
 

Abstract— Objectives: Recognising human activity is very useful 

for an investigator about a patient's behaviour and can aid in 

prescribing activity in future recommendations. The use of body 

worn accelerometers has been demonstrated to be an accurate 

measure of human activity, however research looking at the use 

of multiple body worn accelerometers in a free living 

environment to recognise a wide range of activities is not evident. 

This study aimed to successfully recognise activity and sub-

category activity types through the use of multiple body worn 

accelerometers in a free living environment.  

Method: Ten participants (Age = 23.1 ± 1.7 years, height =171.0 ± 

4.7 cm, mass = 78.2 ± 12.5 Kg) wore nine body-worn 

accelerometers for a day of free living. Activity type was 

identified through the use of a wearable camera, and sub 

category activities were quantified through a combination of free-

living and controlled testing. A variety of machine learning 

techniques consisting of pre-processing algorithms, feature and 

classifier selections were tested, accuracy and computing time 

were reported. 

Results: A fine k-nearest neighbour classifier with mean and 

standard deviation features of unfiltered data reported a 

recognition accuracy of 97.6%. Controlled and free-living testing 

provided highly accurate recognition for sub-category activities 

(>95.0%). Decision tree classifiers and maximum features 

demonstrated to have the lowest computing time.  

Conclusions: Results show recognition of activity and sub-

category activity types is possible in a free living environment 

through the use of multiple body worn accelerometers. This 

method can aid in prescribing recommendations for activity and 

sedentary periods for healthy living.  

 

Index Terms— Human Activity Recognition, Machine 

Learning, body-worn accelerometers 

I. INTRODUCTION 

Physical activity and its benefits to health have recently been a 

popular area of research [1,2]. The increase or maintenance of 

a certain level of physical activity has been demonstrated to 
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reduce the risk of chronic diseases and is now widely accepted 

in promoting a healthier lifestyle [1,2]. Despite this 

knowledge, statistics show that average healthy life 

expectancies, where one perceives oneself to be in "Good" 

health, are still falling [3]. In order to change current 

behaviour, understanding the determinants and barriers to 

physical activity behaviours is important in designing 

interventions to improve healthy life expectancies [4]. 

Therefore, accurate measurement of activity types and the 

intensity they are performed at is important [5]. The use of 

wearable technology, more specifically body-worn 

accelerometers is a common tool for activity recognition 

which has allowed researchers to gain accurate insight into 

activity types [6,7]. 

Typically, physical activity is viewed as either engaging in 

sport or some form of exercise; in fact, it is actually defined as 

any bodily movement produced by skeletal muscles resulting 

in energy expenditure above resting level [8]. This entails all 

activity whether it be cleaning the kitchen or playing a 

computer game. Quantifying and comparing activity types is 

possible through looking at the ratio of exercise metabolic 

rate, where one metabolic equivalent of a task (MET) is 

defined as the energy used when simply lying quietly. For the 

average adult, one MET averages at 3.5 ml of oxygen uptake 

per kilogram of body weight per minute. Furthermore, any 

activity with two METs requires twice the amount of 

metabolic energy used than lying quietly [9]. For nearly all 

activity types, the Taylor Compendium of Physical Activity 

contains a MET value [10]. For activity prescription purposes 

any value between three and six METs can be identified as 

moderate activity, which has been shown to have a positive 

impact on a person's wellbeing and is often the range 

recommended to populations [6].  

With the decrease in healthy life expectancies and increases 

in long term health care costs on a yearly basis [11], 

highlighting activity type and intensity is essential to 

providing populations with recommendations of what is 

necessary to improve; disease prevention, musculoskeletal, 

mental and performance health. Currently adult populations in 

many countries are advised to take part in 150 minutes of 

moderate activity a week [12, 13]. Furthermore, patients with 

obesity, heart disease, or diabetes are often given a specific 

exercise routine to follow [14]. Reference [15] stated that 

continuous physical and physiological monitoring in any 

environment would shorten hospital stays for patients, 

improve recovery, reliability of diagnosis and improve 
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patients' quality of life [15]. On the other hand, rises in 

sedentary behaviour have also been correlated with health 

risks [16]. Sitting and watching television is now one of the 

most popular activities and over two hours a day can have an 

unfavourable effect on body composition and decreased 

fitness [16]. As a result, recognising activities whether 

sedentary, moderate or vigorous becomes very useful for an 

investigator or practitioner about the participant’s or patient’s 

behavior [17], and can aid in prescribing activity in future 

recommendations. 

