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New Findings (limit 100 words) 

What is the central question of this study? 

• Do tendon and/or muscle-tendon unit stiffness influence rate of torque development. 

 

What is the main finding and its importance? 

• Under our experimental conditions, some measures of relative (to maximum voluntary 

torque and tissue length) muscle-tendon unit stiffness had small correlations to volun-

tary/evoked rate of torque development over matching torque increments. However, abso-

lute and relative tendon stiffness were unrelated to voluntary and evoked rate of torque 

development. Therefore, the muscle-aponeurosis, but not free-tendon influences relative 

rate of torque development. Other factors more strongly determine rate of torque devel-

opment than tissue stiffness. 
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ABSTRACT  

The influence of musculotendinous tissue stiffness on contractile rate of torque development 

(RTD) remains opaque. This study examined the relationships between both patellar tendon 

(PT) and vastus lateralis (VL) muscle-tendon unit (MTU) stiffness, and voluntary and evoked 

knee extension RTD. Fifty-two healthy untrained males completed duplicate laboratory ses-

sions. Absolute and relative RTD was measured at 50 Nm/25%MVT increments from onset 

and sequentially during explosive voluntary and evoked octet (supramaximal stimulation: [8 

pulses at 300Hz]) isometric contractions. Isometric maximum voluntary torque (MVT) was 

also assessed. PT and MTU stiffness were derived from simultaneous force and ultrasound 

recordings of the PT and VL aponeurosis during constant RTD ramp contractions. Absolute 

and relative (to MVT and resting tissue length) stiffness (k) was measured over identical 

torque increments as RTD. Pearson’s correlations tested relationships between stiffness and 

RTD measurements over matching absolute/relative torque increments. Absolute and relative 

PT k was unrelated to equivalent voluntary or evoked RTD (r=0.020.255, P=0.069-0.891). 

Absolute MTU k was unrelated to voluntary or evoked RTD (r≤0.191, P≥0.184), however 

some measures of relative MTU k were related to relative voluntary/evoked RTD (e.g. 

RTD25-50%MVT r=0.374/0.353, P=0.007/0.014). In conclusion, relative MTU k explained a 

small proportion of the variance in relative voluntary and evoked RTD (both ≤19%), despite 

no association of absolute MTU k or absolute/relative PT k with equivalent RTD measures. 

Therefore the muscle-aponeurosis component, but not free tendon was associated with rela-

tive RTD, although it seems an overriding influence of MVT negated any relationship of ab-

solute MTU k and absolute RTD. 
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INTRODUCTION 

Explosive strength is the ability to increase torque from low or resting levels as quickly as 

possible (Maffiuletti et al. 2016). It is commonly examined under isometric conditions and 

expressed as the rate of torque development (RTD) derived from the rising phase (i.e. slope) 

of the contractile torque-time curve. Explosive strength is considered important in situations 

where the time to develop torque is limited: for instance in athletic activities such as sprinting 

and jumping (Tillin et al. 2013a); and in injury-related situations such as maintaining balance 

(Izquierdo et al. 1999, Robinovitch et al. 2002) or stabilizing joints (e.g. anterior cruciate lig-

ament tears [ACL] in ≤50ms: Krosshaug et al. 2007; Koga et al. 2010) following mechanical 

perturbation. Further, RTD deficits have a deleterious impact on physical function in muscu-

loskeletal patients (e.g. osteoarthritis: Maffiuletti et al. 2010; Winters & Rudolph, 2014). De-

veloping a greater understanding of the determinants of RTD could therefore have potentially 

widespread functional and clinical implications.  

 

During isometric contractions, the rate of skeletal muscle contractile force production is 

slowed by the necessity of the muscle to shorten in order to stretch the elastic components 

that transmit muscle force (Hill, 1951; Edman & Josephson, 2007). The mechanical stiffness 

(resistance to elongation) of the muscle-tendon unit (MTU) and particularly its tendinous tis-

sue components (external ‘free’ tendon and aponeurosis) are therefore widely hypothesised to 

influence in vivo RTD (Wilson et al. 1994; Kubo et al. 2001; Reeves et al. 2003).  Stiffer tis-

sues are thought to provide greater mechanical resistance that can constrain muscle shorten-

ing during the initial stages of contraction thereby permitting muscle fibers to operate in the 

higher force region of the force-velocity relationship (Wilson et al. 1994). Moreover, the 

force transmission time of stiffer tissues is theoretically shorter (Waugh et al. 2013) and thus 

stiffer tissues may exert a substantial influence on explosive strength. In contrast, tissue elon-

gation during the rising torque-time curve maybe sufficiently negligible and the duration of 

force transmission through connective tissues of such brevity (Nordez et al. 2009; DeWall et 

al. 2014), that the inter-individual differences in tendon/MTU stiffness could be practically 

irrelevant to the inter-individual variation in RTD. 

 

There is currently no empirical evidence on the relationship of tendon stiffness and in vivo 

RTD and therefore this question needs to be investigated. The relationship between MTU 

stiffness and RTD has received some attention with mixed findings, ranging from no associa-

tion to moderate positive correlations (Bojsen-Møller et al. 2005; Wang et al. 2012; Waugh et 
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al. 2013; Hannah & Folland, 2015), and a recent review highlighted the need for more rigor-

ous investigations (Maffiuletti et al. 2016). Studies of musculotendinous tissue stiffness are 

mired by methodological shortcomings (Seynnes et al. 2015).  In particular, the loading-rate 

sensitivity of stiffness measurements (i.e. faster rate yields greater stiffness: Lieber et al. 2000; 

Pearson et al. 2007; Theis et al. 2012; Kösters et al. 2014) necessitates a constant RTD during 

the ramp contractions used to measure stiffness. Nonetheless previous studies have invariably 

standardised contraction duration (Bojsen-Møller et al. 2005; Wang et al. 2012; Waugh et al. 

