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Abstract 

Exaggerated postprandial triacylglycerol concentrations ([TAG]) independently 

predict future cardiovascular events. Acute exercise and diet interventions attenuate 

postprandial [TAG] in adults. This paper aims to examine the exercise postprandial 

lipemia studies published to date in young people. Nine studies satisfied the 

inclusion criteria adopted for this summary. The majority of studies are in boys (22% 

girls) and have shown a single ~60 min session of moderate intensity exercise, 

performed 12 to 16 h before a standardised meal, reduces postprandial [TAG]. 

Manipulations of exercise duration and intensity suggest an exercise energy 

expenditure dose-dependent response is not supported directly in healthy young 

people. Studies investigating alternative exercise bouts have reported lower 

postprandial [TAG] after simulated intermittent games activity, high intensity interval 

running and cumulative 10-min blocks over several hours, which may appeal to the 

spontaneous physical activity habits of young people. Although extension of these 

initial findings is warranted, exercise may be an effective strategy to promote regular 

benefits in TAG metabolism in children and adolescents; this may contribute to an 

improved cardiovascular disease risk profile early in life. 
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Introduction 

The aim of this article is to draw attention to the burgeoning area of postprandial 

lipemia research in young people by highlighting primary trends and suggesting 

future directions. Since the 1970s, numerous research papers have been published 

investigating the effects of exercise on postprandial lipemia in adults (30, 38, 46); 

however, this has only been extended to young people since 2007 (3). Postprandial 

lipemia is most often characterised by the elevation in circulating concentrations of 

triacylglycerol (TAG) following the consumption of a high fat meal (Figure 1). 

However, it was suggested recently that there is no widely agreed definition of 

postprandial lipemia (40). This is largely because of wide variation in study design, 

which has made it difficult to compare studies directly and may have hindered the 

widespread application of common findings to influence public health. For the 

purposes of this article, postprandial lipemia is defined as the increase in plasma 

triacylglycerol concentration ([TAG]) after consumption of a meal, drink or single food 

item (Figure 1). 

 

For the reasons outlined below, continued research examining postprandial lipemia 

in young people is important when considering factors that influence future 

cardiovascular disease risk. However, this field of study is in its infancy precluding 

what could reasonably be described as a systematic review. Similarly, there are 

insufficient data to conduct a meta-analysis, but we have provided effect sizes in 

what is most appropriately described as a summary of evidence available currently 

linking acute exercise with postprandial lipemia. This allows us to highlight primary 

trends and directions for future research. Also, the commonly employed two-day 

experimental model, described below, may be very well suited to other areas of 
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research with young people outside of postprandial lipemia. 

 

Although this is not a review, our methods were systematic and included a 

computerised search of the literature using PubMed, SciVerse Scopus, Web of 

Science, Google Scholar and SportDiscus. Keywords searched independently or in 

combination included: postprandial, triglyceride, triacylglycerol, lipemia, lipaemia, 

exercise, energy expenditure, child, adolescent, boy and girl. All relevant sources 

were cross-referenced to maximise our search for manuscripts that matched our 

inclusion criteria. For inclusion, studies were required to (1) be an intervention study 

in which one of the aims of the study was examining postprandial lipemia after an 

exercise intervention; (2) include young people <18 years as participants of study at 

baseline; (3) include a measure of acute exercise manipulation performed up to 18 h 

before ingestion of a high-fat meal; (4) include a resting control condition; (5) include 

a measure of postprandial lipemia; (6) be published in the English Language in a 

peer reviewed journal up to and including July 2013. 

