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KEY POINTS 

 Heart failure is associated with significant morbidity and mortality 

 Biomarkers are commonly used for diagnostic and prognostic purposes 

 Protein-based biomarkers have been identified to aid clinicians for early diagnosis of 

heart failure and provide added information for prognosis  

 Proteomics is an ever-expanding field that employs techniques to measure a wide-

range of proteins and peptides in search to identify potential protein biomarkers 

SYNOPSIS 

Heart failure (HF) is associated with significant morbidity and mortality. Biomarkers are used 

to assist clinicians with timely diagnosis, prognosis and risk prediction of patients for 

personalized treatment. Using modern proteomic methods such as mass spectrometry, an 

increasing number of novel biomarkers have been identified that further aid clinicians in the 

early diagnosis and outcome prediction of HF. This review focuses on the array of common 

and novel protein-based biomarkers which provide diagnostic and prognostic information in 

HF. 

 

 

 

 

 

 



3 
 

Introduction 

It is estimated that in excess of 20,000 protein-coding genes are responsible for the presence 

of more than one million proteins found in biological matrices (1). The measurement of these 

proteins, commonly in plasma, serum, urine, saliva and tissue samples (2), has provided 

critical advancements in medical science through the development of diagnostic and 

prognostic assays for patients presenting with, or at risk of, a multitude of diseases (3). The 

use of protein measurements has been particularly beneficial for the assessment of 

cardiovascular disease, with notable inclusion of natriuretic peptides and troponin isoforms 

in clinical decision-making for heart failure (HF) (4) and acute coronary syndromes (ACS) (5), 

respectively. Clinical measurements of endogenous biological substances, such as proteins, 

lipids and metabolites, are commonly referred to as biomarkers and provide 

pathophysiological information through an associative or direct mechanistic interaction with 

the diseased system, organ or tissue (6). The relationships of protein biomarkers with disease 

allow physicians to assess the presence, severity, and/or prognosis of a condition with 

improved precision and accuracy (7). 

The progression in medical diagnosis and treatment of HF has been heavily influenced by the 

inclusion of protein biomarker analyses, with measurement of natriuretic peptides commonly 

employed in hospitals worldwide (8). HF is a major worldwide epidemic associated with high 

morbidity, mortality, and healthcare costs affecting more than 23 million, especially those 

aged ≥65 years (9); therefore, any improvements in diagnosis, prognosis and therapeutic 

monitoring using protein measurements provide direct improvements in patient care and 

outcome, as well as economic burden. Difficulties in HF diagnoses exist due to the 

multifactorial pathophysiology (such as cardiac stress and injury, neurohormonal activation 
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and endothelial congestion), and that the signs and symptoms may not arise during early 

stages of the disease (10, 11). Current guidelines suggest patients presenting with suspected 

HF should be referred measurement of circulating natriuretic peptides to aid in diagnosis of 

the condition (12). 

The development and pathophysiology of HF is associated with changes in the expressions of 

an array of metabolic, signaling and structural proteins (13). Although there are a number of 

protein-based assays currently used in the clinical laboratories, extensive research is being 

performed to isolate and identify novel protein biomarkers associated with HF in a bid to 

improve sensitivity and/or specificity of biomarker information. Leading these discovery-led 

investigations are mass spectrometry (MS)-based assays which involve a non-targeted 

approach to protein measurement and fall under the remit of proteomics. These assays 

measure all detectable proteins that are expressed by a cell, tissue or organism, known as the 

proteome, and reflect levels present at the time of sample collection (14, 15).  

Proteomic Biomarker Discovery 

For discovery-led proteomics investigations, the initial phase employs methods using either a 

widespan-targeted or non-targeted approach in order to measure a large number of proteins 

and/or peptides from various biological sample types. This generates a list of numerous 

proteins that are identified as associated with the condition being investigated and, therefore, 

selected as candidate proteins for subsequent verification experiments. Although many 

candidate protein biomarkers may be identified through these experimental workflows, very 

few survive the rigorous validation processes leading to the development of high-throughput 

assays for measurement (16). Mass spectrometry (MS) is the most widely used 

instrumentation for non-targeted discovery and identification of potential protein 
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biomarkers. It allows for quantitative and qualitative analysis, peptide sequencing and 