2013; Hannah & Folland, 2015), which leads to different loading rates according to each in-

dividual’s maximum voluntary torque (MVT) and may bias stiffness measurements to 

stronger individuals contracting at higher loading rates (Bojsen-Møller et al. 2005; Wang et al. 

2012; Waugh et al. 2013; Hannah & Folland, 2015). This may explain why the relationship of 

MTU stiffness and explosive strength has been found to be dependent on the influence of 

MVT on both variables, with no independent relationship of RTD and MTU stiffness (Han-

nah & Folland, 2015). However the relationship between constant loading rate measurements 

of stiffness, either MTU or tendon, and RTD has not been investigated. 

 

Tissue stiffness is also known to increase with torque (increasing gradient of the curvilinear 

torque-elongation relationship; Maganaris & Paul, 1999; Maganaris & Paul, 2002; Reeves et 

al. 2003). Yet MTU stiffness has typically been measured over a high torque increment (e.g. 

50-90% MVT [Bojsen-Møller et al. 2005]; 50-100%MVT [Kubo et al. 2001; Wang et al. 

2012]) even though RTD is usually measured from the lowest possible torque - rest (e.g. 0-50% 

MVT). Thus the relevance of high torque measures of stiffness to functional measurements 

starting from rest or low levels of torque, that are known to involve markedly lower stiffness 

properties, appears questionable. To avoid this dissociation between measured and function-

ally relevant stiffness, both variables could be measured over the same torque increment. 

Previous studies of MTU stiffness and RTD have also tended to incorporate diverse sub-

groups (e.g. tendinopathic and healthy limbs [Wang et al. 2012], children of different ages 

[Waugh et al. 2013], divergent athletic groups [Bojsen-Møller et al. 2005] adult males and 

females [Waugh et al. 2013; Hannah & Folland, 2015]) that are known to exhibit discrete 

characteristics that influence RTD (Maffiuletti et al. 2016) (e.g. pain, neuromuscular activa-

tion, maximum strength and muscle fiber type composition) and likely confound the relation-

ship between tissue stiffness and RTD.   
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Any influence of tissue stiffness on explosive strength might be expected to be more pro-

nounced for evoked contractions that drive the muscle at its maximum possible RTD (Deu-

tekom et al. 2000; de Ruiter et al. 2004; Folland et al. 2014) and depend entirely on the char-

acteristics of the MTU rather than the voluntary nervous system. The influence of tendon 

stiffness on evoked RTD has not been investigated and only Hannah & Folland (2015) have 

examined the relationship between MTU stiffness and evoked explosive strength, finding a 

stronger correlation for evoked than voluntary RTD.  

 

The present study aimed to comprehensively examine the relationship between both tendon 

and MTU stiffness, with voluntary and evoked RTD measurements of explosive strength. All 

relationships between stiffness and RTD variables were examined over the same torque in-

crement for both variables and in a large cohort of healthy young men, with duplicate meas-

urement sessions that assessed stiffness with constant loading rate measurements. In addition 

to evaluating the relationship of absolute measures of stiffness and RTD, the association of 

relative measures was examined to remove any influence of maximum strength.  

 

METHODS 

Ethical Approval  

The experimental testing procedures were explained to each participant and all participants 

provided written informed consent before their involvement in this study, which was ap-

proved by the Loughborough University Ethical advisory committee, and was conducted in 

accordance with the principles of the Declaration of Helsinki. 

 

Participants  

Fifty-two young men (age 25 ± 2 years, height 176 ± 7 cm, weight 72 ± 9 kg) who were 

healthy, free from musculoskeletal injury, and recreationally active (2160 ± 1309 MET 

minutes per week, International Physical Activity Questionnaire short format), but not in-

volved in any form of systematic training in the prior 18 months were included in this study.  

 

Experimental Design 

Participants completed a familiarisation session, involving practice of all voluntary contrac-

tions performed during subsequent measurement sessions and habituation with evoked (elec-

trically stimulated) contractions, followed by two duplicate measurement sessions separated 

by 7-10 days. Measurement sessions involved a series of unilateral isometric contractions of 
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the knee extensors of the dominant (preferred kicking) leg in the following order: maximum 

voluntary (MVCs) and explosive voluntary contractions, electrically evoked octet contrac-

tions (second measurement session only) and voluntary ramp contractions. Finally, knee 

flexor MVCs were also completed. Knee joint torque was recorded throughout contractions, 

and knee flexor surface electromyography (EMG) was recorded during knee flexor MVCs 

and knee extensor ramp contractions (to enable correction of knee extensor torque for antag-

onist activation). MVT was determined from MVCs, while voluntary and evoked RTD meas-

urements of explosive strength were determined from explosive voluntary and evoked octet 

contractions, respectively. Ramp contractions were performed to permit tissue stiffness 

measurements from simultaneous torque and elongation, via ultrasound imaging, recordings. 

Measurement sessions with each individual were performed at a consistent time of the day, 

and all sessions started between 12:00-19:00 hours. Participants were instructed not to partic-

ipate in strenuous physical activity or consume alcohol for 36 hours, and refrain from caf-

feine consumption for 6 hours, before measurement sessions. On a separate occasion, sagittal 

plane MRI images of the knee joint were acquired to measure patellar tendon (PT) moment 

arm in order to convert external torques to tendon force. 

