
The effect of passive heating on heat shock protein 70 and interleukin-6: a 

possible treatment tool for metabolic diseases? 

 

Faulkner, SH; Jackson, S; Fatania, G; and Leicht, CA 

 

National Centre for Sports and Exercise Medicine, School of Sport Exercise and 

Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 

3TU, United Kingdom 

 

Running Head: Passive heating - a treatment tool for metabolic diseases? 

 

Address for correspondence: 

Dr Steve H. Faulkner 

National Centre for Sports and Exercise Medicine,  

School of Sport Exercise and Health Sciences,  

Loughborough University,  

Loughborough, Leicestershire,  

LE11 3TU,  

United Kingdom 

 

Email: S.Faulkner2@lboro.ac.uk 

 

  



Abstract 

Increasing physical activity remains the most widely publicised way of improving 

health and wellbeing. However, in populations that benefit most from exercise, 

adherence is often poor and alternatives to exercise are important to bring about 

health improvements. Recent work suggests a role for passive heating (PH) and heat 

shock proteins (HSP) in improving cardio-metabolic health. The aim of this study was 

to investigate the expression of HSP70 and interleukin-6 in response to either exercise 

(EX) or PH and the subsequent effect on glucose control.  Fourteen males volunteered 

and were categorized lean (BMI 23.5 ± 2.2 Kg.m-2) or overweight (29.2 ± 2.7 Kg.m-2) 

and completed 60 minutes of either moderate cycling at a fixed rate of metabolic heat 

production (EX) or warm water immersion in 40˚C water (PH). Extracellular HSP70 

increased from baseline in both conditions with no differences between PH (0.98 ± 

1.1 ng.mL-1) or EX (0.84 ± 1.0 ng.mL-1, P=0.814). IL-6 increased following both 

conditions with a 2 fold increase after PH and 4 fold after EX. Energy expenditure 

increased by 61.0 ± 14.4 kcal.h-1 (79%) after PH. Peak glucose concentration after a 

meal immediately following PH was reduced when compared with EX (6.3 ± 1.4 

mmol.L-1 vs. 6.8 ± 1.2 mmol.L-1; P<0.05). There was no difference in 24-hour glucose 

area under the curve between conditions. These data indicate the potential for thermal 

therapy as an alternative treatment and management strategy for those at risk of 

developing metabolic disease where adherence, or ability to exercise may be 

compromised. 
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Abbreviations 

AMPK - 5' adenosine monophosphate-activated protein kinase  

AUC – Area under the curve 

BMI – Body mass index 

BP – blood pressure 

BSA – body surface area 

CGM – Continuous glucose monitor 

CI – confidence interval 

CV – coefficient of variation 

eHSP – extracellular heat shock protein 

ELISA - enzyme-linked immunosorbent sandwich assay  

ES – effect size 

EX – Exercise trial  

HDL-C - High density lipoprotein cholesterol 

�̇�𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 - Metabolic heat production 

HSP – Heat shock protein 

iHSP – Intracellular heat shock protein 

IL-1ra – Interleukin 1 receptor antagonist 

IL-6 – Interleukin 6 

IL-10 – Interleukin 10 

JNK - c-Jun N-terminal kinase  

kDa – kilo Dalton 

LDL-C – Low density lipoprotein cholesterol 

LEAN – Lean participant group 

OW – Overweight participant group 

PH – Passive heating trial 

SD – Standard deviation 

SEM – Standard error of mean 

T2DM – Type 2 diabetes mellitus 

Tb  - body temperature 

Tc – core temperature 

Tm – muscle temperature 

Tsk – skin temperature 



TG – Triglyceride 

V̇CO2 –carbon dioxide production 

V̇O2 – oxygen uptake 

V̇O2max – Maximum volume of oxygen uptake 

∆T – change in temperature 

 

 

 

  



Introduction 

 Overweight and obesity are characterised by chronic inflammation and 

impairments to insulin sensitivity and glucose control. A multitude of factors 

contribute to enhancing health and wellbeing; increasing physical activity remains the 

most widely publicised way of doing so. However, in populations that benefit most 

from exercise, adherence is often poor, most likely due to medical conditions and 

disability,1 poor motivation and a lack of convenience.2,3 There are many factors 

involved in the development and treatment of insulin resistance, with the roles played 

by both thermal therapy and heat shock proteins (HSPs) receiving increased 

attention.4-7 Furthermore, it has been suggested that HSPs may provide an early 

indicator of the onset of metabolic diseases, such as type 2 diabetes (T2DM),8,9 whilst 

also acting as a possible biomarker for the chronicity of diabetes.10 

 HSPs are synthesised in response to a number of physiological stressors,11-13 

and are individually characterised by their molecular weight. The most widely studied 