Human activity recognition (HAR) dates back to the 1990s 

where ambulatory movements were recognised from the use 

of sensor based systems in controlled environments [18]. More 

recently, HAR systems have been modelled outside of a 

laboratory environment which involve the use of 

accelerometers [19,20]. Other methods such as computer 

vision and motion capture techniques have also been used and 

have reported high accuracies [21]. However, these techniques 

are often only capable of being used in a controlled 

environment where participants are instructed to perform 

specific activities. Body-worn accelerometers have the 

capability to monitor participants in uncontrolled 

environments for long periods of time [22]. 

Recognition of activity type from accelerometer data has 

been achieved by many researchers using machine learning 

techniques [17,23]. These techniques take large data sets that 

undergo filtering, segmentation and feature extractions, like 

the mean of a specified signal, this information is then used to 

train a percentage of the data with a specific classification 

method; the recognition accuracy is then reported when the 

training algorithm is tested on the remaining data set. A wide 

variety of classification methods have been reported to be 

accurate. Reference [24] showed the accurate classification 

through the use of a simple decision tree approach to 

discriminate between standing and sitting,  Reference [25] 

showed the use of a nearest neighbour method in correlation 

with multiple sensors for an activity recognition platform and 

Reference [26] used a support vector machine method for a 

more complex recognition of multiple tasks that mainly 

involved hands and arms. Moreover, the key to successful 

recognition is that filtering, segmentation and feature 

extraction is specific to the activities that have been defined 

[17]. With this knowledge high activity recognition is now 

reported frequently [23], what is more concerning is the 

computing time necessary to process complex filters, features 

and classifiers if the user is looking for immediate feedback 

about their activity level. Recently Reference [6] showed the 

use of multiple accelerometers and simple filters alongside a 

simple and fast decision tree classification method which 

utilises mean and variance features to be just as good predictor 

(>90% recognition accuracy) of a range of activities (lying, 

sitting, standing and walking) compared to more complex 

approaches. When using multiple sensors though the output 

heavily depends on the position at which it is placed and its 

stability [19]. 

Whilst many studies have looked at HAR outside of a 

laboratory and in a controlled environment, there is a lack of 

research evidence that looks at accelerometer data in a free-

living environment. Recently Reference [27] looked at the 

identification of activities in free living through a body worn 

camera and a two accelerometers [27]. Each activity was 

defined from the Taylor compendium of physical activities 

[10], and intensities were determined from a guide that 

investigators followed. Reference [27] reported identification 

of 81% of images captured but highlighted the need for more 

in depth analysis with the use of wearable sensors. It is worth 

noting that in addition to a hip mounted accelerometer, 

another was not mounted as is standard in the physical activity 

research community, instead was freely suspended from a 

lanyard. Also, intensity and nature of activities performed 

were not used to create a classification model that could be 

used with other free-living data. 

Therefore, this study aims to successfully recognise human 

activity in a free living environment through the use of 

multiple body worn accelerometers and machine learning 

analytic techniques, where not only multiple accelerometers 

are used to gain high recognition accuracy but also the 

efficiency of different feature and classifiers selections are 

shown. Whilst main activity types can be identified through a 

wearable camera, more specific activities and intensities can 

be validated in a controlled environment under the 

investigators control. The following sections present the steps 

taken to identify each activity type and what machine learning 

techniques are used and are most suited for this data. If 

successful, these techniques can be used to help aid 

recognising a wider range of physical activities in the future 

that can help with better understanding of prescribing activity 

levels for a healthy population.  

 

II. METHODS 

Ten participants (Age = 23.1 ± 1.7 years, height =171.0 ± 4.7 

cm, mass =78.2 ± 12.5 Kg, male = 8, female = 2) participated 

in the study. All participants were free from illness and injury 

at the time of data collection. Participants were briefed on 

study procedures and made aware of the associated risks and 

benefits. Consent was given by all and each participant was 

informed they were free to withdraw from testing at any point, 

without prejudice. Prior to data collection, ethical approval 

was given by the faculty of Health and Wellbeing in Sheffield 

Hallam University. All data were recorded and stored 

confidentially.  

