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Abstract

Background: Acute reductions in postprandial glucose excursions because of movement behaviors have been demonstrated in
experimental studies but less so in free-living settings.
Objective: The objective of this study was to explore the nature of the acute stimulus-response model between
accelerometer-assessed physical activity, sedentary time, and glucose variability over 13 days in nondiabetic adults.
Methods: This study measured physical activity, sedentary time, and interstitial glucose continuously over 13 days in 29
participants (mean age in years: 44.9 [SD 9.1]; female: 59%, 17/29; white: 90%, 26/29; mean body mass index: 25.3 [SD 4.1])
as part of the Sensing Interstitial Glucose to Nudge Active Lifestyles (SIGNAL) research program. Daily minutes spent sedentary,
in light activity, and moderate to vigorous physical activity were associated with daily mean glucose, SD of glucose, and mean
amplitude of glycemic excursions (MAGE) using generalized estimating equations.
Results: After adjustment for covariates, sedentary time in minutes was positively associated with a higher daily mean glucose
(mmol/L; beta=0.0007; 95% CI 0.00030-0.00103; P<.001), SD of glucose (mmol/L; beta=0.0006; 95% CI 0.00037-0.00081;
P<.001), and MAGE (mmol/L; beta=0.002; 95% CI 0.00131-0.00273; P<.001) for those of a lower fitness. Additionally, light
activity was inversely associated with mean glucose (mmol/L; beta=−0.0004; 95% CI −0.00078 to −0.00006; P=.02), SD of
glucose (mmol/L; beta=−0.0006; 95% CI −0.00085 to −0.00039; P<.001), and MAGE (mmol/L; beta=−0.002; 95% CI −0.00285
to −0.00146; P<.001) for those of a lower fitness. Moderate to vigorous physical activity was only inversely associated with mean
glucose (mmol/L; beta=−0.002; 95% CI −0.00250 to −0.00058; P=.002).
Conclusions: Evidence of an acute stimulus-response model was observed between sedentary time, physical activity, and glucose
variability in low fitness individuals, with sedentary time and light activity conferring the most consistent changes in glucose
variability. Further work is required to investigate the coupling of movement behaviors and glucose responses in larger samples
and whether providing these rich data sources as feedback could induce lifestyle behavior change.

(JMIR Mhealth Uhealth 2018;6(5):e114)   doi:10.2196/mhealth.9471
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Introduction

Background
Despite the well-documented health benefits of physical activity
(PA) for the prevention of chronic diseases [1,2], accelerometry
data from nationally representative samples suggest that only
a small percentage of individuals are sufficiently active [3-5].
The UK PA guidelines propose that regular PA can reduce the
risk of developing chronic diseases such as type 2 diabetes and
coronary heart disease [6]. However, this requires individuals
to undertake PA now to receive their health return on investment
later in life. In psychology, the term temporal discounting
describes how the value of a reward decreases as the delay to
attainment increases [7]. Consequently, when the reward (eg,
decreased morbidity and mortality risk) occurs too far into the
future, the immediate costs (ie, effort to be active) outweigh the
future benefits, and individuals are unlikely to carry out
preventative measures such as engaging in more PA to avoid
lifestyle-related chronic disease [8].

One potential solution to this is to show individuals the
physiological consequences of their PA (or lack thereof) in a
more immediate fashion. Acute physiological changes have
been demonstrated by undertaking PA, such as reduced
postprandial responses by completing 2 min of light (walking
at 3.2 km/h) and moderate intensity (5.8-6.4 km/h) activity
breaks every 20 min over a 5-hour period. Compared with
uninterrupted sitting, both activity conditions lowered the net
glucose response to a standardized drink (light: −1.7 mmol/L;
moderate: −2.0 mmol/L) [9]. Similarly, significant attenuations
of postprandial glucose were also observed in a large trial of
normal weight adults when regular activity breaks were
undertaken (−866.7 IU/L·9 h) [10], in postmenopausal women
[11], and in office workers when asked to stand for 4 hours
(43% lower excursion to a standardized lunch) [12]. The
emergence of wearable technologies now allows many people
to track their own behaviors and increasingly, their own health,
in impressive detail. Given that most wearable technologies
measure the volumetric dose of PA as standard, consumers are
increasingly seeking more comprehensive information on how
their actions are influencing their health [13], and therefore,
quantifying the effect of movement behaviors upon acute health
outcomes is an exciting development.