HSP in humans is the 70 kDa family of HSPs which includes both the constitutive 

HSP73 and inducible HSP72 forms. HSPs have wide-ranging functions including 

their roles as thermo-protectants and involvement in protein synthesis.14 The resting 

level of extracellular HSP70 (eHSP70) appears to be related to adiposity and 

inflammation with elevations reported in obesity and T2DM, whereas resting 

intracellular HSP70 (iHSP70) is decreased in T2DM.9 A reduction in iHSP70 is an 

important component in the vicious cycle of chronic inflammation and reduced 

insulin signalling15,16 and the development of insulin resistance.17,18 Indeed, a 

reduction in iHSP70 has been reported in T2DM and correlates to insulin resistance 

and glucose disposal rates.19,20 

 Extracellular HSP70 is increased following acute exercise13 with the 

magnitude of change dependent on both the duration and intensity.21,22 A core 

temperature (Tc) threshold for elevations in eHSP70 has been suggested, with a 0.8-

1.5˚C increase in Tc being required in order to elevate eHSP70.23,24 Recently, thermal 

therapy has been demonstrated to stimulate HSP70 production, although to a lesser 

extent than following exercise,4,24 and may offer an alternative way by which the 

positive effects of HSP may be induced.9 

 The influence of thermal therapy on glycemic regulation and metabolic 

disease has primarily been investigated using rodent models.17,18,25-27. However, there 

are human data to suggest that local heating at the site of insulin infusion improves 



postprandial insulin action28,29  and may benefit long-term glycemic control29,30 and 

cardiovascular health in humans.31 However, the mechanisms by which such an effect 

may occur in humans remain to be elucidated.  Chung et al. were the first to 

demonstrate that passive heating of mice resulted in an elevation in iHSP70 which 

was protective against the deleterious effects of consuming a high fat diet.18 They 

report that in response to a high fat diet there was an increase in the phosphorylation 

of c-Jun N-terminal kinase (JNK). Such an increase has been linked to impaired 

insulin sensitivity due to JNK binding with the insulin receptor substrate, thus 

preventing the initiation of the insulin signalling cascade and resulting in a elevation 

in plasma glucose (For review the reader is directed to32). Importantly, Chung et al. 

demonstrated that passive heating attenuated hyperinsulinemia, glucose intolerance 

and insulin resistance and as a direct consequence of elevations in HSP70 and was 

closely associated with prevention of JNK phosphorylation. Therefore, there is a need 

to investigate how well data from these rodent models translate into human 

participants, with a specific focus on the ability of thermal therapy to elevate HSP70 

and improve glycemic control. 

HSPs may impact on the inflammatory state by directly inducing pro-

inflammatory cytokines. Regular exercise has been demonstrated to have a positive 

effect on the inflammatory profile that is suggested to occur as a consequence of the 

repeated exposure to an anti-inflammatory environment following each exercise 

bout.33 This may occur as a consequence of secretion of pro-inflammatory cytokines, 

including interleukin-6 (IL-6) that may in turn up-regulate anti-inflammatory 

cytokines.34 Importantly, it has been shown that HSP70 independently induces pro-

inflammatory cytokines.35,36 Therefore, thermal therapy may be able to replicate some 

of the anti-inflammatory benefits of exercise, which could help reduce the level of 

inflammation evident in many types of chronic disease. 

Whilst exercise has significant benefits to improving health, individuals with 

many types of chronic disease often experience low exercise tolerance and poor rates 

of adherence.1,37  Based on the above animal literature, there is evidence to suggest 

that thermal therapy may replicate some of the health benefits of  exercise and 

alleviate some of the comorbidities often associated with chronic diseases such as 

T2DM.38 If successful, the implementation of thermal therapy may help to lessen 

some of the financial burden of treating chronic by potentially reducing the 

dependence on pharmacological interventions. Thermal therapy could offer a simple 



home-based intervention that may appeal to individuals unable or unwilling to 

participate in regular exercise. 

The primary aim of this study was to investigate the expression of eHSP70 in 

response to either exercise (EX) or thermal therapy in the form of passive heating 

(PH) via warm water immersion. A secondary aim was to investigate the effect of 

body composition on the eHSP70 response. Finally, we wished to investigate the 

potential effect of passive heating on glycemic control in response to replicated 

dietary intake. It was hypothesised that both EX and PH would elevate eHSP70, with 

a larger magnitude of change following EX. It was further hypothesised that there 

would be a differential response in eHSP70 between lean and overweight participant 

groups.  

 

Methods 

Participants. A total of fourteen males volunteered to participate in the study 

and were split into two groups i) Lean (LEAN, n=7; BMI <25 kg.m-2, body fat <15% 

and fat mass < 12kg) and ii) Overweight (OW, n=7; BMI > 27.0 kg.m-2, body fat 

>20% and fat mass >25kg). Participant characteristics are provided in table 1. All 

participants were healthy non-smokers with no history of cardiovascular, 

haematological or metabolic disorders and had been weight stable for ≥ 3 months. 

Participants were habitually inactive; performing less than 1.5 hours of structured 

physical activity per week and had avoided any hot weather exposure in the previous 

two months, including frequent sauna or spa use.  

Ethical approval. Full ethical approval was granted by the Loughborough 

University Ethical Advisory Committee.  All procedures conformed to the principles 

defined in the Declaration of Helsinki. Participants were fully informed of the 

experimental protocols and any potential risks were identified before they provided 

their written consent to participate. 

