 2009), suggesting collagen structure and composition 

are unlikely to change following strength training. Unfortunately LeMoine et al. did not 

measure in vivo PT Young’s modulus so the functional implications of their findings are 

unclear. Therefore an explanation for the greater Young’s modulus post vs. pre strength 

training (Chapter 6) and in the strength trained vs. untrained groups (Chapter) 7 is unknown 

and warrants investigation. Further, consideration is yet to be given to any effects of strength 

training on non-collagenous proteins of the extracellular matrix that could mediate dynamic 

processes of tendon collagen elongation (Connizzo et al. 2016), and thus influence Young’s 

modulus (Wren and Carter 1998; Thorpe et al. 2013; Connizzo et al. 2016). Regardless of the 

adaptive mechanisms, no additional functional changes after short-term strength training (i.e. 

increased Young’s modulus) implied in Chapter 7 suggests such mechanisms are saturated 

after a relatively short period of time, though a precise time-course and the reasons for this 

limited adaptation are yet to be explored.  

 

In addition to the results for Young’s modulus, the lesser PT elongation at a common force 

level observed after only ECT in Chapter 6 and in CST (than UNT and STT in Chapter 7), 

was mirrored, and thus explained by, the correspondingly lesser strain at common stress 

levels. Furthermore, from observation of the stress-strain relationships ECT and longer-term 

SCT (i.e. CST) appear to increase material stiffness in response to the lowest stress levels 

(<10%MVT [ECT]; <10MPa [CST]), which leads to an increase in the material stiffness 

across the broader stress range. The tendon stress-strain relationship in the initial highly 

compliant (toe) region is thought to reflect the straightening of the crimped collagen fibres 

and a reorientation of the fibres to align fully in the direction of loading (Wren and Carter 

1998; Screen 2009). Our findings suggest that strength training may influence collagen crimp 

morphology (e.g. angle) as well as the initial collagen fibre alignment, however whether this 

is the case is unknown. Furthermore, why the underpinning adaptations to explain the lesser 

strain occur in a shorter period of time after ECT than SCT is unclear. To speculate, initial 

consideration of the differences in tendon loading characteristics of ECT vs. SCT could have 

implied that the reduction in tendon strain was related to strain-rate (high in ECT). Though 

this assumption is not immediately consistent with a reduction in PT strain that presumably 

occurs after chronic strength training. Perhaps a substantial increase in maximal strength (as 

with CST) is needed to give rise to a sufficient absolute tendon-loading rate in controlled 

muscle contractions to elicit adaptations. Hence accounting for why SCT requires a longer 

period of time than ECT to reduce tendon strain. However, the tendon loading characteristics 
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that would drive the adaptations to reduced PT strain at a given absolute stress level requires 

further investigation to be properly understood. Taken together the results of Chapters 6 and 

7, suggest that ECT is a more time-efficient approach to elicit equivalent adaptations 

(increased Young’s modulus [higher and initial stress] and reduced PT elongation and strain 

at equal [pre-post training] absolute forces and stresses) occurring in response to SCT.  

 

8.4.2. Muscle-Tendon Unit  

As a first, Chapter 6 found that the contrasting ECT and SCT resulted in force region specific 

MTU stiffness changes. SCT only increased MTU stiffness at high force levels, where as 

ECT only increased MTU elongation across the force range suggesting a general increase in 

MTU compliance. These findings could imply that strain rate (high in ECT), and loading 

duration (high in SCT) are important mechanical stimuli for the respective MTU stiffness 

changes. 

 

No change in high force MTU stiffness after ECT contrasts with a previous study (Tillin et al. 

2012) that found a significant increase in high force MTU stiffness (50-90% MVT). As noted 

in Chapter 6, the ECT in the current thesis employed a more extended knee joint position 

than Tillin et al. (2012). MTU stiffness changes are known to be greater after isometric 

training with a lengthened MTU (Kubo et al. 2006b). Although whether there is an angle 

specific interaction with the level of stiffness adaptations is unknown. The change in 

elongation values after ECT were seemingly consequent to an increased MTU compliance at 

the lowest force levels, though a mechanism for this is unknown. Nevertheless, there are 

potential functional implications of this increase in overall MTU compliance. For instance, 

greater MTU compliance may act to increase the optimal joint-angle for torque production 

(Lemos et al. 2008), and perhaps reduce the positive strains experienced by muscle-fascicles 

during MTU length change (Roberts and Konow 2013). These effects could potentially 

decrease the susceptibility to strain-induced muscle damage during eccentric contractions and 

thus lessen injury risk. These hypothetical consequences warrant future investigation.  

