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Abstract 

The physiological and exercise performance adaptations to sprint interval training (SIT) may 

be modified by dietary nitrate (NO3
-) supplementation. However, it is possible that different 

types of NO3
- supplementation evoke divergent physiological and performance adaptations to 

SIT. The purpose of this study was to compare the effects of 4 weeks SIT with and without 

concurrent dietary NO3
- supplementation administered as either NO3

--rich beetroot juice (BR) 

or potassium NO3
- (KNO3). Thirty recreationally-active subjects completed a battery of 

exercise tests before and after a 4 week intervention in which they were allocated to one of 

three groups: 1) SIT undertaken without dietary NO3
- supplementation (SIT); 2) SIT 

accompanied by concurrent BR supplementation (SIT+BR); or 3) SIT accompanied by 

concurrent KNO3 supplementation (SIT+KNO3). During severe-intensity exercise, V̇O2peak 

and time to task failure were improved to a greater extent with SIT+BR than SIT and 

SIT+KNO3 (P<0.05). There was also a greater reduction in the accumulation of muscle 

lactate at 3-min of severe-intensity exercise in SIT+BR compared to SIT+KNO3 (P<0.05). 

Plasma [NO2
-] fell to a greater extent during severe-intensity exercise in SIT+BR compared 

to SIT and SIT+KNO3 (P<0.05). There were no differences between groups in the reduction 

in the muscle phosphocreatine recovery time constant from pre- to post-intervention 

(P>0.05). These findings indicate that 4 weeks SIT with concurrent BR supplementation 

results in greater exercise capacity adaptations compared to SIT alone and SIT with 

concurrent KNO3 supplementation. This may be the result of greater NO-mediated signalling 

in SIT+BR compared to SIT+KNO3.  
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Introduction 

Over the last decade, dietary supplementation with inorganic nitrate (NO3
-) has emerged as a 

popular pre-competition nutrition strategy to enhance athletic performance. This practice 

originates from evidence that dietary NO3
- supplementation can enhance a range of 

physiological processes, including skeletal muscle metabolic (2, 35, 62), contractile (11, 28, 

29, 66) and vascular function (16, 17) with attendant implications for improved performance 

in a range of exercise settings (5, 33, 58, 60, 69).  

Favourable effects on resting blood pressure (BP) have been observed following NO3
- 

ingested in the form of both NO3
--rich beetroot juice (BR; 31, 64) and NO3

- salts (KNO3 or 

NaNO3; 1, 32, 34). However, some recent studies suggest that BR/NO3
--rich vegetables and 

NO3
- salts can evoke disparate physiological effects (18, 30). The improvement in some 

physiological responses in the contracting skeletal muscle following NO3
- supplementation 

has been attributed to enhanced nitroso signalling facilitated by elevated nitrite (NO2
-), s-

nitrosothiol and/or NO bioavailability (40, 57, 64). Importantly, the co-ingestion of the 

betacyanins and polyphenols found in BR may increase the capacity for NO synthesis from 

NO2
- (21, 50). Moreover, chlorogenic acid, a constituent of BR, has been shown to promote 

NO release by human saliva at the acidic pH of the stomach (50). Therefore, ingesting NO3
- 

as BR, which is accompanied by the co-ingestion of compounds that might facilitate the NO3
-

- NO2
- -NO pathway, has the potential to enhance NO-mediated physiological signalling 

compared to a similar dose of NO3
- administered as NO3

- salts.   

In addition to enhanced physiological and performance responses following NO3
- 

supplementation in an acute exercise setting, recent evidence suggest that NO3
- 

supplementation in the form of BR (59), a high NO3
- gel (44) or NaNO3 (14) can modulate 

some of the physiological and performance adaptations to sprint interval training (SIT).  
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Increased exposure to NO3
- or NO2

- has been reported to activate PGC1-α (51) and AMPK 

(42) which initiate signalling cascades that promote adaptive skeletal muscle remodelling to 

exercise (23). However, while consumption of BR or NO3
--rich vegetables can lower the O2 

cost of submaximal exercise (18) and BP (30) compared to an equivalent dose of NaNO3, it 

has yet to be determined whether equimolar doses of inorganic NO3
- administered through 

different supplementation vehicles elicit comparable or divergent physiological and 

performance adaptations to an exercise training program.   

As well as serving as an NO precursor, BR contains a number of compounds with antioxidant 

properties (55, 67). The most abundant betacyanin present in BR, betanin, has been shown to 

possess high antioxidant activity (9). There is some evidence to suggest that supplementation 

with antioxidant compounds during an exercise training program can blunt some of the 

skeletal muscle adaptive responses to exercise training (26, 43, 48). It has been reported that 

BR contains a high total antioxidant capacity relative to other vegetable juices (67), although 

this would be substantially lower than administered in training studies reporting 

compromised training adaptations in which high doses of vitamin C (1 g) and vitamin E (up 

to 294 mg) have been administered (43, 48). Therefore, while BR has the potential to 

augment NO-mediated signalling, and by extension the activation of transcription pathways 

integral to muscle remodelling to exercise, it remains possible that this benefit might be offset 

by the antioxidant effects of BR supplementation and the potential suppression of exercise-

evoked adaptive signalling cascades.  Therefore, further research is required to address the 

influence of the NO3
- administration vehicle on the adaptations to an exercise training 

program.   