 

Since Zilversmit (88) suggested atherosclerosis was a postprandial phenomenon, 

evidence from case-control studies support the association between elevated 

postprandial [TAG] and cardiovascular disease (28, 59). Subsequent prospective 

epidemiological studies confirm that elevated postprandial [TAG] is linked with an 

increased incidence of future cardiovascular events in men and women, independent 

of baseline cardiac risk factors, other lipid concentrations and markers of insulin 

resistance (1, 35, 58, 68). Moreover, postprandial [TAG] may be a better predictor of 

cardiovascular disease risk than traditional fasting measures (1). 
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The majority of the daytime is spent typically in a postprandial state (14 to 16 h⋅24 h-1 

for adults) (40). Considering [TAG] reaches a peak approximately 4 h following the 

consumption of a meal in adults (58), the metabolic perturbations evident following a 

meal are unlikely to subside before subsequent meals are consumed. Regular 

exposure to elevated postprandial [TAG] facilitates the exchange of lipids between 

triglyceride- and cholesterol-rich lipoproteins and, therefore, promotes a more 

atherogenic lipid profile of TAG-rich lipoprotein remnants, small, dense low-density 

lipoprotein and low concentrations of high-density lipoprotein (7). The greater 

exposure of dietary lipoproteins to the arterial wall may contribute to the 

development of atherosclerotic plaques that precipitate the manifestation of clinically 

overt symptoms (47). 

 

Although the clinical manifestations of atherosclerotic disease are not apparent 

typically until mid-adulthood, the process of atherosclerosis is initiated during 

childhood and adolescence, and progresses over the lifespan (19, 47). Fatty streaks 

are considered to be the earliest lesion of atherosclerosis (47), with the presence of 

aortic fatty streaks identified in the first decade of life (33) and coronary fatty streaks 

in the second decade of life (74). Although fatty streaks may be fairly innocuous, 

there is convincing evidence suggesting that they can progress gradually over time 

into clinically significant atherosclerotic lesions (29, 72). Indeed, the prevalence and 

extent of fatty streaks and clinically significant atherosclerotic lesions increases 

rapidly in the arteries of adolescents and young adults (73). 

 

Several prospective cohort studies indicate that cardiovascular disease risk factors, 

including abnormal lipid and lipoprotein concentrations, during childhood and 
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adolescence can track into adulthood (2, 14, 57), and are associated with the 

development of subclinical atherosclerosis in later life (11, 17, 64). The presence of 

multiple risk factors augments the extent of atherosclerotic legions in young people 

(4). Moreover, childhood fasting [TAG] is associated independently with young adult 

cardiovascular disease (54). However, substantial variation is evident in fasting 

[TAG] in children (79), highlighting the importance of studying [TAG] in the 

postprandial period. Accordingly, lifestyle interventions, including manipulations in 

exercise energy expenditure and dietary energy intake, that moderate postprandial 

lipemia may delay atherogenic progression and should be initiated during childhood 

and adolescence (19, 47). Therefore, this manuscript will examine the effect of acute 

exercise interventions on postprandial lipemia in children and adolescents. 

Considering the infancy of this research area, evidence from adults will be 

summarised briefly before highlighting key findings to date in children and 

adolescents. 

 

Exercise and postprandial lipemia in adults 

The literature is replete with adult-based studies examining the effect of exercise and 

dietary manipulations on postprandial lipemia; these have been reviewed elsewhere 

and we encourage interested readers to access these for a more thorough 

understanding of the platform that they provide for studies with young people (e.g., 

21, 30, 38, 46, 60, 62). The effect of exercise on postprandial [TAG] appears short-

lived and dependent on the proximity of the most recent exercise session (31). The 

notion that acute continuous, moderate intensity exercise reduces postprandial 

[TAG] is well established in men and women (46). An important determinant of the 

exercise-induced reduction in postprandial [TAG] is the associated acute exercise 
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bout energy expenditure (83), although meaningful attenuations in postprandial 

lipemia are still evident following modest doses of moderate intensity exercise 

energy expenditure (~1 MJ, 240 kcal) (49, 50). Although a meta-analysis suggested 

that energy expenditure may be the primary driver of changes in postprandial 

lipemia, once two outlying studies were accounted for, the strength of this effect was 

only moderate (62). However, the authors conceded that the only basis for removing 

these outliers was their large effects relative to other studies included in the analysis 

as opposed to methodological flaws. Manipulations of exercise intensity and duration 

support a dose-dependent response in adults (26, 39), although variations in design 

characteristics preclude the identification of a so-called optimal or minimal dose. It 

should be noted that the exercise energy expenditure dose-response relationship, 

described above, applies only to moderate- to vigorous-intensity, aerobic exercise 

and does not include resistance (e.g., 61, 86) or high intensity (e.g., 18, 20) exercise 

in adults.  