 

Torque Measurement  

Participants were positioned in an isometric strength-testing chair with knee and hip angles of 

115° and 126° (180° = full extension), respectively. Adjustable straps were tightly fastened 

across the pelvis and shoulders to prevent extraneous movement. An ankle strap (35 mm 

width reinforced canvas webbing) was placed ~15% of tibial length (distance from lateral 

malleolus to knee joint space) above the medial malleolus, and positioned perpendicular to 

the tibia and in series with a calibrated S-Beam strain gauge (Force Logic, Berkshire, UK). 

The analogue force signal was amplified (x370; A50 amplifier, Force Logic UK) and sam-

pled at 2,000 Hz using an A/D converter (Micro 1401; CED, Cambridge, UK) and recorded 

with Spike 2 computer software (CED). In offline analysis, force signals were low-pass fil-

tered at 500 Hz using a fourth order zero-lag Butterworth filter, gravity corrected by subtract-

ing baseline force, and multiplied by lever length, the distance from the knee joint space to 

the center of the ankle strap, to calculate torque. 

 

Knee Flexor Electromyography (EMG) 

Surface EMG recordings over the biceps femoris (BF) and semitendinosus (ST) were made 

with a wireless EMG system (Trigno; Delsys Inc, Boston, MA) during knee flexor MVCs and 
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knee extensor ramp contractions. Following preparation of the skin (shaving, abrading and 

cleansing with alcohol) single differential Trigno standard EMG sensors (1 cm inter-electrode 

distance; Delsys Inc, Boston, MA) were attached over each muscle using adhesive interfaces. 

Sensors were positioned parallel to the presumed frontal plane orientation of the underlying 

muscle fibers at 45% of thigh length (distance from the greater trochanter to the lateral knee 

joint space) measured from the popliteal crease. EMG signals were amplified at source (x300; 

20-450 Hz bandwidth) before further amplification (overall effective gain x909) and sampled 

at 2000 Hz via the same A/D converter and computer software as the force signal, to enable 

data synchronization. In offline analysis, EMG signals were corrected for the 48 ms delay 

inherent to the Trigno EMG system. 

 

Knee Extension and Flexion Maximum Voluntary Contractions  

Following a brief warm-up (3 s contractions at 50% [x3], 75% [x3] and 90% [x1] of per-

ceived maximum), participants performed 3-4 MVCs and were instructed to either ‘push as 

hard as possible’ (knee extension) or ‘pull as hard as possible’ (knee flexion) for 3-5 s and 

rest ≥ 30 s. A horizontal cursor indicating the greatest torque obtained within the session was 

displayed for biofeedback and verbal encouragement was provided during all MVCs. The 

highest instantaneous torque recorded during any MVC was defined as MVT. During knee 

flexor MVCs EMG amplitude was calculated as the root mean square (RMS) of the filtered 

EMG signal of the BF and ST over a 500 ms epoch at knee flexion MVT (250 ms either side) 

and averaged across the two muscles to give EMGMAX. 

 

Explosive Voluntary Contractions 

Participants performed a series of 10 explosive voluntary contractions each separated by 15 s. 

Participants were instructed to extend their knee ‘as fast and as hard as possible’; with the 

emphasis on ‘fast’, for 1 s from a relaxed state upon hearing an auditory signal. Contractions 

involving a visible countermovement or pre-tension were discarded and another attempt 

made. To indicate if a countermovement or pre-tension had occurred, resting torque was dis-

played on a sensitive scale. During each explosive contractions participants were required to 

exceed 80%MVT, which was depicted by an on-screen marker. To provide performance 

feedback the time taken to reach 80%MVT was shown after each contraction and the slope of 

the rising torque-time curve (10 ms time constant) was displayed throughout these contrac-

tions with the peak slope of their best attempt indicated with an on-screen cursor. The three 

best explosive contractions (highest torque at 100 ms and no discernible countermovement or 
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pre-tension, change in baseline force <0.34 Nm in the preceding 300 ms) were analysed in 

detail. Contraction torque onset was defined as the last trough before the torque signal per-

manently deflected away from the envelope of the baseline noise; identified via manual in-

spection using a systematic standard method by the same trained investigator, in accordance 

with previously published methods (Tillin et al. 2010). Manual onset detection is considered 

to provide greater accuracy and reliability than an automatic approach (Tillin et al. 2013b). 

The torque signal was initially viewed with y and x-axis scales of 0.68 Nm and 300 ms re-

spectively and a vertical cursor placed on torque onset. Accurate placement of the cursor was 

verified by viewing the signal with a higher resolution. RTD (ΔTorque or Δ%MVT /ΔTime) 

measurements of explosive strength were calculated from the time taken between contraction 

onset and absolute (50, 100 and 150 Nm [Vol RTD0-50Nm, Vol RTD0-100Nm, Vol RTD0-150Nm) 

and relative (25, 50 and 75%MVT [Vol RTD0-25%MVT, Vol RTD0-50%MVT, Vol RTD0-75%MVT]) 

torques, as well as RTD between sequential torque levels (absolute 50-100 and 100-150 Nm 

[Vol RTD50-100Nm and Vol RTD100-150Nm]; relative 25-50 and 50-75%MVT [Vol RTD25-50%MVT, 

Vol RTD50-75%MVT]). Values recorded from each of the three analysed (best) contractions 

were averaged.  