Experimental overview. Participants visited the laboratory on three occasions. 

The preliminary visit to the laboratory consisted of initial measures including a blood 

profile, body composition and both submaximal and maximal oxygen uptake tests 

(V̇O2 max test). Visits two and three comprised the experimental trials which consisted 

of either 60 minutes of passive heating via warm water immersion (PH), or 60 

minutes of exercise at a fixed rate of metabolic heat production (EX) which were 



completed in a counterbalanced order and were matched for ∆Tc. On arrival, 

participants were asked to void their bladder and were weighed in minimal clothing 

and then fully instrumented. The first blood sample was then collected and muscle 

temperature measured. Participants then completed either PH or EX as detailed 

below. On completion of each trial a second blood sample and muscle temperature 

measure were obtained, with a final blood sample being taken 2 hours after 

completion (figure 1). Experimental trials were separated by a minimum of 5 days to 

reduce any acclimation effect39 and to minimise any effect of prior exercise or heating 

upon insulin sensitivity.40 All trials were completed at the same time of day to 

minimise effects of circadian variation. 

 Preliminary visit. Participants arrived in a fasted state and a capillary blood 

sample was drawn for assessment of total cholesterol, high-density lipoprotein 

cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), glucose and 

triglycerides (TG) (Cardiochek, Polymer Technology Systems, Indianapolis, IN). 

Participants’ height and weight were recorded (Seca 360, Birmingham, UK), and BMI 

calculated. Body composition was determined with skinfold callipers (Harpenden, 

Warwickshire, UK) using the 7-site formula.41 Participants then completed a 

submaximal exercise test on an electronically braked cycle ergometer (Lode 

Excalibur Sport, Groningen, Netherlands) with an online gas analyser (Metamax 3B, 

Cortex Biophysik GmbH, Germany). The test comprised four stages, increasing by 20 

W every 4 minutes. V̇O2  and V̇CO2 were determined over a 30 second rolling average 

from the final minute of each stage. On completion of the submaximal test, 

participants were given a minimum of a 10-minute recovery period prior to 

commencing the V̇O2 max test. This test used a continual ramp protocol at a rate of 20 

W.min-1 until the participant reached volitional exhaustion. V̇O2 max was determined 

over a 30 second rolling average from the final minute of the test. 

Experimental trials. Seventy-two hours prior to the start of each experimental 

trial, participants reported to the laboratory where they were fitted with a continuous 

glucose monitor device (CGM; Freestyle Libre, Abbott Laboratories, Berkshire). The 

sensor was inserted on the posterior aspect of the upper arm, with interstitial glucose 

measured every 15 minutes. CGM data were analysed for 2-h post meal glucose area 

under the curve and peak glucose concentration.42 Participants were provided with 

scales (HoMedics Group Salter, Kent) and detailed instruction on how to measure 



dietary intake in order to accurately complete a 3-day diet diary during the first trial, 

which commenced 24 h before and ended 24 h after completion of trial 1. Participants 

were instructed to consume the first meal after each condition following a 

standardised 3-hour time period. Participants were required to replicate their dietary 

intake and timing of meals for the second trial.  

Exercise trial. Participants performed 1 hour cycling at a fixed rate of 

metabolic heat production (�̇�𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) equivalent to 7 W/kg in an environmental chamber 

(25.6 ± 0.7°C; 49.8 ± 3.8% relative humidity, rh). The initial workload was 

determined from the submaximal test and external workload was manipulated 

throughout the 60 minutes in order to maintain �̇�𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  at 7 W/kg. Participants 

completed the exercise at a self-selected cadence. V̇O2 and V̇CO2  were recorded 

throughout using an online gas analyser. Airflow was provided by three fans stacked 

vertically, positioned 2.5m in front of the ergometer at an air speed of 1.5 m.s-1.  

Passive heating trial. Participants were seated in a water bath (40.2 ± 0.2 ˚C) 

and immersed up to the waist for 1 hour. Water was circulated throughout to ensure 

maintenance of water temperature. �̇�𝑉O2 and  �̇�𝑉CO2  were recorded throughout. 

Ambient conditions during the trial were 23.9 ± 0.9 ˚C; 49.9 ± 4.4 % rh.  

Owing to the effect of temperature and duration on HSP70 and IL-6 

expression, we attempted to match the change in core temperature between conditions 

by eliciting a 1˚C increase in core temperature. Furthermore, the duration of both 

exercise and passive heating was matched to limit the effect of intervention exposure 

time on key outcome measures. 

Instrumentation. Core temperature (TC) was measured using a rectal 

thermistor (Grant Instruments Ltd, Cambridge) inserted 10 cm beyond the anal 

sphincter. Wireless skin sensors (iButtons, DS1922, California, USA) were applied 

and secured by Medipore tape (3M, Berkshire, UK). Mean skin temperature (𝑇𝑇�𝑠𝑠𝑠𝑠) was 

calculated according to the formula of Ramanathan.43 Participants wore a heart rate 

monitor throughout (RS800, Kempele, Polar, Finland).  