Although studies exist that examine the relationship between
glucose and PA in a free-living setting, most involve a laboratory
component or conditions that stipulate participants conduct a
set program of behaviors [14-16]. This lacks some
generalizability given that individuals’ lives are often not as
regimented as a research protocol, and the introduction of
between and within participant variation is key to determine if
findings are robust. One study investigating behavior and
glucose responses in individuals with type 2 diabetes outside
the laboratory demonstrated that time spent in hyperglycemia
was positively associated with sedentary time [17]. If these
physiological consequences of small movement choices can be
represented as personalized feedback (ie, glucose
concentrations), it may help support individuals to be more
physically active or reduce time spent sedentary [18].

Study Aim
There are considerable gaps in our understanding of the acute
physiological changes that PA and sedentary time can have
upon glucose within free-living settings. Therefore, the aim of
this study was to determine if there was a relationship between
accelerometer measured PA, sedentary time, and measures of
glucose variability over 13 days using glucose monitoring in
nondiabetic adults.

Methods

Sample
Data used for this study were collected as part of the Sensing
Interstitial Glucose to Nudge Active Lifestyles (SIGNAL)
research program which aims to use PA, sedentary time, and
glucose data to investigate the physiological consequences of
movement. The study took place at the National Centre for
Sports and Exercise Medicine at Loughborough University from
May 2016 to September 2016. All participants gave their written
informed consent, and the study was approved by the
Loughborough University Human Participants Ethical
Sub-Committee (R15-P142).

Study inclusion criteria required participants to be in the age
range of 30 to 60 years and not have a current clinical diagnosis
of diabetes (type 1 or type 2). Participants that had fasting
glucose concentrations above the prediabetic threshold of ≥5.6
mmol/L were able to participate within the study. Exclusion
criteria included taking diabetes medication, being pregnant,
having any mobility-related musculoskeletal problems, or
undertaking any structured exercise training.

Study Design
Participants attended a 2-hour morning appointment (AM only)
and were asked to adhere to the following pretesting guidelines
before their appointment: refrain from food or drink (except
water) for a minimum of 8 hours before, drink a glass of water
at least 1 hour before, and refrain from any strenuous activity
24 hours before.

Study Measurements
After arrival, informed consent was taken, and then, a Physical
Activity Readiness Questionnaire was completed to ensure
participant safety [19]. Any positive answers were dealt with
by a clinically trained member of the study team. Once cleared
for participation, a seated blood pressure reading (Omron 705IT,
Omron, United Kingdom) and a fasting capillary blood test were
undertaken. Two finger prick blood samples were collected and
analyzed using point-of-care devices for total cholesterol,
high-density lipoprotein cholesterol, low-density lipoprotein
cholesterol, triglycerides and glucose (Lipid Profile Glucose
Cartridge, Cholestech LDX Analyzer, Alere, Massachusetts,
United States), and glycated hemoglobin (Afinion HbA1c,
Afinion Analyzer, Alere, Massachusetts, United States). Height,
weight, body composition, and waist circumference were
measured once using a stadiometer (SECA 213, SECA,
Germany), bioelectrical impedance scale (Tanita MC780MA,
Tanita, The Netherlands), and tape measure (HaB International
Ltd, United Kingdom), respectively. Waist circumference was
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measured using the average of two measurements, with a third
being conducted if the first two exceeded 3 cm.

It has been demonstrated that the glucose response to PA can
be influenced by cardiorespiratory fitness [20]; therefore, fitness
assessments in the form of combined left and right hand grip
scores (Takeii analogue dynamometer, Takei Scientific
Instruments Co, LTD, Japan), quadriceps maximal voluntary
contraction (G200 Knee Extension, DAVID Health Solution
Ltd., Finland), and sub maximal fitness (modified Canadian
Aerobic Fitness Test, mCAFT [21]) were conducted. After
completion of all study profiling measurements, participants
were given an accelerometer and glucose monitoring device to
wear for 14 days (13 of which were complete days).

Accelerometry
An ActiGraph accelerometer (wGT3X-BT Monitor, ActiGraph,
Pensacola, United States) was fitted around the waist over the
right hip (midclavicular line) of each participant. The activity
monitor was worn during waking hours only (ie, removed for
sleeping) and was only removed if participants engaged in
water-based activities (eg, swimming or bathing). All devices
were initialized 1 hour into the appointment (day 1) and were
given a stop time of midnight on the last day of wear (day 14)
to account for any potential issues in deployment. Measurement
frequency was set to 100 Hz, and devices were downloaded into
60 second epoch files using ActiLife (ActiGraph) version 6.13.2.
Files were processed using KineSoft (KineSoft) version 3.3.80.