The purpose of this study was to compare the physiological and exercise performance 

adaptations to 4 weeks SIT accompanied by concurrent supplementation with BR (SIT+BR) 

or potassium NO3
- (KNO3) (SIT+KNO3) or SIT undertaken without dietary NO3

- 
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supplementation (SIT). It was hypothesised that exercise performance, muscle oxidative 

capacity measured in vivo using 31phosphorus magnetic resonance spectroscopy (31P-MRS), 

and muscle metabolic adaptions measured from muscle biopsy samples would be improved 

following all SIT interventions, but that these variables would be improved more in the 

SIT+BR group compared to the SIT+KNO3 and SIT groups due to enhanced NO-mediated 

physiological signalling in SIT+BR. 

Methods 

Subjects 

Eighteen male (mean ± SD: age 25 ± 6 years, height 1.82 ± 0.07 m, body mass 85 ± 12 kg, 

V̇O2peak 46.6 ± 7.5 mL·kg-1·min-1) and 12 female (mean ± SD: age 22 ± 3 years, height 1.71 ± 

0.08 m, body mass 66 ± 10 kg, V̇O2 peak 39.9 ± 3.9 mL·kg-1·min-1) volunteers were recruited. 

The subjects were involved in team and/or endurance sports but were not highly trained. 

Following an explanation of the experimental procedures, associated risks, potential benefits 

and likely value of the possible findings, subjects gave their written informed consent to 

participate. The study was approved by the Institutional Research Ethics Committee and 

conformed to the code of ethics of the Declaration of Helsinki. 

Experimental design  

Subjects initially visited the laboratory on 3 separate occasions over a 5 day period. On visit 

1, subjects completed an incremental exercise test on a cycle ergometer for the determination 

of V̇O2peak and gas exchange threshold (GET). The work rates requiring 80% of the GET 

(moderate exercise) and 85%∆ (GET plus 85% of the difference between the work rate at 

GET and V̇O2peak; severe exercise) were calculated and adjusted for mean response time for 

V̇O2 during incremental exercise (65). Following this, subjects were familiarized to the 

exercise testing procedures, including completion of a severe-intensity bout of cycle 
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ergometry until exhaustion. On visit 2, subjects completed the 31P-MRS protocol (see below) 

before a 5-min bout of moderate-intensity cycling and an incremental exercise test were 

performed. On visit 3, subjects completed 2 bouts of severe-intensity cycling, the first for 3-

min and the second until task failure.  

A third party (not associated with data collection and analysis) received the baseline 

characteristics of each participant before assigning participants, in a group characteristic 

matched manner, to one of three SIT groups. Thereafter, in a double-blind, independent-

groups design, subjects were enrolled onto a 4-week supervised SIT program and assigned to 

receive either NO3
- rich BR (SIT+BR; age 25 ± 7 years, height 1.76 ± 0.11 m, body mass 80 

± 19 kg), KNO3
- (SIT+KNO3: age 25 ± 3 years, height 1.76 ± 0.09 m, body mass 75 ± 13 kg) 

or water (SIT: age 22 ± 3 years, height 1.79 ± 0.08 m, body mass 78 ± 12 kg) for 28 days. 

The SIT+BR and SIT+KNO3 groups were deliberately misinformed that they might be 

consuming supplements that were either active (NO3
--rich) or placebo alternatives. All three 

groups consisted of 6 male and 4 female subjects. Each group consumed 1 x 70 mL of their 

allocated supplements (SIT+BR; ~6.4 mmol of NO3
- per 70 mL; Beet it, James White Drinks 

Ltd., Ipswich, UK; SIT+KNO3: ~6.4 mmol of NO3
- per 70 mL; Minerals-Water.ltd, Purfleet, 

UK) in the morning and 1 x 70 mL in the evening of each day for the duration of the training 

period. This approach is expected to result in elevated plasma [NO3
-] and [NO2

-] for each 24 

h period (68).  On experimental visits following the intervention period, subjects consumed 2 

x 70 mL of their allocated supplement 2.5 h prior to the exercise tests. Compliance to the 

supplementation procedures was confirmed by the return of empty bottles each week and via 

the completion of questionnaires during and following the intervention period.  