 

Another avenue of research has highlighted that accumulating shorter bouts (≤10 

min) of moderate intensity exercise throughout the day appear equally effective in 

reducing postprandial [TAG] as a similar duration of continuous exercise (49, 50, 51). 

This may be important from a public health standpoint as it aligns with international 

recommendations for daily habitual physical activity accumulation (55). More 

recently, acute high intensity exercise (ranging from 90% peak OV 2 to maximal 

sprint intensity), where the total exercise dose is probably considerably less than that 

reported in many of the moderate intensity exercise studies, has been shown to 

reduce postprandial [TAG] in healthy adults (16, 18, 20). It has even been suggested 

that this type of exercise may be more efficacious than moderate intensity exercise 
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(82). 

 

A small number of studies with adults have examined the combined effect of 

manipulations in dietary intake and exercise energy expenditure to determine 

whether energy deficit or muscle contraction is the primary determinant of the 

commonly reported reduction in postprandial lipemia following an acute bout of 

exercise. Gill and Hardman (25) found that an exercise-induced energy attenuation 

of TAG was almost three times larger than the reduction seen when dietary energy 

intake was restricted in the same group of postmenopausal women the day before 

the postprandial measurements. Moreover, they reported quantitative and qualitative 

differences in carbohydrate and lipid metabolism between the energy deficit 

manipulations. After a thorough appraisal of the insulin, glucose, TAG, and fatty acid 

responses during the fasting and postprandial phases of the study, they concluded 

that “over the long term, energy deficit may improve triacylglycerol metabolism but 

the mechanisms by which exercise enhances triacylglycerol metabolic capacity are 

independent of, or at least additive to, the effects of a whole-body energy deficit” 

(p.470). A technical error in the exercise condition measurements meant that the 

energy deficit was not the same as the dietary intake restriction (1.73 vs. 1.44 MJ; 

~17% difference); however, the authors indicated that the stark difference in 

outcome measures between the conditions meant that this did not affect the general 

interpretation of the results. Two recent studies have examined the efficacy of 

combining acute exercise and energy-intake restriction protocols to attenuate 

postprandial [TAG] in healthy, young women (44, 45). Although energy-intake 

restriction alone did not exceed the reduction in postprandial [TAG] observed for 

exercise alone, the combination of exercise and energy-intake restriction did at least 
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match it (45). The authors concluded that this combination may be attractive for 

individuals when regular prolonged low- to moderate-intensity exercise is not feasible 

because of lifestyle constraints. Collectively, these studies suggest that although 

exercise energy expenditure may be a determinant in attenuating postprandial 

lipemia, the role of muscle contraction per se may need to be examined more 

thoroughly to determine its function when the exercise dose is low. 

 

Burton et al. (5) followed-up Gill’s work with Hardman (25) by comparing exercise 

energy deficit (-2.8 MJ) and exercise with dietary compensatory replacement 

(balance) with a resting control condition in overweight and obese middle-aged men. 

Both exercise conditions resulted in metabolic changes compared with a resting 

control; however, only the exercise deficit attenuated fasting and postprandial [TAG]. 

The changes in [TAG] were ascribed largely to changes in hepatic very-low density 

lipoprotein (VLDL) metabolism. The authors concluded that, to maximise the 

potential beneficial effects of exercise on postprandial lipemia, an exercise-induced 

energy deficit is required. Thus, dietary compensatory energy replacement may need 

to be monitored in individuals wishing to experience the ‘full’ benefit of exercise.  