Nonwear was defined as 60 seconds of consecutive zeros with
allowance of 2 minutes of nonzero interruptions, and a valid
day was defined as ≥600 minutes of valid monitor wear [4].
Counts per minute (CPM) cut-points for vertical axis data were
used to define sedentary time (0-99 CPM), light physical activity
(100-2019 CPM), and moderate to vigorous physical activity
(MVPA; ≥2020 CPM) [4].

Glucose Monitoring
A flash glucose monitor (Freestyle Libre, Abbott Laboratories,
Illinois, United States), hereon referred to as a glucose monitor,
was used to measure glucose concentrations over 14 days. The
sensor is attached to the arm via an adhesive patch, and a
handheld reader device downloads data from the sensor via near
field communication. Interstitial glucose concentrations were
captured by the sensor every 15 min and when users scanned
the sensor using the handheld device. Other devices require
frequent calibration using a capillary blood sample every 4 to
12 hours; however, the Freestyle Libre is factory calibrated and
does not require any finger pricks during wear without
significant loss of accuracy [22]. It has also been shown to be
accurate in individuals with type 1 and type 2 diabetes against
capillary blood measurements, and readings are not affected by
body mass index (BMI) or age [23].

After deployment, a Tegaderm patch (3M, Minnesota, United
States) was applied over the sensor to encourage a firm
attachment. Additional patches were provided to participants
in the event that patches became dirty or peeled off.
Manufacturer guidelines specify that the sensor be scanned at
least once every 8-hour period to avoid data loss. In this study,
participants were asked to scan at least once every 7 hours, and

they could also see their glucose concentrations in real time in
an effort to minimize data loss. Missing data were anticipated
as participants may sleep over 8 hours; therefore, participants
were encouraged to scan before going to sleep and upon waking.
If the sensor was removed prematurely (ie, because of an
adhesion issue or a sensor error) during the first few days,
redeployment took place. However, if >10 days of glucose and
accelerometry data were captured, no redeployment took place.

To associate the glucose information captured by the glucose
sensor, three measures of glucose variability were used within
this study: mean daily glucose, SD of glucose, and mean
amplitude of glucose excursions (MAGE). Mean glucose and
SD of glucose were indicated as the most common and easily
interpreted metrics [24], and MAGE is considered the gold
standard for glucose variability measurement [25]. Glucose data
were downloaded and processed using a semiautomated
approach. The glucose reader logged data in two ways: (1) via
automatic scans (every 15 min) and (2) via user manual scans
(frequency dictated by participants). Only automatic scans were
used within these analyses. If any data were missing, a manual
adjustment using a user scan data point within ±3 min was made,
or data were replaced using linear interpolation if below three
adjacent data points were missing. Consecutive values ≥90%
(86/96) for the day, including both waking and sleeping time,
denoted a valid file and was carried forward for analysis. This
decision was made to ensure that a true representation of glucose
parameters was evaluated against PA. The largest block of data
points was then analyzed using EasyGV software (University
of Oxford).

Statistical Analyses
For each participant, up to 13 complete days (cases) were
available, as the first and last day were partial days. Days that
did not meet the valid day criteria for accelerometry or glucose
were deemed a nonvalid day overall. Only participants that had
≥7 coupled valid accelerometry, and glucose days were carried
forward into the analyses.

Generalized estimating equations (GEEs) were used to estimate
associations between sedentary time, light PA, and MVPA with
mean glucose, SD of glucose, and MAGE. The correlation
structure was evaluated through modeling changes in the
quasi-likelihood under independence model criterion (QIC)
value. Both unstructured (does not assume the magnitude of
correlation between observations) and autoregressive (assumes
a closer relationship between two observations taken closer
together) correlation structures were assessed [26], with the
autoregressive structure indicating a better fit for all models
because of lower QIC values. Therefore, the autoregressive
correlation structure was utilized for all analyses.

Models were calculated univariably and adjusted for age, sex,
accelerometer wear time, and percentage body fat. This analysis
extended further to investigate whether fitness-related
differences existed for the associations between behavior and
glycemic variability. Additional GEE analysis was conducted
for those individuals who were deemed as having low fitness
levels or had fitness levels within the needs improvement, fair,
and good health benefit zones of the mCAFT. Individuals were
placed within a fitness category based upon their aerobic fitness
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score that was derived using the O2 cost of the final stage they
attained and their weight and age [27]. Wear time adjustment
was included within the analyses to account for the variation in
the amount of accelerometer wear time. Sensitivity analyses
were also run without wear time for all models to investigate
the influence of noncompliance on the associations. Although
the valid day criterion for this study was ≥600 min, many
participants had wear times well above this threshold.