All groups completed the same exercise tests (at the same absolute work rates) and 

physiological assessments both before and after the 28-day intervention period. Laboratory 
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visits were scheduled at the same time of day (± 2 h). Subjects were asked to maintain their 

normal dietary and exercise behavior throughout the study. However, subjects were 

instructed to record their diet during the 24 h preceding the first laboratory visit and to repeat 

this for all subsequent laboratory visits. On training days, subjects were asked to arrive at the 

training venue ≥1 h post-prandial and to complete a 5 min self-paced warm up before training 

commenced. On experimental days, subjects were instructed to arrive at the laboratory ≥3 h 

post-prandial having avoided strenuous exercise and the consumption of alcohol and caffeine 

in the 24 h preceding each exercise test. For the duration of the study, subjects were asked to 

refrain from taking other dietary supplements and to avoid the use of antibacterial mouthwash 

as this inhibits the reduction of NO3
- to NO2

- in the oral cavity by eliminating commensal 

bacteria (27).  

Training intervention 

During the training sessions, all subjects completed a series of 30-s “all-out” sprints (i.e. 

Wingate test) against a resistance equivalent to 7.5% body mass on a mechanically-braked 

cycle ergometer (model 814E, Monark, Stockholm, Sweden). Each sprint was separated by a 

4-min period of rest in which subjects cycled at a low cadence against a light resistance to 

reduce venous pooling and sensations of nausea. During weeks 1 and 2 of training, subjects 

performed 4 x 30-s sprints three times per week, while during weeks 3 and 4, subjects 

performed 5 x 30-s sprints four times per week. Following a 5-min warm up of cycling 

against a light resistance, subjects were given a 10-s count down and instructed to pedal 

maximally for 2 s before the appropriate load was applied. Subjects were verbally encouraged 

to maintain maximal cadence throughout each 30-s sprint. All groups completed a total of 14 

supervised training sessions over a 4-week period, with at least 24 h separating each training 

session. The post-intervention laboratory tests were performed at least 48 h following, but 
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within 4 days of the completion of the final training session. All subjects completed 100% of 

the training sessions and 100% of the sprints during the intervention. 

Incremental exercise tests 

Subjects completed all ramp incremental exercise tests on an electronically braked cycle 

ergometer (Lode Excalibur Sport, Groningen, Netherlands). The self-selected cadence (75-90 

rpm), saddle and handle bar height and configuration for each subject were recorded on the 

first visit and reproduced in subsequent visits. Initially, subjects performed 3-min of baseline 

cycling at 20 W, after which the work rate was increased by 30 W/min until task failure. 

Breath-by-breath pulmonary gas exchange data (Oxycon Pro, Jaeger, Hoechberg, Germany) 

were collected continuously throughout all incremental tests and were averaged over 10-s 

periods. V̇O2peak and GET were determined as previously described (61).  

Step exercise tests 

A 5-min moderate-intensity “step” test was performed on the first laboratory visit before and 

following the intervention. This was completed 10 min before the ramp incremental test 

protocol was initiated. On the second laboratory visit before and following the intervention, 

two severe-intensity step tests were performed, separated by a 20 min period of rest; the first 

until 3-min, and the second until task failure. The time to task failure was recorded once the 

pedal rate fell by >10 rpm below the target cadence. All step tests began with 3-min of 

pedaling at 20 W before a sudden transition to the target work rate. Muscle biopsies were 

obtained before and following the 3-min severe-intensity exercise bout and again at task 

failure in the second bout. Breath-by-breath pulmonary gas exchange data were collected 

continuously throughout all step tests. 

31P-MRS protocol 
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Before the initial experimental visit, participants were familiarised to the 31P-MRS protocol 

using a custom-built, non-ferrous ergometer in the bore of a purpose built ‘mock’ magnetic 

resonance scanner. Before and following the intervention, subjects completed four bouts of 

single-leg knee extension exercise (over a distance of ~0.22 m) in a prone position within the 

bore of a 1.5 T superconducting magnet (Gyroscan Clinical Intera, Philips, The Netherlands) 

using a custom-built, non-ferrous ergometer at the University of Exeter Magnetic Resonance 

Research Centre (Exeter, UK) as previously described (20, 62). Each 24-s bout of high-

intensity exercise (20 ± 4 W) was separated by 4 min. 31P-MRS was used for the assessment 

of muscle PCr recovery kinetics with data acquired every 1.5 s leading to a spectrum every 6 

s via a four phase cycle protocol. Due to technical issues with the scanner at the start of data 

collection the subject number included in the analyses was restricted within each group to n = 

9. 

Measurements 

Blood pressure  

Before and following the intervention the BP at the brachial artery was measured using an 

automated sphygmomanometer (Dinamap Pro: GE Medical Systems, Tampa, FL). Following 

10 min seated rest in an isolated room, three measurements were recorded. The means of the 

systolic and diastolic measurements were used for data analysis.  