identification with great accuracy and sensitivity (17). Proteomic workflows can vary greatly 

across investigations, including sample preparation, chromatographic gradients and inclusion 

of complementary analytical techniques such as ion mobility spectrometry. Furthermore, 

differences across studies in data processing and statistical testing can lead to 

misidentification or masking of candidate biomarkers. These widely varied approaches 

provide limitations in that biomarker identification may not be reproducible across multiple 

methods, complicating the validation process for novel protein biomarkers. Typically, MS 

method workflows include fractionation to crudely separate proteins in the sample, removal 

of highly abundant proteins such as albumin in plasma samples, further separation of each 

fraction using liquid chromatography, and MS using electrospray ionization (ESI) in positive 

ion mode coupled to accurate mass analyzers such as time-of-flight (ToF) and orbitrap (18). 

Alternatively, gel-based approaches are initially employed to separate proteins by their 

isoelectric point and then by mass using polyacrylamide gel (SDS-PAGE), followed by staining, 

excising, digesting using trypsin and analysis by MS (19). Following identification of candidate 

biomarkers, mass spectral data are cross-referenced with large-scale databases to confirm 

protein identification. Errors in protein quantitation in global discovery techniques can be 

associated throughout the analytical workflow from samples preparation to analysis. To assist 

in reducing these errors, isotopic labelling of internal protein standards can allow for relative 

quantitation of multiple proteins. Examples of these include metabolic labelling (15N) and 

isotope-coded affinity tags (ICAT), however, they lack in accuracy and precision and more 

reliable approaches for sample-wide quantitation are required (20). 

Traditional non-targeted MS based methods are important in candidate biomarker 

identification, however complex sample preparation and analysis steps create a time 
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consuming process that limits the throughput required for larger-scale validation studies. 

Once a list of candidate biomarkers is produced, a shift toward targeted MS approaches 

allows for improved specificity, reproducibility and quantitation of candidates, while also 

drastically reducing the analytical run time. A commonly employed approach for targeted MS 

is to develop assays using selective or multiple reaction monitoring (SRM/MRM), where a 

single ion (SRM) or up to five fragment ions (MRM) are monitored in association with a 

specific product ion, typically using a triple quadrupole MS system which is able to provide 

enhanced discriminating power, leading to increased sensitivity, absolute quantitation (21, 

22) and improved cross-compatibility between instrumentation (23). Aside from ESI-MS, 

matrix-assisted laser desorption ionization (MALDI) ToF based MS is employed for targeted 

MS where proteins of interest can be isolated using immunoprecipitation or LC prior to 

spotting onto a target plate for analysis. Several targeted protein analyses using MALDI have 

been reported (24, 25), including an application in clinical studies (26, 27). Prior to 

commercialization, targeted protein experiments must replicate the results observed from 

the non-targeted investigations, as well as expanding to larger sample cohorts including 

diseased and non-diseased populations to validate as a biomarker of a condition and to 

understand normal ranges and potential disease cut-off values. 

As protein expressions exhibit multifaceted temporospatial characteristics driven by 

responses to physical and/or biological stimuli, there are several complexities involved in the 

process of identifying a novel protein biomarker. In order to confirm the utility of a candidate 

biomarker for a clinical purpose, several steps must be achieved including discovery, 

qualification, verification, optimization and validation, followed by commercialization and 

distribution of assays (28) (Figure 1). Although the discovery of novel proteins is driven by 

mass spectrometric methods, validation and commercialization more frequently involve 
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traditional antibody-based techniques such as ELISA, Western Blotting and immunoblotting, 

with the less common use of MS-based methods in a clinical setting dictated by obstacles in 

regulatory approval and cross-site/equipment reproducibility (29). Regardless of the most 

suitable analytical method, a successful biomarker must be easily measured, low cost, 

patient-friendly, and show high levels of sensitivity and specificity for their purpose (e.g. 

diagnosis, prognosis) (30). 

This review intends to highlight the current clinical uses of protein biomarkers in HF (Figure 

2) and discuss the application of targeted and non-targeted proteomic investigations to 

discover and develop novel biomarkers centered on using a personalized medicine approach 

for improved prognostic information.  