 

Exercise and postprandial lipemia in children and adolescents 

Current international physical activity guidelines recommend that children and 

adolescents engage in 60 to 90 min of moderate intensity daily physical activity (13, 

36). However, depending on how this is quantified, many children and adolescents 

fail to meet the guidelines (65), and physical activity participation has been shown to 

decline from childhood through adolescence (56). Therefore, it is likely that exercise 

interventions in young people need to be engaging and sustainable in order for long-
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term benefits in metabolic health to emerge. This section will summarise the 

published exercise postprandial lipemia studies with young people. It has not been 

possible to identify published studies that have compared directly the effect of 

exercise and dietary manipulations on postprandial lipemia in young people. 

 

Nine studies have investigated the effect of acute exercise on postprandial lipemia in 

young people using the criteria adopted for this summary (3, 41, 42, 69, 70, 76, 78, 

80, 81). A summary of these studies is presented in Table 1. In line with the adult 

literature, a single session of moderate to vigorous intensity exercise inducing an 

exercise energy expenditure ≥1.0 MJ (240 kcal) attenuates postprandial [TAG] in 

boys and girls (3, 41, 42, 70, 78, 80, 81). Although the magnitude of change in 

postprandial [TAG] after exercise varies in these studies (Table 1), on average the 

changes are moderate with effect sizes ranging from 0.26 to 0.86 in those that 

reported statistically significant attenuations compared to a resting control condition. 

Thus, an exercise-induced deficit is efficacious, but a closer examination of the 

exercise characteristics might be more enlightening and will be used to compare and 

contrast the main outcomes with the adult-based literature appraised above. Before 

doing this, however, a brief description of the standardised methods and two-day 

experimental model may help those thinking of adding postprandial (lipemic) 

research to their portfolio. 

 

Standardised methods and two-day experimental model 

The standard two-day model that has been employed in the majority of the published 

exercise studies to date with young people is depicted in Figure 2. Each participant 

completes the two or three conditions in a random order separated by a 
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standardised period (minimum of 7 days). For the 48 hours preceding day 2 of the 

first counter-balanced condition, participants are usually asked to minimise and 

record their habitual physical activity and record their food and drink intake. These 

records are used subsequently to replicate these extraneous factors, which are likely 

to affect the study outcome measures across the conditions. The level of care in 

controlling or accounting for habitual physical activity and diet in the studies appears 

to have increased since the first study was published six years ago, which places an 

added burden on the participants. Some studies have introduced a lunch meal to 

better reflect normal dietary practice and a specific evening snack to standardise the 

fasting period. A critical feature of the two-day model is that the exercise intervention 

precedes the first blood sample by 12 to 18 hours (Table 1). This is because 

lipoprotein lipase (LPL) activity appears to peak in this period after exercise (71) and 

has been implicated mechanistically in reducing postprandial [TAG] (46). 

 

In the first published exercise postprandial lipemia study with young people, Barrett 

et al. (3) demonstrated that single sessions of continuous moderate intensity 

exercise and simulated intermittent games activity (Figure 3) reduced postprandial 

[TAG] by ~14% and 26% respectively compared with resting control in late 

adolescent boys (15.4 y). Details of the simulated intermittent games activity can be 

found in the original publication (3), but briefly consisted of four x 18 min blocks of 

walking, sprinting, cruising, jogging and rest (Figure 3). The larger reduction in the 

intermittent games activity was linked tentatively to the greater exercise energy 

expenditure; however, the evidence is limited by the indirect comparison of two 

different groups of boys in the between-measures design and absence of energy 

expenditure quantification during the intermittent games activity (3). Nevertheless, it 
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is very likely that the intermittent games arm of the study resulted in considerably 

higher energy expenditure given the total exercise time was 14 min longer and the 

average intensity was ~17% higher. In addition to being the first of its kind, this study 

is notable because the intermittent exercise was thought to better match the stop-

start nature of young people’s activity habits compared with the long-duration 

continuous exercise that dominates the adult-based postprandial lipemia literature. 