 

Controlled testing 

Eight participants (five male and three female) attended two 

controlled sessions; one in a laboratory environment and one 

in a home environment. Participants were asked to perform a 

variety of activities (Table 1) that they would regularly 

perform in a free living environment which cannot be 

identified through a still image from a wearable camera. These 

activities would contribute to the development of classification 

algorithms for sub-category activities in free living testing. 

Each activity was performed for a three-minute period. The 



sensor set up shown in Fig 1 consisted of nine runscribe™ 

inertial sensors (Scribe Labs, California,USA) containing a tri- 

axial accelerometer which were applied to the: left and right 

lateral ankle, left and right hip (ASIS), left and right wrist 

(resting on the radius), left and right upper arm (resting  on the 

brachialis) and Spine (T10) by the same investigator for all 

participants. Locations of sensors were based on a collection 

of previous research that looked at a range of activity types [6, 

23]. Sampling frequency for each sensor was set at 10 Hz with 

the addition of a low pass anti-alliasing filter of 5 Hz. All 

sensors were synchronised via time of initialisation. 

 
Table 1Activity Types performed in controlled testing with associated 

MET Value 

 
 

All walking and running activities were performed on a 

treadmill (Pulsar, HP Cosmos, Germany) and cycling 

activities were performed on a cycle ergometer (Monark 

Exercise, Sweden). Participants were instructed to perform 

callisthenic exercises that they would normally do in a free 

living environment, they were not restricted to a specific set of 

movements to allow for variability between participants.  

Activities performed outside of the laboratory were completed 

in a home environment. Walking up and downstairs was 

performed on a flight of six stairs where all other activities 

were performed in a kitchen and living room setting. 

 

 

Figure 1Body worn accelerometer set up (1) Left ankle (2) Right 

ankle (3) Left hip (4) Right hip (5) Left upper arm (6) Right upper 

arm (7) Left wrist (8) Right wrist (9) Spine 

Free Living 

Ten participants (seven male and three female) wore the same 

accelerometer set up as controlled testing (Fig 1), sampling 

frequency was kept at 10 Hz with a low pass filter of 5 Hz and 

all sensors were synchronised via time of initialisation.  

Accelerometers were applied to participants as they woke up 

and removed before going to sleep. Primary activity types and 

sub-categories if possible were defined from a wearable 

camera (SnapcamLite, iON Ltd, UK) that captured an image 

every 30 seconds; To highlight if any drift was present, the on 

board timer of the camera was compared against a stopwatch 

that assessed the difference in time from start to finish of data 

capture. Participants were instructed to remove the camera 

during free living if they did not want a picture to be recorded 

at that point in time (for example going to the toilet or getting 

changed). Activity types were categorised into eight main 

categories 1) Self-Conditioning 2) Cycling 3) Home activities 

4) Running 5) Self-Care 6) Transport 7) Walking 8) Inactive. 

Within sub-categories another 29 activities were defined 

(Appendix A) taken from the Taylor compendium for physical 

activities [11]. The primary investigator followed a set of 

guidelines for image identification; the reliability of 

identification was also reported for a subset of the data from a 

secondary investigator who followed the same guidelines. 

Data analysis 

Data were stored and analysed using Matlab (Mathworks 

2015b, USA). Once all images were identified, two different 

high pass filters (Chebyshev and Eliptic) and a discrete 

wavelet analysis were run using Matlab Filter design toolbox 

(Mathworks 2015b,USA) as previous research has shown the 

benefits of these pre-processing techniques on recognition 

accuracy [23]. 

An activity-defined window approach was used to define the 

activity at each picture taken during free living. This window 

was segmented into six second windows which had a 50% 

overlap. Data for controlled testing was segmented into the 

same six second period and overlap. Previous research has 

used much smaller windows [6], based on suggestions that 

increased window size reduces sensitivity [19], however the 



nature of the 30 second image capture and the large dataset 

means that a large window is more suited. 

A variety of heuristic, frequency and time domain features 

were created based on  recommendations from a wide variety 

of successful features [23]; for each feature and classification 

method, the computing time was calculated and the 

recognition accuracy was reported for every sub category the 

same analysis was run again and the highest accuracy was 

reported for specific features and classifiers. 