Markers of cardiac stress 

BNP/NTproBNP 

B-type natriuretic peptide (BNP) is perhaps the most widely used biomarker for cardiac stress. 

It is a central component in cardiovascular homeostasis and is released from the 

cardiomyocytes, primarily located in the ventricles, in response to stress and stretch of the 

cardiac muscle (31). After binding to specific receptors, BNP is activated and drives a 

reduction in systemic vascular resistance, antagonizes the actions of the renin-angiotensin-

aldosterone system (RAAS), and promotes vasodilation and natriuresis (32). BNP has been 

studied extensively for its role as a diagnostic (33-35) and prognostic (36-38) biomarker in HF, 

including both chronic patients and acute decompensated admissions. However, an 

important limitation of BNP for HF diagnosis is that circulating levels may become elevated in 

response to alternative disorders such as renal dysfunction, left ventricular hypertrophy and 

right ventricular dysfunction (39). Furthermore, as factors such as sex, age and body mass 
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index are also associated with fluctuations in BNP levels, accurate interpretation of circulating 

concentrations is crucial (40). 

In addition to uses in diagnosis and prognosis, BNP has shown utility for the monitoring of 

patients treated with diuretics and vasodilators such as ACE inhibitors (41), angiotensin-II 

receptor antagonists (42), and aldosterone inhibitors (43). Circulating BNP levels are known 

to fall rapidly following successful treatment strategies, therefore repeat measurements of 

BNP concentrations provide an observation of responses to medical interventions. 

Although widely used in clinical analysis, BNP exhibits a short half-life (approximately 20 

minutes) when present in the circulation (44) and, therefore, care must be taken during the 

sampling and storing of blood samples. N-terminal proBNP (NTproBNP) is released in 

conjunction with BNP and is considered as a more stable alternative due to its longer half-life 

(45). NTproBNP has reported similar characteristics to BNP as a biomarker for diagnosis (46-

48), prognosis (42, 46, 49) and guided treatment (50) in HF.  

When studied in direct comparison, BNP and NTproBNP show comparable utility for diagnosis 

(42), prognosis (51, 52) and biomarker-guided therapy (53) in chronic HF, with reductions in 

all-cause mortality reported with titration of therapies based on repeat measurements. 

Circulating levels of these natriuretic peptide biomarkers are increased in HF and are strongly 

associated with disease severity and myocardial stretch (54). Studies, such as the Valsartan 

Heart Failure Trial (Val-HeFT), have also shown BNP and NTproBNP to provide superior 

prognostic information when compared to alternative neurohormonal markers of risk (55).  

Molecular forms of BNP 
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There have been recent research efforts to further understand the degradation pathways of 

BNP and, with its short half-life in circulation, experiments have also reported the presence 

of its molecular forms. These molecular forms are truncated BNP peptide chains that are 

synthesized by the proteolysis of end-chain amino acids and have been identified in the 

circulation of HF patients (e.g. BNP 3-29, 3-30, 4-29, 5-29 etc.), with BNP 3-32, 4-32 and 5-32 

reported as the most commonly present (56). These molecular forms have recently emerged 

as potential biomarkers for HF, with the major forms previously implicated in ischemic heart 

disease (57), a major risk factor for development of HF. Furthermore, molecular forms have 

been reported to more closely associate with clinically measured BNP levels in comparison to 

the parent BNP molecule (BNP 1-32). This suggests that the specificity of clinical BNP assays 

is not unique to BNP 1-32, and that the combination of intact and molecular forms of BNP is 

a more accurate representation of circulating BNP measurements (58). More recently, 

molecular forms of BNP have shown superior or comparable prognostic qualities to NTproBNP 

for risk stratification of acute HF patients. BNP 3-32, 4-32, and notably 5-32 were able to 

independently predict adverse outcome of patients at 6 months and 1 year, outlining its use 

as a biomarker to guide outpatient management (27). However, direct mechanistic actions of 

these truncated forms, along with the dynamics and kinetics of their degradation pathways 

are not currently understood and remain areas of current research.  