 

In contrast, SCT training produced no shift in the force-elongation relationship (i.e. no 

change in elongation at 80% MVT), suggesting no overall change in stiffness after 12 weeks, 

however the high force MTU stiffness was greater post SCT. These findings are partially 

consistent with previous work. Greater higher force MTU stiffness has been consistently 

found in SCT intervention studies and is also typically associated with a general left shift in 
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the force-elongation relationship (i.e. lesser elongation throughout the range of force levels) 

(Kubo et al. 2001, 2006b, 2009; Arampatzis et al. 2007a). The increased higher force MTU 

stiffness in Chapter 6 (+21%) was more moderate than previously reported in the knee 

extensors after 12 weeks isometric SCT (e.g. +51-58%, Kubo et al. 2001, 2006b, 2009). This 

discrepancy may be largely accounted for by methodological differences. Specifically, 

Chapter 6 compared MTU stiffness at the same absolute tendon forces pre-post training, yet 

these earlier studies measured stiffness over tendon forces relative to MVT (50-100% MVT). 

Therefore, the previously reported stiffness changes were amplified by increased maximal 

strength; curvi-linear nature of the force-elongation relationship.  

 

Chapter 7 revealed that MTU distal tissue elongation (at the highest common force) was no 

different between CST, STT and UNT, suggesting strength training does not lead to changes 

in lower force region MTU stiffness and the overall force-MTU elongation relationship 

(overall stiffness). Moreover Chapter 7 intriguingly showed that greater high force stiffness 

after short-term SCT (Chapter 6) was not replicated in CST vs. UNT individuals (i.e. highest 

common force MTU stiffness was similar in CST and UNT). This awkwardly questions the 

validity of strength training to elicit changes in higher force MTU stiffness. Further, this 

result possibly implies that if the STT group were to continue training, they would experience 

an increase in MTU compliance at common forces. Longitudinal interventions would be 

needed to give credence to this supposition, and a precise explanation for the present results 

is elusive. However it can be implied that considering the aforementioned tendon results from 

Chapters 6 and 7, the MTU findings are indicative of an influence of strength training on 

aponeurosis properties. Perhaps herein lies a source of uncertainty regarding how to explain 

the contrary results. MTU stiffness measurements are rather inexact and indirect estimates 

derived from measuring muscle-aponeurosis displacement (distal tissue elongation) and 

presuming aponeurosis force is commensurate with tendon force. During muscle contraction, 

aponeuroses are known to experience a bi-axial loading pattern, undergoing both longitudinal 

and transverse strain (Aziz and Roberts 2009). The transverse strain results from muscle 

lateral expansion proportional to relative muscle force production, and acts to increase the 

overall longitudinal stiffness of the aponeurosis (Azizi and Roberts 2009). To provide insight 

into the present results, further investigations could incorporate 3D imaging techniques 

(ultrasound [Farris et al. 2013] or MRI [Iwanuma et al. 2011]) that can capture the bi-axial 

aponeurosis strain.  
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8.5. Summary  
Despite theoretically being more physiologically representative, measures of effPCSA during 

maximal voluntary contraction were no more strongly correlated, than effPCSA measured at 

rest, to maximal isometric strength. PA seems inconsequential for in vivo muscle strength and 