 

In a more recent study, Thackray et al. (76) investigated the acute effect of high 

intensity interval running on postprandial [TAG] in 11 to 12 year old boys. The 

exercise intervention adopted in this study involved 10 x 1 min treadmill runs at 

100% peak OV 2 (maximal aerobic speed), with 1 min active recovery between each 

interval and resulted in a moderate reduction in postprandial [TAG] compared to a 

non-exercise control condition. The high intensity nature of this exercise precluded 

the direct measurement of energy expenditure; however, considering the short 

exercise duration (10 minutes in total), it is likely the energy expenditure was lower 

than that reported in other studies in young people adopting longer and less intense 

exercise interventions (3, 41, 42, 70, 78, 80, 81), suggesting that exercise intensity is 

a key factor influencing postprandial TAG metabolism in young people. Importantly, 

the exercise protocol was well tolerated by the boys in this study, and recent 

evidence suggests that pre-pubertal boys prefer moderate intensity exercise 

interspersed with short bursts of high intensity effort compared with continuous 

moderate intensity exercise alone (9). Considering children, typically, spend a 

greater percentage of time engaged in high intensity activities than adults (34), 

exercise with an intermittent games activity (3) or a high intensity (76) component 

may be appealing interventions to enable young people to acquire metabolic health 
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benefits. We encourage further research that adopts alternative modes of exercise to 

increase the ecological validity of postprandial research, but appreciate that there 

are challenges to overcome in quantifying the energy expenditure in these studies. 

Perhaps judicious use of movement detection technologies can be employed to 

overcome this measurement issue. 

 

In contrast to the study conducted by Barrett and colleagues (3), and studies with 

adults (26, 39), subsequent studies in healthy boys do not support an exercise 

energy expenditure dose-dependent response (78, 80). Specifically, performing 60 

min of moderate and vigorous intensity exercise were similarly efficacious in 

attenuating postprandial [TAG] by ~24% and 21% respectively, despite the 45% 

greater gross exercise energy expenditure at the higher intensity (80). Moreover, 

despite doubling the gross exercise energy expenditure in the 60 min (1867 kJ) 

compared with the 30 min condition (982 kJ), the additional attenuation in 

postprandial [TAG] was trivial (20% vs. 16% respectively) (78). This led the authors 

to suggest a ‘threshold’ attenuation may exist, above which additional increases in 

energy expenditure will not reduce postprandial [TAG] further in apparently healthy 

normolipidemic boys (78). Recently, when the same study design was conducted in 

healthy adolescent girls, only the 60 min exercise condition attenuated postprandial 

[TAG] meaningfully and, therefore, does not provide direct support for a dose-

response or ‘threshold’ attenuation (81). However, it is worth noting that 56% of the 

girls in this study experienced a lower postprandial TAG response after the 30 min 

exercise condition compared with a resting control, suggesting that on an individual 

level, some girls may benefit from a lower dose of moderate intensity exercise (81).  
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Some postprandial lipemia studies have included design features that provide 

insights beyond the energy expenditure focus that has dominated the majority of 

adult-based studies and the research with young people described above; these are 

now reviewed. Consumption of meals high in fat, and the associated lipemic 

response, have been linked to endothelial dysfunction in adults (85). Endothelial 

dysfunction is considered to be the first stage in atherogenesis (66) and is 

considered to be a pre-requisite for the development of atherosclerosis (37). In a 

study of 13 healthy adolescent boys, postprandial endothelial function, indicated by 

flow mediated dilation (FMD), was reduced by 32% following a high-fat breakfast and 

24% after lunch compared with fasting in a non-exercise control condition (70). In 

contrast, 60 min of treadmill walking at 60% peak OV 2 prevented the postprandial 

decline in FMD, once it had been normalised for the post-occlusion shear rate. It is 

noteworthy that the boys in this study did not demonstrate any of the risk factors for 

coronary heart disease, yet the consumption of the high-fat meals, common in 

westernised countries (75), induced endothelial dysfunction to a similar extent seen 

in adults (70). However, although this maintenance of normal endothelial function 

coincided with an attenuation in plasma [TAG], FMD was not meaningfully related to 

[TAG] in either the control or exercise conditions or at any time point (-0.14 < r < 

0.23; P≥0.46). Hence, the authors concluded that simultaneous changes in 

postprandial lipemia and endothelial function were coincidental rather than 

causative.  

