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Abstract 

 Metabolomics incorporates the study of metabolites that are produced and released 

through physiological processes at both the systemic and cellular level. Biological compounds 

at the metabolite level are of paramount interest in the sport and exercise sciences, although 

research in this field has rarely been referred to with the global ‘omics terminology. Commonly 

studied metabolites in exercise science are notably within cellular pathways for ATP 

production such as glycolysis (e.g. pyruvate and lactate), β-oxidation of free fatty acids (e.g. 

palmitate) and ketone bodies (e.g. β-hydroxybutyrate). Non-targeted metabolomic 

technologies are able to simultaneously analyse the large numbers of metabolites present in 

human biological samples such as plasma, urine and saliva. These analytical technologies 

predominately employ nuclear magnetic resonance spectroscopy and chromatography coupled 

to mass spectrometry. Performing experiments based on non-targeted methods allows for 

systemic metabolite changes to be analysed and compared to a particular physiological state 

(e.g. pre/post-exercise) and provides an opportunity to prospect for metabolite signatures that 

offer beneficial information for translation into an exercise science context, for both elite 

performance and public health monitoring. This narrative review provides an introduction to 

non-targeted metabolomic technologies and discusses current and potential applications in 

sport and exercise science.  



 

 

1. Introduction 

The study of human metabolism in response to acute bouts of exercise and chronic 

exercise training traditionally involves the measurement of selected metabolites, transcription 

factors and proteins (Egan, Hawley, & Zierath, 2016). This has provided mechanistic insights 

into the phenotypic changes observed with exercise training and has enabled the development 

of targeted training and nutritional strategies to maximise adaptations for health and 

performance, for example, the timing of carbohydrate intake to maximise activation of key cell 

signalling proteins (Impey et al., 2016) and the application of short-term exercise training to 

increase insulin-mediated glucose disposal in obese people with type 2 diabetes (O’Gorman et 

al., 2006). Advanced investigatory techniques such as metabolomics offer the potential to 

develop the existing knowledge of metabolites and discover novel markers that can provide 

important information to exercise scientists.  

This narrative review is intended to provide an overview of what metabolomics offers 

as an experimental method and give a brief explanation of the current analytical and 

bioinformatic techniques employed for non-targeted metabolomics. Examples of where these 

techniques have been initially employed into exercise-based experiments are illustrated, and 

potential future directions that metabolomics methodologies may take in providing additive 

information into the sport and exercise sciences are discussed. 

 

2. What is metabolomics? 

Metabolites are defined as “low molecular weight organic and inorganic chemicals 

which are the reactants, intermediates or products of enzyme-mediated biochemical reactions” 

(Dunn, Broadhurst, Atherton, Goodacre, & Griffin, 2011, p. 387), with the term ‘metabolome’ 

used to describe the complete array of these metabolites found secreted by a living 

cell/organism (Nicholson, & Wilson, 2003). The study of the metabolome, metabonomics, was 



 

 

first described as “the quantitative measurement of the dynamic multiparametric metabolic 

response of living systems to pathophysiological stimuli or genetic modification” (Nicholson, 

Lindon, & Holmes, 1999, p. 1181). In addition to metabonomics where measurements are made 

of metabolites that are present from metabolic responses in multicellular systems, for example 

metabolites released by commensal and symbiotic organisms, metabolomics involves 

measurements of metabolites directly connected to genetic, metabolic and protein-driven 

processes (Nicholson, & Wilson, 2003). These metabolites may be present in tissues, bio fluids 

(e.g. plasma/serum and urine) and/or in volatilised form in exhaled breath gases. The premise 

of metabolomics is that small molecule metabolites measured in a biological medium report on 

the physiological state, or changes in response to an intervention, occurring within that 

organism.  

Like other methodologies carrying the ‘omics tag, for example genomics and 

proteomics, metabolomics can employ both targeted and non-targeted strategies. Targeted 

analyses can be applied to identify metabolites related to specific biological 

processes/pathways that modulate a biological function of interest (Griffiths et al., 2010). 

