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Abstract 

 In premenopausal women, the most severe menstrual dysfunction is amenorrhea 

and is associated with chronic hypoestrogenism.  In postmenopausal women, the coincident 

hypoestrogenism observed is associated with a number of clinical sequelae related to 

cardiovascular health.  Due to an observed cardioprotective effect of E2, persistently low E2 

levels in amenorrheic (AM) athletes may confer deleterious effects on cardiovascular health.  

The incidence of amenorrhea among athletes is much greater than that observed among 

sedentary women.   Recent data in AM athletes demonstrate impaired endothelial function, 

elevated low- and high- density lipoprotein levels, reduced circulating nitrates and nitrites, and 

increased susceptibility to lipid peroxidation.  An improvement in endothelial function has also 

been reported during the recovery of menstrual cyclicity in a small sample of previously AM 

athletes.  Although no longitudinal studies exist, these findings are suggestive of increased risk 

of premature cardiovascular disease in AM athletes.  These issues are explored and discussed in 

detail in this comprehensive review paper.  Future research should focus on the presentation and 

progression of these adverse cardiovascular parameters in physically active women and athletes 

with hypoestrogenism to determine their effect on long-term health outcomes.   

 

 

 

Key words: amenorrhea, athlete, endothelium, c-reactive protein, endothelin, E2, homocysteine, 

lipids, nitric oxide, exercise. 
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Introduction 

Unprecedented numbers of women are now participating in physical activity and sport on 

a regular basis [1].  The physiologic benefits of regular exercise are well documented.  However, 

between 2 and 46% of athletic women have reported experiencing amenorrhea (absence of 

menstruation for 3 consecutive months or greater) at any given time, compared to 2-5% of 

eumenorrheic sedentary women [2].  A chronic deficit in energy intake relative to energy 

expenditure is likely the primary cause of exercise-associated amenorrhea [3, 4, 5], although 

insufficient oxidizable metabolic fuel [6], and psychological stress [7] have also been indicated.   

The harmful effects of hypoestrogenism upon bone health in amenorrheic (AM) athletes 

has previously been reported [8, 9].  Specifically, a medical condition termed The Female 

Athlete Triad defines the co-existence of disordered eating, amenorrhea and low bone mass in 

athletes [2, 10].  Since a cardiovascular role for E2 has been identified, impaired cardiovascular 

health has been suggested as an additional clinical sequelae of hypoestrogenism [11]. For 

example, it has been demonstrated that chronically hypoestrogenism exerts unfavorable effects 

upon serum lipids [12, 13], vascular tone [14], hemostatic parameters [15], blood flow [16], 

homocysteine [17, 18], and antioxidant status [19].  However, much of these data derives 

predominantly from studies of postmenopausal women, as well as animal and in vitro models.   

In AM athletes, recent data identifies impaired endothelial function [11], elevated low-

density and high-density lipoprotein levels [20], reduced metabolites of nitric oxide, (nitrates and 

nitrites) [21], and increased susceptibility to lipid peroxidation [22] as potential cardiovascular 

consequences, presumably due to the hypoestrogenism.  Although the clinical significance of 

these consequences remains undetermined, these findings are suggestive of a potentially 

increased risk of premature cardiovascular disease (CVD).   



Cardiovascular status in amenorrheic athletes                                                   Page 5 

This purpose of this paper is to bring together the relevant data surrounding exercise-

associated amenorrhea using both traditional and novel markers of CVD.  Due to the dearth of 

information on AM athletes and cardiovascular health, data derived from postmenopausal 

women, animal models, and in vitro studies are drawn upon to provide an indication of how E2 

status may impact such markers.  While these studies offer insights to the effects of the hypoE2ic 

milieu, there are obvious limitations when extrapolating these findings to AM athletes, i.e., the 

postmenopausal woman is likely to present with multiple risk factors that are inherent with 

aging, whereas the AM athlete will likely have minimal or no risk factors.  Thus, extrapolations 

are intended simply to assist our ability to understand the effects of hypoestrogenism per se on 

key cardiovascular health parameters.  We will also utilize comparisons to anorexic women due 

to similarities in age, menstrual status, and often, exercise behaviors.  Serum lipids, lipid 

peroxidation, nitric oxide, and endothelin are examined in this review.  Due to the predictive 

value of recently identified novel markers to assess risk of future cardiovascular disease or 

events, endothelial function, homocysteine and c-reactive protein are also discussed.    

 

1. Total Cholesterol 

1.1 Introductory Comments: Cholesterol, a waxy, fat like substance, is present in every cell in 

the body.  Functionally, cholesterol is important to cellular membrane structure, as well as to 

synthesize vitamin D, the adrenal gland hormones, and the steroid hormones, namely E2, 

progesterone, and androgens [23].  Cholesterol also plays a key role in the formation of the bile 

secretions that emulsify fat during digestion [23].  Cholesterol is derived from dietary sources 

and is synthesized de novo, predominantly by the liver and intestines, in the cytoplasm and 

microsomes from the two-carbon acetate group of acetyl-CoA [23].  The level of cholesterol 
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synthesis is regulated, in part, by 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) 

synthase, the rate-limiting enzyme in cholesterol biosynthesis [24].  Dietary fat intake, 

specifically saturated fatty acids, also regulates cholesterol levels by increasing the hepatic sterol 

pool and by down regulating LDL receptors, the principle route of clearance of LDL cholesterol 

[25], the primary cholesterol-containing atherogenic lipoprotein (60-70% cholesterol) [26].  The 

other two major classes of lipoprotein particles found in fasted serum are (1) high density 

lipoproteins (HDL), considered the atheroprotective lipoprotein (20-30% cholesterol), and (2) 

very low density lipoproteins (VLDL), primarily a triglyceride-containing lipoprotein (10-15% 

cholesterol) [26].   

The link between blood lipid levels and CVD is well recognized [27,26].  Desirable 

serum total cholesterol (TC) levels are identified as <5.18 mmol/L [26], while elevated TC 

[>5.18 mmol/L] is acknowledged as an independent risk factor for the development of coronary 

heart disease and cerebral vascular diseases [28].  Factors shown to affect TC levels include age, 

gender, heredity, HRT, sedentary lifestyle, cigarette smoking, excessive alcohol intake, 

overweight and obesity, diabetes, diet, and thyroid dysfunction [26,29,30,31,32].  To avoid 

repetition, the impact of hypoestrogenism and exercise on LDL and HDL metabolism are not 

discussed here, but in the relevant sections of this paper. 

1.2  Postmenopausal Women and TC:  Longitudinal data observing the effects of menopause on 

lipid parameters report increased TC, mainly due to increased LDLs and triglycerides, and 

decreased HDLs [39].   Such alterations in TC are predictive of mortality due to CVD [40], and 

are associated with aging (41) and E2 deficiency [32].  Studies have consistently shown that 

postmenopausal women receiving unopposed [33,34, 35] and opposed [33, 36,37,38] HRT 

exhibit reduced TC levels, typically through lowering LDLs, with some data also showing an 
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increase in HDLs, and no consistent effect observed for triglycerides.   The mechanisms of E2 

regulation upon LDL, HDL and triglyceride metabolism are detailed in the respective sections of 

this paper.    

1.3 AM Athletes and TC:  The majority of studies reporting  TC levels in AM and EU athletes 

[22,42, 43,44] show no significant difference between the groups [see Table l].  However, one 

study, which statistically was the only study to have the power to detect differences between the 

groups, reported elevated TC levels in AM compared to EU athletes [20], with borderline high 

levels of TC seen in the AM athletes [5.49 ± 0.16 mmol/L], according to the ATP III [26] 

classification.  Contributing factors to this elevation were not only associated with increased 

LDLs, as seen in postmenopausal women, but also with elevations in HDLs and triglycerides.  

