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ABSTRACT 

Optimum preflight characteristics of the Hecht and handspring somersault vaults were determined 
using a two segment simulation model.  The model comprised an arm segment and a body 
segment connected by a frictionless pin joint, simulating the vault from Reuther board takeoff 
through to landing.  During horse contact shoulder torque was set to zero in the model.  Five 
independent preflight variables were varied over realistic ranges and an objective function was 
maximised to find the optimum preflight for each vault.  The Hecht vault required a low trajectory 
of the mass centre during preflight with a low vertical velocity of the mass centre and a low 
angular velocity of the body at horse contact.  In contrast the optimum handspring somersault 
required a high preflight trajectory with a high angular velocity of the body and a high vertical 
velocity at horse contact.  Despite the simplicity of the model, the optimum preflights were similar 
to those used in competitive performances. 

INTRODUCTION 

Long horse vaults can be divided into two distinct groups (Takei, 1988): (a) continuous 
rotation vaults in which the somersault rotation continues in the same direction throughout the 
vault (e.g. handspring vault), and (b) counter-rotation vaults in which the direction of rotation 
is reversed during contact with the horse (e.g. Hecht vault).  Most of the research into 
vaulting has used statistical analysis of film data to understand the mechanics and techniques 
used in vaulting (Brüggeman 1987; Dainis, 1979; Dillman et al., 1985, Kerwin et al., 1993; 
Kwon et al., 1990; Takei, 1988, 1989, 1991; Takei and Kim, 1990).  These studies have 
described the actual techniques used by gymnasts performing continuous rotation vaults and 
have identified the characteristics of successful performance.  Takei (1988), for example, 
showed that a high horizontal velocity during preflight (the flight onto the horse) and a large 
gain in vertical velocity while in contact with the horse were important determinants for 
successful performance of the handspring somersault vault.   

Dainis (1981), Gervais (1994) and Sprigings and Yeadon (1997) used theoretical 
models in their analysis of vaulting.  Gervais recorded three trials of the handspring 
somersault vault which were used as a basis for varying technique.  Optimum technique was 
determined by maximising an objective function based upon height and distance achieved 
during postflight (the flight from the horse).  Dainis used a three segment model to show the 
relationships between the preflight variables and the outcome of the vault for handspring 
vaults.  In this model assumptions were made concerning the contact phase, and the model 
cannot be used for counter-rotation vaults (Dainis, 1981).  Sprigings and Yeadon (1997) 
showed that it is theoretically possible to perform the Hecht vault without using shoulder 
torque during the contact phase.  The model required high horizontal preflight velocities, 
assumed that the arms remained in a fixed orientation relative to the body during postflight 
with the optimum solution achieving a vertical landing position.  In practice gymnasts use 
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arm circling in postflight to aid rotation and land at a suitable angle behind the vertical so that 
they do not need to step forwards or backwards. 

The ability to perform a vault is dependent on a number of factors including the 
preflight parameters at horse contact, the elastic properties of the horse and the gymnast, and 
the joint torques exerted while in contact with the horse.  This paper will highlight the 
importance of the preflight phase by investigating the difference between optimum preflight 
conditions for the Hecht and handspring somersault vaults using an inelastic torque-free two 
segment simulation model. 

METHOD 

Anthropometric measurements available on 11 elite male gymnasts from previous 
studies and the mathematical model of Yeadon (1990a) were used to calculate segmental 
masses, mass centre locations, link lengths and moments of inertia.  The inertia data were 
then normalised to a total body mass of 62.88 kg and a standing height of 1.67 m 
corresponding to the average male gymnast from the 1988 Olympic Games (Takei and Kim, 
1990).  Normalisation was carried out using the procedure of Dapena (1978) in which 
segment mass is assumed to be proportional to body mass, segment length proportional to 
standing height and transverse segmental moment of inertia proportional to mass times length 
squared.  In addition the normalised inertia data were averaged to give a single inertia data set 
from which inertia parameters were calculated for a simulation model comprising an arm 
segment and a body segment (Table 1). 
 
                         Table 1.  Means and standard deviations of average normalised segmental inertia parameters 

 
 

arm body 

 [kg] Ma = 7.14 ± 0.59 Mb = 55.74 ± 0.59 

length [m]  c = 0.524 ± 0.03  d = 1.508 ± 0.04 

CM location [m] a = 0.276 ± 0.03 b = 0.467 ± 0.02 

moment of inertia [kg.m2] Ia =  0.214 ± 0.05 Ib =  9.115 ± 0.42 

Note:  See Fig 1. for nomenclature 
 

Simulation model 

A planar two segment computer simulation model was used to simulate a vault from 
Reuther board takeoff, through horse contact, until landing.  Input to the model comprised the 
values of five variables at the time of horse contact while output variables described the 
postflight phase (Table 2).  The conditions at horse contact were used as model input rather 
than initial conditions at Reuther board takeoff in order to ensure that all simulations 
contacted the horse.  The conditions at Reuther board takeoff were back-calculated from the 
horse contact conditions and were used as initial conditions for the simulations.  To describe 
the orientation and configuration of the model the shoulder angle α was defined as the angle 
between the two segments and the body angle φ as the angle of the body segment (shoulders S 
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to feet F) relative to the horizontal (Fig. 1).  The mechanical analysis of the vault was divided 
into preflight, impact, postflight and landing phases. 