Independent t-tests were also conducted to assess if participant
characteristics differed between included and excluded
participants. Finally, to investigate whether there were
significant fitness-related differences in PA behaviors between
low fitness and high fitness groups, analysis of covariance
(ANCOVA) tests were conducted, adjusted for wear time.

Results

Participant Characteristics
Of the 84 individuals that expressed interest in the study, 76
were screened, and 36 were deemed ineligible to participate.
Eight individuals were not screened as they initially expressed
their interest but did not reply to our screening requests. Of
those that were eligible, 5 withdrew before participating, leaving
35 participants who participated in the study. Six further
individuals did not meet the activity and glucose coupled valid
day criteria, and therefore, 29 were carried forward for analysis.
The participants were aged 44.9 years (SD 9.1), had a mean
BMI of 25.3 kg/m2(45%, 13/29 overweight, 14%, 4/29 obese),
and predominantly self-reported themselves as white (90%,
26/29).

All participants had fasted blood glucose concentrations <7.0
mmol/L; however, 4 participants had fasted glucose
concentrations suggesting prediabetes (ie, ≥5.6 mmol/L) [28].
Independent t-tests confirmed that there were no significant
differences in the participant characteristics (demographics,
anthropometrics, cardiometabolic risk factors, or fitness)
between those who were included in the analysis and those who
were excluded. Compared with a representative sample of
Canadian adults that underwent the mCAFT, the average age
matched (age range); VO2 max difference was 5.7 mg/kg/min
greater for the whole sample and split by sex; both males (10.3
mg/kg/min) and females (2.5 mg/kg/min) had a greater average
difference in VO2 max [29]. Participant characteristics are
presented in Table 1.

Device Compliance
In total, 6 participants had sensors prematurely removed because
of sensor error (n=3), perceived discomfort wearing the sensor
(n=1), or the adhesive failed before the 10-day threshold (n=2).
Two participants out of the 6 participants did not receive a
redeployment as sufficient data were collected. When
participants failed to scan the glucose sensor within 8 hours,
data were lost from the device, and the next available data point
was the first available automatic scan, 8 hours before the latest
scan. This often resulted in a temporal drift of the data, and for

this reason, the amount of data points may have been 95 or 97,
instead of 96 for a complete file (4 scans per hour). Fortunately,
for the 29 participants over 13 days of complete wear, missing
data represented only 2.70% (973/36,035) of total data points.

On average, each participant had 34 missing data points over
the 13 days, equivalent to 8.5 hours. Two participants accounted
for 43.17% of the missing data (420/973 data points), and
removing their data reduces the average to 6.75 hours. Only 4
participants had no missing data out of the sample, and an
additional 5 had below 2 hours of missing data. An outline of
all glucose data processing information is presented in Table 2.

Accelerometry compliance was high with 83% (24/29) of the
sample achieving 14 valid days (>600 min) of wear. When both
the glucose data and the accelerometry data were overlaid to
assess joint sensor compliance, the combined valid days was
11.6 (SD 1.5), which demonstrates an overall high level of
device compliance.

Associations Between Glycemic Variables and Behavior
Assumptions of linearity and normally distributed residuals
were checked visually using residual and P-P plots, and
multicollinearity was assessed using variance inflation factors
(VIFs). VIF values were <2.7 in all models, which suggested
no issues with multicollinearity.

Comparisons between movement behaviors (sedentary time,
light activity, and MVPA) and glycemic variables (mean
glucose, SD of glucose and MAGE) using GEE analysis for the
whole sample is presented within Tables 3-5. GEE analysis
revealed no significant associations between daily mean glucose,
SD of glucose or MAGE with sedentary time, light activity, or
MVPA for the whole sample.

An age and sex-adjusted health benefit zone was calculated for
all participants using the mCAFT submaximal fitness test results.
An analysis was calculated to ascertain the effect of only using
participants categorized as having low fitness (needs
improvement, fair, and good). GEE results for this lower fitness
group are also presented in Tables 3-5. Univariable analyses
revealed that light activity and MVPA were significantly
associated with mean glucose for the low fitness group (P=.03;
P=.001), with sedentary time also significant once wear minutes,
age, sex, and percentage body fat were adjusted for (P<.001).
SD of glucose was positively associated with sedentary time
but inversely associated with light activity after adjustment in
the low fitness group, with a similar trend occurring for the
associations with MAGE.

The results of the sensitivity analyses produced comparable
results for the adjusted models; however, sedentary time became
nonsignificant without adjusting for accelerometer wear time
for mean glucose and SD of glucose within the low fit models.
No significant differences were observed for behavioral
variables between low and high fitness groups (P>.05). Figure
1 represents daily summaries for behavior (sedentary, light, and
MVPA) and MAGE for a typical participant who achieved 13
full valid accelerometer and glucose sensor days of wear.
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Table 1. Characteristics of the study sample. Valid accelerometry ≥600 min; valid glucose ≥90% (86/96) of daily data points.