ANP 

Atrial natriuretic peptide (ANP) is primarily secreted from the atria and has similar 

physiological properties to BNP. It is thought to play a role in early HF by preserving the 

compensated state of left ventricular dysfunction (59). Although reported to be a prognostic 

indicator in HF, studies have reported ANP as inferior to BNP primarily due to its decreased 
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stability in circulation and its insensitivity to levels of HF severity (60, 61). Other forms of ANP, 

such as N-terminal ANP (N-ANP/NTproANP) and mid-regional pro-ANP (MRproANP), have 

also been shown to offer diagnostic and prognostic roles in HF (61-63). MRproANP has far 

greater stability in circulation and therefore could prove more suitable for use as a biomarker 

in comparison to ANP. An investigation using The Biomarkers in ACute Heart Failure (BACH) 

cohort reported that MRproANP was a suitable diagnostic and prognostic biomarker in 

dyspneic patients, with results comparable to BNP (63). Furthermore, additional studies have 

also indicated that MRproANP provides additive prognostic information to NTproBNP in 

chronic HF (64) and as a diagnostic marker of acute destabilized HF in patients with dyspnea, 

again reporting comparable results to the use of both BNP and NTproBNP (65). 

ST2 

ST2 is a member of the interleukin receptor (IL-1) family and has been identified as the target 

for IL-33 which is expressed under biochemical stress of the heart (66). ST2 is basally 

expressed by cardiomyocytes and is detectable in circulation in its soluble form which is 

elevated in response to mechanical stress of the heart (67). Its utility has been recognized in 

HF as an independent predictor of mortality or need for transplantation in severe chronic HF 

patients (NYHA class III/IV) (67), as well as providing prognostic information for acute HF 

patients when combined with natriuretic peptides (68), suggesting applicability as a 

biomarker in combination with current clinical testing strategies (e.g. BNP and NTproBNP). 

Furthermore, although NTproBNP showed improved diagnostic accuracy for patients with 

acute HF, the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency 

Department) study showed that ST2 was a suitable biomarker to predict 1-year mortality in 

dyspneic patients, irrespective of a positive or negative diagnosis of acute destabilizing HF 
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(69), offering a more generalized biomarker function that can be further refined when 

applying a multi-biomarker approach.  

MRproADM 

Adrenomedullin (ADM) is a peptide hormone that has natriuretic, vasodilatory and 

hypotensive effects on the heart, with plasma concentrations elevated in response to these 

effects, such as seen in chronic HF (70). However, since ADM is unstable in circulation, its mid-

regional pro-hormone fragment (MRproADM) is often measured to perform an indirect 

quantification (71). It has reported a varied role in prognosis, providing information for short- 

(30 days) and long-term (4 years) prognosis, but less success for mid-range predictions of 

outcome (1 year) (72). MRproADM has also been successfully demonstrated as a prognostic 

biomarker for acute HF patients presenting with dyspnea (73). In this study it was reported as 

a superior biomarker to both BNP and NTproBNP for the short-term prediction of mortality 

(90 days) as well as for subsequent patient rehospitalization (73). Data suggest it has a suitable 

role for use in HF prognosis, however, further investigations to confirm its superiority to 

current biomarkers are warranted.  

Markers of inflammation or injury 

Troponin 

Troponin proteins are found in cardiac and skeletal muscle tissue and are involved in the 

regulation of actin and myosin interactions during muscle contraction. Troponin I (cTnI) and 

T (cTnT) have unique isoforms that exist only in cardiac muscle allowing the measurement of 

these specific isoforms to provide information in cardiovascular disease, notably as diagnostic 

biomarkers for ACS (74). However, development of high-sensitivity troponin assays have 
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further allowed the measurement of elevated cTnI/cTnT levels in HF patients (75, 76), with 

increased concentrations associated with poor outcome. High-sensitivity assays for cTnT have 

been applied for prognosis in chronic HF, with circulating concentrations able to predict 

mortality and hospitalization in stabilized patients (77). Furthermore, cTnT has been shown 

as a suitable marker to reflect myocardial damage in severe chronic HF (78), to risk-stratify 

patients on admission for subsequent mortality and morbidity (79), and to identify patients 

at high-risk of disease deterioration (80). For acute decompensated HF in the absence of ACS, 

cTnT is a prognostic marker for short- and long-term outcomes (81).  