 
Table 2.  Input and output variables to the simulation model 

Input variables at horse contact Symbol  Output variables from the model  symbol 

horizontal velocity of the mass centre  u maximum height of the mass 
centre  

h 

vertical velocity of the mass centre  v landing distance of the mass centre  d 

body angle φ landing angle  γ 

shoulder angle α   

angular velocity of the body ω   

 
Preflight 

The preflight phase is from Reuther board takeoff to the initial contact of the hands with 
the horse.  The motion of the model during this phase was determined by the orientation and 
configuration of the segments, the velocity of the mass centre and the angular velocity of the 
body at takeoff from the Reuther board.  Projectile equations of motion (1, 2) and 
conservation of angular momentum (equation (3)) were used to calculate the orientation and 
location of the segments at a given time.   

horizontally   x x uto= +      (1) 

vertically   z z vt gto= + −
1
2

2     (2) 

where ( , )x zo o  and (x, z) are the locations of the mass centre at takeoff from the 
Reuther board and at time t, (u, v) is the velocity of the mass centre at takeoff from the 
Reuther board, and g = acceleration due to gravity. 

     L I= ω      (3) 
where L = (constant) angular momentum about the mass centre, I = moment of 

inertia about a transverse axis through the mass centre, and ω = angular velocity about a 
transverse axis.  Since a rigid configuration is maintained by the model during the preflight 
phase, I is constant and hence ω is also constant. 

An iterative integration process was used to calculate the motion of the model.  The step 
size (0.005 s) was selected so that further reductions in step size led to changes in the output 
variables h, d and γ  that were smaller than 0.01m, 0.01m and 1° respectively to ensure that 
integration errors were small.  A rigid configuration was maintained throughout the preflight 
phase and the orientations of the segments were determined at the time the hands (i.e. the end 
of the arm segment) reached horse level.  Due to the stepwise procedure used, the hands were 
above the horse at the end of one iteration and below the horse surface at the next iteration.  
To calculate the time of horse contact linear interpolation between iterations was used.   
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Impact and contact 

The model made contact with the horse when the hands reached the level of the horse.  
At the initial impact of the model with the horse, the velocity of the hands was reduced to 
zero instantaneously and the angular velocities of the two segments immediately after impact 
were determined using conservation of angular momentum (equations (4) and (5)).  Since the 
duration of impact is assumed to be zero the torques due to the segment weights will not 
change the angular momentum. 

The angular momentum Lo of the whole system about the hand contact point O is 
conserved since the external impulsive reaction forces act through O and do not produce an 
impulsive torque about O. 

Before impact:   L I M v do g g g g og= +ω              (4a) 

After impact:  L I I M d M v do a a b b a a oa b b ob= ′ + ′ + ′ + ′ω ω ω 2             (4b) 

The angular momentum Ls  of the body segment about the shoulder point S is 
conserved since the external impulsive reaction forces act through S and do not produce an 
impulsive torque about S. 

Before impact:   L I M u ds b b b b sb= +ω              (5a) 
After impact:   L I M u ds b b b b sb= ′ + ′ω              (5b) 

where I = moment of inertia about a transverse axis, ω and ′ω  = the angular velocity 
before and after impact respectively, M = mass, dij = distance from point i to j, v and ′v  = the 
velocity component perpendicular to the line joining the mass centre to O before and after 
impact respectively, and u and ′u  = the velocity component perpendicular to the line joining 
the mass centre to S before and after impact respectively.  The subscripts g, a and b represent 
the whole body, the arm segment and the body segment respectively. 

During the remainder of the contact phase it was assumed that there was no torque at 
the shoulders and only the torque due to gravity affected the rotation of the model (Fig. 1). 

   

 
Figure 1.  Two segment model of the contact phase. 



5 

 

 
Newton's Second Law was used to calculate the angular acceleration of each segment 

and the vertical reaction force at the hands (equations (6) - (11)).  To solve the six equations 
in six unknowns, a linear least squares technique was used (Stewart, 1973).  A second order 
Runge-Kutta method was used to advance the solution of the second order system of 
differential equations one step.  Takeoff from the horse occurred when the vertical reaction 
force N at the hands reached zero. 
Resolving perpendicular to the arm segment: 

 R R N F M g M ah v a asin cos cos sin cos &&θ θ θ θ θ θ− + − − =      (6)  
Resolving parallel to the arm segment: 

 R R N F M g M ah v a acos sin sin cos sin &θ θ θ θ θ θ+ − − + = 2   (7) 
Taking moments about the mass centre of the arm segment: 

 ( ) ( )R c a R c a Na Fa Ih v a− − − − + =sin cos cos sin &&θ θ θ θ θ   (8) 
Resolving perpendicular to the body segment: 