 

Feature Selection 

Time-domain features were directly derived from the data 

segment using MATLAB script files (Mathworks 2015b, 

USA) created in-house. All features were extracted from the 

average signal output over a windowed period. Features 

consisted of: mean, standard deviation, root mean square, peak 

count and peak amplitude. Features were extracted from each 

sensor and each axis (9 sensors and 3 axes, 27 different values 

for each feature). 

Frequency-domain features focused on the periodic structure 

of the signal, features included spectral energy and spectral 

power. Spectral energy has shown to highlight the periodicity 

in an acceleration signal and distinguish between different 

intensity activities [28]. Spectral entropy features calculated 

the frequency domain entropy from a Fast Fourier 

transformation, previous research has shown this can help 

discriminate values with similar energy [28]. As before all 

frequency- domain features were extracted from each axis for 

each sensor and kept singular. 

Heuristic features have been derived from a fundamental 

understanding of how specific movements can create 

distinguishable sensor signals [29]. Signal magnitude area has 

been shown to effectively identify periods of daily living [20]. 

(1) shows the calculation for signal magnitude area. 
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1
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0

𝑡
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𝑡

0
)            (1) 

 

Where 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) refer to the 𝑥, 𝑦 and 𝑧 axis signal 

for each windowed output 𝑡 Signal vector magnitude (SVM) 

features have also been used with recognition in human 

activity; it essentially provides a measure of movement 

intensity. (2) shows the calculation of SVM. 

 

𝑆𝑉𝑀 = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2                                                       (2) 

 

Where 𝑥𝑖  is the 𝑖𝑡ℎ value of the signal 𝑥, as is the same for  𝑦𝑖   
and 𝑦𝑖 . In this case 𝑖 was taken as the maximum value. Unlike 

time or frequency domain features each sensor collates all 

three axes which essentially reduces 27 different signals down 

to nine features for each window. 

 

Classification 

 

For each recognition process, 80% of the data were used for 

training and 20% was tested using the MATLAB 

Classification Learner toolbox (Mathworks 2015b, USA). 

Decision tree classifiers are support tools which make 

decisions based on tree-like models. A complex decision tree 

structure was chosen for this dataset which contained 42 levels 

of decisions based on acceleration output from specific 

sensors. Split criterion was based on Ginis diversity index. 

Support vector machines (SVMs) are supervised learning 

methods used for classification. For this dataset a cubic 

method approach was chosen meaning a kernel value of three 

was used. Box constraint was equal to one and one vs one 

multiclass method was used where all data was standardized. 

Nearest Neighbour methods are used for classification of 

activities based on the closest training examples in the feature 

space. For this data set the number of neighbours was set to 

one for optimum computing time, distance between 

neighbours were euclidean and weights were equal where all 

data was again standardized. Ensemble classifiers are not as 

common in HAR studies but have recently been reported to 

improve recognition accuracy [30]. Essentially this method 

combines a set of trained weak learner models from above and 

data on which these learners were trained. It can predict 

ensemble responses for new data by aggregating predictions 

from its weak learners. For this data set a set of 200 as 

standard in the decision tree learners MATLAB classification 

Learner toolbox were bagged together. 

 

III. RESULTS 

Of the ten participants, one was removed as sensor capture 

was accidentally reset by this participant. No spurious actual 

data was found, however non-wear time and unidentifiable 

images accounted for 24.0% of the data. Across the nine days 

of actical data recorded, 118,501 six second episodes of 

activities were recognized (197.5 hours); the breakdown for 

each activity is shown in Table 2. Inactive episodes accounted 

for 73.5% of the data. For each activity a subset of 29 specific 

activity types were identified (two Self Conditioning, three 

Cycling, six walking, two Running, four Self Care, seven 

Inactive, one Transportation, four Home activities). The inter-

rater reliability for image identification was 0.93 for Activity 

Type and 0.92 for sub categories. Camera drift was equal to 

0.41 ± 0.17 seconds. 