Possible mechanisms for these individual lipoprotein elevations are discussed in the appropriate 

sections of this paper.  The LDL:HDL ratio, identified as a strong predictor of cardiac health in 

men [45] was (1.7) and well below that considered a CVD risk factor [45].  The TC:HDL ratio, 

recently shown to be the best predictor of CVD at any TC level in women [13], was also low 

(2.8) for both AM and EU athletes.   Again, this risk prediction calculation does not place these 

athletes in an “at-risk” category for CVD [13].   

AM athletes consume less dietary fat intake compared to EU athletes [20, 46], although 

identification of types of dietary fat were not specified.  This may be an important consideration 

when undertaking TC assessment since saturated fat has a positive and unsaturated fat a 

negative, correlation with serum TC [25].  Very low fat dietary intake has also been reported in 

anorexia nervosa (AN) patients with some reports of elevated [47] and others of normal [48] TC 

levels.  Where increased TC is observed in AN, it has been attributed primarily to increased LDL 

levels [48].  The paradoxical increase in serum TC despite very low dietary fat intake has related 
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to an abnormality in cholesterol metabolism [49].  More specifically, it has been linked with 

increased synthesis of triglyceride-rich lipoproteins together with an unchanged cholesterol 

synthesis rate [50].  Contrary to this observation, AM athletes do not exhibit increased VLDLs 

(triglyceride-rich lipoproteins) when compared to EU athletes [20], and it is not known if the 

cholesterol synthesis rate is altered in AM athletes.   

Poor overall nutritional status may have contributed to the elevated TC in AM athletes 

reported by Friday and colleagues [20].  This postulate can be directly related to findings in AN 

patients, in that those who present with the worst nutritional status also present with the greatest 

elevations in TC [49].  AM athletes have frequently demonstrated nutritional deficiencies [46,51, 

52] compared to their EU counterparts.  However, on average, the AM athletes participated in 

four extra hours of training per week, thereby creating a potential energy deficit.  It was not 

reported whether the AM athletes with the greatest nutritional deficits also demonstrated the 

greatest alteration to cholesterol metabolism in this study.  Indeed, no data currently exist to 

show whether AM athletes who show the greatest degree of an energy deficit also present with 

the least favorable TC profiles.   

Strikingly similar to AN, although less marked, AM athletes also exhibit hypoglycemia 

and hypoinsulinemia, as well as elevated growth hormone and cortisol concentrations when 

compared to their EU counterpart [53].  The impact of these metabolic aberrations on TC 

metabolism in AM athletes is not known. 

The clinical significance of altered TC levels in AM athletes is not clear.  Elevated LDL 

with concomitantly increased HDL may preserve the cardiovascular risk profile.  Whether TC 

concentrations are impaired due to the hypoE2ic state per se is not known, but it is reasonable to 

postulate that similar cholesterol metabolism alterations may exist between AN patients and AM 
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athletes due to a great number of similar metabolic and to a less extent, dietary aberrations.  

Further studies will help identify the extent of these possible similarities. 

 

2.0 Low Density Lipoproteins 

2.1 Introductory Comments:  The LDL particle is heterogeneous in composition and variable in 

cholesterol content, with small, dense particles having greater atherogenicity than larger, more 

buoyant LDL particles [54].   Functionally, LDL plays a key role in the transport of cholesterol 

to all tissues, but primarily to adipose cells and the liver [23].  Approximately 60-80% of 

circulating LDLs are taken up by the liver via receptor-dependent mechanisms [55,56].  

Apolipoprotein B, the major protein moiety of LDL and other non-HDL atherogenic lipids, acts 

as the ligand to the LDL receptor [54,57].  Hyperlipidemia, diabetes (type I and II), and 

hypothyroidism influence circulating levels of LDL cholesterol [31,58].  In addition, dietary 

cholesterol and fatty acids also influence circulating levels of LDLs, mediated by altering either 

hepatic LDL receptor activity, LDL cholesterol production rate, or both [56].  When cholesterol 

intake is increased, expansion of the pools of sterol, which can be synthesized de novo, occurs 

within liver cells [56].   This results in down-regulation of the LDL receptors, causing a plasma 

increase in the concentration of LDLs [56].  Elevated serum levels of LDLs [>3.37 mmol/L] are 

recognized as an independent risk factor for CVD [26,59,60], and is also associated with 

abnormal vasodilatory function in response to flow-mediated dilatation, facilitating the 

development of atherosclerosis [61].   

2.2  Postmenopausal Women and LDLs:  Premenopausal women have lower LDL levels 

compared to age-matched men [62].  After menopause, LDL levels increase, frequently 

surpassing those of age-matched men, with a trend toward smaller, more dense, and subsequently 
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more atherogenic, particle sizes [63].  The menopausal increase in cardiovascular risk is 

associated with unfavorable elevations in TC, triglycerides and lipoprotein (a), an LDL-like 

lipoprotein [12,13,54].   In an extensive review, Schwertz & Penckofer [64] identify that 25 – 

50% of the potential cardioprotective effect of E2 are associated with its effect on blood lipids 

and lipoproteins.  The impact of E2 on serum lipids derives primarily from E2-receptor-mediated 

effects on the hepatic expression of apolipoprotein genes [65,66,67].   Endogenous E2 [68] and 

E2 therapy, both transdermal and oral [69,70], reduce circulating LDL levels. This E2-associated 

lowering effect has been attributed to an increased catabolic rate of hepatic cholesterol into bile 

acids [71] and increased expression of LDL receptors on cell surfaces [72,73].  In contrast to 

this, the post-menopausal, hypoE2ic milieu causes reduced LDL receptor activity [54], 

contributing to the well documented elevation in plasma LDL concentrations in this population.   

2.3 AM Athletes and LDLs:  Studies observing LDL levels in AM athletes [20,42,44] are 

equivocal, due, in part, to variable methodologies and small sample sizes.  These data are shown 

in Table ll.   Investigators have reported significantly elevated LDL levels [20,46], as well as 

non-significantly different LDL levels [42,43] in association with comparable apolipoprotein B 

levels [43,44], in AM compared to EU athletes. It is not clear whether these alterations are of 

clinical significance.  Interestingly, elevated LDL levels have been observed in those studies of 

AM athletes that show statistical significance [46] or a strong trend [20] for both reduced caloric 

intake and dietary fat intake.   

 The paradoxical increase in circulating LDL despite reduced dietary fat intake is 

consistent with findings in chronically hypoE2ic AN patients [49].  Normal or elevated levels of 

TC in AN has predominantly consisted of increased LDL levels, despite typically very low 

dietary cholesterol intake and a normal cholesterol synthesis rate [49].  Mechanisms for this 
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phenomenon in this patient group are associated with the known down regulatory effect of 

altered thyroid hormones; i.e. reduced total triiodothyronine (T3), and lowered E2 levels [49] on 

the cellular number of hepatic LDL receptors [72,74], thereby contributing to increased plasma 

LDL levels [74].   Similarly, but less marked, hypoE2ic AM athletes have also displayed low 

total T3 status [75,76], as well as lower caloric intake [46], and perhaps most notably, 

significantly less calories derived from dietary fat [20,46,77] when compared to their EU 

counterparts.  These findings lend credence to the possibility that, although less severe than 

observed in AN patients, the metabolic aberrations observed in AM athletes may, in part, explain 

the reported elevations in LDL levels in AM athletes.  This avenue of potential application merits 

further exploration. 

It is possible that along a continuum of dietary restriction, the AM athletes that 

demonstrate the greatest nutritional aberrations will also demonstrate the least favorable LDL 

profiles.  Further, down regulation of LDL receptors due to hypoestrogenism and altered thyroid 

status may likely play an important role in cholesterol metabolism in AM athletes, although this 

issue has not yet been closely examined.  In addition, hypoestrogenism may prove to have a 

more deleterious effect upon LDL metabolism in AM athletes as a function of time i.e., the 

longer the episode of amenorrhea the greater the risk of elevated LDL.  This possible long-term 

effect of hypoestrogenism has yet to be confirmed.   