Blood analysis 

Venous blood was sampled at rest (baseline) before each experimental test. Blood samples 

were also obtained at 1-min, at 3-min and at exhaustion during the severe-intensity exercise 

bout. The blood samples collected during the severe-intensity exercise bout were drawn from 

a cannula (Insyte-WTM, Becton Dickinson, Madrid, Spain) inserted into the subject’s 

antecubital vein and were collected into lithium-heparin vacutainers (Becton Dickinson, New 
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Jersey, USA). Blood [lactate] and [glucose], as well as plasma [NO2
-] were analyzed in all 

samples (square brackets denote concentration). 200 μL of blood was immediately extracted 

from the lithium-heparin vacutainers and hemolysed in 200 μL of Triton X-100 solution 

(Triton X-100, Amresco, Salon, OH) before blood [lactate] and [glucose] were measured 

(YSI 2300, Yellow Springs Instruments, Yellow Springs, OH). The remaining whole blood 

from each sample was centrifuged at 4000 rpm for 8 min at 4 ºC within 2 min of collection. 

Plasma was immediately extracted, frozen at -80 ºC and subsequently analyzed for [NO2
-] 

using chemiluminescence, as previously described (68). 

Muscle biopsy 

Muscle samples were obtained from two incisions from the medial region of the m. vastus 

lateralis under local anesthesia (1% lidocaine) using the percutaneous Bergström needle 

biopsy technique with suction (4). Muscle samples were taken at three different time points 

before and following the intervention: at rest; following 3-min of severe-intensity exercise; 

and at task failure during severe-intensity exercise. The post-exercise biopsies were taken 

while subjects remained on the cycle ergometer and were typically collected within 10 s of 

the completion of the exercise bout.  Biopsy samples were immediately frozen in liquid 

nitrogen and stored at -80 °C for subsequent analysis.  

Muscle metabolites 

Following a freeze-drying process, samples were dissected to remove visible blood, fat, and 

connective tissue. Approximately 2 mg aliquots of isolated muscle fibers were weighed on 

fine balance scales (Mettler Toledo XS105, Leicester, UK) and stored in 500 µL 

microcentrifuge tubes at -80 °C. Prior to metabolite analysis, 200 µL of 3 M perchloric acid 

was added to ~2 mg dry weight (d.w.) muscle tissue. Following 3 min centrifugation and 30 

min incubation on ice, 170 µL of supernatant was transferred to a fresh microcentrifuge tube 
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and 255 µL of cooled 2 M potassium bicarbonate (KHCO3) was added. This was centrifuged, 

and the supernatant analyzed for [PCr], [ATP] and [lactate] by fluorometric assays as 

previously described (39). 

Muscle glycogen and pH 

Glycogen was extracted from ~2 mg d.w. muscle in 500 μL of 1 M hydrochloric acid (HCl) 

and hydrolyzed at 100 °C for 3 h to glycosyl units, which were measured using an automated 

glucose analyser (YSI 2300, Yellow Springs Instruments, Yellow Springs, OH) to determine 

muscle [glycogen]. Muscle pH was measured using a micro-pH meter (Sentron SI600, 

Roden, The Netherlands) following homogenization of ~1 mg d.w. muscle in 500 μL of a 

non-buffering solution (145 mM KCl, 10 mM NaCl and 5 mM NaF). 

Muscle fiber type 

Approximately 20 mg of tissue obtained from each resting muscle biopsy sample was 

embedded in Tissue-Tek® O.T.C.™ compound  (Sakura Finetek Europe BV Zoeterwoude, 

The Netherlands), rapidly frozen in liquid nitrogen-cooled isopentane, and stored at -80 °C 

for subsequent histochemical analysis of myocellular characteristics. Serial cross sections 

(~10 μM thick) were cut in a cryostat (Cryostar NX50, Thermo Scientific, USA) maintained 

at -16 °C. Sections were mounted on 3 separate slides and pre-incubated at pH values of 4.3, 

4.6 and 10.3. According to the lability to the acid and alkaline pre-incubation, the fibers were 

stained for myofibrillar ATPase, identified as type I, IIa, or IIx and counted under an 

Olympus CKX41 microscope with cellSens Dimension software (Olympus Corporation, 

Tokyo, Japan).  

Data analysis procedures 

Oxygen uptake. The breath-by-breath V̇O2 data from each step exercise test were initially 

examined to exclude values lying more than four SDs from the local mean. The filtered data 
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were subsequently linearly interpolated to provide second-by-second values and time-aligned 

to the start of exercise for each individual. The baseline V̇O2 was defined as the mean V̇O2 

measured over the final 60 s of the 3-min baseline period. The end-exercise V̇O2 was defined 

as the mean V̇O2 measured over the final 30 s of exercise. 

PCr recovery kinetics. The acquired spectra were quantified using the jMRUI (version 3) 

software package employing the AMARES peak fitting algorithm as previously described 

(20, 62). Using Prism 6 software (GraphPad Software Inc., La Jolla, CA, USA), the PCr 

recovery for each 24 s recovery period was fitted individually by a single exponential of the 

form  

PCr(t) = PCrend + PCr(0) (1 - e(-t/τ)) 

where PCrend is the end exercise PCr value, PCr(0) is the difference between PCrend and full 

recovery, t is the time from exercise cessation and τ is the time constant for the exponential 

recovery of PCr. A value of τ was calculated for each trial and then a mean determined from 

the four individual 24 s recovery periods. 