 

Evoked Octet Contractions 

The femoral nerve was electrically stimulated (constant current, variable voltage stimulator; 

DS7AH, Digitimer Ltd., UK) with square-wave pulses (0.2 ms duration) to elicit involuntary 

contractions of the knee extensors whilst the participant was voluntarily passive.  Electrical 

stimuli were applied via a cathode probe (1 cm diameter; Electro Medical Supplies, Wantage, 

UK) protruding 2 cm perpendicular from the center of a plastic base (4 x 5 cm). The cathode 

and an anode (carbon rubber electrode, 7 x 10 cm; Electro Medical Supplies, Wantage, UK) 

were coated with electrode gel and securely taped to the skin over the femoral nerve in the 

femoral triangle and the greater trochanter respectively. The precise location of the cathode 

was determined as the position that evoked the greatest twitch response to a submaximal elec-

trical current. Twitch contractions were elicited at incremental currents (~15 s apart) until a 

simultaneous plateau in peak torque and the peak slope of the rising twitch torque was ob-

served. Thereafter, the electrical current was lowered and octet stimulation (8 pulses at 300 

Hz) was delivered in step-wise increments until the stimulation intensity that elicited twitch 

force plateau (defined as the maximal stimulation intensity/ current) was reached.  Real-time 

inspection of octet peak torque and peak rate of torque development (10 ms epoch) confirmed 

a plateau in both variables with incremental stimulation. Subsequently, three supramaximal 
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(120% maximal current) octet contractions were elicited. Absolute and relative RTD 

(ΔTorque or Δ%MVT/ΔTime) measurements of evoked explosive strength were calculated 

from the time taken between contraction onset and absolute (50 and 100 Nm [Oct RTD0-50Nm 

and Oct RTD0-100Nm) and relative (25 and 50%MVT [Oct RTD0-25%MVT and Oct RTD0-50%MVT]) 

torques, as well as RTD between sequential torques (absolute 50-100Nm [Oct RTD50-100Nm]; 

relative 25-50%MVT [Oct RTD25-50%MVT]). Values recorded from each of the three supra-

maximal contractions were averaged. Evoked measures were not acquired for three partici-

pants who did not tolerate the discomfort associated with the octet stimulation.  

 

Ramp Contractions for Determination of Tissue Stiffness 

Tissue stiffness was derived from synchronous recordings of torque and tissue elongation 

(corrected for passive tissue displacement via video recording of knee joint changes) during 

isometric knee extension ramp contractions. Participants completed two sub-maximum prac-

tice ramp contractions prior to five (obtaining reliable measures of tissue stiffness requires 

numerous efforts [Schulze et al. 2012]) maximum attempts with 90 s rest between contrac-

tions. Prior to each ramp contraction participants were shown a target torque-time trace on a 

computer monitor that increased at a constant gradient (50 Nm.s-1 loading rate) from zero up 

to MVT. They were instructed to match the target trace as closely as possible for as long as 

possible (i.e. up to MVT), and real-time torque was displayed over the target torque-time 

trace for feedback. The preceding knee extensor MVCs and sub-maximum contractions were 

considered sufficient to elicit tissue preconditioning, The three most suitable ramp contrac-

tions, according to highest peak torque, the closeness to the target loading rate and ultrasound 

image clarity, were analysed and measurements averaged across these three contractions.  

 

Measurement of Tissue Elongation  

Video images from two ultrasound machines and one video camera were captured to obtain 

tissue and knee joint displacements during ramp contractions. An ultrasound probe (7.5 MHz 

linear array transducer, B-mode, scanning width 60 mm and depth 50 mm; Toshiba Power 

Vision 6000, SSA-370A: Otawara-Shi, Japan) was fitted into a custom made high-density 

foam cast that was strapped to the lateral aspect of the thigh with the mid-point of the probe 

positioned at ~50% thigh length. The probe was aligned so the fascicles inserting into the 

vastus lateralis (VL) muscle deep aponeurosis could be visualized at rest and during contrac-

tion. An echo-absorptive marker (multiple layers of transpore medical tape) was placed be-

neath the ultrasound probe to provide a reference for any probe movement over the skin. An-
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other ultrasound probe (5-10 MHz linear array transducer, B-mode, scanning width 92 mm 

and depth 65 mm, EUP-L53L; Hitachi EUB-8500) was fitted into a custom made high-

density foam cast that was held firmly over the anterior aspect of the knee with the probe 

aligned longitudinal to the patellar tendon such that the patellar apex and insertion of the pos-

terior tendon fibers at the tibia could be visualized at rest and throughout the contraction. The 

ultrasound machines were interfaced with the computer collecting torque data in Spike 2 and 

the video feeds were recorded synchronously with torque using Spike 2 video capture at 25 

Hz. To circumvent the difficulty of judging the consistency of grey-scale ultrasound patterns 

for the points of interest and possible experimenter bias in tissue elongation measurements, 

some degree of automated analysis is recommended (Seynnes et al. 2015). During off-line 

analysis tissue elongation was tracked frame-by-frame using public-domain semi-automatic 

video analysis software: Tracker, version 4.86 (www.cabrillo.edu/~dbrown/tracker). VL fas-

cicle deep aponeurosis cross point displacement relative to the skin marker provided a meas-

ure of muscle-tendon unit (MTU) elongation. Patellar tendon elongation was determined by 

the longitudinal displacement of the patella apex and the tendon tibial insertion. To enable 

correction of tissue displacement due to joint angle changes during ramp contractions indi-

vidual ratios of tissue displacement relative to joint angular displacement (mm/°) were ob-

tained from passive movements (i.e. plotting the tissue displacement-knee joint angle rela-

tionship). This ratio was used to determine tissue displacement resulting from knee angle 

change during ramp contractions, which was subsequently subtracted from total measured 

displacement. Corrections were only applied to aponeurosis displacement. Tendon elongation 

under passive conditions was deemed negligible. Passive movements were conducted prior to 

the ramp contractions. Participants were instructed to completely relax as their knee was 

moved through 90 to 130°. During passive movements and ramp contractions, knee joint an-

gle (angle between visible markers placed on the greater trochanter, lateral knee joint space 

and lateral malleolus) was derived from sagittal plane video recorded using a camera mount-

ed on a tripod positioned (1.5 m) perpendicular to the strength-testing chair. The video cam-

era was interfaced with a computer and recorded using spike 2 video-capture at 25 Hz (simul-

taneously with force, EMG, and ultrasound images during the ramp contractions) and ana-

lysed via Tracker software.  