FL could only explain a small proportion of the large variance in explosive voluntary RTD 

during the initial phase of rising torque. Likewise, relative MTU stiffness could account for a 

limited extent of the variance in relative RTD during evoked contractions and the most rapid 

phase of explosive voluntary contractions. Once the seemingly overwhelming influence of 

maximal strength was considered, there was no evident relation between absolute MTU 

stiffness and RTD. Stiffness of the free tendon did not explain any of the substantial inter-

individual variability in RTD. However PT stiffness was increased equally following 

sustained- and explosive-contraction strength training, due to their similar positive effect on 

tendon material stiffness, as neither training approach elicited tendon hypertrophy. However, 

tendon elongation/strain at any given absolute tendon force/stress was reduced after explosive 

training only. In contrast, sustained-contraction, but not explosive, strength training increased 

MTU stiffness, while neither training modality altered MTU elongation/strain from pre-post 

training. Tendon size was no greater in a group of chronic strength trained individuals, which 

provides convincing evidence that strength training does not stimulate tendon hypertrophy. 

Further this chronic strength trained group possessed similar tendon material (and resultantly 

mechanical) stiffness to a short-term strength trained group, indicating there may be a plateau 

in tendon stiffness adaptation following short-term training. However, PT elongation at equal 

tendon forces was lesser in chronic trained only, implying some longer-term adaptation in the 

tendon that increases generic tendon stiffness as oppose to the higher force/stress 

stiffness/modulus. Intriguingly, highest common force muscle-tendon unit stiffness was not 

apparently greater in the chronic strength trained group, and neither was there any difference 

in MTU elongation (at a common tendon force) in strength-trained groups, in comparison to 

untrained individuals. Only sustained-contraction strength training resulted in an increase in 

aponeurosis size, in concert with muscle hypertrophy, with the potential for longer-term 

aponeurosis hypertrophy was corroborated by the larger aponeurosis of the chronic strength 

trained group.  
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8.6. Future Directions  
Following the results of the present thesis, possible suggestions for further research are: 

 

1.  Further explore the inter-individual variability in muscle architecture. The greater 

variability in the individual constituent quadriceps femoris muscles than the whole 

muscle group in Chapter 4 was intriguing. This phenomenon of a possible compensation 

of architecture characteristics between muscles could be explored in more detail and 

investigated in other muscle groups.  

 

2. Investigate the influence of fascicle length on in vivo strength characteristics. In 

particular: (a) explore valid protocols to examine high velocity torque production 

(>700°), than is possible with current isovelocity dynamometry, in order to more 

thoroughly investigate the relationship of FL with high velocity torque; (b) more detailed 

examination of the relationship between fascicle length and isometric RTD. A larger 

cohort (than Chapter 4) would be advantageous, and a more comprehensive estimate of 

whole muscle FL, by measuring at multiple sites should be derived. Possibly using 

techniques that account for muscle 3D structure (e.g. 3D ultrasound, or diffusion tensor 

MRI) could facilitate future investigations.  

 

3. More thoroughly investigate the differential PT and MTU adaptations to ECT training. 

Chapter 6’s results regarding the effects of ECT were only found in a small group. 

Documenting similar findings in a larger cohort would be needed to firmly corroborate 

the results. Measurements at multiple time-points could delineate a more accurate time-

course for tendinous tissue adaptations. Whether there is a knee-joint angle specific effect 

of ECT could be explored. Appreciation of adaptations in response to ECT in other 

population groups (e.g. older adults, tendon pathology) is needed.  

 

4. Conduct prolonged SCT interventions. The increased high force MTU stiffness after 

SCT (Chapter 6), yet no difference in highest common force MTU stiffness in CST vs. 

UNT (Chapter 7) implies a bi-phasic MTU stiffness adaptive response (i.e. increase 

within 12 weeks, subsequent decrease with more prolonged training) to strength training 

focused on sustained high force contractions. Moreover, no reduction in PT strain in SCT 

(Chapter 6), though CST had lesser PT strain than both UNT and STT (Chapter 7) 
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suggests this adaptation occurs after 12 weeks training. Therefore, the results of Chapters 

6 and 7 indicate that longer than 12 weeks strength training is needed to more fully 

understand the nature of MTU and PT adaptation to SCT training. Intervention periods of 

6-9 months would perhaps be feasible. 