Statistical analyses 

Physiological and performance differences consequent to the interventions were assessed 

using analysis of covariance (ANCOVA) with baseline values used as a covariate. This 

approach was used to adjust for any small but potentially physiologically important chance 

imbalances at baseline (54). Significant effects were followed up by Fisher’s LSD post hoc 

tests. Data that were not normally distributed were log transformed before applying the 

ANCOVA. All values are reported as mean ± SD.  Statistical significance was accepted at 

P<0.05. 

Results 
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Plasma [NO2
-]  

Resting plasma [NO2
-] was increased in SIT+BR (Pre: 39 ± 18 vs. Post: 257 ± 112 nM) and 

SIT+KNO3 (Pre: 75 ± 20 vs. Post: 310 ± 123 nM) compared to SIT (Pre: 45 ± 52 vs. Post: 55 

± 83 nM) (P<0.05). There was no difference in the change in resting plasma [NO2
-] between 

SIT+BR and SIT+KNO3 (P>0.05). However, the change in plasma [NO2
-] during severe-

intensity cycling was greater at 3-min in SIT+BR (104 ± 92 nM reduction) compared to 

SIT+KNO3 (59 ± 108 nM reduction) (P<0.05; Fig. 1).  

Blood Pressure  

Systolic BP was reduced in SIT+BR compared to SIT (P<0.05) but not SIT+KNO3 (P>0.05; 

Table 1). The change in systolic BP in SIT was not different compared to SIT+KNO3 

(P>0.05). Diastolic BP was reduced in SIT+BR compared to both SIT and SIT+KNO3 

(P<0.05; Table 1). There was no difference in diastolic BP between SIT and SIT+KNO3 

(P>0.05). 

Incremental exercise test  

None of the interventions resulted in a significant change in body mass (SIT+BR: Pre: 80 ± 

19 kg, Post: 80 ± 19 kg; SIT+KNO3: Pre: 75 ± 13 kg, Post: 74 ± 13 kg; SIT: Pre: 78 ± 12 kg, 

Post: 77 ± 11 kg; P>0.05). The V̇O2peak was increased to a greater extent in SIT+BR (11% 

increase) compared to both SIT (6% increase) and SIT+KNO3 (4% increase) (P<0.05; Table 

1). There was no difference in the change in V̇O2peak between SIT and SIT+KNO3 (P>0.05). 

The increase in peak WR was not different between groups (P>0.05; Table 1).  

Step exercise tests 

The steady-state V̇O2 during moderate-intensity exercise was reduced in SIT+BR and 

SIT+KNO3 compared to SIT (P<0.05; Table 1). There was no difference in the extent of the 
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reduction in steady-state V̇O2 between SIT+BR and SIT+KNO3 (P>0.05). There were no 

differences in baseline cycling V̇O2 between groups (P>0.05). 

The time to task failure during severe-intensity cycling was increased to a greater extent in 

SIT+BR (71% increase) compared to both SIT (47% increase) and SIT+KNO3 (42% 

increase) (P<0.05; Fig. 2). There was no difference in the change in time to task failure 

between SIT and SIT+KNO3 (P>0.05). V̇O2peak attained during severe-intensity cycling was 

not different to that attained during incremental cycling. The change from pre- to post-

intervention in blood [lactate] sampled at 1-min of severe-intensity cycling was significantly 

different in SIT+BR (Pre: 5.1 ± 1.4 vs. Post: 3.5 ± 0.8 mM) compared to SIT (Pre: 3.0 ± 1.4 

vs. Post: 1.9 ± 0.9 mM) (P<0.05) but not SIT+KNO3 (Pre: 3.9 ± 1.7 vs. Post: 2.6 ± 0.7 mM) 

(P>0.05). There was no difference in blood [lactate] between SIT and SIT+KNO3 (P>0.05). 

Blood [glucose] measured during severe-intensity exercise was not different between groups 

(P>0.05). 

PCr recovery kinetics 

The reduction in muscle PCr recovery time constant following the cessation of 24 s high 

intensity knee-extension exercise was not different between groups (SIT: Pre: 31.6 ± 10.3 vs. 

Post: 24.7 ± 6.2 s; SIT+BR: Pre: 28.4 ± 4.9 vs. Post: 25.9 ± 3.5 s; SIT+KNO3: Pre: 31.7 ± 8.0 

vs. Post: 26.7 ± 7.3 s; P>0.05; Fig. 3).  