Muscle temperature. Muscle temperature (Tm) was measured in the right 

vastus lateralis using a solid needle probe (MKA08050A275TS Ellab, Copenhagen, 

Denmark) immediately pre and post-trial. Following standard sterile procedure, the 

needle probe was first inserted to an initial depth of 3 cm beyond the muscle fascia 



where the temperature was allowed to stabilise before the probe was withdrawn to 

2cm and then 1cm depths, with the temperature recorded at each depth.   

Blood sampling. Venous blood samples were collected by venepuncture from 

an antecubital vein in the right arm into a 10 mL Vacutainer that had been pre-cooled 

and pre-treated with K3EDTA (BD Biosciences, San Diego, USA). Samples were 

obtained before and on completion of each heating protocol with a final sample taken 

120 minutes later (figure 1). Samples were stored on ice until they were centrifuged at 

3,500 rpm for 10 min at 4°C and the plasma stored at -80°C until subsequent analysis.  

Enzyme-linked immunosorbent assays. Plasma HSP70 (ENZ-101, AMP’D® hs 

HSP70, Enzo Life Sciences, Exeter, UK) and IL-6 (HS600B, Quantikine® HS IL-6, 

R&D Systems, Abingdon, UK) concentrations were analysed using enzyme-linked 

immunosorbent sandwich assays (ELISAs) according to the manufacturers’ 

instructions. Plasma HSP70 and IL-6 concentrations were determined in relation to a 

four-parameter standard curve (version 6.0 GraphPad Software, La Jolla, CA, USA). 

All samples were analysed in duplicate with a mean intra plate coefficient of variation 

(CV) of 4.5% for HSP70 and 5.8% for IL-6. The inter plate CV was 6.3% for HSP70 

and 6.1% for IL-6.   

Calculations. Energy expenditure during PH and EX was calculated via 

indirect calorimetery. Heat balance parameters were estimated via partitional 

calorimetery and are presented as the mean value for each condition. All parameters 

were calculated in W/m2 but presented as W/kg where appropriate. The rate of 

metabolic energy expenditure was estimated as: 

 

𝑀𝑀 (𝑊𝑊/𝑚𝑚2) =  �̇�𝑉𝑂𝑂2  ∙
��𝑅𝑅𝑅𝑅𝑅𝑅 − 0.7

0.3 � ∙ 𝑒𝑒𝑐𝑐� + ��1.0 − 𝑅𝑅𝑅𝑅𝑅𝑅
0.3 � ∙ 𝑒𝑒𝑓𝑓�

60 ∙ 𝐵𝐵𝐵𝐵𝐵𝐵
∙ 1000  

(1) 

where RER is the respiratory exchange ratio and ec and ef represent the energy 

equivalent of carbohydrate (21.13 kJ) and fat (19.69 kJ) respectively per litre of O2 

consumed per minute (L.min-1). �̇�𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 was determined as the difference between M 

and the external work rate (W): 

 

�̇�𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑊𝑊/𝑚𝑚2) = M – W    

(2)   



Mean body temperature (∆𝑇𝑇�𝑏𝑏) was estimated using the three-compartment model as 

follows: 

 

∆𝑇𝑇�𝑏𝑏  = (0.63 ∆ 𝑇𝑇𝑐𝑐) + (0.24 ∆𝑇𝑇�𝑠𝑠𝑠𝑠) + (0.13 ∆ 𝑇𝑇𝑚𝑚)  

(3) 

where ∆Tc represents the change in core temperature, ∆𝑇𝑇�𝑠𝑠𝑠𝑠 the change in mean skin 

temperature and ∆Tm the change in muscle temperature at a depth of 3cm.44 Area 

under the curve (AUC) was calculated using the trapezoid method. 

Statistical analysis. The normality and distribution of data was assessed using 

the Shapiro-Wilk normality test. Where data failed to meet the criteria of normal 

distribution the data were log transformed. Mean participant characteristics were 

compared using independent samples t-tests. Tc, 𝑇𝑇�𝑠𝑠𝑠𝑠, Tm, HSP70, IL-6, were analysed 

using repeated measures ANOVA. Where significance was obtained post hoc tests 

were completed using Sidak’s test for multiple comparisons. �̇�𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, ∆𝑇𝑇�𝑏𝑏 and energy 

expenditure were analysed using one-way ANOVA with Sidak’s test for multiple 

comparisons. Correlational analysis was done using Pearson’s correlation coefficient. 

Linear regression was used to analyse the relative contributions of ∆Tc , ∆Tsk, ∆Tm and 

∆𝑇𝑇�𝑏𝑏 to ∆HSP70 and ∆IL-6. The R2 value was employed to determine the variance 

explained by each predictor variable. Where reported, the adjusted R2 value is 

provided for multiple linear regression in order to account for the number of predictor 

variables in the model.  All statistical analyses were performed using GraphPad Prism 

(version 6.0 GraphPad Software, La Jolla, CA, USA). All data are presented as mean 

± SD unless otherwise stated. P values ≤ 0.05 were considered statistically significant. 