 
Table 2 Recorded Episodes of Activity 

*Show activities not included in free-living recognition  



Table 3 Recognition accuracy (%) for different classifiers on unfiltered, filtered and wavelet transforms 

 
 
Table 4 Recognition accuracy (%) for different features on unfiltered, filtered and wavelet transforms. Best performing classifier is shown: 

 𝑎 Fine KNN method .𝑏Ensemble -Bagged Tree Method 

 

 
 

A recognition accuracy of 97.6% was found for main activity 

types using unfiltered data, mean and standard deviation 

features along with a fine k-nearest neighbour method. A full 

representation of the performance of different classifiers on 

unfiltered, filtered and wavelet transformed data is shown in 

Table 3. All pre-processing techniques showed no increase in 

recognition accuracy and high recognition accuracies were 

also achieved with ensemble (96.4%) and support vector 

machine (96.7%) methods. 

 

Mean and standard deviation features together provided the 

best accuracy out of all features selected for both nearest 

neighbour and ensemble methods. The worst feature, spectral 

entropy produced recognition accuracy of 79.5%, however it 

did improve through the use of filters as did signal vector 

magnitudes. Results for all features used are displayed in 

Table 4. A confusion matrix from the fine KNN method with 

mean and standard deviation features from unfiltered data is 

shown in Table 5. 283 (1.30%) inactive episodes and 121 

(0.55%) walking episodes were predicted instead of correct 

activity types. 

 

 

 
Table 5 Confusion matrix for free living activities using fine KNN 

method with mean and standard deviation features 

 
 



Analysis of the impact of calculation of various features and 

classifiers was completed using a pre-defined Matlab timing 

function (Mathworks 2015b, USA). Table 6 shows the 

computing time for the range of features and classifiers 

selected. Feature calculation times were assessed for one 

sensor of the free-living dataset. Maximum feature values 

showed fastest execution times of 4.0 milliseconds whilst 

Spectral Entropy showed to be the slowest at 100.0 seconds.  

Classifier times were assessed using mean and standard 

deviation features. A decision tree method proved to be fastest 

(6.2 seconds) but not as accurate, where a fine KNN approach 

demonstrated to be accurate with some sacrifice on computing 

time (76.6 seconds). The SVM approach showed accurate 

results however computing time was 70 times larger compared 

to other classifiers. Considering the recognition accuracy 

obtained for main activity types, only unfiltered data was 

analysed for each sub-category. Sub-categories utilised data 

from controlled and free living data. As above for each sub-

category a range of classifiers and features were analysed. 

Table 7 shows the highest recognition accuracy achieved for 

each sub category and what feature and classifier it was 

achieved with. 100% recognition was achieved for cycling, 

running and self-care activities, whilst all other activities 

accuracy was above 95.0%. Root mean square features 

showed to be a strong predictor for three of the categories, 

however when using other features, high recognition accuracy 

was also shown. For example, peak count and amplitude 

features for cycling showed an accuracy of 99.3% and mean 

and standard deviation features showed an accuracy of 99.5% 

for running activities. Decision tree methods fell below 90.0% 

accuracy for walking, calisthenics and inactive categories, all 

other classifiers showed accuracies above 90.0%.  The use of 

signal vector magnitude features fell below 90.0% accuracy 

for walking, calisthenics, inactive and home activity 

categories. All other features showed accuracies above 

90.00%. The SVM classifier was shown to be most accurate 

for self-conditioning activities, as the data was smaller than 

the main data set, computing time was not as slow due to the 

small size of the subset; however, a nearest neighbour method 

showed accuracy of 96.9%. Transportation activities only had 

one activity recognised so was not included in the analysis. 

 
Table 6 Computing time of different features and classifiers for free-

living data set 

 

Table 7 Optimal Feature and Classifier representation for Sub-

Category activity types 

 

 

IV. DISCUSSION 

In this study, the design of a sensory system of multiple body 

worn accelerometers consisted of signal pre-processing 

algorithms, feature and classifier selections. The use of a 

wearable camera presented to be reliable r=0.93 and r=0.92 for 

image identification of main and sub-category activity type 

respectively which agrees with previous research [27]. Three 

different signal pre-processing algorithms were tested along 

with a wide range of features and classifiers. Results showed 

the use of unfiltered data along with the use of mean and 

standard deviation features recognised six main activity types 

accurately for 97.60% of the time with a fine KNN 

classification method.  

  Pre-processing algorithms had no aid on recognition 

accuracy, which differs to previous HAR research [23], this is 

likely due to the low sampling frequency of 10Hz which is 

normally higher in activity recognition research [17]. 