 

3.0 High-Density Lipoproteins 

3.1 Introductory Comments:   HDL particles correlate inversely with the risk of CVD [54], and is 

acknowledged as being anti-atherogenic [78]. The cardioprotection afforded by HDL in the 

prevention of CVD originates from the role of reverse cholesterol transport whereby HDL is 
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postulated to scavenge surplus cholesterol from peripheral tissues for delivery to and disposal by 

the liver for excretion via the bile [63,79].  Important to cellular cholesterol homeostasis, reverse 

cholesterol transport is proposed to be a result of apolipoprotein A-I promotion of cholesterol 

efflux from the cells via receptor (scavenger receptor B type I), and non-receptor (passive 

diffusion) mediated mechanisms [80].  Apolipoproteins A-I  and A-II are the two major proteins 

associated with HDLs [79].  

In addition to the above recognized properties, HDLs have also demonstrated anti-

thrombotic [81], and favorable vascular tone [82] effects, including enhanced endothelial 

function [61].  The antioxidant properties of HDL can be directly related to studies that show 

HDL attenuates LDL oxidation [83], inhibits the atherogenic effect of oxidized LDLs [84], as 

well as increasing the half-life of endothelial nitric oxide [82], all of which are recognized 

processes that contribute to healthy endothelial function.   

Taken together, these data endorse the postulation that HDLs may in some way protect 

against the development of atherosclerosis and heart disease via both cholesterol-dependent and 

–independent mechanisms. 

3.2 Postmenopausal Women and HDLs: Although consistently higher in women than men during 

all life stages after puberty [85], HDL levels tend to decrease in postmenopausal compared to 

premenopausal women [86], with significant reductions effected as a consequence of menopause 

[39].  Bilateral oophorectomy also results in decreased circulating levels of HDLs [87].  

Diminished levels of circulating E2 plays a key role in these observations, in part, due to the 

known E2ic stimulatory effect on apolipoprotein-A1 [88].   Evidence supporting a beneficial role 

of E2 upon HDL metabolism can be also be supported from examination of the exogeneous 

administration of E2  [89, 90].  Following E2 replacement therapy, Pickar and colleagues [89] 
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observed that HDL-2, the main subfraction of HDL found to increase in response to E2 therapy, 

resulted in enriched HDL phospholipids, thereby promoting an elevation in apolipoprotein AI 

production while maintaining similar metabolic clearance of HDLs.  Thus, E2s not only modify 

HDL levels, but also its lipid composition and distribution, thereby augmenting the plasma 

capacity to execute cholesterol efflux [91].   

3.3 AM Athletes and HDLs:   Several investigators have evaluated serum HDL levels in 

AM athletes (Table lll).  Finding have been variable, including significantly elevated [20], 

similar [22,42,43,46] and non-significant trends toward lower [22,42] HDL concentrations in 

AM athletes when compared to EU athletes.  However, consistent with the observation that 

endurance trained athletes possess much higher HDL levels compared to sedentary populations 

[96], EU and AM athletes demonstrate significantly increased HDL levels compared to EU 

sedentary controls [46,43].  In addition, AM athletes, despite a hypoE2ic milieu, exhibit elevated 

HDL levels [20] such that,  it can be considered a negative risk factor, thereby negating the 

presence of another single risk factor [26].  Friday and coworkers [20] postulate that the extra 4 

hours of weekly exercise participation in the AM compared to EU athletes in their study likely 

contributed to these greatly elevated levels of HDLs.   

Elevations of HDL levels in AM runners have also been associated with volume of 

exercise training, with the highest levels observed in those running the greatest distances 

(>64km/week). The observed improvements in HDL concentrations with increased running 

distance demonstrates the favorable effect of endurance exercise on cardiovascular risk, 

irrespective of menstrual status, and are suggestive of E2-independent mechanisms effecting the 

HDL increase.  Indeed, the primary mechanism for the exercise-induced elevation has been 

postulated to be due to increased skeletal muscle and/or adipose lipoprotein lipase activity, 
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resulting in accelerated breakdown of triglyceride rich lipoproteins, facilitating plasma clearance 

and provision of free fatty acids as a fuel source for muscle metabolism or adipocyte storage 

[98].  However, the activity of lipoprotein lipase was not assessed by Friday and coworkers [20] 

and can only be speculated as a consequence of a greater volume of endurance activity in the 

AM versus EU athletes.   Despite this, the aforementioned observations demonstrate a robust 

relationship between endurance exercise and HDL cholesterol concentrations, independent of 

menstrual status. 

 Women with AN have also been reported to have reduced circulating HDL levels, a 

consequence hypothesized to be a product of their previously discussed hypometabolic profile 

[93].  This observation can be explained in part by the finding that total T3 is a potent mediator of 

apolipoprotein-I gene expression [94].  Consequently, when T3 is reduced, apolipoprotein-I gene 

expression is also reduced, causing diminished HDL levels.  Although not evaluated 

simultaneously in any of the studies measuring HDL levels in AM athletes, Loucks et al. [76] 

and others [75,95] have documented significant reductions in T3 levels in AM compared to EU 

athletes.  It is reasonable to suggest that the presence of reduced T3 in AM athletes may serve as 

one pathway by which circulating apolipoprotein-I levels can be negatively impacted.  However, 

apolipoprotein A-I levels have been shown to be comparable in AM compared to EU athletes 

[20,44], and when comparing AM athletes to EU sedentary controls [44].  It would be interesting 

to evaluate all of these parameters in a single study.  

4.0 Triglycerides 

4.1 Introductory Comments:  Triglycerides (TG) are esterified fatty oils that form the core of 

chylomicrons and VLDL cholesterol and are comprised of a glycerol and three free fatty acid 

molecules [23]. TG metabolism is met by two pathways, the exogenous and endogenous cycle. 
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The exogenous cycle is responsible for processing dietary fat, while the endogenous cycle 

involves internal production of triglyceride-rich lipoprotein particles that are manufactured in the 

liver [99]. Recent recommendations for TC from the National Cholesterol Education Program 

[26] propose that TG are an independent risk factor for CVD, with desirable levels being <1.7 

mmol/L.  The association between elevated TG levels and CVD is not well defined and remains 

somewhat controversial.  This is, in part, due to the close inverse metabolic association between 

TG and HDL [100], and the documented co-existence of elevated TG with other CVD risk 

factors, such as hypertension and abdominal obesity [100]. These associations have made 

isolated assessment of elevated TG as a predictor of CVD problematic.  Further, TG 

measurement may not accurately reflect CVD risk status due to the lack of informative regard to 

the specificity of the TG-rich lipoproteins that are present in plasma [99,101].  For example, 

some TG-rich lipoproteins are highly heterogeneous in terms of size and lipid composition, such 

as, chylomicrons and large VLDL, which are thought to be unable to enter the arterial wall, and 

therefore considered non-atherogenic[101].  Conversely, small very low- and intermediate-LDLs 

can enter into the arterial intima, and as such, are considered highly atherogenic [99,101].  As 

such, VLDL is the most readily obtainable measure of atherogenic remnant lipoproteins [26].   

A number of factors contribute to higher than normal TG levels [>1.7 mmol/L] in the 

general population, including obesity, being overweight, physical inactivity, cigarette smoking, 

excess alcohol intake, high-carbohydrate diets [>60% of energy intake], several diseases, such as 

type II diabetes, chronic renal failure, and nephrotic syndrome, and certain drugs including 

corticosteroids, E2s, retinoids, higher doses of beta-adrenergic blocking agents, as well as 

heredity factors [26]. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12441884&dopt=Abstract
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4.2  Triglycerides and Postmenopausal Women:  TG profiles undergo unfavorable changes in 

menopause and are reported to be elevated in postmenopausal women [12]. This increase can be 

linked to a strong relationship between excess visceral fat accumulation (android adiposity) and 

TG levels in postmenopausal women [102]. This type of fat distribution among women, 

postulated to be due to hypoestrogenism [103], is associated with unfavorable alterations in the 

lipid profile, such as increased LDL and TC and decreased HDL concentrations [102].  Such 

findings support the postulate that the co-existence of other CVD risk factors is associated with 

elevated TG.   