 

When 60 min of exercise at 70% peak OV 2 was accumulated throughout the day in 

6 x 10 min bouts by 12.9 y old boys, this exercise was also found to prevent the 

postprandial decline in FMD (69). However, although the total and incremental areas 



15 
 

under the [TAG] versus time curve were reduced as a result of exercise by 11% and 

16%, these differences were not statistically significant. Despite these non-significant 

changes in postprandial [TAG], the reduction in the total and incremental areas 

under the [TAG] versus time curve are in line with previous research in adolescents 

and may still be meaningful physiologically. A significant attenuation of postprandial 

endothelial dysfunction was observed after the accumulated exercise; thus, providing 

additional support that exercise-induced alterations in postprandial endothelial 

function may be independent of changes in postprandial [TAG]. Accumulated 

exercise may be particularly appealing to young people as they perceive prolonged 

activity to be more demanding than adults (77). In addition, short bouts of activity 

may be easier to incorporate into the school day than extended bouts of activity. 

 

Postprandial response in the overweight and obese 

Elevated postprandial lipemia or delayed postprandial TAG clearance have been 

reported consistently in various adult-patient groups (e.g., 28, 59, 63, 67) and some 

studies have been conducted with adults who are overweight, obese, with metabolic 

syndrome or diabetic (5, 8, 10, 15, 22, 48, 49, 52, 87). However, direct comparisons 

between healthy and patient groups are rare and present mixed results. It would 

appear that only two studies have examined the postprandial lipemic response to 

exercise in overweight young people (41, 42). MacEneaney et al. (42) found 

overweight late adolescent boys experienced a similar exercise-induced attenuation 

in postprandial [TAG] (~20%) compared with similarly-aged, normal [healthy] weight 

boys. It should be noted, however, that the overweight boys in the MacEneaney 

study (42) had no history of diabetes, heart disease, or liver dysfunction, and were 

normo-tensive, -lipidemic and -glycemic. Despite the significant body size and 
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composition differences between the two groups of boys, they were both considered 

to be healthy. Although the skinfold measures used to estimate body composition 

could not provide a more detailed pattern of fat distribution in the boys, there was a 

statistically significant positive association between the total area under the [TAG] 

versus time curve and sum of skinfolds in both the control (r = 0.49) and exercise (r = 

0.47) conditions. Moreover, [TAG] returned to baseline after 6 h in the healthy weight 

boys, but not in the overweight-boys. The authors suggested this may be due to 

delayed clearance, but recent evidence in adults may point to differences in hepatic 

release of fatty acids in TAG (12). 

 

In a study examining the effect of 60 min of moderate intensity cycling on 

postprandial lipemia in overweight black and white adolescents (41), acute exercise 

reduced [TAG] in both groups, but the reduction was greater in white (19%) than in 

black (8%) adolescents. Interestingly, the authors found increased visceral fat was a 

major contributor to the greater reduction in [TAG] seen in the white, but not black 

adolescents. As in the MacEneaney study (42), the overweight participants of this 

study were otherwise healthy. The results of the MacEneaney (42) and Lee (41) 

studies are supported by other non-exercise studies. Although obese and non-obese 

adolescents exhibit a similar postprandial TAG profile (53, 84), those with a central 

pattern of fat distribution displayed signs of impaired TAG clearance (53). 

Consequently, the potential for exercise to improve this aspect of metabolic health in 

overweight children and adolescents is promising. 