In addition, cTnI has been shown to reflect elevated BNP levels, impaired hemodynamics and 

worsening of left ventricular dysfunction (82). For acute admissions, serial changes in cTnI 

levels over 90 days were functional in predicting increased likelihood of mortality and 

rehospitalization (83). When used in combination with BNP measurements, cTnI 

measurements on admission were shown to predict in-hospital mortality, and increasing 

concentrations were associated with risk of death in a large-scale registry cohort (The Acute 

Decompensated Heart Failure National Registry {ADHERE}) (84, 85). 

H-FABP 

Heart-type fatty acid-binding protein (H-FABP) is a small cytosolic protein involved in 

transporting long-chain fatty acids in the myocardium and is released in response to 

myocardial damage (86), indicating its potential as a sensitive biomarker for acute myocardial 

infarction (MI) (87). H-FABP concentrations are known to be increased in congestive and 

chronic HF (88), and reported to be a more sensitive than troponin to detect myocardial 

damage and identify patients at high-risk (86). Initial investigations have been performed to 
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understand the role and/or association of H-FABP in HF, however further studies are required 

to assess its utility in comparison with current clinical measurements. 

CRP 

C-reactive protein (CRP) is a traditional marker of inflammation and high concentrations are 

commonly associated with mortality in acute MI patients. However, studies have also shown 

increased CRP levels in HF patients, reflecting myocardial damage (89) and associations with 

HF severity, mortality and morbidity (90), and rehospitalization (91). Data indicate that CRP 

can be used as a predictor for deterioration of heart function, however it has also been 

reported to show no statistical association with left ventricular ejection fraction, providing 

complications for its suitability and specificity as a biomarker in HF (92). 

TNF-α 

Tumor necrosis factor-α (TNF-α) is a cytokine involved in inflammation and has been reported 

to exhibit elevated levels in chronic HF (93). TNF-α has also been implicated in newly 

diagnosed HF patients, with elevated levels associated with abnormal left atrial dysfunction, 

and advanced left ventricular diastolic and systolic dysfunction (94). Further associations have 

been reported with NYHA class and disease severity (95), alongside the use of TNF-α as a 

predictor of mortality in advanced HF (96).  

IL-6 

Interleukin-6 (IL-6) is also a cytokine involved in inflammation, but has additional 

cardiovascular properties through regulation of cardiomyocyte hypertrophy and apoptosis 

(97). Cardiac IL-6 expression is reported to increase in advanced HF, providing suggestion for 

its potential role in prognosis (98). In addition, elevated IL-6 levels have been associated with 
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left ventricular dysfunction prior to HF diagnosis, highlighting its potential utility as a risk 

marker for the onset and progression of HF (99). This prognostic ability has been confirmed 

in acute HF for prediction of short- and long-term mortality, both as a sole biomarker and in 

a multi-marker approach when combined with NTproBNP (100). Furthermore, IL-6, along with 

CRP and IL-4, concentrations have been shown to increase during a coronary event, returning 

to pre-event levels as symptoms of HF subside over time. This observation indicates a 

potential role for IL-6 in differentiating between the decompensated and compensated state 

(101). 

Markers of neurohormonal activation 

Copeptin 

Pre-pro-vasopressin is preteolytically cleaved into copeptin, neurophysin II and vasopressin, 

with the latter also known as antidiuretic hormone that has a prominent  role in fluid 

homeostasis and shown to be related to the severity of HF (102). However, vasopressin is 

known to exhibit instability in circulation and therefore is troublesome for clinical 

measurements. On the other hand, copeptin is considered to have a high stability and is 

released in equimolar concentrations to vasopressin, allowing a more reliable and 

reproducible alternative for indirect measurement of vasopressin (103). Research into the 

clinical role of copeptin as a prognostic biomarker has been compared to measurements of 

natriuretic peptides and initial indications suggest it offers a superiority in prediction for 14- 

and 90-day mortality in acute admissions (73, 104) and longer-term prediction at 24 months 

for patients across various stages of disease (105), as well as for those with advanced HF (106). 