( ) ( )[ ]R R M g M b c cv h b bcos sin cos && &&cos & sinφ φ φ φ θ θ φ θ θ φ− − = + − − −2  (9)  

Resolving parallel to the body segment: 
( ) ( )[ ]− − + = + − + −R R M g M b c cv h b bsin cos sin && & cos &&sinφ φ φ φ θ θ φ θ θ φ2      (10) 

Taking moments about the mass centre of the body segment: 
   R b R b Ih v bsin cos &&φ φ φ− =             (11) 

where: a = distance from hands to mass centre of arm segment, b = distance from shoulders 
to mass centre of body segment, c = length of arms, θ = angle of arm segment above the 
horizontal, φ = angle of the body segment above the horizontal, M = mass, I = moment of 
inertia about a transverse axis, N = normal reaction force at hands, F = frictional force at 
hands, and R Rv h,   = vertical and horizontal reaction forces at the shoulder joint.  The 
subscripts a and b represent the arm and body segments respectively.  

Postflight 

The motion in the postflight phase was determined by the orientation and configuration 
of the segments, the velocity of the mass centre and the angular velocity of the two segments 
at the moment the vertical reaction force became zero.  For the Hecht vault the arms were 
allowed to continue circling forwards relative to the body at a constant angular velocity 
determined at takeoff from the horse.  For the straight handspring somersault vault the arms 
were moved to the sides of the body at takeoff from the horse and remained there for the 
whole of the postflight phase.  Projectile equations (1) and (2) were used to calculate mass 
centre kinematics, and conservation of angular momentum was used to determine the angular 
velocity of the body using equation (12).  The postflight phase ended when the feet reached 
the level of the mat.  Linear interpolation between iterations was used to calculate the time of 
landing. 
The conservation of angular momentum for the postflight may be written as: 
 

L I I= +φ αφ α& &      (12) 
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where α = the angle between the arm and body segments, and Iφ α and I  are functions of α 

(Yeadon, 1990b). Iφ α and I were calculated by considering the cases (a) &α  = 0 and (b) &φ  = 0, 
giving: 

   I Igφ =  

   ( ) ( )[ ]I I M M
M M

c a c a ba
a b

a b
α α= +

+
− + −2 cos  

where a = the distance from the point of contact with the horse to the mass centre of the arm 
segment, b = the distance from the shoulder joint to the mass centre of the body segment and  
c = the length of the arm segment.  The subscripts a and b represent the arm and body 
segments respectively. 

Landing 

The landing of the gymnast was modelled as an instantaneous impact followed by a 
contact phase similar to the treatment of horse contact.  During contact the orientation of the 
body relative to the vertical is described by an angle γ with the convention that γ is negative 
when the gymnast needs to rotate forwards in order to reach a vertical position.  The initial 
value of γ at impact with the landing mat will be referred to as the ‘landing angle’.  After 
impact the two segment model was treated as a single rigid body in the landing configuration 
which rotated about the contact point with the mat, with gravitational torque used to slow 
down the rotation of the model. Newton's Second Law was used to calculate the angular 
acceleration of the single segment using equations (13) - (15).  To solve the three equations in 
three unknowns a linear least squares technique was used (Stewart, 1973).  A second order 
Runge-Kutta method was used for the numerical integration to calculate the body angle γ until 
a vertical position was reached or the body stopped rotating forwards. 

Resolving perpendicular to the line of the body:  
− − + =N F M g M dg gsin cos sin &&γ γ γ γ    (13) 

Resolving parallel to the line of the body: 
− + + =N F M g M dg gcos sin cos &γ γ γ γ 2    (14) 

Taking moments about the contact point O: 

( )M gd I M dg g gsin &&γ γ= + 2     (15) 

where d = fixed distance between the mass centre and O. 

Evaluation of the two segment impact model 

During the modelling of the horse contact phase it was assumed that the horse and 
gymnast are inelastic and that no torque is exerted at the shoulder joint.  These assumptions 
were made since it was thought that the preflight characteristics are the major determinants of 
postflight performance.  In order to test whether these assumptions are reasonable a 
simulation was based on the preflight characteristics of the highest scoring Hecht vault from a 
national competition (Yeadon et al., 1998).  The postflight characteristics of the simulation 
after impact were compared with the video analysis of the actual performance in order to 
assess whether there was reasonable agreement between them. 



7 

 

Simulations 

Simulations were carried out to determine the optimum preflight conditions for the 
Hecht and the straight handspring somersault vault.  Realistic input values to the model at 
takeoff from the Reuther board were required in order to optimise the Hecht and the 
handspring somersault vault.  In addition for the Hecht vault a body angle of at least 20° 
above the horizontal at horse contact was required by the International Gymnastics Federation 
in order for no deductions to be made to the score. 

Realistic input values to simulation model 

Reported data from the 1988 Olympic Games (Takei and Kim, 1990) and the 1993 
Canadian National Championships (Yeadon et al., 1998) were used to set realistic limits on 
the preflight variables for both vaults (Table 3).  For both vaults upper limits were required 
for the horizontal preflight velocity since, when optimising the vaults, it was found that faster 
preflights produced greater height, distance and rotation.  For the handspring somersault the 
maximum horizontal preflight velocity of 6.05 m.s-1 for Olympic gymnasts was used (Takei 
and Kim, 1990).   