 

Mechanisms 

The mechanisms responsible for the reduction in postprandial [TAG] following acute 
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exercise in young people have not been investigated currently, largely due to the 

invasive nature of the techniques required. Consequently, the proposed mechanisms 

in adults are drawn upon to provide some insight into the exercise-induced reduction 

in postprandial [TAG] in young people. In simple terms, the mechanisms in adults 

involve either enhanced removal or diminished appearance of circulating TAG, but 

most likely a combination of the two. It is postulated that increased LPL activity, the 

rate limiting enzyme responsible for hydrolysis of circulating TAG, may facilitate the 

enhanced clearance of circulating TAG; the tissue specific location of this increased 

LPL activity may be critical, but it is not yet clear whether skeletal muscle is the 

primary site. However, reductions in postprandial [TAG] have been reported, with 

little change in postheparin plasma LPL activity (27) or skeletal muscle LPL activity 

(32). Nevertheless, exercise-induced changes in LPL activity are correlated strongly 

with the attenuation in postprandial [TAG] following exercise (27, 32). Alternatively, 

or in addition, moderate intensity exercise has been shown to reduce the 

concentration of postprandial VLDL-TAG (24, 43). Indirect evidence for altered 

hepatic VLDL secretion can be drawn from studies reporting an increase in the 

circulating concentration of fasting and postprandial 3-hydroxybutyrate (3-OHB), a 

marker of hepatic fatty acid oxidation, alongside the attenuation in postprandial 

[TAG] (23, 24, 43). This suggests a shift in hepatic VLDL kinetics from fatty acid re-

esterification and VLDL synthesis and towards hepatic fatty acid oxidation. A recent 

stable isotope enrichment study with sedentary obese women indicated that the 

reduction in postprandial lipemia after endurance and resistance exercise bouts was 

not achieved by enhanced clearance of dietary fat, but by reduced abundance of 

endogenous fatty acids in plasma TAG (12). However, this study did not use the two-

day model used most commonly in the paediatric literature (described above, Figure 



18 
 

2); therefore, it is possible that the mechanism responsible for any alterations in 

postprandial metabolism are different. 

 

Implications and future directions 

Although from a small number of studies, the evidence from young people 

demonstrates consistently that a single session of moderate to high intensity 

exercise promotes reductions in postprandial [TAG] in this population (Table 1). 

While it appears that a ‘threshold’ of exercise energy expenditure may be required to 

promote a meaningful reduction in the postprandial TAG response, the evidence of a 

dose-dependent response is not yet supported directly in boys or girls (78, 80, 81). 

The studies in Table 1 have provided high fat meals that may exaggerate the 

postprandial lipemic effect - although these are not ecologically valid, they have 

permitted comparison of the various experimental conditions. Eventually, future 

studies will need to consider meals that young people normally eat. In the absence 

of a clinical endpoint, the relevance of these findings cannot be determined from a 

clinical perspective. Nevertheless, the evidence from these studies is encouraging 

and suggests that exercise may be an effective strategy to attenuate postprandial 

lipemia in children and adolescents. Consequently, promoting a physically active 

lifestyle from a young age may stimulate regular benefits in lipid metabolism and 

have long-term implications regarding cardiovascular disease risk, but additional 

work is required to increase the evidence-base. 

 

Future acute exercise postprandial lipemia studies should examine the efficacy of 

innovative and realistic exercise and/or dietary manipulations to strengthen the 

evidence base in this area. This should include different forms of exercise, such as 
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resistance exercise and inclusion of girls, both of which are noticeably missing or 

sparse in studies with young people. In combination with other evidence, this may 

ultimately influence exercise and health guidelines in young people. Additional 

exercise-based studies are also required in young people with cardiovascular 

disease risk factors, such as fasting hypertriglyceridemia, obesity, insulin resistance 

and Type 2 diabetes mellitus. Furthermore, the influence of factors that may modify 

the postprandial TAG response following exercise, including sex, maturation, free-

living energy expenditure and habitual diet warrant attention. Moreover, some 

indirect and relatively non-invasive techniques can be employed that may help to 

develop our understanding of the mechanisms responsible for the exercise-induced 

attenuation in postprandial [TAG] in children and adolescents (e.g., ultrasound for 

blood flow or isotope-ratio mass spectrometry for gas analysis). 
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Figure legends 

Figure 1 Changes in postprandial plasma triacylglycerol concentration across 

experimental conditions. Black rectangle denotes consumption of a 

standardised test meal.  