At the level of the liver, orally administered HRT increases TG levels [104,105].  This is 

augmented by the hepatic synthesis of VLDL, particularly of the large TG-rich particles, as well 

as the inhibition of hepatic triglyceride lipase [15,106].  Despite this HRT-associated elevation in 

TG levels, concomitant favorable effects of HRT administration include decreased LDL and TC, 

as well as elevated HDL levels [106].  It is generally accepted that the anti-atherogenic effect of 

HRT upon LDL, HDL and TC outweigh the deleterious effect of elevated TG levels.   

4.3  Triglycerides and AM Athletes:  Studies measuring TG levels in AM athletes  report non-

significant [22,42,44] and significant [20] elevations, compared to the EA.  Table IV illustrates 

these studies.  Despite the majority of these findings being equivocal, observation of consistently 

greater TG concentrations in the AM compared to EU athletes represents what seems to be part 

of a ‘trend’ in the lipid profiles of these athletes. To date, no studies have reported assessments 

of TG-rich lipoproteins, such as VLDL, for the determination of atherogenic versus non-

atherogenic TG particles.   

Since TG are frequently associated with other CVD risk factors rather, such as low HDL, 

elevated LDL and TC, it is interesting to note that the one study to report significantly elevated 
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TG in AM athletes [20] also reported significantly elevated LDL and TC.  However, the reported 

level of TG for AM athletes by Friday and colleagues [20] does not represent a value outside of 

the normal range [>1.7 mmol/L] as stipulated by the NCEP [26].   

That TG was elevated in AM athletes compared to their sedentary counterparts [43,44] is 

consistent with data from AN patients [111] but not consistent with studies that show TG 

concentrations that are frequently lower in endurance athletes when compared to sedentary 

controls [107].  Cross-sectional data also identify similar TG concentrations in female athletes, 

irrespective of menstrual status and reported distance (0-139 km) run each week, [97].  These 

findings are suggestive of E2- and exercise-independent mechanisms in TG metabolism, 

although it is likely that an interaction exists between these two variables since research shows 

that menopause-associated hypoestrogenism increases [12] while endurance exercise decreases 

[107] TG concentrations.  These data further highlight the potentially impaired utility of 

assessing TG in populations that are less likely to present with elevated TG in as much that other 

TG-associated CVD risk factors are absent.   However, more subtle alterations to TG 

metabolism, such as a shift from non-atherogenic to atherogenic TG lipoprotein metabolism may 

be occurring, potentially necessitating closer examination of the TG composition rather than the 

absolute presence of TG presence per se.    

As previously mentioned, low T3 is associated with a pro-atherogenic lipid profile [31], 

suggesting that nutritional status may be an important consideration when assessing TG levels in 

AM athletes. A high-carbohydrate diet has been shown to increase fasting TG levels [108], while 

very low-carbohydrate intake has recently been demonstrated to significantly reduce fasting TG 

levels as well as favorably impact HDL and the TC/HDL ratios in normal weight 
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normolipidemic women [109]. Future research efforts should pursue the interactions among 

these variables. 

The physiological significance of the reported elevated concentrations of TG in AM 

athletes is not clear.  The possible mechanism behind this observation is not known.  The 

inclusion of specific assessment of TG-rich lipoproteins may yield more pertinent information 

with regard to atherogenic compared to non-atherogenic TG particles. 

 

5.0.  Lipid Peroxidation  

5.1  Introductory Comments:  Elevated free radical production can negatively influence the 

oxidative status of circulating LDL particles [112]. Oxidative modification of LDL vastly 

elevates its atherogenicity [113] and has been implicated in the initiation and progression of 

atherosclerosis [114].  Increasing evidence supports that oxygen-derived free radicals, namely 

reactive oxygen species, are associated with destructive biological processes, including DNA and 

cellular membrane damage [115].  Chronic age-related disease states such as diabetes and 

carcinogenesis, as well as strenuous physical exercise have been implicated [116,117,118].  

Reactive oxygen species incorporates hydrogen peroxide, and the less stable, superoxide- and 

hydroxyl- free radicals [22,119].  The magnitude of the oxidative stress is determined by the 

capacity of the antioxidant defenses to detoxify reactive oxygen species [120A].  Intracellular 

enzymatic antioxidant defenses include glutathione peroxidase, glutathione reductase, superoxide 

dismutase, and catalase [115,121], all of which reduce the susceptibility of the cell to potentially 

harmful free radicals [121].  In addition, non-enzymatic extracellular antioxidant defenses also 

exist, including vitamin E (alpha-tocopherol), vitamin A (beta carotene), and vitamin C (ascorbic 
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acid) [122].   It is the balance between reactive oxygen species production and antioxidant 

defenses that determines the degree of oxidative stress [119].   

5.2 Lipid Peroxidation in Postmenopausal Women and Other Low E2 Models:  Research 

surrounding lipid peroxidation and the effect of exogenous and endogenous E2 demonstrate 

inconsistencies.  Antioxidant effects of E2 on LDL in vivo [123,124] and in vitro 

[114,125,126,127] have been confirmed.  Conversely, no effect [128] for E2 on antioxidants in 

vivo has been documented.  Differences in model utilization, subject demographics, and E2 

administration, dosage, time frame, and type, have, in part, contributed to the discrepancies 

found in the research.   

 E2s may protect from atherosclerosis by inhibiting LDL oxidation [129]. Endogenous 

E2s have free radical-scavenging abilities, with up to 2.5 times the activity of vitamin C and E 

[130].  E2s ability to form moderately stable radicals from less stable radicals by donating a 

hydrogen atom is consistent with antioxidant function [130]. This antioxidant capability has been 

evidenced in premenopausal women who have significantly higher estradiol levels and lower 

lipid peroxide concentrations, as well as significantly higher glutathione peroxidase activity 

when compared to postmenopausal women [131].  In addition, significant increases in 

endometrial glutathione peroxidase have been observed during the high E2 phase of the cycle 

[132].  Such data support a beneficial effect for endogenous E2 on both intracellular antioxidant 

enzyme activity and free-radical scavenging abilities against lipid peroxidation.  

5.3  Lipid Peroxidation in AM Athletes:  There is no single biomarker that is considered the "gold 

standard" of lipid or protein oxidation [133].  However, evidence for oxidative stress during, and 

post, exercise can be obtained from measurement of free radicals, the assessment of damage to 

lipids, and from measurement of antioxidant redox status, particularly glutathione [134].  
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Considering the reported antioxidant effect of endogenous E2 [123], and exercise training [135] 

surprisingly few studies [22,42,136] have investigated the effects of amenorrhea on lipid 

peroxidation and oxidative status in AM athletes.  These studies report significantly decreased 

LDL diene conjugation, i.e, a decreased ability of LDL to resist peroxidation [22], and a greater 

[42] as well as similar [136] magnitude of change for lipid peroxidation potential post-exercise in 

AM compared to EU athletes.  Kanaley and Ji [136] also report that at rest and post-exercise, 

AM athletes demonstrate significantly elevated glutathine peroxidase compared to EU athletes, 

and that malondialdehyde, an indirect indicator of lipid peroxidation, is similar in both groups.  