Effect sizes (ES) corrected for bias using Hedge’s g were calculated as the ratio of the 

mean difference to the pooled standard deviation of the difference, with 95% 

confidence intervals (95% CI) for differences also presented. The magnitude of the 

ES was classed as trivial (<0.2), small (0.2– 0.6), moderate (0.6– 1.2), large (1.2– 2.0) 

and very large (≥ 2.0).45 

 



Results 

 �̇�𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. There were differences in �̇�𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 between PH (1.9 ± 0.2 W/kg) and EX 

(7.3 ± 0.5 W/kg, P<0.001). �̇�𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 was successfully matched between groups for both 

PH  (LEAN 2.0 ± 0.2 W/kg, OW = 1.8 ± 0.2 W/kg, P=0.433, CI = -0.03 to 0.43, 

ES=0.9) and EX (LEAN 7.3 ± 0.4, OW 7.2 ± 0.5 W/kg; P=0.763, CI = -0.63 to 0.43, 

ES = 0.21). However, when lean body mass is accounted for, differences in �̇�𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

were evident (LEAN 8.4 ± 0.4 W/kg/LBM-1; OW 9.8 ± 1.6 W/kg/LBM-1, P<0.05, CI 

= 0.04 to 2.76, ES=1.1). 

eHSP70. There was a main effect of time (P<0.005) but not condition (P = 

0.887) on the eHSP70 response (figure 2A). The increase in eHSP70 following PH 

and EX was 23% and 24% respectively (figure 2B). Across conditions ∆eHSP70 

correlated with mean Tm (r=0.485, P<0.05). ∆eHSP70 was negatively correlated to 

body mass (r = -0.400, P<0.05). Of the thermal variables, ∆Tm provided the best 

predictor of ∆HSP70, with the ∆Tm explaining 24.7% of the total variance in ∆HSP70 

(r=0.498, P<0.01). Body mass also predicted ∆HSP70, explaining 16.4% of the total 

variance (r = -0.405, P<0.05). When combined, ∆Tm and body mass provided the 

strongest predictor, accounting for 28% of the variance in ∆HSP70 (Adjusted R2 = 

0.280, r = 0.585, P<0.01). 

 IL-6. There was a main effect of time (P<0.001), condition (P<0.05) and an 

interaction effect (P<0.01, figure 2C) on IL-6 concentration. IL-6 was higher 

immediately following EX (1.74 ± 1.79 pg.mL-1) compared to PH (0.97 ± 0.86 pg.mL-

1, P<0.0001, ES=0.5) and equated to an increase of 346% after EX and 118% 

following PH (figure 2D) from baseline values. IL-6 had returned to baseline at 2h 

post for PH (0.58 ± 0.47 pg.mL-1) and EX (0.73 ± 0.79 pg.mL-1). When considering 

differences between LEAN and OW, there was a main effect of time (P<0.05) but not 

group (P = 0.533) on the IL-6 response. None of the thermal variables, nor body 

mass, provided an effective model for predicting the change in IL-6. 

Energy expenditure. There were no differences in resting metabolic rate 

between LEAN (1811.2 ± 82.3 kcal.day-1) and OW (1873.9 ± 140.7 kcal.day-1; P = 

0.330, ES = 0.5).  There was an overall effect of condition on energy expenditure 

during heating (P<0.0001) and an interaction effect (P<0.05). PH increased energy 

expenditure by 61.0 ± 14.4 kcal.h-1 compared to rest (P<0.0001, ES = 4.8), which 

equates to a 79.5% increase. EX resulted in an additional energy expenditure of 556.3 



± 92.0 kcal.h-1 compared to rest (P<0.0001, ES = 7.1), equating to a 721% increase. 

EX energy expenditure was greater for OW compared to LEAN (11.3 ± 1.9 kcal.min-1 

vs. 9.8 ± 0.9 kcal.min-1 respectively, P<0.05, ES = 1.0), resulting in an additional 

caloric expenditure from rest of 597.7 ± 107.9 kcal for OW (748%), and 515 ± 52.1 

kcal for LEAN (681%). During PH, there was no difference in the increase in energy 

expenditure between LEAN and OW (2.3 ± 0.3 kcal.min-1 vs. 2.3 ± 0.3 kcal.min-1   

respectively, P = 0.997, ES = 0.0). Caloric expenditure increased from rest by 63.4 ± 

16.6 kcal (84%) and 58.5 ± 12.7 kcal (74%) kcal for LEAN and OW respectively 

although there was no difference between groups (P=0.623, ES = 0.3). 

Substrate oxidation. Total EX carbohydrate oxidation was higher for OW 

(125.3 ± 20.8 g) compared to LEAN (92.5 ± 28.2 g; P<0.05, ES=1.3). There was a 

moderate effect of body mass on total carbohydrate oxidation in PH between OW (7.5 

± 4.2 g) and LEAN (13.2 ± 8.3 g, ES=0.83) although this did not reach significance 

(P=0.13). There was no difference between OW and LEAN in total fat oxidation 

during EX (P=0.46). There was a tendency for OW to display a greater total fat 

oxidation than LEAN in PH, although this did not reach statistical significance 

(10.6±1.54g vs. 9.0±3.1g; ES 0.7; P=0.13).   