Interquartile rangeMediann (%)Mean (SD)Characteristic

Demographics

15.044.0—44.9 (9.1)Age, years

——12 (41)—Sex, male

——26 (90)—Ethnicity, white

Anthropometrics

15.725.6—27.0 (9.7)Body fat (%)

6.025.3—25.3 (4.1)BMIa (kg/m2)

——13 (45)—Overweight

——4 (14)—Obese

13.282.9—85.0 (11.2)Waist circumference (cm)

Cardiometabolic risk factors

14.3122.0—122.4 (11.7)Mean systolic blood pressure (mmHg)

6.876.0—75.6 (7.0)Mean diastolic blood pressure (mmHg)

0.94.6—4.7 (0.8)Total cholesterol (mmol/L)

0.72.9—2.9 (0.5)Low-density lipoprotein cholesterolb (mmol/L)

0.61.4—1.5 (0.4)High-density lipoprotein cholesterol (mmol/L)

0.40.9—0.9 (0.2)Triglyceridesb (mmol/L)

0.74.9—4.9 (0.6)Glucose (mmol/L)

0.55.3—5.3 (0.4)Glycated hemoglobin (%)

36.069.5—71.9 (22.4)Grip strength (combined kg)

66.0132.0—139.7 (51.8)Quadriceps maximal voluntary contraction (nm)

Fitness

11.239.0—41.4 (9.8)VO2 maxc (mL/kg/min)

131.9366.8—375.1 (84.3)Fitness score

——2 (7)—Needs improvement

——10 (34)—Fair

——4 (14)—Good

——7 (24)—Very good

——6 (21)—Excellent

Behavior

85.4883.8—895.1 (58.8)Wear time per valid day (min)

100.7566.9—576.4 (67.8)Sedentary time per valid day (min)

86.3271.1—269.1 (59.8)Light physical activity per valid day (min)

35.942.3—49.6 (29.9)MVPAd per valid day (min)

Glucose

0.85.0—5.1 (0.5)Mean glucose (mmol/L)

0.30.9—0.9 (0.2)SD of glucose (mmol/L)

1.02.3—2.4 (0.6)Mean amplitude of glycemic excursions (mmol/L)

Number of valid days

0.014.0—13.8 (0.6)Valid accelerometry days

——2 (7)—12
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Interquartile rangeMediann (%)Mean (SD)Characteristic

——3 (10)—13

——24 (83)—14

2.012.0—11.7 (1.5)Valid glucose monitoring days (n)

——1 (3)—7

——1 (3)—8

——2 (7)—10

——7 (24)—11

——8 (28)—12

——10 (35)—13

2.012.0—11.6 (1.5)Overall valid combined analysis days (n)

——1 (3)—7

——1 (3)—8

——2 (7)—10

——8 (28)—11

——8 (28)—12

——9 (31)—13

aBMI: body mass index.
bVO2 max=32.0 + (16.0 x VO2[L/min]) − [0.24 x Age] − [0.17 x weight (kg]) [21].
cn=28.
dMVPA: moderate to vigorous physical activity.

Table 2. Glucose data processing details. Due to the way the sensor was deployed, data processing information was calculated using full days only
(days 2-13) and sensor information refers to the whole monitoring period. The maximum number of points per day was 96. Replaced values were taken
from user scans if ±3 minutes; data points were interpolated if ≤2 adjacent values were missing; missing values represent data points not replaced or
interpolated; if a sensor was not redeployed, data were treated as missing.

n (%)Data processing characteristics

93 (97)Average available data points per day

91 (95)Average largest continuous block of data

12 (92)Average number of valid days

28 (0.08)Total data points replaced

58 (0.16)Total data points interpolated

973 (2.70)Total missing values not replaced or interpolated
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Table 3. Associations between physical activity and mean glucose for the whole sample and for the low fitness group. Model one represents a univariable
association, and model two is adjusted for wear minutes, age, sex, and percentage body fat.