In addition, oxysterol formation, derived from the enzymatic and non-enzymatic oxidation of 

cholesterol [137], is increased post-exercise in AM athletes only [22].  Collectively, these 

findings are conflicting and do not provide answers as to whether exercise in the face of 

hypoestrogenism affects antioxidant status. This can be attributed, in part, to the fact that each 

study utilized a different exercise protocol, including a maximal oxygen uptake test [42], as well 

as a 30 minute [22] and a 90 minute submaximal running bout [136]. It is also possible that the 

exercise intensity and/or duration of exercise may have been insufficient to stimulate an oxidant 

response due to the high level of aerobic fitness of the athletes.  Training status of the athletes 

was also not consistently reported.   

An important factor to consider when assessing antioxidant defense mechanisms are the 

training, as well as the adaptive, status of the athlete [138].  In the studies reporting the 

antioxidant status of AM athletes, training status was reported as mileage per week [22,136], 

duration of training [22], or not reported [42]. None of these studies reported the adaptive status 

of the athletes, thereby further compounding the lack of clarity regarding interpretation of E2 

status on antioxidant status.  However, despite conflicting findings, the elevated glutathione 
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peroxidase levels in AM compared to EU athletes [136] is indicative of an enhanced 

antioxidative status in the AM athlete, despite a hypoE2ic environment, suggesting alternative 

antioxidant mechanisms [136], such as training status.  Indeed, research has shown that well 

trained and well adapted athletes demonstrate an augmented antioxidant system and a reduction 

in lipid peroxidation [135], as well as greater resistance to exercise-induced or -imposed 

oxidative stress [139,140,141]. Consistent with this finding is the observation that total 

antioxidant status is positively correlated with VO2 peak in runners [142], supporting the theory 

of a stress-tolerance mechanism, whereby enzymatic antioxidant defenses are enhanced due to 

exercise training per se.   

In contrast to the adaptive oxidative status of the well trained athletes, higher 

performance and training levels are associated with greater elevations in exercise-induced lipid 

peroxidation [143], resulting in an antioxidant system that can become overwhelmed and unable 

to cope with the increased free-radical production [138].  This occurrence can be linked with 

overtraining [144], exercise training intensity [145], and/or the nutritional status of the athlete 

[146], whereby susceptibility to antioxidant deficiency may occur [146].  However, since no 

studies to date have confirmed an effect of E2 upon anti-oxidant status in humans in response to 

exercise [133], it is likely that the anti-oxidant status in AM athletes is reflective of the training 

and/or adaptive status, the nutritional status, and or the hypoE2ic milieu. 

Consistent with previous research reporting the effect of an acute bout of strenuous 

exercise on anti-oxidant defenses [147], a decreased capacity to detoxify ROS after a maximal 

bout of exercise, as demonstrated by unfavorably altered oxysterol formation and increased lipid 

peroxidation levels in AM athletes [22] has been observed.  These findings do imply a 

compromised antioxidant status in AM athletes, and that an increased potential risk for 
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premature atherosclerosis may be present.  However, (1)  a single maximal bout of exercise is 

not necessarily reflective of a regular training session for the athletes, and thereby not 

representative of the characteristic oxidative stress these athletes might otherwise incur; and (2) 

it is normal for oxidative stress to be elevated after strenuous exercise [147], and as such, 

recovery data rather than immediate post exercise data might provide more relevant information 

about antioxidant status.  In addition, since non-enzymatic antioxidants are negatively correlated 

with lag time of diene conjugates [22], assessment of dietary supplementation may also be an 

important aspect of oxidative stress determination, particularly in the AM athlete [22].   

The impact of sustained hypoestrogenism in the AM athlete upon the oxidative system is 

not clear, but data indicate that the antioxidant defenses of the AM athlete may be compromised 

after strenuous aerobic exercise.  Inclusion of training, adaptive, and dietary status will help 

minimize confounding factors.  Data suggest that in well trained individuals exercise training 

elicits favorable effects upon the oxidative milieu [140].  Since higher exercise intensity appears 

to effect a greater oxidative response in AM compared to EU athletes after maximal exercise 

[22], studies to determine the oxidative stress response to high exercise intensity training in AM 

athletes are worthy of further investigation.  Mechanism(s) underlying the combined E2- and 

exercise-mediated protection of lipid peroxidation need to be determined.  In addition, 

methodological consistency in measurement of antioxidant enzymes needs to be established. 

 

6.0 Nitric Oxide 

6.1 Introductory Comments:  The endothelium is a multifunctional interface between the 

circulating blood and various tissues and organs of the body [148], and is recognized as a 

metabolically active organ that is vital to vascular homeostasis [149,150].  Through the 
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combined release of vasoactive substances, such as nitric oxide and endothelin, endothelial 

hemostatic function is realized. Nitric oxide is a potent vasodilator [151] that also maintains a 

low resting arterial tone in the peripheral [152] and pulmonary [153] circulations.  Nitric oxide 

also inhibits platelet aggregation, suppresses smooth muscle cell proliferation and acts as an 

antiatherogenic factor [154,155].  Endothelial-derived nitric oxide is produced by the endothelial 

isoform of nitric oxide synthase upon the conversion of the substrate L-arganine to L-citrulline 

[155].  The production of this free radical messenger has been identified as effecting a protective 

role on the endothelium [150].  Impaired release and/or bioavailability of nitric oxide has been 

linked with hypertension [156], hypercholesterolemia [157], diabetes [158], tobacco use [159], 

established coronary artery disease [160], and E2 deficiency [161].  Consequently, factors that 

decrease nitric oxide production and/or bioavailability may promote atheroslcerosis [162]. 

In endothelial cells, gene expression of nitric oxide synthase (NOS), despite being 

constitutively activated, can also be up-regulated by both receptor-mediated (ie acetylcholine, 

serotonin, thrombin, bradykinin) and receptor-independent (ie shear stress) mechanisms [161].  

A number of pathways leading to the release of vascular nitric oxide have been identified, 

including: (1) basal endothelial release that maintains low vascular tone; (2) mechanical stimuli, 

that is, increased shear stress; (3) dilating factors, (i.e. prostaglandins) and metabolites (i.e. 

adenosine) released from contracting skeletal muscle; (4) nitroxidergic and (5) cholinergic nerve 

stimulation, and (6) nitric oxide release from skeletal muscle [163].  The multiplicity of 

pathways to attain vascular nitric oxide release identifies this free radical messenger as a key 

modulator of vessel function.    

6.2 Nitric Oxide in Postmenopausal Women 
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A plethora of data regarding the effect of E2 and HRT upon endothelial function in 

women have been published [for review, see 164].  Most [14,165,166] but not all [167] reports 

support a role for  E2 increasing endothelium-dependent flow-mediated vasodilation.  In vitro 

data also show an endothelium-independent, that is, a direct smooth muscle-relaxing effect, of 

17-beta estradiol upon the coronary arteries in human females [168]. Blunted circulating levels of 

nitrite/nitrate [169], in addition to increased plasma levels of endothelin-1 [170], and impaired 

endothelium-dependent [171] and –independent [172] function occurs in postmenopausal women 

not receiving E2- or HRT.  Further, recent data demonstrate that acute (7 days) E2 deficiency 

due to ovariectomy is associated with unaffected endothelial function [173], as well as impaired 

endothelium-dependent, but not –independent vasodilation [162] in response to flow-mediated 

dilation.  The reason for differing findings between these studies [162,173] is not clear.    Taken 

together these data suggest that reduced circulating levels of E2 may effect impaired endothelial-

dependent and -independent function, and is associated, in part, with reduced nitric oxide 

production and/or bioavailability [169].   Further, 17-beta estradiol may have an important 

regulatory role in coronary arterial tone [168] due to possible direct effects upon endothelium 

and smooth muscle cells. 