Targeted assays have been developed for commercial distribution, for example the 

AbsoluteIDQ test kit (Biocrates Life Sciences, Innsbruck, Austria) for the measurement of 

amino acids, glycerophospholipids and acylcarnitine molecules known to be involved in cell 

energy metabolism. In contrast, non-targeted metabolomics (also known as unbiased, global or 

discovery metabolomics) employs a wide-scope analytical collection (Fuhrer, & Zamboni, 

2015) and measurement technique whereby all detectable metabolites are (semi-)quantitated, 

collated and prospected for (bio)markers that are indicative of predefined conditions (e.g. 

metabolites that discriminate between diagnosis of diseased and healthy individuals). These 

assigned biomarkers may reflect causative and/or associative relationships with a physiological 



 

 

state of interest, allowing them to aid in the examination of current health or be applied for 

diagnostic, prognostic and therapeutic purposes.  

Through recent technological and methodological advances in the field of 

metabolomics, it has been possible to characterise, quantitate and identify an increasing number 

of analytes. Development and publication of open-source searchable metabolite databases have 

been possible through the increased availability of metabolite properties (e.g. molecular mass 

and analytical assay characteristics – discussed in more detail later). Perhaps the most relevant 

to human investigations is the Human Metabolome Database (HMDB) which was first 

published in 2007 (Wishart et al., 2007) and has since been updated, with the latest edition 

released in 2013 (Wishart et al., 2013). HMDB describes over 40,000 metabolites and each is 

represented with a ‘metabocard’ that details associated chemical, biochemical, clinical and 

enzymatic data, with links to website resources of additional information (The Human 

Metabolome Database, 2016). Databases such as HMDB have greatly assisted in the 

identification and understanding of physiological relevance for metabolites that have been 

discovered through non-targeted strategies. 

 

3. Commonly employed analytical techniques 

 Nuclear magnetic resonance spectroscopy (NMR) is an analytical technique often used 

in organic chemistry to confirm the structure of a synthesised compound. The information 

provided by NMR can also be applied to biological samples and allows for structural 

identification of the molecules present.  

NMR uses a high-powered magnet to induce a magnetic field that causes some atomic 

nuclei to spin. For 1H NMR, commonly employed in metabolomics studies (Want et al., 2010), 

the induced magnetic field causes the protons to align in an orientation corresponding to low 

or high energy; these are known as α and β states, respectively. The sample is then subjected 



 

 

to applied radio waves which cause those nuclei in the α state to shift to the β state. Once the 

applied energy is removed, the nuclei return to their original energy state and an alteration in 

magnetic field, known as resonance, can be measured and interpreted as peaks on NMR spectra. 

The magnetic field expressed on the nuclei is influenced by both the externally applied field 

and the magnetic effect of localised nuclei/electrons, causing changes in the resonance 

frequency in comparison to that seen from a singular atom. These changes in resonance are 

compared to a standard, which is defined as zero, and the difference observed is known as the 

chemical shift. These chemical shifts are characteristic for certain molecular structures and 

therefore can be used to identify molecules, or parts of molecular structure, present in the 

sample which aids in identification of the measured metabolites. As not all isotopes exhibit a 

magnetic spin (for example, 12C is not magnetic, where 13C is), it means that not all molecules 

can be studied using NMR and therefore the technique is limited in its application to metabolite 

measurement on a global scale. 

 Mass spectrometry (MS) is commonly employed for the analysis of metabolites in a 

global, non-targeted way (Dunn et al., 2011). MS offers highly sensitive, specific, accurate, 

rapid and robust analytical assays that are perfectly adapted to measure multiple metabolites 

using singular preparation and analysis methods (Dunn et al., 2011). As modern mass 

spectrometers are able to utilise large analytical mass scan windows (often in excess of 1000 

Da), there is an innate ability to measure all detectable small molecule metabolites present 

within a sample. Rapid and wide-scan capabilities allow for large databases of study-specific 

metabolites to be produced and subsequently implemented in multivariate statistical models to 

discover those which are highly associated with the target state. 

One of the most difficult aspects of non-targeted metabolomics is the confident 

identification of a measured metabolite of interest (Dunn, Broadhurst, Atherton et al., 2011). 

The application of modern high-resolution mass analysers, such as time-of-flight and the 



 

 

orbitrap, has improved analyte identification with the ability to measure mass-to-charge ratios 

(m/z) with an error of less than 10 parts per million (<0.001%). Highly accurate measured 

masses can then be compared to open-source databases and consequently given a tentative 

identification for a molecule’s name/structure. High-resolution measurements provide 

information that greatly reduces the complexity and, therefore, increases the success of positive 

identification over the use of nominal mass (i.e. to the nearest Da) systems such as the 

quadrupole and ion-trap mass analysers.  