Muscle substrates and metabolites 

The concentrations of muscle ATP, PCr and glycogen, and muscle pH measured during 

severe-intensity cycling were not different between groups (P>0.05; Table 2). However, 

muscle [lactate] was different between groups at 3-min of severe-intensity cycling (P<0.05; 

Table 2). Specifically, the accumulation of muscle lactate from rest to 3-min of severe-
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intensity cycling was reduced in SIT+BR compared to SIT+KNO3 (P<0.05; Table 2) but not 

SIT. 

Muscle fiber type 

There was no difference in the change in proportion of type I or type IIx muscle fibres 

between groups (P>0.05). However, the increase in the proportion of type IIa muscle fibers 

was greater in SIT and SIT+BR compared to SIT+KNO3 (P<0.05; Table 3).  

Discussion 

The principal original finding of this study is that SIT with concurrent NO3
- supplementation 

in the form of a natural dietary source (BR) results in superior physiological and exercise 

performance adaptations compared to both SIT alone and SIT with concurrent  

supplementation of a NO3
- salt (KNO3). Specifically, SIT+BR enhanced time to task failure 

during severe-intensity cycling to a greater extent than SIT+KNO3 and SIT. Moreover, 

despite the administration of equimolar NO3
- doses, SIT+BR resulted in a greater reduction in 

resting BP and a greater fall in plasma [NO2
-] during exercise compared to SIT+KNO3. These 

findings suggest that BR, but not KNO3, supplementation may augment the improvements in 

exercise capacity and some physiological responses to SIT, presumably via increased NO-

mediated physiological signalling.  

Influence of SIT+BR and SIT+KNO3 on exercise capacity 

In the present study, peak work rate, V̇O2peak and the time to task failure during severe-

intensity exercise were increased following the intervention period in all SIT groups. This 

confirms the efficacy of low volume, high-intensity interval training to increase exercise 

capacity (7, 24, 38, 52). Interestingly, we found that V̇O2peak and time to task failure were 

increased to a greater extent when SIT was combined with BR compared to SIT alone. This is 
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consistent with our previous study showing that 4 weeks SIT combined with BR improved 

V̇O2peak whereas SIT combined with NO3
--depleted beetroot juice did not (59). Surprisingly, 

and in contrast to our previous study (59), the greater increase in VO2peak in SIT+BR was not 

accompanied by a significantly greater increase in peak WR during incremental exercise in 

the present study. However, although not significantly different, it is interesting to note that 7 

out of 10 participants in SIT+BR improved peak WR to a greater extent than the pooled 

group mean change (equivalent to an ~8% improvement), whereas fewer participants 

exhibited this trend in SIT (3/10) and SIT+KNO3 (2/10). 

The greater improvement in V̇O2peak and time to task failure in SIT+BR might be explained by 

differences in muscle fiber type transformation and/or changes in muscle metabolic responses 

to exercise between groups. PGC-1α regulates the exercise-stimulated skeletal muscle 

remodelling from glycolytic type IIx to more oxidative type IIa and type I muscle fibers (36, 

47). The transcription of PGC-1α may be stimulated by both low volume SIT (37) and 

elevated NO bioavailability (42, 45, 46). It is therefore possible that, by activating common 

signalling pathways, dietary NO3
- may augment some of the oxidative metabolic adaptations 

typical of exercise training. Consistent with this, Roberts et al. (51) have recently 

demonstrated that both exercise and NO3
- increased the expression of PGC-1α in human and 

rat muscle. The change from type IIx towards type IIa and type I fibers typically associated 

with exercise training was observed in both the soleus (comprising ≤20% type IIa + IIx fibers 

(13)) and gastrocnemius (comprising ~100% type IIa + IIx fibers (13))) muscle of NO3
- 

supplemented rats (51). In the present study, we found a significant increase in type IIa 

muscle fibers following the intervention period in SIT and SIT+BR but not SIT+KNO3. 

However, in contrast to recent findings in hypoxia (14) and normoxia (59), we did not find 

that concurrent dietary NO3
- supplementation modulated muscle fiber type transformation 

compared to SIT alone. 
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SIT+BR was associated with more favorable changes in blood and muscle markers of skeletal 

muscle metabolism during exercise following the intervention period. Specifically, blood 

lactate accumulation was reduced to a greater extent at 1-min severe-intensity exercise in 

SIT+BR compared to SIT and muscle lactate accumulation was reduced to a greater extent at 

3-min severe-intensity exercise in SIT+BR compared to SIT+KNO3. Dietary NO3
- 

supplementation may reduce physiological strain during severe-intensity cycling by: 1) 

lowering the O2 cost of a given work rate within the severe-intensity domain (see below; 18); 

2) reducing the ATP and PCr cost of muscle force production (2, 20); 3) improving Ca2+ 

handling in type II muscle fibers (29); and 4) improving blood flow distribution towards type 

II muscle and elevating the driving pressure for capillary-myocyte O2 flux (16, 17).  