 Continuous glucose monitoring. Owing to instances of poor compliance to diet 

replication and sensor malfunction and drop out, CGM analysis was only completed 

on 8 participants, with an unequal split between LEAN (n=3) and OW (n=5). 

Therefore, it was only possible to conduct analysis on PH compared to EX. Peak 

glucose concentration in response to the meal following PH (6.3 ± 1.4 mmol.L-1) was 

lower compared to the same meal after EX (6.8 ± 1.2 mmol.L-1; P<0.05, CI = -0.9 to 

1.9, ES = 0.4, figure 3a). There was no difference in glucose AUC for PH compared 

to EX following this meal (P=0.875, CI = -11.2 to 12.4, ES = 0.1 figure 3b). There 

were no differences in either peak glucose (meal 2 P=0.168, meal 3 P=0.266) or AUC 

(meal 2 P=0.070, meal 3 P=0.183) consumed in the subsequent 24h period. There 

were also no differences in total 24h AUC between PH and EX (P=0.168) 

Core temperature. There was a main effect of time (P<0.0001) and an 

interaction effect (P<0.0001), but no main effect of condition on ∆Tc (P = 0.112, 

figure 4a). PH ∆Tc was lower in OW compared to LEAN from 35 minutes (P<0.05), 

although by 60 minutes there was no difference in ∆Tc  (1.0 ± 0.2˚C vs. 0.9 ± 0.2˚C, 

LEAN vs. OW respectively P = 0.089, CI = -0.13 to 0.33, ES = 0.5). There were no 

differences in ∆Tc between OW and LEAN during EX at any time point, with ∆Tc at 



60 minutes being 0.8 ± 0.1˚C vs. 0.8 ± 0.2˚C for LEAN and OW respectively 

(P=0.999). 

 Skin temperature. There were main effects of time (P<0.0001), condition 

(P<0.0001) and an interaction effect (P<0.0001) on ∆𝑇𝑇�𝑠𝑠𝑠𝑠 (figure 4B). There were no 

differences in ∆𝑇𝑇�𝑠𝑠𝑠𝑠 between OW and LEAN following EX (LEAN 1.7 ± 0.7˚C vs OW 

1.7 ± 1.6˚C, P=0.999, ES=0.0) or PH (LEAN 4.2 ± 0.4˚C vs OW 4.7 ± 0.6˚C, 

P=0.095, ES=0.9). 

 Muscle temperature. There was an effect of depth on ∆Tm  (P<0.001), but no 

effect of condition (P=0.285) or interaction (P=0.111, figure 4C). Following PH, the 

∆Tm was greater for LEAN compared to OW at a depth of 1cm (LEAN, 2.5 ± 0.8˚C; 

OW 1.9 ± 0.6˚C, P<0.0005, CI = -0.2 to 1.4, ES=0.8) and 3cm (LEAN, 2.3±0.6˚C; 

OW 1.9± 0.7, P<0.005, CI = -0.4 to 1.2, ES=0.6). After EX, ∆Tm was only different at 

1cm (LEAN, 2.3±0.6˚C; OW 2.0 ± 0.7, P<0.005, CI = -0.5 to 1.1, ES = 0.4). 

 Mean body temperature. There was a difference in ∆𝑇𝑇�𝑏𝑏  between conditions 

(P<0.0001, figure 4D). There were differences between LEAN PH and LEAN EX 

(1.7 ± 0.3˚C vs. 1.1 ± 0.3 ˚C, P<0.005, CI = 0.3 to 1.0, ES = 1.9); OW PH and OW 

EX (1.8 ± 0.2˚C vs. 1.0 ± 0.4˚C; P<0.001, CI = 0.4 to 1.2, ES = 2.4). There were no 

differences between LEAN and OW within the same condition (both P>0.9). 

 Heart rate. There were significant effects of time, condition and interaction 

effect of heart rate (all P<0.0001). Mean percentage HRmax EX was 78±8% compared 

to 54±7% in PH (P<0.0001). There were no differences in the mean percentage of 

HRmax between groups for either PH (LEAN = 54.0 ± 6.0% vs. OW = 55.2 ± 6.2%, 

P=0.719) or EX (LEAN = 78.5 ± 7.3%; OW = 81.7 ± 7.4%, P=0.428).  

 

Discussion 

 The primary outcome of the present study was that the concentration of 

eHSP70 in the plasma was similar between EX and PH when both conditions were 

matched for ∆Tc, with ∆Tm being the best individual predictor of ∆eHSP70, 

explaining ~25% of the total variance. This suggests that changes to Tm may in part 

determine the appearance of eHSP70. An important secondary outcome is the 

increase in energy expenditure evident as a consequence of PH. This has important 

implications for the use of PH as a future intervention that may help to moderate body 

mass, particularly for individuals unable or unwilling to complete regular physical 



activity. However, we recognise that PH should be coupled with dietary manipulation 

to maximise any potential benefit to body composition.  Finally, the reduction in peak 

glucose in the meal following PH compared to EX suggests that PH may have a 

beneficial effect on glycaemic regulation and provide an alternative or augmentative 

intervention by which individuals with metabolic diseases may be able to improve 

their glycemic control. However, additional research needs to be conducted to 

confirm these data in larger cohorts over a prolonged period of time. 