In addition to the m/z measured of the intact molecule, a collision energy can be applied 

causing the metabolite to fragment. The fragments formed and their ratios to the precursor 

molecule are reproducible providing the collision energy value is maintained across analytical 

runs. Known as tandem MS or MS/MS, this process of fragmentation allows for additional 

validation of metabolite identification through comparison of mass spectra with and without a 

collision energy applied. MS/MS is particularly useful where two or more isomeric molecules, 

i.e. possess the same empirical formula and therefore identical m/z value, display alternative 

fragmentation properties and therefore offers the capability of identifying a particular 

metabolite isomer. 

 Metabolite identification can be further enhanced through the coupling of 

chromatographic techniques such as liquid and gas chromatography (LC, GC) to MS (Creek et 

al., 2011). LC is applied to non-volatile metabolites and is often used for blood and urine based 

analyses, whilst GC requires the metabolite to enter the analytical system in the gas phase and 

therefore is most suitable for volatile metabolites, liquid headspace and breath gas analyses.  

Chromatography uses the affinity of molecules to a stationary phase for deconvolution 

of complicated matrices that contain many hundreds of metabolites (e.g. plasma/serum). As the 

metabolites pass along the chromatographic column their varying affinities to the stationary 

phase cause them to exhibit different times between entry and exit of the analytical column. 



 

 

These properties cause metabolites to be separated and introduced into the mass spectrometer 

at intervals, thereby reducing the complexity of each MS scan. Decreased analytical 

complexity, through separation of molecules, improves metabolite identification through the 

reproducibility of metabolite retention times when chromatographic conditions are maintained 

across analytical runs. GC also offers the use of Kovát’s retention index (Kováts, 1958), where 

a series of homologous alkanes provide comparative retention time data across different 

chromatographic conditions. These retention indices can be compared to published values (e.g. 

the NIST mass spectral library) for more confident identification of analytes.  

The combination of chromatography with MS allows for the analysis of known standard 

reference compounds and comparison of retention time, mass spectra and MS/MS spectra for 

definitive identification of metabolites. Although GC-MS and LC-MS are not currently 

employed for exercise and sport-based situations in training or performance contexts, they are 

commonly used in anti-doping strategies for testing of athlete samples for banned substances 

(Thevis, Kuuranne, Walpurgis, Geyer, & Schanzer, 2016).  

A basic workflow for a non-targeted metabolomic experiment can be seen in Figure 1, 

and the advantages and limitations of using NMR and MS as technologies for non-targeted 

metabolomics studies are detailed in Table 1. 

 

4. Commonly used bioinformatics for metabolomics 

Non-targeted experiments produce large numbers of measured variables and therefore 

the way in which data are processed is an important factor for isolating meaningful associations 

with a variable/state of interest. For investigating changes in metabolites between predefined 

states, principal components analysis (PCA) and [orthogonal] partial least squares-discriminant 

analysis ([O]PLS-DA) are commonly used statistical techniques. PCA and OPLS-DA allow 

visualisation of multi-dimensional relationships of measured variables (i.e. metabolites) to 



 

 

predefined states (e.g. healthy and diseased) (Worley & Powers, 2013). PCA is an unsupervised 

method which projects data points onto a plot to visualise their distribution dependent on 

metabolite correlations that show the largest deviations across the dataset. PCA can be utilised 

to examine trends within a dataset without the force fitting for differences between pre-defined 

groups. This is particularly important for the analysis of quality control (QC) samples injected 

at regular intervals throughout experimental periods, with a tight cluster of these samples 

present within the PCA plot indicative of good analytical reproducibility and, therefore, low 

study bias (Figure 2). Supervised, or discriminant, analyses are methods that isolate the 

metabolites with the largest variation between predefined groups, allowing individual 

metabolites to be isolated by sensitivity and selectivity of group prediction. Methods such as 

OPLS-DA allow a refocus of analysis to understand differences related specifically to the 

experimental question, e.g. pre- versus post-exercise state, reducing the impact of systemic 

variation that may influence PCA models (Wiklund et al., 2008). In addition, OPLS-DA models 

produce a corresponding S-plot which visualises the covariance and correlation between 

metabolites and the computed model (Wiklund et al., 2008), indicating potential biomarkers to 

be isolated to be taken forward for more targeted statistical testing (Figure 2). As these methods 

use large numbers of variables to compute models, pre-treatment of the data can prove 

influential on corresponding results. Techniques such as normalisation, missing value 

imputation, transformation and scaling must be used with care to ensure the validity of results 

obtained (Di Guida et al., 2016). Metabolite relationships with continuous variables, for 

example VO2max, are predominantly investigated by correlation analyses for single metabolites, 

or multiple linear regression for combining several metabolites.  