Influence of SIT+BR and SIT+KNO3 on the O2 cost of exercise  

SIT alone had no effect on the O2 cost of exercise but submaximal V̇O2 was lowered post-

training in both SIT+BR and SIT+KNO3. This is consistent with several studies that have 

assessed steady-state V̇O2 after acute and short-term BR supplementation (3, 61, 70) and with 

two studies following 4 weeks NO3
- supplementation (59, 70). The one other study that has 

assessed the effect of KNO3 supplementation on V̇O2 during exercise found that acute KNO3 

supplementation was ineffective at lowering the O2 cost of exercise in élite athletes (49). 

Fleuck et al. (18) previously reported that acute BR ingestion is more effective at reducing 

the O2 cost of exercise than an equimolar concentration of NO3
- administered as NaNO3, 

perhaps due to differential effects on NO3
-/NO2

- metabolism and NO bioavailability evoked 

by the different vehicles of NO3
- supplementation (See Effect of SIT+BR and SIT+KNO3 on 

markers of NO bioavailability below). However, in the present study, both SIT+BR and 

SIT+KNO3 reduced submaximal V̇O2 compared to SIT, with no difference in the magnitude 

of change between the two different types of NO3
- supplementation.  
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Influence of SIT+BR and SIT+KNO3 on markers of NO bioavailability  

Systolic and diastolic BP, and plasma [NO2
-] were unchanged following 4 weeks of SIT. 

However, despite the administration of equimolar concentrations of NO3
-, there were 

disparate effects of SIT+BR and SIT+KNO3 on BP. Resting plasma [NO2
-] did not differ 

between the interventions in which dietary NO3
- was administered as BR or as NO3

- salt. 

However, greater reductions in BP were observed in SIT+BR compared to SIT+KNO3. Acute 

supplementation with KNO3 has been shown to lower systolic and diastolic BP (1, 32) but no 

previous study has compared the effects of chronic supplementation with KNO3 to BR. Our 

results are consistent with Jonvik et al. (30) who reported that systolic and diastolic BP were 

reduced following BR but were unchanged following the same dose (~800 mg) of NO3
- 

administered as a NaNO3-containing beverage. Collectively, these results indicate that dietary 

NO3
- consumed as BR is more effective at lowering BP than dietary NO3

- consumed as a NO3
- 

salt. This effect may be linked to the presence of other compounds within the BR beverage 

which may facilitate the conversion of NO2
- into bioactive NO and other reactive nitrogen 

intermediates (21, 50). In this regard, it is pertinent that the relatively high total antioxidant 

content of BR (67) did not appear to blunt the adaptations to training in the present study. 

This is in contrast to previous studies in which high doses of vitamins C and E have been 

administered (43, 48). 

A possible greater effect of BR compared to KNO3 on NO synthesis may be particularly 

important during exercise to support NO-mediated physiological responses in contracting 

muscle. In this regard, it is interesting that, plasma [NO2
-] declined to a greater extent during 

the severe-intensity exercise test in SIT+BR compared to SIT+KNO3 (Fig. 1), which is 

perhaps indicative of enhanced NO synthesis from NO2
- during exercise in SIT+BR. Given 

the importance of NO2
- availability to exercise performance (15), and evidence that the 

decline in plasma [NO2
-] during exercise is correlated to improvements in performance (60, 
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69), differences in the magnitude of NO2
- reduction may explain the superior improvements 

in exercise capacity observed in SIT+BR compared to SIT+KNO3 and SIT in the present 

study.  

We have previously reported that, in the absence of exercise training, exercise capacity 

improved following 15 days (61) and 28 days (59) of NO3
- supplementation in the form of 

BR. However, it remains unclear whether similarly protracted periods of dietary NO3
- 

supplementation in the form of a NO3
- salt, could elicit comparable improvements in exercise 

performance. It is possible that different levels of exposure to NO bioavailability incurred by 

the different NO3
--based supplements evoke discrete skeletal muscle adaptive responses 

which may have contributed to the differences in exercise capacity reported herein.  

Influence of SIT+BR and SIT+KNO3 on oxidative capacity measured in vivo using 31P-MRS 

Elevating NO bioavailability via long term dietary NO3
- administration may stimulate 

angiogenesis (22), mitochondrial biogenesis (45, 46) and the transformation towards a more 

oxidative skeletal muscle fiber type (47, 56), effects which may enhance muscle oxidative 

capacity. Owing to the equilibrium of the creatine kinase reaction, post-exercise muscle PCr 

resynthesis is a function of mitochondrial ATP production (53). Therefore, we measured the 

resynthesis of PCr following brief, high-intensity exercise, where the time constant for the 

exponential recovery of PCr is proportional to muscle mitochondrial oxidative capacity (10, 

41). In contrast to our hypothesis, 4 weeks of SIT combined with dietary NO3
- 

supplementation in the form of either BR or KNO3 did not enhance muscle oxidative capacity 

to a greater extent than SIT alone. 