The HSP70 response may be hindered by excess body mass. Regression 

analysis demonstrated a link between body mass and the ∆eHSP70. A greater body 

mass was associated with an impaired eHSP70 response to heating, via either EX or 

PH, explaining 16% of the total variance. Such variation may be indicative of an 

impaired HSP response in overweight individuals in the face of physiological stress 

and would likely be compounded by low aerobic capacity.46 The implications for such 

a deficiency are wide ranging and may increase susceptibility to metabolic 

disease,46,47 impaired vascular function,48 and even contribute to the impaired 

thermoregulatory control evident in individuals with diabetes.49  

 Whilst there were no clear differences in the HSP70 response between either 

PH or EX, there were clear differences in the IL-6 response. Previous work has shown 

that temperature increases independently elevate IL-6.50 However, the present data do 

not support the view that skeletal muscle may act as a “heat stress sensor” triggering a 

subsequent cytokine response, as none of the thermal measures taken during the trials 

were effective predictors of ∆IL-6 and could not account for a significant proportion 

of the variation in IL-6 following heating. Our data also indicate that the difference in 

IL-6 between PH and EX is not due to HSP70 induction of IL-6,35,36 as ∆HSP70 was 

similar following PH and EX. This suggests the IL-6 response to exercise occurs 

independently of HSP70 expression and is more dependent on intensity and duration 

of exercise,51 than exposure to heat stress. IL-6 combined with its receptor (IL-6R), 

may also have a positive effect on insulin independent glucose uptake at rest.52 

Should chronic PH enhance IL-6R expression as is evident following exercise 

training,53 interventions capable of increasing both IL-6 and IL-6R, may provide a 

therapeutic basis for improving glycemic control. Moreover, it has recently been 

shown that acute passive heating elevates the anti-inflammatory cytokines IL-1ra and 

IL-10,54 suggesting that chronic passive heating may benefit the inflammatory profile 



in a similar way to exercise. However, long-term investigation of PH is required to 

corroborate this hypothesis.  

 Although the sample size for analysis of the glycemic response to PH and EX 

was somewhat limited, the fact that comparable glycemic profiles were evident 

between PH and EX is interesting. Given the acute effect of exercise on improving 

glucose control as a consequence of improved insulin sensitivity, 55 this is a 

somewhat surprising result. However, it has recently been shown that heat stress 

activates insulin independent glucose transport via 5' adenosine monophosphate-

activated protein kinase (AMPK) activation.56 In response to the heat stress 

stimulus, a reduction in muscle adenosine triphosphate, phosphocreatine and glycogen 

was reported, indicating a significant energy cost to the heating protocol and hence 

activation of AMPK. This suggests that, acutely at least, heat stress may improve 

glucose uptake due to increased energy expenditure. Further work needs to be 

conducted to establish the exact mechanisms by which PH may exert such an effect.   

 In addition to benefits to metabolic regulation, PH has been shown to benefit 

cardiovascular health. In a recent meta-analysis Laukkanen et al., report that lifelong 

sauna use reduced cardiovascular and all cause mortality, with the largest benefits 

associated with more frequent sauna use.57 Although this relationship does not 

establish causality31,58 it is nonetheless an interesting link that is supported by recent 

investigations.59-61 PH appears to improve vascular function, with improvements to 

flow-mediated dilatation, arterial stiffness and blood pressure reported after 8 weeks 

of PH.59 Moreover, Thomas et al., have shown that 30 minutes of PH can induce a 

significant shear stress response and a reduction in mean arterial pressure in patients 

with peripheral arterial disease.62 Furthermore, in a healthy cohort who underwent 

matched duration PH or exercise, the PH group demonstrated a greater shear stress 

response compared to that in response to exercise.60 Based on heart rate responses, the 

cardiovascular strain in the present study was comparable to that of Thomas et al., 

which elicited ~50% HRmax during their immersion protocol.60 These recent findings 

indicate that PH has the potential to induce significant systemic benefits, which in 

some instances may be comparable to or even greater than the effects evident 

following exercise. 

 There are a few limitations with the present investigation. Firstly the omission 

of a measure of iHSP70, either derived from skeletal muscle or leukocytes makes it 



difficult to draw firm conclusions on the potential intracellular effect of PH and 

glycemic regulation. Without direct measures of iHSP70, in addition to JNK and 

other molecules in the insulin-signalling cascade, it is difficult to derive the exact 

effect of PH on acute glycemic control. Therefore, we are limited to discussing the 

relationship between eHSP70 and iHSP70 and that an increase in the extracellular 

component is reflective of changes in the intracellular compartment. Future 

investigation should employ techniques to measure both iHSP70 and eHSP70 to 

enable greater understanding of the effect of PH on the intracellular to extracellular 

ratio. Secondly, the relatively small sample size of this study, which may limit the 

statistical power of our experiments. We acknowledge that further experiments with 

larger cohorts should be conducted in order to replicate the present data. 