 

5. Investigate the mechanisms for the increased Young’s modulus after strength training.  

The nature of tendon microstructure and/or extracellular matrix biochemical composition 

changes responsible for material stiffness improvements after strength training needs to 

be ascertained. Exploring such mechanisms could be logistically challenging owing to 

requirement for invasive procedures. Perhaps determining the validity of non-invasive 

methods thought to reflect tendon structure (e.g. MRI signal intensity, Kubo et al. 2012; 

ultrasound tissue characterisation, Docking et al. 2016) is needed. Appropriate non-

invasive imaging markers could perhaps be initially used to refine the time-course of 

adaptation prior to the use of invasive procedures.  

 

6. Explore the possible methods of examining muscle stiffness in vivo, and investigate the 

relation of muscle stiffness to fascicle length, RTD and the impact of strength training 

on muscle stiffness. Recently, measures of muscle stiffness in vivo have been derived 

from measuring the degree of muscle length change during a rapid stretch or release 

imposed during an isometric contraction via traditional two-dimensional ultrasonography 

utilising a relatively high recording frequency (96 Hz ultrasound frame rate, Kubo et al. 

2014; or very high 2000 Hz frame rate, Hauraix et al. 2015). Tested hypotheses could 

include: muscle-stiffness and FL are inversely related; greater muscle stiffness is 

associated with faster RTD and strength training increases muscle stiffness. Muscle 

stiffness is thought to relate to the muscle fibre type (greater stiffness in slower 

contracting fibres: Goubel and Marini 1987), thus simultaneous muscle composition 

measurements maybe needed.  
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(A) 

(B) 

9.1. Isovelocity Torque Analysis  

Isovelocity peak torque was determined at angular velocities of 50 and 350°s-1. Before active 

trials (voluntary contractions), the participant’s leg was moved through the test range of 

motion in a continued passive movement (CPM) trial at both velocities (Figure 9.1) to permit 

active voluntary torque to be corrected for passive torque contribution a posteriori.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1. Example raw data from continued passive movement trials for 50°s-1 (A) and 350°s-1 (B).  
Left y-axis: knee extension torque (black line), crank angle (dark grey line); Right- y-axis = velocity 
(light grey line). Positive velocity corresponded to the knee extension phase of the movement.  
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(A) 

(B) 

Voluntary isovelocity trials were completed via 2/3 eccentric-concentric contraction cycles at 

50/350° s-1 (Figure 9.2). The eccentric part of the cycle served as a pre-activation phase to 

attempt to maximize concentric muscle performance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.2. Example raw data from active trial (voluntary knee extensor contractions) at 50°s-1 (A) 
and 350°s-1 (B). Left y-axis: knee extension torque (black line), crank angle (dark grey line). Right y-
axis = velocity (light grey line). Positive velocity corresponds to the concentric contraction phase of 
the movement.  
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Isovelocity region 
(B) 

Isovelocity region (A) 

Upon visual inspection, the concentric contraction with the apparent highest torque was 

analysed further. The acceleration and deceleration phases of the movement were discounted 

to identify the isovelocity region (±10% pre-set constant velocity; Figure 9.3). The peak 

torque within the isovelocity region was then corrected (addition of torque necessary to 

overcome weight of limb) for passive torque by matching the angle of peak torque within the 

CPM trial. The corrected active peak torque was then defined as velocity specific maximal 

concentric torque.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.3. Example raw data from isovelocity concentric contractions at 50°s-1 (A) and 350°s-1 (B). 
Left y-axis: knee extension torque (black line), crank angle (dark grey line). Right y-axis = velocity 
(light grey line). Peak torque within the isovelocity region (±10% pre-set constant angular velocity) 
was determined.  
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9.2. Calculation of Tissue Stiffness and Tendon Young’s Modulus  

9.2.1. Tissue Stiffness  

A second-order polynomial with the y-intercept set to zero was fitted to the raw force-

elongation data derived by from simultaneous estimations of tendon force and the associated 

tissue elongation of the patellar tendon (e.g. Figure 9.4) or vastus lateralis aponeurosis 

(muscle-tendon unit [MTU]; Figure 9.5) displacement during contraction. The associated 

quadratic equation was used to interpolate the tendon elongation values at designated tendon 

force levels.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.4. Example patellar tendon force-elongation relationship: raw data (circles) are fitted when a 
second-order polynomial function (black line) force through zero (y-intercept). 
 