 

  



 

 

5. Current investigations in sport and exercise science 

 In the context of sport and exercise science, NMR and MS-based techniques have 

allowed researchers to explore human metabolism in response to acute and chronic exercise. 

This includes the use of NMR to measure substrate use (Gonzalez et al., 2015) and metabolic 

perturbations during exercise (Jones, Wilkerson, & Fulford, 2008). MS has also been 

extensively used in combination with stable isotope tracers to assess substrate use during 

exercise (e.g. O’Hara et al., 2012) and to assess the total energy expenditure of elite athletes 

(Fudge et al., 2006). Alternatively, non-targeted metabolomics experiments are a contemporary 

adaptation to research methodologies in sport and exercise science. These unbiased ‘discovery’ 

methods have shown utility in medical research with prospective novel biomarkers identified 

in lung cancer (Mathé et al., 2014) and cardiovascular disease (Wang et al., 2011), amongst 

other conditions. The use of non-targeted metabolomics in sport and exercise science represents 

an exciting prospect as a method for identifying novel biomarkers relevant to the health and 

performance effects of sport and exercise interventions. To date, experiments performed using 

non-targeted metabolomics in this field have predominantly observed fluctuations in 

metabolites related to energy production pathways, and have been measured in blood, urine 

and saliva samples. These experiments are reviewed below, with potential future directions 

also identified.  

 The principal understanding sought of the exercise metabolome, and the most prevalent 

in the current literature, is how the metabolite abundances change from rest after an exercise 

intervention. Understanding these changes and identifying novel biomarkers may provide 

further insight into the metabolic regulation of adaptation for the future refinement of exercise 

programs for sporting performance. Exercise programs may also be refined for optimal health 

benefits based on this rationale and it also allows for further investigation of the interaction 



 

 

between nutritional interventions, metabolic perturbations and chronic adaptations to exercise 

training.  

The first investigation into multivariate modelling of exercise metabolome profiling 

was performed by Pohjanen and colleagues (2007) where 402 serum metabolites were used for 

prediction of the pre- or post-exercise state. Discriminant analyses were used to highlight 34 

metabolites with significant changes between groups (paired t test p < 8.2x10-5) and showed 

major contributions from increased glycerol and decreased asparagine after a multiple-bout, 

sub-maximal exercise session. Although this proof of concept study did not investigate the 

mechanistic effects of these changes, the study highlighted the potential for non-targeted 

metabolomics to identify changes in metabolites in response to an exercise bout that are beyond 

the traditional measures used within the sport and exercise sciences.  

Further investigations have noted changes in metabolites related to lipid and glucose 

metabolism at a range of exercise durations and intensities. An intensified training period in 

endurance athletes which involved a repeated running protocol of 2.5 hrs/day (for 3 days) at 

70% VO2max, induced significant elevations in metabolites related to lipid metabolism 

(Nieman, Shanely, Gillitt, Pappan, & Lila, 2013). Furthermore, the sustained elevation of these 

metabolites 14 hours after the final exercise bout suggests a prolonged elevation in lipid 

metabolism during the recovery from an intensified endurance training period (Nieman et al., 

2013). Similarly, an acute but prolonged bout of cycling (75 km) caused a 3.1-fold and 1.7-

fold increase in linoleic acid oxidation products 13-HODE and 9-HODE, respectively, and 

showed associations with the onset of oxidative stress as measured by F2-isoprostane levels (r 

= 0.75, p < 0.001, Nieman et al., 2014). This depth of understanding generated from non-

targeted metabolomic analysis supports the subsequent use of 13-HODE and 9-HODE as future 

markers of oxidative stress in response to exercise. The detailed understanding of fatty acid 



 

 

metabolism during the exercise bout may also help to inform future nutritional strategies that 

target changes in substrate use and/or oxidative stress responses to exercise. 

In addition to products of fatty acid oxidation, induced changes of fatty acid transporter 

molecules have been measured through increases in medium to long-chain acylcarnitines which 

have been demonstrated to increase palmitate oxidation in isolated rat muscle (Krug et al., 

2012; Lehmann et al., 2010; Nieman, Shanely, et al., 2013). Such measurement of circulating 

oxidation products and their transporter molecules could show utility in a medical setting, with 

cardiovascular disease conditions known to display alterations in cardiac tissue metabolism 

through dysregulated substrate utilisation (e.g. Aubert et al., 2016; Bedi et al., 2016); however, 

these current investigations involve exercise interventions that would be too strenuous for 

critically ill patients to perform.  