Although a relatively contemporary biomarker for HF, data highlight copeptin measurements 

as a potential clinical tool for risk-stratification, particularly in acute cases.  
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MMPs 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent protease enzymes required 

for normal tissue remodeling, and mediating collagen metabolism and extracellular matrix 

(ECM) homeostasis (107). Four common classes of MMP’s have been identified: gelatinases 

(MMP-2 and MMP-9), collagenases (MMP-1 and MMP-8), stromelysin (MMP-3) and 

matrilysin (MMP-7), all of which are regulated by tissue inhibitors (TIMPs) (108). 

Elevated MMP-9 and MMP-2 concentrations have been reported in HF patients (105), with 

the latter associated with mortality (109). Conversely, MMP-8 has been shown to exhibit a 

decreased concentration in chronic HF patients (110). Although there are variable alterations 

of MMPs in patients and more extensive research is required to identify their individual 

suitability for prognostic investigation, data do suggest that they offer additional information 

when included within a multi-biomarker panel (111). These panel risk scores can improve the 

information available to identify disease process and HF risk in-line with changes to ECM 

collagen homeostasis and activity of enzymes of remodeling.  

Markers of remodeling 

Galectin-3 

Galectin-3, a member of the lectin family, has shown to be implicated in multiple aspects of 

HF physiology, including inflammation and ventricular remodeling. It is secreted by activated 

macrophages which proliferate and cause cardiac fibrosis (112, 113), and has been 

demonstrated to provide a positive role as a prognostic marker of HF (114, 115). Elevated 

gelactin-3 levels have been associated with an increased risk of HF and mortality (116), with 

a two-fold increase in levels associated with a two-fold increase in risk of death or 
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rehospitalization over an 18-month period (114). Furthermore, increased concentrations 

have also been associated with adverse outcome in patients with preserved ejection fraction 

(HFpEF) (117). As with many proteomic biomarkers of HF, study into the role of gelactin-3 

requires further research, but initial data offer potential as a marker to stratify patients for 

HF with or without remodeling. 

GDF-15 

Growth differentiation factor-15 (GDF-15) is a stress-responsive, transforming growth factor 

beta-cytokine involved in inflammatory and apoptotic pathways of tissue injury. It is an 

emerging marker of cardiac dysfunction and elevated levels of GDF-15 have been shown to 

identify high-risk cardiovascular disease patients (118, 119). Elevated GDF-15 has 

demonstrated mortality prediction in patients with chronic HF, with increased expression of 

GDF-15 linked to the promotion of protective mechanisms for inhibition of apoptosis, 

hypertrophy and adverse remodeling (120). Elevated levels have also reported prognostic 

utility in both patients with reduced (HFrEF) and preserved (HFpEF) ejection fraction, adding 

to current markers such as troponin and NTproBNP (121, 122). For acute decompensated HF, 

elevated GDF-15 concentrations have shown prognostic value for predicting mortality and HF 

rehospitalization at 1-year, supported by twenty-one original studies (123, 124).  

Markers of associated comorbidities 

Cystatin C 

Cystatin C is a small protein molecule that is involved in the extracellular inhibition of 

cathepsins. It is removed from circulation through the kidneys, thus providing biomarker 

information for renal dysfunction and therefore an interest within cardiovascular disease 
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(125). Cystatin C has shown prognostic capabilities in chronic HF patients as well as those with 

reduced ejection fraction (126-128). These positive relationships with adverse outcome in HF, 

as well as providing information on dysfunction in the renal system, signify cystatin C as a 

useful biomarker for a combinatory view of cardiovascular disease and its comorbidities. 

NGAL 

Neutrophil gelatinase-associated lipocalin (NGAL) is an innate antibacterial factor protein of 

the lipocalin family, initially found to be expressed in neutrophils and later in kidney tubular 

cells. In kidney dysfunction, NGAL has been shown to be an early marker of injury in animal 

models and detectable in blood and urine following acute kidney injury (129, 130).  

In chronic HF patients, NGAL concentrations were found to be increased when compared to 

healthy subjects (131, 132). However, their applicability as a prognostic marker was proven 

to be inferior to currently established protocols (e.g. NTproBNP) (133). In acute cases, the 

GALLANT [NGAL EvaLuation Along with B-type NaTriuretic Peptide (BNP) in acutely 

Decompensated Heart Failure] trial indicated that NGAL was a strong short-term (30 days) 

prognostic predictor of HF-related outcomes (134).  