 

Calculation of Tendon Force  

PT force was calculated by dividing external absolute knee extensor torque by the patellar 

tendon moment arm length. The latter was measured from sagittal plane T1-weighted MR 

http://www.cabrillo.edu/%7Edbrown/tracker
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(1.5T Signa HDxt, GE) images (2 mm thickness, 0 mm gap) as the perpendicular distance 

from the PT line of action to the tibio-femoral contact point, which was the midpoint of the 

contact distance between the tibia and femur. Due to constraints in the size of the knee coil, 

sagittal images were acquired in an extended knee position (~163°).  Moment arm length for 

any specific knee angle measured at rest or during ramp contraction was estimated from pre-

viously published data fitted with a quadratic function (Kellis and Baltzopoulos, 1999), 

scaled to each participant’s measured moment arm length at 163°. Absolute internal knee ex-

tensor torque was given by summing net knee extension torque and the estimated knee flexor 

co-contraction torque. Antagonist knee flexor torque was estimated by expressing the average 

knee flexor EMG amplitude (RMS 50 ms moving window) during ramp contractions relative 

to the knee flexor EMGMAX and multiplying by the knee flexor MVT (assuming a linear rela-

tionship between EMG amplitude and torque). During analysis, torque and EMG amplitude 

were down-sampled to 25 Hz to match the ultrasound video frequency. 
 

Calculation of Muscle-Tendon Unit and Patellar Tendon Stiffness  

MTU (corrected for passive tissue displacement) and PT elongation were plotted (for each 

ramp contraction analysed) against tendon force. Tendon force-elongation plots were fitted 

with a second-order polynomial forced through zero. Using the associated quadratic equa-

tions MTU and PT elongation was determined at specific absolute (50, 100 and 150 Nm) and 

individual relative knee extension torques (25, 50 and 75% MVT). Absolute stiffness (Δ ten-

don force [N]/Δ elongation [mm]; N.mm-1) was calculated over 0-50, 0-100 and 0-150 Nm 

torque increments (MTU/PT k0-50Nm, MTU/PT k0-100Nm, MTU/PT k0-150Nm) and sequential 

torque increments of 50-100 and 100-150 Nm (MTU/PT k50-100Nm and MTU/PT k100-150Nm). 

MTU and PT elongation at relative torques were converted to strain (ε, %; ratio of Δ tissue 

length to resting tissue length). Relative stiffness (Δ%MVT/Δε [%MVT.ε-1]) was calculated 

over relative 0-25, 0-50, 0-75%MVT increments (MTU/PT k0-25%MVT, MTU/PT k0-50%MVT, 

MTU/PT k0-75%MVT) and sequential increments 25-50 and 50-75%MVT (MTU/PT k25-50%MVT 

and MTU/PT k25-75%MVT). The stiffness measures derived from each of the three ramp con-

tractions analysed was averaged to give each individual’s representative values. MTU resting 

length was assessed with a tape measure over the surface of the skin from the tibial tuberosity 

to center of the measurement site over VL. PT length was taken as the distance between the 

patellar apex and the insertion of the posterior fibers of the tendon on the tibia, measured 

from ultrasound images acquired at rest prior to the ramp knee extensions.  
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Statistical Analysis  

MVT, RTD and tissue stiffness (k) measures from duplicate measurement sessions were av-

eraged for criterion measures used in statistical tests. Using SPSS Version 20.0 (IBM Corp., 

Armonk, NY), Pearson’s product moment bivariate correlations were performed to examine 

the relationships between absolute or relative RTD (voluntary or evoked) vs. tissue stiffness 

variables (MTU or PT) measured over equivalent torque increments; e.g. absolute PT k0-100Nm 

vs. Vol RTD0-100Nm, relative MTU k0-50%MVT vs. Vol RTD0-50%MVT (Table 1). Absolute stiff-

ness measures were also correlated against MVT. Additional (a posteriori) correlations were 

performed between matched relative torque increment voluntary/evoked octet RTD and MTU 

stiffness over 5% increments from contraction onset (e.g. Vol RTD50-55%MVT [%MVT.s-1] vs. 

MTU k50-55%MVT [%MVT.ε-1]), to more specifically characterise the relationships found be-

tween the relative RTD and relative MTU stiffness. Statistical significance level was P<0.05. 

Descriptive data are presented as mean ± standard deviation (SD). To provide an index of 

measurement reliability average within participant coefficient of variation (CVw, %) was cal-

culated between the two measurement sessions, although it is worth noting that the criterion 

values (averaged across two sessions) will have higher reliability than each individual session. 

Inter-individual variability is reported as between participant coefficient of variation (CVb, %) 

of criterion measures. 

 

RESULTS  

Measurement Reliability  

Within-participant test-retest reliability was excellent for MVT (CVw 3.0%), and good for 

voluntary RTD (CVw ≤ 8.6% for absolute and relative measures). Matched MTU and PT k 

measures were not as reliable, but improved at higher torque increments: MTU k and relative 

MTU k, CVw 15.4 to 9.7% and 14.1 to 11.0%; PT k and relative PT k, CVw 13.9 to 8.8% 

and 13.6 to 8.1%. 