6.3 Nitric Oxide and AM Athletes:  Despite the well documented E2-nitric oxide association, 

only one study documenting nitric oxide levels in AM athletes has been reported.  Stacey et al., 

[21] observed significantly decreased levels of plasma nitrate/nitrite production despite 

significantly elevated dietary ingestion of nitrates in AM athletes compared to sedentary EU 

women.  Since chronic aerobic exercise enhances blood flow and shear stress [174], and 

strenuous exercise can incur striking increases in plasma [175] and urinary [176] nitric oxide 

metabolite concentrations, it is interesting that despite participating in chronic endurance 
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activities, the AM athletes did not demonstrate increased nitric oxide concentrations.  

Consequently, the reduced plasma nitrite/nitrate levels are hypothesized to be related to the 

chronically low E2 status of the AM athletes [21].  The clinical consequence or physiologic 

relevance of this observation is not known.   

Although no other studies report nitric oxide levels in AM athletes, some data alluding to 

the E2-nitric oxide association through observation of vascular response to flow-mediation 

dilation, an endothelium-dependent, and therefore a predominantly nitric oxide mediated event, 

does exist.  Zeni-Hoch and co-workers [11] were the first to demonstrate that, similar to 

postmenopausal women, young AM athletes (21.9 ± 1.2 yrs) also present with endothelium-

dependent, but not –independent, dysfunction compared to their oligomenorrheic and EU 

counterparts. Resting heart rate, mean arterial blood pressure and baseline brachial arterial 

diameter, were similar between the groups, yet mean percent change from baseline brachial 

artery diameter in response to flow mediated dilation in AM and EU athletes was 1.08 ± 0.91% 

and 6.38 ± 1.38 %, respectively [11].  Alarmingly, the magnitude of impaired brachial 

endothelium-dependent vasodilation in AM athletes is comparable to data previously reported in 

otherwise healthy postmenopausal women [177] and older [60 ± 2yr] coronary artery diseased 

patients [178] after a similar flow-mediated stimulus.  Since endothelial dysfunction is a 

predictor of future coronary events [179], the finding from Zeni-Hoch and colleagues [11], is 

suggestive of increased risk for accelerated cardiovascular disease development in AM compared 

to EU athletes [11].   

Secondary to chronically diminished circulatory E2 levels, reduced circulatory nitric 

oxide [ref] is a likely contributing factor responsible for the observed endothelial dysfunction in 

AM athletes.  However, Zeni and colleagues [11] did not specifically attribute the impaired 
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endothelial dilatory response in AM athletes to E2 deficiency, perhaps because each group 

presented with similar E2 levels at the time of testing.  However, chronically suppressed versus 

cyclical fluctuations of E2 levels would likely be better identified with daily urinary analysis of 

metabolites of E2 rather than a single blood draw.  In addition, a single blood draw assessment 

cannot identify the possibility of an effect of E2 exposure across time upon endothelium-

dependent function in active women with less severe menstrual disturbances, such as, 

anovulation, or oligomenorrhea.  That oligomenorrheic and EU athletes showed similar 

responses for flow-mediated dilation [11] is suggestive of a “critical threshold of E2 exposure”, 

and that some E2, as oligomenorrheic athletes are likely exposed to, is better than none, i.e., the 

chronically low levels AM athletes are exposed to.   

An additional demonstration of the importance of E2 to vascular function can be realized 

from data on resumption of menses in these same AM athletes, as reported by Hoch [180]. 

Resumption of menses restored endothelial-dependent function in the AM athletes to levels 

observed for EU athletes [180].  This reversibility in endothelial-dependent function with return 

of ovarian function is consistent with data that show improved endothelial function in post-

menopausal women after HRT [14]. Mechanisms of non-genomic vasodilatory effects of E2 

includes stimulation of the opening of calcium-activated potassium channels [181], and 

activation of endothelial nitric oxide synthase, the precursory enzyme of endothelium-derived 

nitric oxide [161], via E2 receptor-alpha mediated activation [182], with heat shock protein 90 

acknowledged as a key requirement to this activation [183].  Dependent pathways include E2-

receptor mediated mitogen-activated protein kinase [182] and phosphatidylinositol 3 (-Akt [183].  

The impact of hypoestrogenism on these pathways, however, is not well understood, but it is 
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reasonable to expect that AM athletes may demonstrate impairment in one or both of these 

pathways.  

There is a positive correlation between cardiovascular fitness and endothelial function 

[184].  Accordingly, evidence suggests that endothelial dysfunction limits exercise capacity, 

either via central or peripheral mechanisms [185].  Conversely, exercise is efficacious in 

restoring dysfunction of the vascular endothelial nitric oxide system [186].  The exact 

mechanisms for this effect are not yet understood.  Decreased endothelial nitric oxide may also 

be rate-limiting to oxygen delivery and exercise performance [187].  Data show, however, a lack 

of correlation between cardiovascular fitness, exercise capacity and endothelial function in AM 

athletes, despite being demographically similar to EU counterparts, including weekly mileage, 

duration of training, and 5km race time [11].  These findings imply that exercise-associated 

amenorrhea does not impact athletic performance, but may be implicated as a potential negator 

of the known cardioprotective benefits of aerobic exercise [11].  Impaired endothelial function 

despite chronic endurance training in AM athletes suggests that hypoestrogenism may exert a 

greater negative effect than the positive effect of aerobic exercise per se.   

Mechanisms explaining the difference in endothelial function of EU and AM are not yet 

known, but are likely related to hormonal regulation of endothelial function which may be the 

result of receptor-dependent or -independent mechanisms [188].  Progesterone-, androgen-, and 

E2-receptors have been identified in human vascular endothelium [188].  Two functionally 

different receptor sub-types for E2ic actions exist, E2 receptor-alpha and -beta, although the 

importance of these sub-types in the vasculature remains unclear [189].  Expression of E2 

receptor-alpha has been observed in human endothelium [190] and vascular smooth muscle cells 

[191].  E2 receptor-beta expression in vascular tissue is less well distinguished, but has been 
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detected predominantly in vascular smooth muscle cells [189], identifying a potential 

endothelium-independent role for E2.  Several target genes for E2s have also been identified, 

including those encoding proteins that modulate lipid clearance, cardiac contractility, cell 

proliferation, and specifically, vascular tone [192]. Consequently, the presence of vascular E2 

receptors is associated with protection against coronary atherosclerosis [193], and their 

expression is directly impacted by the level of circulating E2s [193].   

The effect of sustained impaired endothelial function upon atherosclerotic development 

or vessel integrity in AM athletes awaits investigation.  To date, the clinical and health 

implications of prolonged E2 deficiency upon the vasculature in AM athletes is not clear.  

Further, the time-course of decline in endothelial function, a potential “critical threshold of E2 

exposure”, and changes in endothelial function with resumption of menses, or perhaps 

exogeneous hormones, should be explored in future research. 

 

7.0 Endothelin 

7.1 Introductory Comments:  Endothelial integrity, essential for normal functioning of blood 

vessels, is preserved not only by endogenous vasodilative, but also by vasoconstrictive 

substances, such as endothelins (for review, see [194]).  Alteration of the nitric oxide and 

endothelin-1 (ET-1) systems is augmented by, and is associated with, many cardiovascular 

diseases [195].  The vasoconstrictive production of endothelin however, can be inhibited by 

nitric oxide [195].  Endothelins (ET-1, ET-2, ET-3) are biologically active peptides that oppose 

the effects of nitric oxide through vasconstrictive and mitogenic action [196,197].  Of the three 

endothelin isoforms, however, only ET-1 is constitutively produced by the endothelial cells, 

making ET-1 a key vascular regulator [194]. Via endothelin smooth muscle receptors, 
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endothelin-A (ET-A) and -B (ET-B), and  endothelial cell receptor, ET-B, endothelium-derived 

ET-1 predominantly facilitates vasoconstriction [195], although stimulation of endothelial cell 

ET-B receptors can also oppose ET-A and ET-B mediated vasoconstriction by stimulating nitric 

oxide formation [195].  This vasodilatory response is due to increased intracellular calcium, 

resulting in upregulation of endothelial nitric oxide synthase [194].  In addition to 

vasoconstrictive and vasodilatory properties, endothelins also increase monocyte adhesion, 

macrophage activation, and vascular smooth muscle cell proliferation and migration through ET-

A and ET-B [198].  Due to the observation that altered expression and/or activity of ET-1 can 

lead to the development of vascular diseases [194], ET-1 has been implicated in the progression 

of atherosclerosis [154].  