For the Hecht vault the only available data was a maximum horizontal preflight velocity 
of 6.13 m.s-1 reported by Yeadon et al., (1998) for Canadian gymnasts.  Since this value was 
likely to be less than the maximum horizontal preflight velocity achievable by Olympic 
gymnasts it was increased in proportion to the approach speeds of Olympic and Canadian 
gymnasts.  The mean approach speed of Olympic gymnasts was 7.93 m.s-1 compared with 
7.14 m.s-1 for the Canadians.  The upper limit for the horizontal preflight velocity of Olympic 
gymnasts was estimated using this procedure to be 6.81 m.s-1. 

The body angles at takeoff from the Reuther board were taken from film data of 
handspring somersault vaults (Takei and Kim, 1990) and video data of Hecht vaults (Yeadon 
et al., 1998).  For the Hecht vault the largest observed body lean at Reuther board takeoff of 
31.1° from the vertical was chosen since the greater the body lean the less the required 
rotation in preflight and the easier it is to produce the backwards rotation.  For the handspring 
somersault vault, the average body lean from Takei and Kim (1990) was used and the angular 
velocity of the body was limited to a realistic value since faster preflight rotations resulted in 
greater height, distance and rotation.  Takei and Kim (1990) reported a mean preflight angular 
velocity value.  To estimate a maximum value the mean plus two standard deviations was 
used resulting in a maximum angular velocity of 8.13 rad.s-1. 

 
Table 3.  Realistic limits for input variables at takeoff from the Reuther board 

Input variables Hecht vault handspring somersault vault 

horizontal velocity of the mass 
centre 

< 6.81 m.s-1 < 6.05 m.s-1 

vertical velocity of the mass centre no limit < 4.52 m.s-1 

body angle -59° to -79° -68° to -83° 

shoulder angle no limit no limit 

angular velocity of the body no limit < 8.13 rad.s-1 
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Criteria for a successful Hecht simulation 

 For a successful Hecht simulation the body angle should be at least 20° above the 
horizontal at horse contact, the foot clearance needs to be positive otherwise the gymnast 
would have to pike or straddle to miss the horse.  The distance travelled by the mass centre 
should be at least 2.5 m past the end of the horse (as per International Gymnastics Federation 
regulations) and the landing angle needs to be such that the angular velocity after impact is 
close to zero.  Simulation was used to estimate the required landing angle γ 0  behind the 
vertical.  An objective function f defined in equation (16) was maximised where there were a 
number of possible solutions that satisfied all the criteria for a successful simulation.  The 
objective function was based on the body angle φ at horse contact, maximum height h of the 
mass centre, landing angle γ and the landing distance d (Table 4).  The coefficients for each 
variable in the equation were based upon the variation obtained from video analysis of 
competitive Hecht vaults (Yeadon et al., 1998).  This choice of coefficients implies that the 
standard deviations of φ, h, d and γ obtained from competitive performances will produce 
equal contributions to the variation in the objective function f.  To ensure that the feet missed 
the horse a penalty function defined in equation (17) was used.  A quadratic penalty function 
was used rather than the inequality constraint δ > 0 in order to ensure that there were 
solutions when starting the optimisation procedure.  The coefficient of δ needs to be 
sufficiently large to ensure that δ > 0 in the optimal solution.  A value of 1000 was chosen 
and corresponds to a distance δ = -0.03 m in order to make a contribution equal to that made 
by each of  φ, h, d and γ when varying over their respective standard deviations. 

 for δ ≥ 0.00 m  f h d

h d
= + + −

−φ
σ σ σ

γ γ

σφ γ

0
           (16) 

 for δ < 0.00 m  f h d

h d
= + + −

−φ
σ σ σ

γ γ

σφ γ

0  − 1000 2δ           (17) 

where φ = body angle at horse contact, h = maximum height of the mass centre during 
postflight, d = landing distance of the mass centre past the end of the horse, γ = landing angle, 
δ = foot clearance, and σ = standard deviation in each variable. 

Criteria for a successful handspring somersault simulation 

For a successful handspring somersault simulation the path of the mass centre should be 
high with the distance travelled by the mass centre at least 2.5 m past the end of the horse as 
required by the International Gymnastics Federation in order for there to be no deductions 
from the score.  In addition the landing angle needs to be such that the angular velocity after 
impact is close to zero.  Simulation was used to estimate the required landing angle γ 0  
behind the vertical.  An objective function f defined by equation (18) was maximised where 
there was a range of possible solutions that satisfied all the criteria for a successful 
simulation.  The objective function was based upon the maximum height h of the mass centre, 
the landing angle γ and the landing distance d.  The coefficients for each variable were based 
upon the variation in each variable (Table 4) obtained from analysis of competitive 
handspring somersault vaults (Takei and Kim, 1990) in order to give appropriate weighting to 
each variable.   
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    f h d

h d
= + −

−
σ σ

γ γ
σγ

0
            (18) 

where h = the maximum height of the mass centre during postflight, d = the landing distance 
of the mass centre past the end of the horse, γ = landing angle, and σ = standard deviation in 
each variable. 