 
Common force level from Chapter 7 = 4200 N; applied to Figure 9.4’s quadratic 

equation: 

Tendon elongation at 100% common force (4200 N) = 2.511 mm 

Tendon elongation at 80% common force (3360 N) = 2.208 mm 

Change in force = 4200 – 3360 = 840 N 

Change in elongation = 2.511 – 2.208  = 0.303 mm 

Tendon Stiffness = Δ in force (840 N)/Δ in tendon elongation (0.303) = 2777 N.mm-1 
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Figure 9.5. Example patellar tendon force- muscle-tendon unit elongation relationship: raw data 
(squares) are fitted when a second-order polynomial function (black line) forced through zero (y-
intercept). 

 

 

Common force level from Chapter 7 = 4200 N; applied to Figure 9.5’s quadratic 

equation: 

MTU elongation at 100% common force (4200 N) = 16.32 mm 

MTU elongation at 80% common force (3360 N) = 14.38 mm 

Change in Force = 4200 – 3360 = 840 N 

Change in Elongation = 16.32 – 14.38 = 1.94 mm 

MTU Stiffness = Δ in force (840 N)/Δ in tendon elongation (1.94) = 434 N.mm-1 
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9.2.2. Patellar Tendon Young’s Modulus 

Dividing tendon force by the mean tendon cross sectional-area equated to tendon stress, and 

expressing tendon elongation relative to the initial (resting) length gave tendon strain. A 

second-order polynomial with the y-intercept set to zero was fitted to the raw stress-strain 

data (e.g. Figure 9.6). The associated quadratic equation was used to interpolate the tendon 

strain values at designated tendon stress levels.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 9.6. Example patellar tendon stress-strain relationship: raw data (circles) are fitted when a 
second-order polynomial function (black line) force through zero (y-intercept). 
 

Common force level from Chapter 7 = 4200 N; applied to Figure 9.6’s quadratic 

equation: 

Tendon strain at 100% common stress (40 MPa [0.04 GPa]) = 0.068  

Tendon elongation at 80% common stress (32 MPa [0.032 GPa]) = 0.057 

Change in stress = 8 MPa [0.008 GPa]) = 0.008 

Change in strain = 0.0648 – 0.0570 = 0.078 

Tendon Young’s Modulus = Δ in stress (0.008)/Δ in strain (0.0.078) = 1.026 GPa 
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9.3. Ultrasound Imaging  

9.3.1. Vastus Lateralis Aponeurosis Displacement  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.7. Example ultrasound images of the vastus lateralis muscle at rest (A) and various tendon 
forces (N) during constant loading-rate isometric ramp knee extensor contractions: (B) 1000, (C) 
2000, (D) 4000 and (E) 6000N. The proximal displacement (ΔM) of the muscle fascicle-aponeurosis 
cross point (small white circle) at was defined as the distal muscle-tendon unit elongation. 
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9.3.2. Patellar Tendon Displacement  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.8. Example ultrasound images of the patellar tendon at rest (A) and various tendon forces 
(N) during constant loading-rate isometric ramp knee extensor contractions: (B) 1000, (C) 2000, (D) 
4000 and (E) 6000N. The tendon attachment to the patella and tibia was tracked and the combined 
proximal and distal displacement of the patella and tibia (ΔP and ΔT) was defined as patellar tendon 
elongation. 
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9.3.3. Quadriceps Femoris Muscle Architecture  

Architectural parameters (fascicle length [FL; length of the fascicular path between the 

aponeuroses attachments] and pennation angle [PA; angle between the fascicular path and 

the muscle’s deep lower aponeurosis]) were measured from ultrasound images of each 

constituent muscle of the quadriceps femoris: vastus lateralis (VL), vastus intermedius (VI), 

vastus medialis (VM), rectus femoris (RF), recorded at rest and during maximal voluntary 

contraction (MVC) (Figures 9.9-9.11, example participant 1), as well as at 20% maximal 

voluntary torque increments during ramp contractions (Figures 9.12-9.14, example 

participant 2). 