7.2 Endothelin and Postmenopausal Women:  Research surrounding ET-1 and postmenopausal 

women is less plentiful than that found for nitric oxide.  Typically ET-1 levels have been shown 

to be elevated in postmenopausal women [199,200], and are significantly reduced with 

administration of HRT [199,200].  Chronic (6 months) E2 therapy results in decreased levels of 

endothelin, as well as an increased ratio of nitric oxide to ET-1 [196].  In addition, ET-1 

mediated arterial constriction has been shown to be reduced after one month of treatment with 

estradiol [2mg/day] in older postmenopausal patients when compared to placebo [201].  This 

reduction is suggestive of an estradiol effect on endothelium-dependent vasoconstrictive 

responses, which may incorporate nitric oxide and/or prostaglandins [201].  Interestingly, long 

term [3 months] oral estradiol administration [2mg/day] resulted in a loss of the E2-inhibitory 

effect upon ET-1 mediated arterial constriction, implying possible tachyphylaxis, that is, an acute 

loss of response, due to sustained high doses of estradiol [201].   
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One potential explanation by which E2 may impart favorable anti-vasoconstrictive 

properties can be related to data that report estradiol inhibition of  ET-1 synthesis [197], possibly 

through E2 receptor-dependent pathways [202].  In an in-vitro study, Dubey et al., [203] 

treatment of porcine coronary artery endothelial cells with varying concentrations of estradiol 

and estradiol metabolites, 2-hydroxyestradiol and 2 methoxyestradiol, dependently inhibited 

basal and serum tumor necrosis factor-alpha, angiotensin II, and thrombin induced endothelin-1 

synthesis.  As compared with estradiol, its metabolites were shown to be more potent in 

inhibiting ET-1 secretion [203].  Confirmation of such findings in vivo is yet to be reported. 

7.3 AM Athletes and Endothelin:  No studies to date have reported on the endothelin-1 levels of 

young (18-35yrs) AM athletes or in AN patients.  However, in women of reproductive age, ET-

1evels are elevated during the menses phase when compared to the follicular and luteal phases 

[204].  Consistent with data in postmenopausal women, endogenous E2 also appears to favorably 

reduce circulating ET-1.  These findings lend credence to the hypothesis that ET-1 levels might 

be expected to be elevated in AM athletes.  However, it is known that chronic exercise causes an 

increase in production of nitric oxide and a decrease in production of ET-1 in humans [154], 

which may produce beneficial effects on the cardiovascular system.  Further, a significant 

negative correlation between plasma nitrite/nitrate concentration and plasma ET-1 concentrations 

has been demonstrated [154].  In support of this, data also show that exercise training diminishes 

the aortic sensitivity of ET-1 upon the vasculature [205], thereby necessitating less ET-1 to effect 

vasoconstriction or vasoregulation.    

The effect of chronic exercise upon ET-1 concentrations in AM athletes is unknown.  

Since previous data demonstrate diminished levels of nitrites/nitrates despite chronic training and 

elevated dietary nitrate intake in AM athletes [21], it can only be speculated that, similar to 
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postmenopausal women, ET-1 levels may be elevated, possibly due to decreased sensitivity to 

ET-1 and/or decreased circulating nitric oxide levels.  

 

8.0 Homocysteine 

8.1 Introductory Comments:  Homocysteine is an intermediate sulphur-containing amino acid 

produced in the metabolism of the essential amino acid methionine [206,207].  There are two 

major metabolic outcomes of homocysteine, the first being reversible trans-methylation [206].  

This leads to the reformation of methionine, as during methionine deficiency, and ensures a 

sufficient supply of methionine for protein synthesis [206].  Secondly, irreversible trans-

sulfuration which results in the eventual excretion of homocysteine as sulphate in the urine 

[206.207].   

 Homocysteine has been identified as an independent, modifiable risk factor for 

cardiovascular disease [208,209].  It is a recognized marker of systemic inflammation [13,210], 

and is an important mediator of atherosclerosis [207].  Mechanisms by which elevated 

homocysteine causes vascular disease include the direct toxic effects on the endothelium due to 

the generation of hydrogen peroxide formed in the process of homocysteine metabolism 

[206,207; 211].  This effect of increased free radical generation and subsequent lowered 

glutathione formation is suggested to be the principal cause for accelerated atherosclerosis [207].  

Other factors important to the atherosclerotic process that are also affected by elevated 

homocysteine levels include  proliferation of vascular smooth muscle cells [212], promotion of 

thrombosis [213], elevated collagen production in smooth muscle cells [214], stimulation of 

oxidization of LDL and anticoagulant inhibition [215].  Normal concentrations of fasting plasma 

homocysteine are somewhat varied, and range from 5-15 µmol/L [216], or ≤ 12µmol/L [217]. 
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Hyperhomocysteinemia may derive from either nutritional (i.e. inadequate dietary intake of 

folate, vitamin B12 or B6) or genetic (i.e. homocystinuria) origins [206,207].  Additional factors 

contributing to elevated homocysteine are age, gender, impaired kidney and liver function, and 

certain medications [17,206].   

8.2 Homocysteine in Postmenopausal Women:  The homocysteine-lowering effect of E2 is well 

documented [17,18,211,218]. E2 status is a non-genetic factor that affects homocysteine 

metabolism [218].  Decreased levels of homocysteine have been reported in pregnant [219], 

premenopausal [208,218,220] and postmenopausal women who are on ERT [17,18,221] 

compared to age-matched men, surgically menopausal women, and postmenopausal women who 

are not on ERT.  

8.3 Homocysteine in AM Athletes:   There are no data available to date regarding homocycsteine 

levels in AM athletes.  However, concerns regarding the homocysteine level of the AM athlete 

can be related to studies that show nutritional macro- and micro-nutrient intake of most female 

athletes to be less than might be anticipated based on their training load [222,223,224].  Intake of 

iron, calcium, vitamin B12 and zinc have also been reported to be below the recommended daily 

allowances among female athletes [223].   Since low folate concentrations have been identified 

as one of the key mediators of higher homocysteine levels [207], and reductions as great as 40% 

in plasma homocysteine concentrations with folate supplementation have been reported [225], 

the recommendation of sufficient dietary intake of folic acid may be particularly important for 

the AM athlete.  Interestingly, adolescent AN patients exhibit significantly increased 

homocysteine levels [226].  Further, young premenopausal women also exhibit menstrual phase 

dependent homocysteine concentrations, with the lowest concentrations coincident with elevated 

E2 levels [227].  Due to the identification of an E2- and folate-lowering effect on homocysteine, 
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it is possible that the AM may demonstrate subtle, but potentially significantly sustained elevated 

levels of homocysteine.  Since atherosclerosis is accelerated with even mild increments in 

homocysteine [228], this concern will be interesting to address. 

 

9.0  C-Reactive Protein 

9.1 Introductory Comments:  Atherosclerosis has recently been identified as an inflammatory 

disease marker [229].  Characteristic of most forms of inflammation or tissue damage is the 

elevated serum concentration of acute-phase reactants, such as C-reactive protein (CRP) 

[230,231]. As a recognized surrogate marker of low-grade systemic inflammation, CRP reflects 

heightened levels of pro-inflammatory cytokines [232]. Prospective studies have shown that CRP 

is a strong independent risk factor for CVD [13,232], as well as a predictive tool of relative risk 

for future events such as stroke [233].  Specifically, data indicate that CRP predicts vascular 

events among low-risk groups of women with no readily apparent markers for disease [234], and 

even in women with LDL levels below 3.37 mmol/L [13]. 