Optimisation Procedure 

For the Hecht vault the horizontal preflight velocity was fixed at 6.81 m.s-1 and the 
body lean at Reuther board takeoff was fixed at 31.1° from the vertical while the body angle 
φ, the shoulder angle α and the vertical velocity v of the mass centre at horse contact were 
allowed to vary.  For given values of φ, α and v at horse contact the corresponding values at 
Reuther board takeoff were obtained using the equations of projectile motion.  These values at 
Reuther board takeoff were then used as the initial values of a simulation.  For a fixed body 
angle φ, optimum values of α and v were obtained by first finding the value of α that 
maximised the objective function for a fixed v and then optimising v for this value of α.  This 
procedure was iterated until the solution converged. 

For the handspring somersault vault the horizontal preflight velocity was fixed at 6.05 
m.s-1, the preflight angular velocity was fixed at 8.13 rad.s-1 and the body lean at Reuther 
board takeoff was fixed at 14.4° from the vertical.  The shoulder angle α and the vertical 
velocity v of the mass centre at horse contact were allowed to vary.  For a given value of v at 
horse contact, projectile equations were used to calculate v at Reuther board takeoff.  The 
values of φ, α and v at Reuther board takeoff were used as the initial values of a simulation.  
Optimum values of α and v were calculated iteratively as described above. 

 
Table 4.  Standard deviations for variables used in the objective functions 

 

variable            Hecht vault 

 (Yeadon et al., 1998) 

handspring somersault vault 

(Takei and Kim, 1990) 

body angle at horse contact 5.6° not used 

maximum height of the mass centre 0.11 m 0.08 m 

landing distance 0.29 m 0.34 m 

landing angle 13.3° 4.2° 

 

RESULTS 

The preflight characteristics of the highest scoring video recorded Hecht vault, which 
was used to evaluate the modelling of the contact phase, are shown in Table 5.  These values 
were used as input to the simulation of the contact phase.  The values of these variables at the 
end of the simulated contact phase are similar to the corresponding values from video analysis 
with the exception of the shoulder angle α which remains unchanged by the instantaneous 
simulated impact (Table 5).  The postflight performance of the model, however, will depend 
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primarily on u, v and ω which are in reasonable agreement with actual performance values.  
This suggests that the assumptions of inelastic impact and zero shoulder torque do not 
produce major errors. 

 
Table 5.  Comparison of simulation and video analysis for the Hecht vault 

 

variable end of  

preflight

start of postflight 

simulation      video 

horizontal velocity of the mass centre [m.s-1] 6.01     3.51     4.18 

vertical velocity of the mass centre [m.s-1] 0.96 3.07 2.99 

body angle [°] 2.9 2.9 4.5 

shoulder angle [°] 141.7 141.7 111.5 

angular velocity of the body [rad. s-1] 2.92 -2.44 -2.18 

 
In all simulations the instantaneous impact with the horse resulted in angular velocities 

for which the vertical reaction force at the hands was negative so that takeoff was immediate 
in all cases.  Simulations of the landing phase indicated that in order to produce a stationary 
vertical landing the required landing angle γ 0  was close to -25° for the Hecht and -35° for the 
handspring somersault.  The precise value of γ 0  is, of course, a function of the linear and 
angular velocities at landing. 

Within the realistic ranges of values used for the input variables (Table 3) there was no 
combination of input variables that satisfied all the requirements for a successful Hecht 
simulation.  To achieve a landing angle of γ = -25° and a positive foot clearance required a 
body angle of 14° below the horizontal at horse contact.  For body angles higher than this the 
amount of backwards rotation progressively became less.  Table 6 shows the best vaults for a 
range of body angles at horse contact which minimised equation (16) over realistic ranges of 
the input variables (Table 3).  For a zero body angle at horse contact, the best landing angle 
was γ = -6° (Fig. 2) and for a 20° body angle at horse contact the best landing angle was γ = 
8°.  To achieve a landing angle γ = -25°, a positive foot clearance and a landing at least 2.5 m 
past the end of the horse while having a body angle of 20° above the horizontal at horse 
contact required an increase in the upper limit for the horizontal preflight velocity from 6.81 
m.s-1 to 7.3 m.s-1. 
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 Figure 2.  Optimum Hecht vault for a horizontal body position at horse contact. 