P valueMean glucose, beta (95% CI)Models

Model one

.630.00006 (−0.00018 to 0.00030)Sedentary minutes all

.76−0.00005 (−0.00040 to 0.00029)Light minutes all

.17−0.00053 (−0.00128 to 0.00023)MVPAa minutes all

.250.00016 (−0.00011 to 0.00043)Sedentary minutes low fit

.03 b−0.00042b (−0.00080 to −0.00004b)Light minutes low fit

.001 b−0.00160b (−0.00255b to −0.00064b)MVPA minutes low fit

Model two

.320.00019 (−0.00018 to 0.00055)Sedentary minutes all

.77−0.00005 (−0.00041 to 0.00031)Light minutes all

.17−0.00053 (−0.00127 to 0.00022)MVPA minutes all

<.001 b0.00067b (0.00030b to 0.00103b)Sedentary minutes low fit

.02 b−0.00042b (−0.00078b to −0.00006b)Light minutes low fit

.002 b−0.00154b (−0.00250b to −0.00058b)MVPA minutes low fit

aMVPA: moderate to physical activity.
bSignificant results.

Table 4. Associations between physical activity and SD of glucose for the whole sample and for the low fitness group. Model one represents a univariable
association, and model two is adjusted for wear minutes, age, sex, and percentage body fat.

P valueSD of glucose, beta (95% CI)Models

Model one

.730.00005 (−0.00021 to 0.00030)Sedentary minutes all

.33−0.00019 (−0.00058 to 0.00020)Light minutes all

.760.00008 (−0.00043 to 0.00059)MVPAa minutes all

.420.00017 (−0.00024 to 0.00057)Sedentary minutes low fit

.04 b−0.00046b (−0.00090b to −0.00002b)Light minutes low fit

.46−0.00040 (−0.00146 to 0.00066)MVPA minutes low fit

Model two

.290.00018 (−0.00015 to 0.00051)Sedentary minutes all

.19−0.00025 (−0.00063 to 0.00012)Light minutes all

.620.00012 (−0.00036 to 0.00059)MVPA minutes all

<.001 b0.00059b (0.00037b to 0.00081b)Sedentary minutes low fit

<.001 b−0.00062b (−0.00085bto −0.00039b)Light minutes low fit

.31−0.00044 (−0.00130 to 0.00041)MVPA minutes low fit

aMVPA: moderate to physical activity.
bSignificant results.
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Table 5. Associations between physical activity and mean amplitude of glycemic excursions for the whole sample and for the low fitness group. Model
one represents a univariable association, and model two is adjusted for wear minutes, age, sex, and percentage body fat.

P valueMean amplitude of glycemic excursions, beta (95% CI)Models

Model one

.440.00035 (−0.00053 to 0.00123)Sedentary minutes all

.22−0.00079 (−0.00204 to 0.00046)Light minutes all

.93−0.00008 (−0.00173 to 0.00157)MVPAa minutes all

.330.00074 (−0.00073 to 0.00221)Sedentary minutes low fit

.02 b−0.00156b (−0.00291b to −0.00022b)Light minutes low fit

.72−0.00076 (−0.00492 to 0.00341)MVPA minutes low fit

Model two

.120.00088 (−0.00023 to 0.00199)Sedentary minutes all

.09−0.00107 (−0.00232 to 0.00018)Light minutes all

.960.00004 (−0.00155 to 0.00162)MVPA minutes all

<.001 b0.00202b (0.00131bto 0.00273b)Sedentary minutes low fit

<.001 b−0.00216b (−0.00285b to −0.00146b)Light minutes low fit

.39−0.00130 (−0.00429 to 0.00169)MVPA minutes low fit

aMVPA: moderate to physical activity.
bSignificant results.

Figure 1. Minutes of sedentary, light, moderate to vigorous physical activity (MVPA) and mean amplitude of glycemic excursions (MAGE) over 13
days. Days 1 and 15 were half days and were omitted as there was insufficient data. The data represent a randomly selected female participant presenting
low fitness.

Discussion

Principal Findings
Using accelerometer-measured PA and sedentary time, this
study revealed an observable relationship between movement
behaviors and glycemic variability, but only for those presenting
lower fitness. The notion that lower fitness individuals can gain
greater glycemic benefits from being more physically active is

supported by previous experimental research that assessed
glycemic responses after implementing light activity breaks
[20]. In that particular study, individuals with lower
cardiorespiratory fitness gained more favorable glucose
responses compared with being sedentary, leading the authors
to conclude that those with lower fitness levels may have the
most to gain from replacing sedentary time with PA [20].
Additionally, when modeling the substitution of sedentary time
for either light activity or MVPA, those with lower fitness
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(women <32 and men <35 ml/kg/min) and higher glucose (≥6.1
mmol/L) have been shown to benefit more than high fitness
participants, even after adjustment for sex, age, educational
level, smoking, and psychosocial stress [30]. These findings
appear to support the hypothesis that although those with lower
fitness may see daily differences in their glucose concentrations
as a result of PA, those with higher fitness may keep their
glucose concentrations within healthy ranges as a result of
physiological adaptions, such as changes in insulin sensitivity
[31,32].