 

Measurements were performed via manual identification of structural features. Any visible 

fascicle curvature was included in the fascicle trace. If fascicles extended off the ultrasound 

field of view, manual linear extrapolation was employed to complete FL measurement.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.9. Example ultrasound image of the vastus lateralis (VL) muscle at rest (A) and an isometric 
maximal voluntary contraction (MVC) (B), showing the identification of the muscle aponeuroses and 
fascicular path to measure architecture: fascicle length (FL) and pennation angle (PA). 
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Figure 9.10. Example ultrasound image of the rectus femoris (RF) and vastus intermedius (VI) 
muscle at rest (A) and (B) depicting the measurements of architecture: fascicle length (FL) and 
pennation angle (PA).  
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Figure 9.11. Example ultrasound image of the vastus medialis (VM) muscle at rest (A) and during an 
isometric maximal voluntary contraction (MVC) (B), showing the identification of the muscle 
aponeuroses and fascicular path to measure architecture: fascicle length (FL) and pennation angle 
(PA). 
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20% MVT 

40% MVT 

60% MVT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.12. Example ultrasound images of the vastus lateralis muscle at 20% maximal voluntary 
torque (MVT) increments during a isometric ramp contraction, showing the identification of the 
muscle aponeuroses and fascicular path to measure architecture: fascicle length and pennation angle.  
 
 
 

80% MVT 
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Figure 9.13. Example ultrasound images of the rectus femoris (top) and vastus intermedius (bottom) 
muscle at 20 and 40% maximal voluntary torque (MVT) increments during a isometric ramp 
contraction, showing the identification of the muscle aponeuroses and fascicular path to measure 
architecture: fascicle length and pennation angle.  
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Figure 9.13 cont. Example ultrasound images of the rectus femoris (top) and vastus intermedius 
(bottom) muscle at 60 and 80% maximal voluntary torque (MVT) increments during a isometric ramp 
contraction, showing the identification of the muscle aponeuroses and fascicular path to measure 
architecture: fascicle length and pennation angle.  
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Figure 9.14. Example ultrasound images of the vastus medialis muscle at 20% maximal voluntary 
torque (MVT) increments during a isometric ramp contraction, showing the identification of the 
muscle aponeuroses and fascicular path to measure architecture: fascicle length and pennation angle. 
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9.4. Magnetic Resonance Imaging  

9.4.1. Quadriceps Femoris Anatomical Cross-Sectional Area and Volume 

The anatomical cross-sectional area (ACSA) of each of the four constituent muscles of the 

quadriceps femoris (QF) muscle: vastus lateralis (VL), vastus intermedius (VI), vastus 

medialis (VM) and rectus femoris (RF), were manually outlined (Figure 9.15) on every third 

axial magnetic resonance image, starting from most proximal image in which the muscle 

appeared. The volume of each muscle was calculated as the area under ACSA-muscle length 

(distance between the most proximal and distal MR images in which the muscle was visible) 

cubic spline curve (Figure 9.16). The sum of the volumes of each constituent muscle gave 

total quadriceps femoris muscle volume.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
 

 
Figure 9.15. Example of the manual segmentation of the constituent muscles of the quadriceps 
femoris muscle in axial plane magnetic resonance images at (A) proximal, (B) middle, and (C) distal 
thigh locations.  
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Figure 9.16. Example of quadriceps femoris muscle volume calculation. A cubic spline curve was 
fitted through the data points defining the anatomical cross-sectional area (ACSA)-muscle length 
relationship and muscle volume (cm3) calculated as the area under the curve. Total quadriceps femoris 
muscle volume equated the sum of the constituent muscles volumes. 
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9.4.1.1. Quadriceps Femoris Effective Physiological Cross-Sectional Area  

For each constituent muscle of the quadriceps femoris muscle, the cross-sectional area of the 

muscle fascicles perpendicular to the line of action (i.e. physiological cross-sectional area, 

PCSA) was calculated by dividing its volume by its fascicle length. Subsequently the 

effective PCSA for each constituent muscle was determined by multiplying the PCSA of the 

muscle by the cosine of the respective muscles pennation angle. 