 

Inter-individual Variability 

Knee extension MVT was 245.0 ± 41.8 Nm (CVb 17.1%, 2.3-fold range). Voluntary torque-

time curves (Figure 1 A and C) exhibited similar between participant variability in absolute 

and relative RTD measures CVb of 14.4 to 20.5% (1.8- to 2.9-fold range). Voluntary sequen-

tial RTD was more variable (CVb 32.0-33.0%) as was relative sequential RTD (CVb 24.0-

25.0%). Evoked octet torque-time curves (Figure 1 B and D) showed octet RTD and relative 
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octet RTD varied much less than voluntary RTD0-50Nm and 0-25%MVT. Octet sequential 

RTD/relative RTD was highly variable (CVb was 37.4 and 45.3%). 

 

There was large inter-individual variability in external torque-elongation relationships for 

both the MTU and PT as shown in Figure 2 A and B. The variability in elongation was great-

est at the initial torque increment (50 Nm: MTU 7.6-fold range; PT 3.7-fold range) and pro-

gressively reduced at higher torque increments and sequential torques (e.g. 100-150 Nm: 

MTU 3.2-fold range; PT 2.4-fold range). Similarly, relative knee extensor torque-MTU/PT 

strain curves (Figure 2 C/D) showed tissue strain to be most variable at the initial relative 

torque level (25%MVT: MTU 6.6-fold range; PT 3.5-fold range), with less inter-individual 

variability at higher and sequential relative torques (e.g. 50-75%MVT: MTU 3.2-fold range; 

PT 2.4-fold range). PT elongation was ~20% of MTU elongation at all torque increments. 

Alternatively, PT strain was 1.5-fold greater than MTU strain. For clarity, whilst the external 

torque-elongation/strain relationships are shown for illustrative purposes, individual stiffness 

values were derived from tendon force-elongation/strain relationships.  

 

Bivariate Correlations of PT Stiffness and Explosive Strength 

Voluntary and evoked RTD were unrelated to PT k measured over matching torque incre-

ment (r = 0.02 to 0.242, P ≥ 0.094 [Figure 3 A]; e.g. scatterplots in Figure 3 B). Likewise, 

relative voluntary and evoked RTD were also unrelated to relative PT k (r = 0.048 to 0.255, P 

= 0.069 to 0.736; Figure 4 A). PT k measures were also unrelated to MVT (r = 0.094 to 0.127, 

all P ≥ 0.371).  

 

Bivariate Correlations of MTU Stiffness and Explosive Strength 

Voluntary and evoked RTD were unrelated to MTU k measured over the same torque incre-

ments (r = 0.038 to 0.191, P ≥ 0.184 [Figure 3 A]; e.g. scatterplot in Figure 3 C). In contrast, 

some voluntary and evoked relative RTD measures were positively associated with relative 

MTU k (Figure 4 A) e.g. relative Vol RTD25-50%MVT r = 0.374, P = 0.007 (Figure 4 B) and 

Oct RTD25-50%MVT r = 0.353, P = 0.014 (Figure 4 C). Following these associations a more de-

tailed secondary analysis using 5%MVT increments (relative MTU k and relative RTD again 

measured over the same increments) showed that relative MTU k was positively related to 

relative voluntary RTD for the increments from 35-55%MVT (r = 0.312 to 0.434, P ≤ 0.026; 

Figure 5). Relative evoked RTD was also positively related to relative MTU k from 5-
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45%MVT (r = 0.315 to 0.461, P ≤ 0.029; Figure 5). Finally MTU k measures were unrelated 

to MVT (MTU, r = -0.124 to -0.09, all P ≥ 0.388). 

 

DISCUSSION  

The present study carefully investigated whether both PT and MTU stiffness (k) were related 

to voluntary and evoked explosive muscle strength in vivo, with both variables assessed over 

the same torque increment, and expressed in absolute and relative terms. Bivariate correla-

tions revealed no relationships between absolute PT and MTU k and voluntary and evoked 

RTD. Likewise relative PT k was unrelated to relative voluntary or evoked RTD. However, 

relative MTU k had modest positive relationships to some measures of relative RTD during 

explosive voluntary (Vol RTD0-75%MVT, R2 = 0.101; Vol RTD25-50%MVT, R2 = 0.140), and 

evoked octet (Oct RTD0-50%MVT, R2 = 0.081; Oct RTD25-50%MVT, R2 = 0.125) contractions. 

Subsequent correlations between relative RTD and MTU k in 5%MVT increments showed 

relative MTU k contributes to explaining voluntary relative RTD between 35-55%MVT (R2 = 

0.097 – 0.188), and relative RTD throughout evoked octet contraction (5-45%MVT; R2 = 

0.099 – 0.194).  

 

Our finding of no relationships between absolute MTU k and RTD measures is contrary to 

earlier work that generally supported weak-moderate positive relationships between MTU k 

and RTD (Bojsen-Møller et al. 2005; Waugh et al. 2013; Hannah & Folland, 2015). However 

these studies used loading rates that were dependent upon and thus may have been confound-

ed by MVT, did not match the torque increments of stiffness and RTD measurement (Bojsen-

Møller et al. 2005; Waugh et al. 2013), and included heterogeneous sub-groups exhibiting 

differences in potentially confounding variables (Bojsen-Møller et al. 2005; Waugh et al. 