 In summary, the data presented here demonstrate that both acute PH and EX 

result in comparable increases in HSP70. It is suggested that ∆HSP70 is sensitive to 

the ∆Tm. The elevations in both HSP70 and IL-6 may promote an anti-inflammatory 

milieu and help combat the chronic inflammation associated with many disease states. 

The increase in energy expenditure following PH demonstrates a systemic effect of 

PH, which has the ability to reduce adipose tissue and further contribute to reducing 

inflammation. However, it should be noted that exercise still offers the greatest 

overall benefit to weight control and metabolic health. Finally, in agreement with that 

of other authors, the present data indicate that PH might provide an alternative to 

exercise in some individuals who are too physically impaired to undertake prolonged 

aerobic activity to improve their cardio-metabolic health. The possible therapeutic 

benefits of PH require more extensive investigation. 
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Figure 1: Schematic representation of the experimental trials. The first meal after each 
intervention was consumed after 3-hours. Dietary intake was replicated between 
conditions. PH, passive heating; EX, exercise; CGM, continuous glucose monitoring  
 

Figure 2: The effect of 60 minutes passive heating at 40˚C, exercise at 7 W/kg and 

body composition on IL-6 and HSP70. A) The effect of passive heat and exercise on 

HSP70; B) the change in IL-6 in response to heating;  C) the effect of passive heat 

and exercise on IL-6; D) the change in IL-6 in response to heating. *above the line 

denotes main effect of time. †denotes difference between passive heating and 

exercise. Data presented as mean ± SEM 

 
 
Figure 3: A) Passive heating resulted in a reduction in peak interstitial glucose 

concentration compared to exercise in the meal immediately following the 

intervention. B) There was no effect of either intervention on the total glucose area 

under the curve (AUC) in the meal following either passive heating or exercise. 

*denotes passive different to exercise (P<0.05). Data presented as mean ± SEM. n=8 

   
 
 

Figure 4: The effect of 60 minutes passive heating at 40˚C, exercise at 7 W/kg and 

body composition on determinants of mean body temperature. A) the change in core 

temperature, B) change in mean skin temperature, C) muscle temperature at depths of 

1cm, 2cm and 3cm, D) change in mean body temperature. *above line denotes main 

effect of time,  * denotes difference between lean (LEAN) and overweight 

(OW)groups in the passive heating condition (P<0.05). †denotes difference between 

LEAN and OW groups in the exercise condition (P<0.05) **denotes difference 

between passive heating (PH) and exercise (EX) within each group. Data presented as 

mean ± SEM 

  



Table 1. Participant characteristics.  

 

Lean Overweight 

Age (years) 23.9 ± 3.5 30.7 ± 12.0 

Height (m) 1.83 ± 0.05 1.78 ± 0.05* 

Weight (kg) 78.9 ± 7.01 92.3 ± 12.3* 

BMI (kg.m2) 23.5 ± 2.2 29.2 ± 2.7** 

Waist (cm) 79.6 ± 4.8 92.9 ± 8.2** 

Hip (cm) 99.6 ± 4.4 105.1 ± 6.8 

Waist:Hip 0.80 ± 0.03 0.88 ± 0.04** 

BP Systolic 130 ± 14 137 ± 10 

BP Diastolic 77 ± 12 87 ± 0 

Cholesterol (mmol.L-1) 3.27 ± 0.54 3.71 ± 1.04 

LDL-C (mmol.L-1) 1.5 ± 0.5 1.8 ± 0.6 

HDL-C (mmol.L-1) 1.3 ± 0.3 1.2 ± 0.2 

Glucose (mmol.L-1) 4.6 ± 0.6 4.1 ± 0.8 

Triglyceride (mmol.L-1) 1.1 ± 0.2 1.6 ± 0.8 

Body fat (%) 12.5 ± 5.5 20.3 ± 1.6*** 

Fat Mass (kg) 10.1 ± 5.1 28.1 ± 9.9** 

Lean mass (kg) 68.8 ± 4.2 64.2 ± 6.9 

V̇O2 max (L
.min-1) 3.86 ± 0.35 3.35 ± 0.81 

V̇O2 max (mL.kg.min-1) 49.03 ± 5.74 36.60 ± 9.66* 

Percent V̇O2 max  – EX (%) 53.9 ± 7.5 69.2 ± 10.2** 

Percent V̇O2 max  – PH (%) 18.3 ± 6.7 25.5 ± 6.7 

Basal Metabolic Rate (kcal.day-1) 1811.2 ± 82.3 1873.9 ± 140.7 
Data presented as mean ± SD. Asterix denotes * (P<0.05); ** (P < 0.01); *** (P<0.005). Abbreviations: BMI – Body mass 

index, BP – blood pressure, EX – Exercise trial, HDL – High density lipoprotein, LDL – Low density lipoprotein, PH – Passive 

heating trial, TG – Triglyceride 

 



 
 

 

 



 

 

 