 
E.g. Quadriceps Femoris Effective PCSA calculation  
 
Vastus Lateralis  
Volume (VOL) = 610 cm3, FL = 9.7 cm, PA = 15 degs 
PCSA (VOL/FL) = 62.9 cm2 

PA (°)/57.2958 radians = 0.262 radians 
Cosine PA (radians) = Cos (0.262) = 0.966 
Effective PCSA = PCSA*CosPA = 60*0.966 = 60.7 cm2 
 

Vastus Intermedius  
Volume (VOL) = 560 cm3, FL = 8.3 cm2, PA 14 degs 
PCSA (VOL/FL) = 67.5 cm2 
PA (°)/57.2958 radians  = 0.244 
Cosine PA (radians = 0.970 
Effective PCSA = PCSA*CosPA = 67.5*0.970 = 65.5 cm2 

 

Vastus Medialis 
Volume (VOL) = 430 cm3, FL = 10.0 cm2, PA 16 degs 
PCSA (VOL/FL) = 43.0 cm2 
PA (°)/57.2958 radians = 0.269 
Cosine PA (radians)  = 0.961 
Effective PCSA = PCSA*CosPA = 42.0*0.961 = 41.3 cm2 

 

Rectus Femoris 
Volume (VOL) = 300 cm3, FL = 8.5 cm2, PA 18 degs 
PCSA (VOL/FL) = 35.3 cm2 
PA (°)/57.2958 radians = 0.314 
Cosine PA (radians)  = 0.951 
Effective PCSA = PCSA*CosPA = 35.3*0.951 = 33.6 cm2 

 

 

Total quadriceps femoris effective PCSA = 60.7 + 65.5 + 41.3 + 33.6 = 201.1 cm2 

 

 
E.g. Constituent muscle proportional contributions (effective PCSA/total effective PCSA) 
VL = 60.7/201.1 = 0.302 
VI = 165.5/201.1 = 0.326 
VM = 41.3/201.1 = 0.205 
RF = 33.6/201.1 = 0.167 
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9.4.2. Vastus Lateralis Aponeurosis Area  

The width of the deep aponeurosis of the vastus lateralis (VL) muscle was defined as the 

length of the visible black segment between the VL and vastus intermedius muscle in the 

thigh MR images (Figure 9.17). VL aponeurosis width was traced manually on every third 

axial image, starting from most distal image in which the aponeurosis was visible. VL 

aponeurois area was calculated as the area under aponeurosis width-length (distance between 

the most proximal and distal MR images in which the aponeurosis was visible) cubic spline 

curve (Figure 9.18).  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.17. Example aponeurosis width measurement. (A) most proximal, (B) middle, and (C) most 
distal axial magnetic resonance image where the aponeurosis was visible. The visible black segment 
between the vastus lateralis (VL) and vastus intermedius muscles in the image was defined as the 
deep aponeurosis of the VL muscle. The length of the visible black segment was measured as 
aponeurosis width. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.18. Example of vastus lateralis (VL) aponeurosis area calculation. A cubic spline curve was 
fitted through the data points defining the aponeurosis width-length relationship and the area under 
the curve defined aponeurosis area (cm2). 
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9.4.3. Patellar Tendon Cross-Sectional Area  

Patellar tendon cross-sectional area (CSA, mm2) was measured on each contiguous 2 mm 

axial image (perpendicular to the tendon) acquired along the whole length of the tendon; 

from the first image where the patellar was no longer visible to the last image before the 

insertion of the tendon onto the tibia (e.g. images, Figure 9.19). Mean tendon CSA was 

defined by the average of each CSA measured on all manually segmented images.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.19. Example images of the patellar tendon cross sectional area measurement. Images 
correspond to (A) proximal; just distal to the apex of the patella, (B) mid-length; 50% distance 
between patella-tibia attachment, and (C) distal; just proximal to the tendon tibia insertion. Sagittal 
images showing the position along the tendon length (i), corresponding to where the axial images (ii) 
were acquired, and tendon cross-sectional area (determined by manual identification of tendon 
perimeter) was measured (iii). 
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