Procalcitonin 

Procalcitonin is a precursor peptide of calcitonin and a diagnostic marker of bacterial 

infections, such as in pneumonia (135), with elevated levels also measured in HF patients 

(136). Elevated procalcitonin concentrations were able to predict the risk of long-term death 

and rehospitalization in acute admissions, irrespective of bacterial infections (137), and were 

observed to be in-line with disease severity for chronic patients (138). Additionally, serum 
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procalcitonin concentrations provided diagnostic information for HF with high sensitivity and 

specificity (139).  

Contemporary proteomic biomarkers 

Recent research has led to an increased number of protein biomarkers that show promise in 

diagnosis and prognosis of HF conditions. For example, Proenkephalin A (PENK) and 

Chromogranin A (CgA) are proteins measured in the circulation that have shown utility as 

biomarkers in HF, and efforts to validate these for transition into a clinical setting are 

underway. PENK is a small endogenous opioid peptide which is cleaved to produce 

enkephalin. Studies have shown that enkephalins are released from non-neuronal tissues, 

including the kidneys and heart, in response to ischemia (140). In chronic and acute HF, PENK 

is associated with glomerular function, but does not offer significantly additive prognostic 

information in addition to current biomarkers of renal function (141). However, it has 

demonstrated useful prognostic information for hospitalization or mortality in stable HF 

patients (142). In addition, PENK concentrations have shown predictive capabilities for in-

hospital mortality in acute HF patients, as well as indicating those at risk of worsening renal 

function (143). CgA is a prohormone produced in various tissues including the heart. 

Hyperglycosylations of CgA lead to its impaired conversion to catestatin, an action found to 

be associated with acute HF outcomes (144). Mixed prognostic quality has been reported in 

the literature with studies showing CgA to be associated with the severity of chronic HF and 

a prognostic marker for mortality (145), but providing no additive information for prognosis 

when compared to established protocols and biomarkers (146). In addition to CgA, 

chromogranin B (CgB), which is co-localized with CgA, has also shown an increase in 

concentrations to follow severity and development of HF (147). 
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Although PENK and CgA have been taken forward to extended validation studies, discovery-

focused proteomics experiments have identified a number of circulating proteins as potential 

novel biomarkers for HF. The use of urine sampling as a less-invasive alternative to the 

traditional blood draw has led to an interest in highlighting urinary proteins for diagnostic 

testing in HF. Two proteins, insulin-like growth factor binding protein 2 (IGFBP-2) and 

orosomucoid 1 (ORM1), have been reported to possess diagnostic potential providing 

additive information to current biomarkers such as BNP for IGFBP-2 (148), as well as 

increasing concentrations in-line with severity of chronic HF and good diagnostic sensitivity 

(95%) and selectivity (85%) for ORM1 (149). These are examples of proteomic biomarkers that 

have provided initially positive associations, but further validation in extended experiments 

is required.  

Other novel protein discoveries have been supported with initial mechanistic and/or clinical 

investigations and therefore are following the required pathway for translation into a clinical 

setting. Leucine-rich α2-glycoprotein (LRG) was reported to have an exaggerated expression 

in patients with a measured BNP of ≥100 pg/mL, and provided similar diagnostic statistics to 

BNP (150). In addition to this, the authors demonstrated cardiac myocytes to be the origin of 

LRG release and more recently it was observed that LRG was active in suppressing adverse 

remodeling post-myocardial infarction (151), and that LRG release in HF may be in response 

to pressure overload. Calcium-binding proteins A8/9 (S100A8/9) have also been reported to 

exhibit an upregulated expression as a protective mechanism in HF development, with an 

observed contribution to the anti-HF effect of hypertrophic preconditioning (152). In addition 

to their mechanistic interactions, S100A8/9 have also been shown to provide predictive 

qualities for mortality in elder patients with severe HF (153). Similarly, circulating heat shock 

protein 70 (HSP70) has been shown to rise in concurrence with cardiac expression (154) and 
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HF severity (HF) (155), and has been implicated as a potential biomarker for early diagnosis 

of HF (155). 