 
                                              Table 6.  Optimum Hecht vaults for different body angles at horse contact 

 

              input variables at horse contact       output variables 

φ 

[°] 

α 

[°] 

v 

[m.s-1] 

u 

[m.s-1] 

ω  
[rad.s-1] 

  δ 

  [m] 

γ 

[°] 

d 

[m] 

h 

[m] 

30.0 148.6 -2.28 6.81 2.20   0.00 10.5 1.88 2.12 

20.0 143.6 -1.18 6.81 2.60   0.00 8.0 1.98 2.11 

10.0 139.9 -0.21 6.81 3.11   0.00 2.4 2.05 2.14 

0.0 136.6 0.66 6.81 3.77   0.00 -6.4 2.09 2.20 

-5.0 133.8 1.02 6.81 4.07   0.00 -12.4 2.17 2.22 

-10.0 130.9 1.36 6.81 4.40   0.00 -19.6 2.26 2.25 

-14.0 129.0 1.64 6.81 4.71   0.00 -25.3 2.32 2.28 

 
The contribution of circling the arms to the production of rotation during postflight was 

found for the optimised Hecht solution by using a modified simulation in which the arms 
moved to the sides of the body at takeoff from the horse and remained there throughout 
postflight.  This resulted in 17% less rotation of the body with the landing angle changing 
from -6° to +10°. 

A range of input variables satisfied the criteria for a successful handspring somersault 
simulation.  The optimum handspring somersault was determined by maximising the 
objective function defined by equation (18).  Figure 3 shows the optimum simulation with a 
landing distance of 3.5 m and a landing angle of γ = -35° for a horizontal preflight velocity of 
6.05 m.s-1 and an angular velocity of the body of 8.13 rad.s-1.  Reducing the limiting values 
for horizontal preflight velocity and angular velocity of the body by one standard deviation 
resulted in an optimum solution which was 3° short on rotation at landing with a landing 
distance of 2.43 m. 

 

 
Figure 3.  Optimum straight handspring somersault simulation. 
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Table 7 shows the variation in performance arising from using the 11 normalised inertia 

data sets in simulations with the optimum preflight parameters for the Hecht vault.  The 
handspring somersault simulation was optimised for each of the 11 normalised inertia data 
sets.  Table 8 shows the variation in the optimum preflight variables for the 11 normalised 
inertia sets.   

 
Table 7.  Variation in performance of the Hecht vault for 11 sets of inertia parameters 

 

 foot 
clearance 

[m] 

maximum 
height  

[m] 

landing 
angle 

[°] 

landing 
distance 

[m] 

 average set 0.00   2.28 -25.3 2.32 

 minimum -0.04 2.22 9.4 2.13 

 maximum 0.09 2.37 -50.4 2.63 

 mean 0.01 2.28 -26.1 2.36 

 σ 0.05 0.05 17.6 0.16 

 
                                  Table 8.  Variation in optimum preflight variables for the handspring somersault vault for 11 sets of  

inertia parameters 
 

        optimised preflight variables at horse contact   postflight variables 

 φ 
[°] 

α 
[°] 

v 

[m.s-1] 

u 
[m.s-1] 

ω  

[rad.s-1] 

       γ 

      [°] 

h 

[m] 

d 

[m] 

average set 50.0 178.0 1.53 6.05 8.13 -35.0 2.74 3.50 

minimum 48.2 174.0 1.36 6.05 8.13 -35.0 2.60 3.07 

maximum 52.8 184.4 1.79 6.05 8.13 -35.1 2.81 3.81 

mean 50.2 178.1 1.53 6.05 8.13 -35.0 2.73 3.52 

σ 1.5 3.1 0.18 0.00 0.00 0.0 0.06 0.22 

 

Figures 4, 5, 6 and 7 show the effect of varying one preflight variable while keeping the 
others constant.  In each of these figures one preflight variable is varied over a range of values 
while the remaining preflight variables are set to their optimum values for a Hecht vault with 
a body angle at horse contact of 10° above the horizontal.   
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Figure 4.  The effect of the horizontal preflight velocity on the maximum height reached by the mass centre 

during the postflight of the Hecht vault. 
 

 
Figure 5.  The effect of the horizontal preflight velocity on the landing angle for the Hecht vault. 

 
Figure 6.  The effect of the vertical velocity at horse contact on the landing angle for the Hecht vault. 
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Figure 7.  The effect of altering the vertical velocity at horse contact on the maximum height reached by the 

mass centre during the postflight of the Hecht vault. 
 

DISCUSSION 

To optimise the Hecht required finding the correct combination of preflight variables at 
horse contact which would produce the necessary height, distance and backwards rotation to 
perform the vault.  With the limits set on the preflight variables it was not possible to satisfy 
all three requirements as the preflight variables had different effects on the postflight 
variables (Fig. 4 - 7).  For example increasing the vertical velocity at horse contact increases 
the height reached by the mass centre but decreases the backwards rotation (Fig. 6, 7) so that 
the required landing angle of -25° is not achieved for vertical velocities greater than 0.5 m.s-1. 

For a body angle of 0° at horse contact it was possible to produce 83% of the required 
backwards rotation by optimising the conditions at horse contact within realistic limits using 
the simulation model.  This suggests that most of the backwards rotation required to perform 
the Hecht vault comes from the correct preflight and not from other factors such as shoulder 
torque which must make relatively smaller contributions. 