Being physically active, especially after meals, is associated
with a blunted glucose response as a result of the body using
the supply of glucose already in the blood stream [33]. This
may partly explain the observed inverse relationship between
light activity and glucose variability in this study. Giving
behavioral context to the magnitudes of the associations, if
sedentary time is increased by 60 min, representing the duration
of an average TV show, mean glucose could rise by 0.04
mmol/L for lower fitness individuals. Alternatively, increasing
MVPA by 60 min per day could decrease mean glucose by 0.09
mmol/L, which is greater than the daily mean glucose
fluctuations of 0.02 mmol/L of the low fit sample. Additionally,
conducting 60 min of light activity could also decrease MAGE
by 0.13 mmol/L, which represents 9% of average MAGE values
(1.4 mmol/L) for a healthy white individual [34]. Over time,
regularly engaging in PA may result in favorable changes to
the glucose profile by blunting the glucose response or by
initiating a faster return to normal levels (or euglycemia).
Although sedentary time and light activity were associated with
MAGE, no significant association was found with MVPA. Due
to the 95% CIs being comparatively larger than the CIs for both
sedentary and light activity, larger samples may be required to
decrease the level of error for MVPA.

SD of glucose was associated with both sedentary time and light
activity minutes in the low fitness group. Describing the spread
around the mean, the average daily deviations were −0.0102
and −0.0001 mmol/L for both the low and high fit participants,
respectively. Demonstrating a very low level of daily deviation
in this study, SD of glucose may not be a viable marker of
glycemic control within nondiabetics and/or populations
presenting large fluctuations in glucose concentrations.
Nevertheless, larger, more controlled samples would be needed
to determine if this measure of glucose variability may be more
beneficial in populations experiencing fluctuating glucose
(higher SD of glucose); for example, individuals with
prediabetes or type 2 diabetes.

It has been acknowledged that the relationship between behavior
and glucose variability is complex and may differ depending
on the amount of data captured, which is a product of sensor
wear. Although the threshold for valid glucose data was set at
≥90% (86/96) of daily values, accelerometer wear time was set
at ≥600 min in line with previous studies assessing habitual PA.
Although most days comfortably exceeded the valid day
threshold, there is some variation in the amount of wear. Indeed,
the sensitivity analyses revealed that when wear time was
removed from the low fitness models, the associations between
sedentary time and mean glucose and SD of glucose became
nonsignificant. Indicating that any difference in monitor wear

largely influences the accrual of sedentary time, it is therefore
important to investigate the influence of wear time when
calculating physiological-behavioral models. Nevertheless, it
is unknown whether reductions in wear are because of
intentional device removal or extended periods of sleep duration.
If the reason is the former, it would have important implications
for the associations with acute health outcomes such as glucose.

For instance, Figure 1 from day 6 to day 7 illustrates a small
difference in wear of 3 min but an increase in MAGE (day
6=2.39 mmol/L, day 7=3.78 mmol/L). It is hard to determine
why the increase has been brought about in this instance and
whether it is because of activity not captured by the
accelerometer despite high wear across both days (day 6=944
min, day 7=941 min). Although wear time was adjusted for
within the analyses, if it is imperative for individuals to wear
the devices during all waking hours to show activity-related
declines in glucose, then participant adherence may be
challenging, given traditional wearable monitors can accrue
steps intermittently, but still sum up to a goal at the end of the
day. As a result, encouraging the deployment of 24-hour
monitoring may help minimize the influence of missing data
because of nonwear.

The data presented in this study provide evidence of the
existence of an observable, acute stimulus-response model of
increased PA that may yield measured changes in daily
summaries of glycemic variability. If this information could be
displayed in real time to users as actionable feedback, it may
help support individuals to link together action (behavior) with
the physiological consequence of their actions (health) [13].
Future research should focus on providing this feedback to users
to observe how people respond (ie, do they change their behavior
having seen their behavioral and physiological feedback?).
However, scientists should not fall into the trap of more data
being better by default; the information must be comprehended
in a way that motivates action by the user that can be sustained
[35].

Using glucose information in real time or at a bout level could
further increase the potency of the feedback and also reduce the
rate of temporal discounting. Although receiving real-time
glucose feedback is potentially a richer feedback source than
daily summaries, the physiological responses to movement
behaviors are not necessarily routinely predictable. For instance,
if a bout of PA is initiated, interrupted, and then recommenced,
any change in glucose cannot be solely attributed to the first or
second bout. This type of analysis would require highly complex
computational algorithms, as the processing pipeline would
need to consider, among others, the following issues:

• Behavior bout duration: what duration is considered a bout
and can the bout be interrupted?