Mitochondrial oxidative capacity can also be estimated by measuring the activity of enzymes 

such as citrate synthase (12); markers that have been shown to be elevated following SIT (6, 

8,  25, 63). However, to our knowledge, this is the first study to demonstrate that 4 weeks SIT 
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improved oxidative capacity in vivo using 31P-MRS. The reduction in the PCr recovery time 

constant in our study (~16%) was similar to that reported by Forbes et al. (19) in the recovery 

from moderate-intensity exercise following 2 weeks SIT. Mitochondrial biogenesis might be 

anticipated following exercise training (37, 38). Furthermore, interventions that elevate NO 

bioavailability such as dietary NO3
- supplementation may also increase mitochondrial mass 

via comparable signaling pathways (42, 45, 46). However, in the present study, the effects of 

exercise training appear responsible for the speeding of PCr recovery observed in all SIT 

groups, with no additional benefit afforded by dietary NO3
- supplementation.  

Experimental considerations 

A key strength of the present investigation is that, in addition to comparing changes in 

exercise capacity between conditions, we assessed changes in markers of NO bioavailability, 

muscle metabolism (by biopsyand 31P-MRS techniques) to explore the mechanistic bases to 

any functional improvements observed. Furthermore, the inclusion of a SIT only control 

group allowed us to isolate the effects of SIT from the effects of dietary NO3
- 

supplementation alongside SIT in the SIT+BR and SIT+KNO3 groups. In our study design, 

we elected to simulate the approach that athletes might adopt during training and in 

preparation for competition: that is, daily NO3
- supplementation during training and then an 

acute NO3
- dose prior to the criterion exercise trial. However, one disadvantage to this 

approach is that it complicates differentiation of the effects of training with NO3
- 

supplementation, per se, from potential effects of acute NO3
- supplementation on some of the 

physiological responses to exercise. For this reason, we cannot exclude the possibility that 

some of the physiological and exercise performance effects observed in the SIT+BR and 

SIT+KNO3 groups may have been influenced by the acute NO3
- ingestion. Our results do, 

however, indicate that the combination of SIT+BR and acute BR ingestion results in superior 

physiological and performance outcomes compared to SIT alone or SIT+KNO3 and acute 
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KNO3 ingestion. Further research is necessary to partition out the possible differences in the 

physiological adaptations to SIT alongside chronic NO3
- supplementation with and without 

the addition of acute NO3
- supplementation prior to post-training performance tests.   

The BR and KNO3
- supplements were consumed by participants in this study as they might 

be used by athletes in training, i.e., no attempt was made to match the macronutrient, 

micronutrient or energy content of the supplements. Therefore, it is possible, though we 

believe unlikely, that the additional carbohydrate and/or energy intake provided by the BR 

supplement (~31g/day or ~120 kcal/day) might have influenced the adaptations to SIT 

compared to the other training groups. It should also be acknowledged that, since the total 

work completed in each of the training programs was not quantified, it is unclear whether the 

enhanced adaptations in the SIT+BR group relative to the SIT and SIT+KNO3 groups were a 

result of a greater overall training load, due to an aggregation of acute ergogenic effects of 

BR, or to a greater physiological remodeling to the same training load.  

Summary 

The present study demonstrated that SIT combined with dietary NO3
- supplementation in the 

form of BR improved exercise capacity to a greater extent than SIT alone and SIT combined 

with dietary NO3
- supplementation in the form of KNO3. These findings may be linked to 

greater NO synthesis from NO2
-
 or a greater increase in other bioactive nitroso compounds in 

SIT+BR compared to the other SIT groups. Increased dietary NO3
- intake, including via 

supplementation with a natural NO3
--rich product such as BR, may promote greater exercise 

capacity adaptations and NO-mediated physiological responses to exercise training. These 

findings might have important implications for augmenting some of the physiological and 

performance adaptations to a short-term SIT program.   
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Figure Legends 

Figure 1. Plasma [NO2
-] declined to a greater extent from baseline to 3min during severe-

intensity exercise in SIT+BR (panel A) compared to SIT+KNO3 (panel B) (* P<0.05). Open 

circles represent plasma [NO2
-] pre-intervention, closed circles represent plasma [NO2

-] post-

intervention. Values presented as mean ± SE. 

Figure 2. Percentage increase in time to task failure and V̇O2peak during severe-intensity 

exercise in SIT (solid grey line), SIT+BR (solid black line) and SIT+KNO3 (dotted black 

line). Values presented as mean ± SE. The ANCOVA indicated the changes in time to task 

failure and V̇O2peak during severe-intensity exercise were greater in SIT+BR compared to SIT 

(# P<0.05) and compared to SIT+KNO3 (* P<0.05). 

Figure 3. Muscle phosphocreatine (PCr) time constant in the recovery from brief high-

intensity exercise. The ANCOVA indicated that change in PCr recovery time constant with 

training was not different between groups (P>0.05).The dashed lines represent individual 

responses. The bars represent the mean response for each group (±SE).  

 

 

 

 