The optimised Hecht simulation for a zero body angle at horse contact (Fig. 2) had 
similar preflight characteristics and a similar performance to those found by Yeadon et al. 
(1998) for the Canadian championships.  At takeoff from the board, the optimised Hecht 
simulation had a similar vertical velocity (3.3 m.s-1 compared with the mean 3.5 m.s-1).  The 
Canadian gymnasts generated less rotation at takeoff (1.8 rad.s-1 compared with 2.3 rad.s-1) 
which had the effect of keeping the feet higher for longer to miss the horse.  The vertical 
velocity of the mass centre, the angular velocity of the body and the shoulder angle at horse 
contact were found to be similar for the optimised simulation and the mean values of the 
competition performances (0.7 m.s-1 and 1.00 m.s-1; 3.8 rad.s-1 and 3.4 rad.s-1; 137° and 140° 
respectively).  For the optimised Hecht simulation the arms rotated forwards through 
approximately 1.5 revolutions which was similar to the maximum of the competitive 
performances. 

A lower vertical velocity and angular velocity at horse contact resulted in more 
backwards rotation during postflight (Fig. 6) but also resulted in a lower height reached by the 
mass centre in postflight (Fig. 7).  Thus a fine balance was required between producing 
backwards rotation or height by selection of the vertical velocity at horse contact.  Horizontal 
velocity had an advantageous effect on height and backwards rotation as an increase in 
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horizontal velocity increases height, distance and backwards rotation for the Hecht vault (Fig. 
4, 5). 

The preflight of the optimised handspring somersault simulation was similar to the 
handspring somersault vaults from the 1988 Olympic games (Takei and Kim, 1990).  At 
contact with the horse the body angle for the optimised handspring somersault simulation was 
50° above the horizontal compared with a mean body angle of 30° for the Olympic 
handspring somersault vaults (Takei and Kim, 1990).  For the optimised simulation, the body 
angle at takeoff was also 50° as the contact was instantaneous, but for the Olympic 
performances the gymnasts body angle at takeoff was 92° due to the rotation of the body 
during the contact phase.  The larger body angle at horse contact for the optimised simulation 
affected the vertical velocity at touchdown on the horse.  A higher body angle at horse contact 
requires a relatively longer preflight time for the optimised simulation, which results in a 
lower vertical velocity at horse contact (1.5 m.s-1 compared with 2.4 m.s-1).  The horizontal 
and vertical velocities of the mass centre at takeoff from the horse were 4.5 m.s-1 and 3.7 m.s-1 
respectively for the optimised simulation which are similar to the maximum values of 4.1 m.s-

1 and 3.8 m.s-1 for the Olympic gymnasts (Takei and Kim, 1990). 
From simulations of handspring somersault vaults a set of relationships were found 

equivalent to those shown in Figures 4 - 7 for the Hecht vault.  A greater horizontal preflight 
velocity produced greater height, distance and rotation.  The generation of more rotation by 
increasing the horizontal preflight velocity has been demonstrated for both the Hecht and 
handspring somersault vaults, despite the fact that the rotation is reversed for the Hecht vault.  
The reason for this is related to the body position and shoulder angle.  For the Hecht the 
shoulder angle tends to close during contact due to the much smaller shoulder angle at contact 
(α = 137°, Fig. 2) whereas for the handspring somersault the shoulder angle tends to open due 
to the almost straight shoulder angle at contact (α = 178°, Fig. 3).  Thus increasing the 
horizontal preflight velocity for the Hecht produces a faster closing of the shoulder angle and 
for the handspring somersault produces a faster opening of the shoulder angle.  The effect of 
the vertical velocity at horse contact on the handspring vault is very similar to the Hecht vault 
(Fig. 6, 7), with the higher the vertical velocity at horse touchdown the greater the vertical 
velocity and angular velocity at horse takeoff.  These relationships identified for the 
handspring somersault vault will also hold for other continuous rotation vaults such as the 
Yurchenko, Tsukahara and Kasamatsu vaults. 

The optimum Hecht and handspring somersault simulations had quite different 
preflights.  At takeoff from the board the optimum Hecht simulation had a higher horizontal 
velocity, a lower vertical velocity and much less angular velocity (Fig. 2, 3).  The reason for 
this is that a low angular momentum value at horse contact facilitates the reversal of the 
direction of rotation while in contact with the horse.  In contrast for the handspring somersault 
vault, a high angular velocity and high vertical velocity are required at horse contact to give a 
high angular momentum value.  At contact with the horse the Hecht requires a low body angle 
so as to maximise the production of backwards rotation while for the handspring vault a high 
body angle is required to reduce the amount of angular momentum lost.  A shoulder angle of 
137° was used for the Hecht (Fig. 2) compared with a shoulder angle close to 180° for the 
handspring somersault vault (Fig. 3) since a smaller shoulder angle helps the reversal in the 
direction of rotation.  

The variation in performance of the simulation model for the Hecht vault from using the 
11 different inertia parameter data sets with the optimum preflight variables obtained for the 
average inertia data set (Table 7) demonstrates that the postflight performance is sensitive to 
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the inertia characteristics of the gymnast for a given set of preflight variables.  This result is 
also true for the handspring somersault simulations.  On the other hand optimising the 
preflight variables for each of the 11 inertia data sets for the handspring somersault vault 
(Table 8) shows that the optimum postflight performance is not sensitive to the inertia 
parameters used.  This result is also true for the Hecht simulations.  Thus a gymnast’s inertia 
parameters do not affect the level of performance that is attainable but do affect the technique 
used to achieve this level. 