 Plasma CRP usually exists at very low concentrations, with 90% of individuals having a 

CRP <3.0 mg/L [235], but can be elevated several hundred-fold in response to infection [236].  It 

is important to note that as a non-specific acute phase response protein [237], CRP can be 

influenced by a number of factors, such as bacterial infection and inflammatory diseases [238], 

prolonged exercise, smoking, and age [237,238,239].  It is also positively associated with body 

mass index [236].  Despite the many influencing factors, CRP is still more precise than other 

markers of the acute-phase response, and is therefore considered an extremely useful marker of 

ongoing inflammation and/or tissue damage [237].  
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9.2  Postmenopausal Women and CRP:  The reported effects of E2 and HRT on CRP levels have 

recently been reviewed [240].  Most [234,241,242] but not all [243] studies demonstrate an E2-

mediated effect of CRP.  Indeed, a recent clinical trial showed an 85% average increase in CRP 

over 3 years with HRT when compared to placebo [241].  This E2-increasing effect has been 

confirmed in cross sectional [242] and prospective [234] studies, and at first glance, suggests that 

HRT may be pro-inflammatory [242].   However, the increase in CRP due to exogenous HRT is 

postulated to be metabolic rather than inflammatory [230]. Observation of decreased 

inflammatory markers, such as IL-6 and E-selectin, in the presence of elevated CRP, supports a 

possible link with the hepatic first-pass effect of oral hormone therapies on CRP plasma 

concentrations [230].  This postulate makes sense when considering that plasma CRP is 

produced solely by hepatocytes [237].  That chronic transdermal HRT treatment does not elevate 

plasma CRP levels [243] further supports a metabolic rather than pro-inflammatory effect of oral 

HRT.  The clinical relevance of these findings, however, are not known. 

9.3 AM Athletes and CRP:  Studies observing the effects of exercise on CRP in AM athletes have 

not been reported.  Further, data observing CRP levels in female athletes are sparse.  Fallon et 

al., [238] observed that an acute phase response, as determined by CRP, did not occur as a result 

of the levels of training typical of elite female athletes participating in court and field sports. 

These findings are consistent with data that demonstrate that strenuous endurance training is 

associated with an exercise-lowering effect on CRP concentrations [245,246]. The concept that 

training itself may attenuate the acute phase response, possibly by maintaining a ‘balance’ 

between response and anti-inflammation, has been demonstrated via long-term training studies 

that reveal a diminished acute phase reaction due to regular endurance exercise in men [245].  

The decrease of the CRP base-line level after chronic training suggest that intensive endurance 
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exercise training may have a systemic anti-inflammatory effect, which has been postulated to be 

linked with an enhanced exercise-associated antioxidative defense mechanism [245].  In contrast 

to these findings, exercise has also been allied with an inflammatory reaction in the blood [247].  

Cytoskeletal damage due to strenuous exercise can result in substantial tissue injury and clinical 

signs of transient immunosuppression [248].  That is, the anti-inflammatory response itself is 

also immunosuppressive, and can result in increased susceptibility to viral infections [248], a 

major stimulus of the CRP acute phase response [237].  

Both endurance running and downhill running generate muscle damage [247], and 

unaccustomed eccentric-biased exercise, whether due to unfamiliarity of the exercise, or the 

intensity or duration of the exercise, incurs muscle and tissue trauma that subsequently activates 

an acute inflammatory response [249].  Additionally, increased free-radical production due to 

tissue injury can further heighten the inflammatory response [248].  Running, ballet, and 

gymnastics are sports typically associated with amenorrhea [250], and are associated with 

eccentric-biased activities that provide a high potential for muscle and tissue damage.  If an 

enhanced oxidative defense mechanism does indeed confer generalized anti-inflammatory 

benefits [245], then it might be projected that AM athletes may demonstrate a compromised anti-

inflammatory capacity due to reduced circulating E2, a powerful anti-oxidant in itself [251].  

Together these factors may subsequently counter the chronic exercise-lowering effect on the 

acute phase response.  Elevated levels of CRP post training for the AM athlete could, therefore, 

be apparent.  On the contrary, chronically low E2 levels together with accustomed endurance 

activities may attenuate or even lower CRP levels.  However, since the effect of 

hypoestrogenism in younger athletes upon CRP levels has not yet been explored, these 

hypothetical outcomes remain to be discerned.   
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In addition to measurement of CRP as a method of determining increased risk of 

cardiovascular disease, IL-6 has also been hypothesized as a good marker of cardiovascular 

health in apparently healthy individuals [252]. Indeed, synthesis of CRP in the liver is 

predominantly modulated by [253] and strongly correlated with [254] the cytokine interleukin-6 

(IL-6), although IL-6 and CRP are independently related to several clinical cardiovascular risk 

factors in women [255].  IL-6 not only regulates immune system responses [256], but also 

increases fibrinogen, blood viscosity, platelet numbers, and activity [240].  Overtraining [256] 

and nutrient status [257] have been shown to impact pro-inflammatory cytokine levels.  

Consequences of a low calorie diet together with strenuous exercise stress may induce elevated 

IL-6 and cortisol levels in female athletes [258].  The nutrient status of the AM athlete frequently 

reveals suboptimal energy and nutrient intake which is linked with compromised immune 

responses [258], although data show no relation between susceptibility to infections and 

menstrual status in recreationally active women [259].  Since cytokine levels, particularly IL-6, 

increase with strenuous endurance activities [260], this finding suggests that exercise intensity 

and duration rather than menstrual status impacts the immune response.  Interestingly, in 

malnourished individuals such as AN patients, there is an atypical, unexpected finding of lack of 

viral infections, or minimal symptoms in response to minor viral infections despite poor nutrient 

status [257]. The mechanisms behind this response have not been ascertained, but it is suggested 

to be a protective adaptation which is lost during refeeding [257].  Decreased IL-6 levels in AN 

patients [257] suggest that a lowered CRP status may be present.  Whether hypoestrogenism per 

se in these patients imparts an effect on IL-6 or CRP is not clear.  

In addition to decreased IL-6, persistently elevated levels of cortisol, which ordinarily 

reduces cytokine responses in healthy individuals, does not convey reduced inflammatory 
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responses in AN patients [257].  This response identifies that the feedback mechanism is 

somehow rendered ineffective, impairing the ability to establish an acute-phase response [257].  

AM athletes also demonstrate elevated cortisol levels compared to their EU peers [261], but it is 

not known whether this has any impact on acute phase protein concentrations.  Due to the 

similarity between AM athletes and AN patients, the presence of similar immune cell responses 

may be revealed.    

 

10.0  Conclusion  

10.1  Comments and Conclusions:  The synthesis of findings secondary to the effects of 

hypoestrogenism in young female AM athletes upon cardiovascular outcomes discussed in this 

paper lend credence to the postulate that these women may be at an increased risk of premature 

CVD, extending the clinical sequelae of the Female Athlete Triad to cardiovascular concerns. 

Despite several inconsistencies with regard to statistical significance and cardiovascular 

outcomes, largely due to small sample sizes, it can not be dismissed that sustained unfavorable 

alterations to markers of cardiovascular health may prove to have long-term deleterious 

subclinical clinical effects.  Unfavorable changes in  LDL, lipid peroxidation potential, TC, TG, 

and endothelial function, despite a physically active lifestyle, suggest that AM athletes may 

potentially be  susceptible to increased cardiovascular risk. This risk should be acknowledged as 

part of the already recognized sequelae of the Female Athlete Triad associated with amenorrhea 

in athletes.  More studies, specifically longitudinal and prospective studies need to be performed 

to help discern the long-term effects of hypoestrogenism on cardiac and vascular function in 

young athletic women and to determine if the aforementioned unfavorable changes observed 

represent a clinically significant increase in CVD risk.  
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