2013; Hannah & Folland, 2015). These methodological issues may have skewed previous 

stiffness measurements in favour of stronger individuals who also tend to have higher RTD 

values (Andersen & Aagaard, 2006; Folland et al. 2014). For example, calculating stiffness 

over a tendon force increment that is relative to maximum strength (e.g. 50-90%MVT 

[Bojsen-Møller]; 50-100%MVT [Wang et al. 2012]; 10-80% MVT [Waugh et al. 2013]) 

means the force increment for stiffness determination is higher for stronger individuals. As 

there is a well-documented force-stiffness relationship this method creates a methodological 

artifact whereby stronger individuals will inherently be measured to have a greater stiffness. 

In addition, use of inconsistent loading rates, as a consequence of standardized duration ramp 

contractions to different force increments for each individual, would produce higher stiffness 
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values for the higher loading rates of stronger individuals (Pearson et al. 2007; Theis et al. 

2012; Kösters et al. 2014). 

 

In contrast, stiffness measurements in the present study were more thorough: duplicate meas-

urement sessions each involving multiple, standardised loading ramp contractions, measure-

ments of stiffness and RTD over the same torque increment for all individuals, and use of a 

large cohort of exclusively young males with similar physical activity status.  Nevertheless 

this approach revealed wide inter-individual variability in MTU k, yet such differences did 

not manifest into a noticeable association with absolute RTD. Seemingly the lack of relation-

ship between absolute MTU k and RTD could be ascribed to our avoidance of a specious as-

sociation mediated by the confounding influence of maximum strength. 

 

Some measures of relative MTU k and relative RTD were significantly associated. Specifi-

cally, during the initial analysis relative MTU k was related to Vol RTD0-75%MVT and relative 

Vol RTD25-50%MVT, and during the secondary analysis of 5% torque increments relative MTU 

k and relative RTD were associated during the between 35-55%MVT. This contrasts with the 

results of a previous study that found no relationship between relative MTU k and relative 

RTD (Hannah & Folland, 2015). However, this previous study involved ramp contractions 

with a constant duration and thus variable loading rates that may introduce a bias as well as 

males and females that exhibit a number of distinct differences that might confound the rela-

tionship. In the current study the consistent significant relationship between relative MTU k 

and voluntary relative RTD from 35-55%MVT suggest a genuine systematic relationship, 

although the explained variance was small (≤18.8%). The logical explanation for these voli-

tional relationships was via an effect of relative MTU k on the contractile capability for rela-

tive RTD as shown by the finding that relative MTU k was also significantly related to octet 

relative RTD; specifically octet RTD0-50%MVT, octet RTD25-50%MVT and subsequently from the 

5% torque increments RTD from 5-50%MVT. Furthermore the torque increment over which 

voluntary relative RTD was associated with relative MTU k (25-55%MVT) was on average 

52-93 ms into the explosive contraction, which is consistent with the steepest phase of the 

voluntary contractions (50-100 ms) where voluntary RTD is primarily determined by the con-

tractile capacity for RTD (Folland et al. 2014). The finding that relative RTD was in part ex-

plained by relative MTU k, despite no corresponding relationships for absolute measures 

suggests an overwhelming influence of maximum strength on absolute RTD that seemingly 

negated any influence of MTU k. Finally, the rather limited explained variance of relative 
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octet RTD by relative MTU k (≤19.4%) indicates that contractile RTD is largely determined 

by other factors; such as activation kinetics (Edman and Josephson, 2007), contractile protein 

composition (Harridge et al. 1996) and muscle fascicle length (Blazevich et al. 2009). 

 

The present study was the first attempt to investigate if there is a relationship between in vivo 

free tendon k and RTD. We found PT k was not related to voluntary or evoked knee extensor 

RTD. The PT exhibited minimal elongation (~3 mm) that seems unlikely to appreciably in-

fluence muscle length changes and thus force-generating potential. Also, the rate of force 

transmission through tendons is exceptionally rapid (Nordez et al. 2009; DeWall et al. 2014) 

especially for short tendons such as the PT (length ~45-50 mm), and likely explains the lack 

of a relationship between PT k and RTD. Furthermore PT k was unrelated to MVT and it is 

notable that we found no relation between relative PT k and voluntary/evoked relative RTD 

measures. Research with isolated muscles has found the force rise time under isometric con-

ditions of fixed sarcomere length was not appreciably faster than during muscle-tendon unit 

fixed-end contractions, indicating a negligible impact of tendon compliance on isometric rate 

of force development (Haugen & Sten-Knudsen, 1987). Similarly, Kawakami and Lieber 

(2000) showed that the internal sarcomere shortening during fixed-end contractions of an iso-

lated MTU was unchanged once the proximal and distal ends of the aponeurosis where 

clamped, indicating that the tendon did not impact muscle internal shortening during isomet-

ric force production. Whether our results can be generalised to other MTU’s where the ten-

don may contribute more significantly to the overall MTU stiffness is uncertain and requires 

further research.  

 

Our results imply the relationships we found between relative MTU k and relative RTD are 

due to the contribution of elastic tissues proximal to the tendon. Conceptually our method 

reflects the elongation of distal (to the ultrasound measurement site) tendinous tissues (apo-

neurosis-tendon). Thus our findings regarding relative MTU k and relative RTD are presum-

ably consequent to aponeurosis force-length characteristics. Indeed, modeling studies demon-

strate that greater aponeurosis stiffness results in a reduction in its stretch that decreases mus-

cle fibre strain (Rehorn & Blemker, 2010; Rahemi et al. 2014). Lesser muscle fibre strain 

permits slower fibre shortening. More favourable fibre contractile conditions for force pro-

duction permitted by a stiffer aponeurosis could account for our evidence of greater relative 