Misclassified activities from the confusion matrix were often 

recognised as either walking or periods of inactivity, as each 

activity was solely identified from one image of 30 seconds it 

is likely that more than one activity were performed during 

this time period and inactivity and walking being two of the 

more common activities are most likely what the participant 

was actually doing instead of the activity identified from the 

single image. The accuracy of each feature was reported and 

all features except spectral entropy reported accuracy above 

90.0%. Maximum features proved to not only be accurate 

(96.8%) with a nearest neighbour method but had the lowest 

computing time (4.0 milliseconds). Other features proved to 

be accurate but computing time in some cases was large 

compared to maximum, mean and standard deviation features. 

Recognition accuracy for the range of classifiers selected 

showed to be above 90.0%, additionally ensemble and nearest 



neighbour methods showed to be better suited to specific 

features. SVM approaches showed to be accurate; however 

computing time was considerably large compared to other 

methods and therefore is not recommended for use in free-

living monitoring. Reference [6] produced results which 

suggested the use of a decision tree method along with mean 

and variance features for the sake of computing time. Results 

agree that decision tree methods are fast for free living 

recognition, however when considering training, nearest 

neighbour methods produced much higher accuracies (>7.0%) 

with a sacrifice of 76.6 seconds/sensor in computing time. It is 

worth noting that this increase in computing time may be too 

high when using many sensors, it is therefore ideal to reduce 

the number of sensors when using this method. 

The use of different methods for each sub category with a 

combination of data from controlled testing showed to be 

useful and is recommended in future investigations. No sub-

category accuracy fell below 95.0% recognition; this is likely 

due to the small amount of activities within each sub-category. 

On the other hand, within the walking category, a range of 

activities which were based on gradient, intensity and stair 

based activities were identified and a 95.8% accuracy was still 

achieved which shows that a wide range of activities within a 

contained category can still produce accurate recognition.  

Whilst testing was defined as free living, where participants 

were free to act how they normally would, it was reported that 

camera set up had an influence on participants, participants 

often mentioned that they felt uncomfortable in performing 

daily activities, this likely correlates with the high number of 

inactive episodes recorded. In future, sensor-compatibility 

with participants should be addressed to ensure that free-living 

is as free as can be. Image identification proved to be reliable, 

however the process of image identification is time consuming 

and experience on the researcher's behalf is necessary for 

reliable results. Moreover, common misclassification was 

shown in episodes of inactivity (1.3%) and walking periods 

(0.55%), it is likely that more than one activity is performed in 

a 30 second window. This is a limitation to this study and 

future research should therefore look into the use of video or 

smaller image windows to gain greater insight into activity 

type and duration performed. Of all 29 activities recognised, it 

is worth noting that none were overly vigorous causing high 

accelerations, it is possible that accuracy may have been 

hindered if more vigorous activities were included. The 

robustness of the model trained may not be applicable to a 

wider population and it is recommended that future 

investigation use a smaller testing set. 

Though the accuracy of multiple body worn accelerometers 

has been shown to be successful in activity recognition in a 

free living environment, the accuracy of the number of sensors 

and what set up is most user friendly should be assessed in 

future studies. More activities taken from the Taylor 

compendium of physical activities should also be recorded for 

each category to gain more insight into specific activities and 

help better understand the dose of activity needed. 

V. CONCLUSION 

Successful recognition of six main activities in a free living 

environment was achieved from the use of multiple body worn 

accelerometers. A fine k-nearest neighbour classification 

method with the use of mean and standard deviation features 

was shown to be the best predictor of activity types. The use 

of different classifiers from free-living and controlled testing 

to recognise sub categories demonstrated high accuracies and 

is recommended for future investigations. Future studies 

should look at how many sensors are required to achieve 

successful recognition and also look at a wider variety of 

activities that are sedentary, moderate and vigorous. 

VI. PRACTICAL IMPLICATIONS 

This method has shown successful recognition of a wide range 

of activities through the use of multiple wearable inertial 

sensors which allows for better understanding of human 

behaviour in a free-living environment. With further research 

looking at a wider range of activities, it will be possible to 

fully understand the frequency and intensity of activity in 

human behaviour.  
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