Although the prior examples of novel biomarkers have undergone initial stages of mechanistic 

and clinical validation, more recent experiments have indicated further potential biomarkers 

that remain at the discovery phase. For example, quiescin Q6 (QSOX1) has shown promising 

signs of a biomarker that is specific to acute decompensated HF with dyspnea, with reduced 

and comparable levels measured in chronic HF patients and healthy volunteers (156). QSOX1 

has been shown to increase in the left ventricle in an animal HF model (157) and provides 

diagnostic qualities that are equal to BNP and NT-proBNP (156), with increased specificity 

over natriuretic peptides for diagnosis of acute decompensated HF in patients, irrespective of 

the presence of previous stable HF.  

Many candidate proteomic biomarkers for HF have been discovered and are still in the 

research phase to determine their roles in HF. Limited information regarding their additive 

role as biomarkers in HF is available and further research for their capacity is required. 

Extending from single biomarker analyses, proteome-wide investigations have provided 

insight into multi-biomarker models to predict future disease developments. A notable 

example was presented by Hollander et al. who identified a list of 17 candidate protein 

biomarkers that, when combined with BNP measurements, were able to provide 97% 

sensitivity and 100% specificity for classifying patients on recovery from cardiac transplants 

(158). This provides an exciting opportunity to provide outpatient screening to monitor 

response to HF treatments but requires extensive additional testing to validate its 

applicability for everyday clinical use.  
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Summary 

A wide range of protein-based cardiac biomarkers have shown success in diagnostic and 

prognostic applications, with several already established as routine measurements in clinical 

laboratories. Extensive research efforts are currently underway to enhance our knowledge of 

protein-cardiovascular disease interactions, led by proteomic-based organizations such as 

Human Proteome Organization (HUPO). The flagship venture has been The Human Proteome 

Project (HPP) that is looking to map the entire human proteome to further our understanding 

in the localized and systems biology of proteins and protein-protein interactions for 

diagnostic, prognostic and therapeutic roles in disease (159). In particular, HUPO has 

emphasized the need to develop open-access databases that allow the sharing of proteomics 

research data across equipment and institutions to detail the human proteome library (160). 

The advancement of technologies, such as mass spectrometry, which complement traditional 

enzyme-based assays have allowed the development of highly sensitive  and selective 

methods with the ability to measure multiple relevant biomarkers in a high-throughput 

manner. Although at a stage of infancy for translation to functional clinical laboratories, these 

methods offer potential for future advancements in breadth and depth of clinically-relevant 

biomarkers. In addition, the use of multiple ‘omics-based investigatory pathways, including 

proteomics, metabolomics, lipidomics and genomics, allow for the discovery and validation 

of novel biomarkers that provide improved clinical information to patients in cardiovascular 

disease and beyond. An example of this approach includes the focus of implementing the 

combination of protein and metabolite biomarkers to improve risk-stratification, with recent 

demonstration of enhanced prognostic capabilities in chronic and acute HF when combining 

BNP/NTproBNP with trimethylamine N-oxide, a metabolite biomarker linked to gut microbial 
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breakdown of dietary molecules (161, 162). Continued efforts for biomarker discovery and 

validation offer the promise to unearth novel and contemporary molecules for application in 

personalized and precision medicine, with the potential to lead to improved prognosis, 

treatment and early diagnosis of conditions at the center of public health concerns. 
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Figure 1  Protein biomarker discovery pipeline of novel candidate biomarkers 

 

ELISA, enzyme-linked immune-sorbent assay; LC-MS, liquid chromatography mass 

spectrometry; LC-MS/MS, liquid chromatography tandem mass spectrometry; MRM, multiple 

reaction monitoring  
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Figure 2 Protein biomarkers of heart failure and their various pathophysiological 

associations  

 

ANP, atrial natriuretic peptide; BNP, B-type natriuretic peptide; CRP, C-reactive protein; GDF-

15, growth differentiation factor-15; H-FABP, heart-type fatty-acid binding protein; IL-6, 

interleukin-6; MRproADM, mid-regional pro-adrenomedullin; NGAL, neutrophil gelatinase-

associated lipocalin;  NTproBNP, N-terminal pro B-type natriuretic peptide; PENK, 

proenkephalin; TNF-α, tumour necrosis factor-α 

 