 The sensitivity of metabolomics to detect changes in fuel use during exercise has been 

demonstrated through observed decreases in serum concentrations of branched-chain amino 

acids in response to repeated 80 m running sprints (Pechlivanis et al., 2013). This is further 

supported by the identification of increased branched-chain amino acid degradation products 

in urine samples after exercise. Furthermore, although changes in the metabolome were 

detected in response to sprint training, there were no observed differences between groups that 

received either a 10 s or 1 min recovery period between sprint intervals (Pechlivanis et al., 

2013). The comprehensive overview of metabolites provided by metabolomic analysis allows 

for greater certainty that the manipulation of recovery periods did not induce metabolic 

differences compared with the measurement of a limited number of variables using a traditional 

approach. More recently, increases in serum lactate, pyruvate, succinate and multiple butyrates, 

along with a reduction in amino acids, has been recorded after a single bout of resistance 

exercise (Berton et al., 2016). Urinary increases in lactate, pyruvate and succinate have also 

been identified as pre- to post-exercise discriminators 30 min after a single 30 s cycle ergometer 



 

 

sprint (Enea et al., 2010). The use of metabolomics to monitor changes during such high 

intensity exercise may be particularly beneficial as the large anaerobic contribution to energy 

provision prevents accurate interpretation of fuel use from gas exchange measurements (Frayn, 

1983). 

The majority of studies to date have identified biomarkers with known metabolic 

contributions. However, the benefit of a non-targeted metabolomics approach was 

demonstrated by Malkar et al. (2013) through the identification of changes in a salivary 

metabolite of unknown origin in response to exercise. The metabolite was subsequently 

identified as δ-valerolactam, and although this molecule does not have any known 

physiological interactions, the isolation of this compound facilitates further investigation into 

its physiological role as well as the consequences and meaningfulness of the observed changes 

in response to exercise. The previous identification of stress markers such as cortisol has 

benefitted the clinical and scientific interpretation of a variety of stressors including exercise 

(Hough, Corney, Kouris, & Gleeson, 2013). Therefore, although the initial relationship 

between exercise-induced stress and novel biomarkers is merely correlational, subsequent 

identification of the role for such biomarkers may make a significant contribution to future 

research.   

Salivary biomarkers of stress and immune function have been extensively measured 

within sports science settings to minimise the risk of overtraining and upper respiratory tract 

infections in athletes (Meeusen et al., 2013). Although this represents a common approach in 

many sporting environments, this relationship is also largely based on correlational evidence 

and the relationship between markers such as salivary IgA and subsequent infection risk is not 

perfect, with coefficients of determination typically below 30 % (Gleeson et al., 1999; Neville, 

Gleeson, & Folland, 2008). Subsequently, it remains feasible that novel markers of suppressed 

immunity or overtraining may exist which could further assist in the adjustment of training 



 

 

loads to minimise risk for the athlete. Current evidence supporting the use of non-targeted 

metabolomics to identify novel markers of stress in salivary samples include observed 

elevations in metabolic by-products such as 3-methylhistidine (1.5 fold), glucose phosphate 

isomers (2.5-4.8 fold) and several amino acids (1.2-2.1 fold) in soccer players who expressed 

signs of fatigue after a 3-day program of matches (Ra, Maeda, Higashino, Imai, & Miyakawa, 

2014). A panel of saliva metabolites relevant to cellular energy metabolism (e.g. creatine, 

glucose, lactate, glutamate, acetate) has also been demonstrated to cluster yo-yo test 

performance in football players, suggesting that such measurements may be able to predict 

changes in performance (e.g. performance impairments due to overreaching) which represents 

an avenue for future research (Santone et al., 2014). 

 Aside from investigating changes in the exercise metabolome, researchers have also 

made initial steps into using metabolomics to pinpoint metabolites that may provide insight 

into an individual’s physical capacity, without the need to complete strenuous exercise tests. 