Figure 2 Schematic of the standard two-day model employed in the majority of 

exercise postprandial studies in young people.  

Figure 3 Diagram of the Loughborough intermittent shuttle test (LIST) protocol 

employed by Barrett et al. (3). The protocol was designed to simulate 

games activity and consisted of repeated and standardised patterns of 

walking, sprinting, cruising and jogging. 
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Table 1 Summary of studies examining the effect of acute exercise on postprandial lipaemia in children and adolescents 

Study n Sex Age 
(years) Intervention (INT) EE (MJ) INT to meal 

delay (h) 
Amount of fat 

(g/kg BM)† 
Effect 
size* 

Barrett et al. 
(3) 

10 
9 

M 
M 

15.3 
15.4 

4 x 15 min TMW @ 59% peak V̇O2 
4 x 18 min LIST @ 69% peak V̇O2 

2.0 
NA 16.0 1.3 0.46 

0.78 

Thackray et al. 
(76) 15 M 11.8 10 x 1 min TMR @ 100% peak V̇O2 NA 15.5 Breakfast 1.5 

Lunch 1.1 0.50 

Tolfrey et al. 
(80) 8 M 12.9 6 x 10 min TMR @ 53% peak V̇O2 

6 x 10 min TMR @ 75% peak V̇O2 
1.5 
2.2 14.7 1.5 0.86 

0.67 

Tolfrey et al. 
(78) 11 M 13.3 3 x 10 min TMR @ 55% peak V̇O2 

6 x 10 min TMR @ 55% peak V̇O2 
1.0 
2.0 14.5 1.5 0.26 

0.32 

Tolfrey et al. 
(81) 18 F 13.0 3 x 10 min TMW @ 55% peak V̇O2 

6 x 10 min TMW @ 56% peak V̇O2 
0.8 
1.5 14.5 1.5 0.10 

0.40 

Sedgwick et 
al. (70) 15 M 13.6 60 min TMW @ 60% peak V̇O2 1.9 15.0 Breakfast 1.5 

Lunch 1.1 0.71 

Sedgwick et 
al. (69) 14 M 12.9 6 x 10 min TMR @ 72% peak V̇O2 

09:30 start (ex10:50rest) x 6 1.9 18.0 Breakfast 1.5 
Lunch 1.1 0.38 

MacEneaney 
et al. (42) 

10HW 
8 OW 

M 
M 

15.6 
15.9 

59 min TM @ 65% peak V̇O2 
52 min TM @ 65% peak V̇O2 

2.5 
2.5 

12.0 to 
14.0 

97 
g/2 m2 BSA 

0.57 
0.72 

Lee et al. (41) 21B 
17W 

9M/12F 
12M/5F 

15.4B 
14.5W 60 min cycling @ 50% peak V̇O2 

1.9B 
2.1W 14.0 64B & 66W 

g/2 m2 BSA 
0.18B 
0.46W 

Studies are arranged to match the critical appraisal in the text. †Unless indicated specifically, test meals were consumed as breakfast 
*An effect size of 0.2 represents the minimum important difference, 0.5 moderate and 0.8 large (6); all values represent effects for exercise-
induced total area under the time curve for triacylglycerol (TAUC-TAG) compared with a non-exercise control condition - taken directly from 
published studies or calculated from (Exercise x  – Control x )/pooled SD. 
EE energy expenditure; M male; F female; TM treadmill – W walk, R run; V̇O2 oxygen uptake; BM body mass; BSA body surface area; LIST 
Loughborough intermittent shuttle test; HW healthy weight; OW overweight; B black; W white 
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