Although the model presented is a simple representation of gymnastic vaulting, it has 
been shown to reproduce the main features of the vault and forms a basis for a mechanical 
understanding of the mechanisms underlying vaulting.  The major simplifications of the 
model occur for the contact phase, where it is assumed that there is no shoulder torque used 
during horse contact, and that the impact with the horse is inelastic. 

Assuming that the model does not allow shoulder torque during the contact phase may 
appear to be an over-simplification.  For the Hecht vault a high angular velocity of the arms is 
generated during the impact with the horse which results in a fast change in shoulder angle 
(Yeadon et al., 1998 report a shoulder angular velocity of over 7.85 rad.s-1 at takeoff from the 
horse).  Since the maximum torque that can be exerted at a joint decreases for high angular 
velocities, the torque that the gymnast can exert around the shoulder joint will be limited for 
much of the contact phase.  As a consequence it may be expected that shoulder torque makes 
a minor contribution to performance.  In order to estimate the magnitude of the contribution 
to the reversal in angular momentum that might be produced by the use of shoulder torque, a 
hypothetical simulation was carried out using a two segment model with shoulder torque.  To 
isolate the effect of shoulder torque, the effects of the impact with the horse, segment weight 
and gravitational torque were removed by carrying out a simulation without gravity from a 
stationary position in contact with the horse.  Mean values for the contact time (0.11 s), the 
angular velocities of the arms relative to the body at contact (1.99 rad.s-1) and at takeoff (8.11 
rad.s-1) were calculated from data on 27 Hecht vaults (Yeadon et al., 1998).  It was assumed 
that the angular velocity increased linearly with time in order to calculate the torque at any 
given time during the hypothetical simulation.  The relationship between maximum torque 
and shoulder angle and angular velocity was determined using measurements on a gymnast 
with a Kim-Com isokinetic dynamometer (King et al., 1996).  In the hypothetical simulation 
the shoulder torque was set equal to the maximum possible torque at the corresponding time 
of the Hecht contact phase.  The simulation showed that about 10% of the angular momentum 
change during a Hecht takeoff could be produced by shoulder torque.  This supports the idea 
that the majority of reversal in the angular momentum is produced by the correct preflight and 
body position at contact with the horse.   

Assuming an inelastic impact with the horse results in an instantaneous reduction of the 
hand velocity to zero at impact and a subsequent immediate takeoff from the horse.  In actual 
performances (Yeadon et al., 1998) the contact time is around 0.1s.  For a Hecht vault model 
the introduction of elasticity at the hand-horse interface would result in a finite contact time 
and an upwards component of hand velocity at takeoff from the horse together with an 
increase in the counter-rotation angular velocity of the body. 

During preflight it was assumed that the model maintains a fixed configuration.  This is 
realistic in that it is a fair representation of the technique used by many gymnasts although 
techniques do vary.  Some gymnasts maintain a relatively fixed body configuration during 
preflight while others start the downwards motion of the arms relative to the trunk prior to 
horse contact. 
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The assumption of a fixed optimum landing angle γ 0  for each type of vault was made 
to simplify the optimisation procedure.  The resulting optimum simulations were not affected 
greatly by this assumption.  In the case of the Hecht vault it was not possible to satisfy the 
requirement for a successful simulation and so the use of a fixed landing angle requirement 
had no effect.  In the case of the handspring somersault the optimum simulation had a landing 
angle which was not only close to -35° but was also within 1° of an ideal landing.  The fixed 
landing angles of -25° and -35° for the Hecht and handspring somersault vaults compare well 
with the mean values of -28° ± 16° and -34° ± 4° from Yeadon et al. (1998) and Takei and 
Kim (1990) for Hecht and handspring somersault vaults respectively.  In actual landings small 
inaccuracies in the landing angle may be corrected by rotating the arms forwards or 
backwards.  This may give some flexibility in the range of landing angles that can be 
accommodated but the mean landing angles will be close to optimum as indicated by the 
above results. 

Using a model comprising two rigid segments linked by a pin joint suggests that the 
majority of the backwards rotation during the postflight of a Hecht vault is a result of a low 
trajectory of the mass centre during preflight with a low vertical velocity of the mass centre 
and a low angular velocity of the body at horse contact.  Similarly the majority of the 
postflight rotation of a handspring somersault is a result of a high preflight trajectory with a 
high angular velocity of the body and a high vertical velocity at horse contact.  Despite the 
assumption of inelasticity and zero shoulder torque during horse contact, the two segment 
model was able to determine optimum preflight characteristics which were in close agreement 
with observed values for two competitive vaults.  This demonstrates the importance of the 
preflight characteristics for vaulting performance and indicates that the model, although 
simplified, incorporates the main elements of vaulting.  In the future the model will be 
modified in order to quantify the contributions of elasticity and shoulder torque to the 
translational and rotational performance characteristics of these vaults. 
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