RTD (both voluntary and evoked) being associated with a stiffer relative MTU.  
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In the current study stiffness was measured during constant-RTD ramp contractions that were 

necessarily performed at a lower RTD than the explosive contractions; in order to capture the 

tissue elongation with fixed frame rate of 25 Hz ultrasound. An underlying assumption of the 

study was that the measured stiffness values, during the ramp contractions, are relevant to 

higher strain rates of explosive contractions. However we know that stiffness exhibits strain 

rate sensitivity (Lieber et al. 2000; Pearson et al. 2007; Theis et al. 2012; Kösters et al. 2014) 

and thus tendinous tissues will behave in a stiffer manner during the explosive contractions 

than the ramp contractions, and that this discrepancy will be most pronounced for individuals 

with a high RTD (upto 3-fold higher than participants with the lowest RTD). Although the 

measures of stiffness in the current study discriminated between individuals with extensive 

inter-individual variability (2 to 8-fold variability in PT/MTU elongation at the same torque), 

it is conceivable that our measures of stiffness did not fully reflect stiffness during the explo-

sive contractile conditions relevant to RTD, and could potentially have underestimated the 

strength of the relationships between stiffness and RTD. Future work could employ high 

frame rate ultrasound (4000 Hz, Nordez et al. 2009) to evaluate stiffness during explosive 

contractions i.e. simultaneous to RTD measures, to investigate if this changes the nature of 

the relationships we have documented. 

 

In conclusion, absolute MTU and PT k were not associated with voluntary or evoked RTD, 

and this was also the case for relative PT k and relative RTD. However greater relative MTU 

k was related to higher relative voluntary and evoked RTD. These results suggest a differen-

tial influence of MTU tissue components (muscle-aponeurosis vs. tendon) on relative RTD. 

An overriding influence of maximum strength is presumed to negate any relationship be-

tween absolute MTU k and RTD.  
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TABLES 

Table 1. Matched explosive strength and tissue stiffness variables measured over the same absolute 

or relative torque increments 

 

Explosive Strength: 
Voluntary (Vol) or Evoked (Oct) 

Rate of Torque Development 
(RTD) 

Vs. 
Stiffness of the 

Muscle-Tendon Unit (MTU) or 
Patellar Tendon (PT) 

Absolute measures: Vol/Oct RTD0-50Nm  MTU/PT k0-50Nm 
 Vol/Oct RTD0-100Nm  MTU/PT k0-100Nm 
 Vol0-150Nm  MTU/PT k0-150Nm 
 Vol/Oct RTD50-100Nm  MTU/PT k50-100Nm 
 Vol100-150Nm  MTU/PT k100-150Nm 
    

Relative measures: Vol/Oct RTD0-25%MVT  MTU/PT k0-25%MVT 
 Vol/Oct RTD0-50%MVT  MTU/PT k0-50%MVT 
 Vol0-75%MVT  MTU/PT k0-75%MVT 
 Vol/Oct RTD25-50%MVT  MTU/PT k25-50%MVT 
 Vol50-75%MVT  MTU/PT k50-75%MVT 
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Figure 1. Inter-individual variability of torque-time curves during explosive voluntary (A, C; 
n=52) and evoked octet (B, D, n=49) contractions of the knee extensors expressed in abso-
lute (Nm; A, B) and relative (% maximum voluntary torque, MVT; C, D) terms. Black line and 
circles (bars) are mean (SD) and the dotted and dashed lines depict the minimum and max-
imum torque values respectively. Italic numbers give the between participant coefficient of 
variation (CVb %) for the rate of torque development (absolute, ΔTorque/ΔTime [A and B]; 
relative, Δ%MVT/ΔTime [C and D]) calculated from 0 to the specified torque increment.  
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Figure 2. Inter-individual variability in absolute torque-tissue elongation and relative torque 
(%MVT)-tissue strain curves for the muscle-tendon unit (MTU; A and C) and patellar tendon 
(PT; B and D). Data acquired during isometric ramp knee extensor contractions. Black line 
and circles (bars) are mean (SD) torque-elongation/strain curve, while dotted and dashed 
lines depict individuals with the minimum and maximum values of elongation/strain respec-
tively. Italic numbers give between participant coefficient of variation (CVb %) for elongation 
and strain measured from 0 to the specified torque level. Stiffness measurements were sub-
sequently derived from individual tendon force-elongation/strain relationships. 
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Figure 3. (A) Pearson’s product moment correlation coefficients between absolute measures 
of rate of torque development (RTD, Nm.s-1) during explosive voluntary or evoked octet con-
tractions and stiffness (k; N.mm-1) of the muscle-tendon unit (MTU, black diamonds) or patel-
lar tendon (PT, white squares), both measured over the same torque increment. (B & C) Ex-
ample scatterplots of the bivariate relationships between RTD during explosive voluntary 
(n=51) contractions and patellar tendon (PT, B) and muscle-tendon unit (MTU, C) k meas-
ured over 0-100 Nm. 
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Figure 4. (A) Pearson’s product moment correlation coefficients between the relative rate of 
torque development (RTD, %MVT.s-1) during explosive voluntary and evoked octet contrac-
tions and the muscle-tendon unit (MTU) and patellar tendon (PT) relative stiffness 
(k; %MVT.ε-1) determined for the same relative torque increment. **P<0.01, *P<0.05. (B & C) 
Example scatterplots of the bivariate relationships between relative RTD during explosive 
voluntary (Vol; B [n=51]) and evoked octet (Oct; C [n=48]) contractions and relative MTU k 
measured over 25-50%MVT. 
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Figure 5. Bivariate correlations between relative RTD (%MVT.s-1) and relative MTU k 
(%MVT/ε-1) for the same torque increment. Correlations performed with n=51 for voluntary 
and n=48 for evoked contractions. Statistical significance level: *P<0.05, **P<0.01, 
***P<0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