• Duration of the bout effect: how long does the increase or
decrease in glucose last and can it be modified by behavior
of a specific intensity?

• Sedentary time or PA: how does historical hourly, daily, or
weekly movement behaviors influence the bout duration
and effect?

• Glucose concentrations: how do historical glucose
concentrations influence future concentrations?
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• User characteristics: how do characteristics such as type 2
diabetes risk, fitness, sex, and age modify the associations?

Although there are clearly challenges to overcome, the
innovative practice of providing people with daily actionable
insights related to the physiological consequences of being more
physically active (and/or less sedentary) may act as a potent
driver for lifestyle behavior change. Scientists that have an
interest within this area of research will be boosted by the new
High-level global Commission on Noncommunicable Diseases
that urges “...new approaches and action on a dramatically
different scale if we are to stop people dying unnecessarily from
noncommunicable diseases” [36]. These sentiments certainly
resonate with the National Health Service Digital data and
information strategy given its mission “…to empower the health
and care system to be intelligent in the way it uses data and
information to drive improvements in health and care, by
delivering world class data and analytics services through the
highest level of skills, expertise, tools, techniques and
technology” [37].

Limitations
This study is one of the first to investigate glycemic variability
and PA behaviors using objective monitoring technologies in
a free-living setting over an extended period of wear (13
complete days); however, there are a number of limitations that
must be discussed.

The small number of participants within this study was chosen
to balance feasibility and cost, although the participant pool
could be considered homogenous (University location and
ethnicity). Due to the lack of dietary information, which is a
significant glucose input mechanism, the estimates should be
interpreted cautiously given that dietary intake will likely have
influenced magnitudes observed. Food diary information (pen
and paper format) was collected for 4 days from second day of
deployment. That said, the information was deemed unreliable
because of the amount of missing food entries from the diaries
and coding database. Self-reported dietary diaries have
previously been called into question [38], and although the
conclusions of Archer and Blair could be considered too
far-reaching [39], alternative methods of food collection should
be utilized in the future as it has suggested that self-reported
methods should not be used for measures of energy intake [40].

The mCAFT was chosen because of its submaximal nature and
the ease of the stepping modality and thus, its successful use in
population public health research. That said, the gradings of the
progressive stages are not as finely tuned as could be achieved
when using a gas analysis system to quantify VO2 peak.

Additionally, menstrual status was not captured, which has been
shown to influence postprandial but not fasting concentrations
of glucose [41]; therefore, menstruation would need to be
adequately modeled in future studies to assess the implications
for wearable glucose monitoring interventions, especially those
that utilize the Freestyle Libre as interventions may span
multiple weeks.

Sedentary time was measured using count-based accelerometry,
which has the limitation of not detecting specific postural
changes [42] and is instead measuring stationary behavior
(lying, reclining, sitting, or standing with no ambulation) [43].
Similarly, the choice of cut-points can influence the data [44]
and should therefore be taken into account when drawing
conclusions. The valid day criterion for glucose data was chosen
to be conservative but has not been validated. More work is
required to ascertain what level of missing data is acceptable
and does not introduce an unacceptable level of variability.

This study faced glucose sensor deployment issues and missing
data. Coupled with the invasiveness and recurring costs of
glucose monitoring, there are a number of hurdles that
researchers need to be aware of when using such devices in
research. Additionally, as one of the first studies utilizing
physiological feedback, we are unable to determine whether the
information given back to the participants had any influence on
the direction of glucose and/or movement behaviors. Although
most continuous glucose monitoring validation studies
(including the Freestyle Libre) have been predominately
conducted on individuals diagnosed with diabetes, studies
conducted in small samples of Japanese adults suggest that the
Freestyle Libre may overestimate glucose levels in response to
an isolated meal load [45,46]. Nevertheless, as all measurements
from one study fell within zones A and B of the Parkes error
grid, further investigation using larger samples are required to
confirm the extent of the overestimation. Further analysis and
alternative glucose monitoring technologies and future iterations
of devices could perhaps ameliorate these hurdles.

Conclusions
This study demonstrates that there are both positive and inverse
associations between accelerometry-derived behavioral and
glycemic variability within a small sample of white,
middle-aged, low fitness adults living without a clinical
diagnosis of diabetes. Future research should expand on these
findings within populations who may exhibit greater variability.
Investigations should also be conducted to ascertain if
bout-related information can be extracted, to assess whether
this data could be used to educate and influence lifestyle
behaviors.
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QIC: quasi-likelihood under independence model criterion
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VIF: variance inflation factor
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