Routine blood tests that could provide predicted values of physical fitness would be of great 

benefit to both the medical and sporting communities, providing physiological monitoring and 

management where a person cannot perform exercise (e.g. critical illness, injury etc.), or where 

avoiding additional physical exertion would be preferred (e.g. an athlete during busy 

competition periods). This approach to using the metabolome as an indicator for health and 

fitness outcomes also aligns with the increasing focus on “precision medicine” (McCarthy, 

2015). In a recent investigation, Lustgarten et al. (2013) reported that pyroxidate, 2-

hydroxybutyrate and 4-vinylphenol sulphate showed significant associations with VO2max in 

both males and females. Furthermore, when these were combined with additional metabolites 

and blood chemistry analytes (e.g. SGOT, blood urea nitrogen), it was possible to explain 58 

and 80% of VO2max scores in males and females, respectively. In another study where 

participants were categorised into high (55 ± 8 mLO2/kg/min) or low (31 ± 7 mLO2/kg/min) 



 

 

fitness groups, a total of 15 amino acids were reported to be different between the groups in 

both urine and plasma metabolomes (Morris et al., 2013). Further, the authors showed an 

association between leucine and markers linked to metabolic syndrome and insulin resistance, 

suggesting a potential link to changes in amino acid utilisation in unfit individuals that could 

be causative in the development of cardiometabolic disorders. Differences between trained and 

untrained populations for resting levels of amino acid profiles and metabolites related to energy 

production and oxidative stress have also been observed by Yan et al. (2009), thereby providing 

further support for the view that the resting metabolome may reflect physical capacity levels. 

A further study comparing distinct categorised groups of low and high fitness 

demonstrated that the low fitness group had lower levels of phosphatidylcholine and increased 

free choline (approximately 1.5-fold, p = 0.017, Bye et al., 2012). Circulating free choline has 

recently been implicated in cardiovascular disease (Wang et al., 2014) and is known to be 

metabolised by the gut microbiome to form an intermediary in the production of 

trimethylamine N-oxide (Wang et al., 2011), a small molecule metabolite associated with 

reduced survival in conditions such as heart failure and myocardial infarction (Suzuki, Heaney, 

Bhandari, Jones, & Ng, 2016; Suzuki, Heaney, Jones, & Ng, 2016; Tang et al., 2014). Bye and 

colleagues (2012) have provided a basis to further explore exercise training to reduce levels of 

metabolites such as free choline through improving cardiovascular fitness, with the intention 

of reducing the risk of later-life development of cardiometabolic disorders. 

 An additional use of non-targeted strategies in exercise-based investigations has been 

to understand how nutritional interventions interact with the exercise metabolome. Lee and 

colleagues (2010) performed a case study experiment on a participant completing an exhaustive 

submaximal exercise test (75% VO2peak for 45 min followed by 90% VO2peak until fatigue) and 

red blood cell lysates were analysed with a global metabolomics approach. The test was 

completed with and without a high-dose oral intake of N-acetyl-L-cysteine. The results reported 



 

 

reduced levels of carnitine, acetyl-L-carnitine, creatine and 3-methylhistidine in the 

supplemented trial, with exercise-induced changes in reduced and oxidised glutathione blunted. 

The authors attributed the nutritional supplement as a method to suppress acute exacerbations 

of oxidative stress, although with only one participant the results may not reflect the general 

effect across larger sample sizes. Similarly, studies have shown nutritional interventions to alter 

the circulating levels of molecules related to energy metabolism (Chorell, Moritz, Branth, 

Antti, & Svensson, 2009; Miccheli et al., 2009; Nieman, Gillitt, et al., 2013), with one showing 

that individuals supplemented with a low carbohydrate protein drink and classified into a lower 

fitness group displayed a post-exercise metabolomic profile similar to that of the high fitness 

group who consumed only water (Chorell et al., 2009). Further research is required to fully 

appreciate the influence of nutritional interventions on the metabolome at rest and in 

combination with exercise. The measurement of appropriate outcome variables in response to 

nutritional manipulations that are designed to influence the metabolome may also help to 

substantiate the correlations observed between novel metabolites and parameters of health and 

exercise performance. 

 The implementation of non-targeted metabolomics into sport and exercise science 

investigations is in its early stages and is likely to be increasingly utilised in the coming years. 

The outlined studies present initial exploration and provide a base for future research in the 

field, with many areas of interest yet to be probed.  

  

6. Future implications and potential hurdles 

 Non-hypothesis-driven research into the metabolic changes that occur during sport and 

exercise has recently been termed “Sportomics”. This concept incorporates a top-down study 

model with the analysis of large datasets of metabolic variables collected in response to sports 

training and competition (Bassini & Cameron, 2014). The primary distinction between 



 

 

Sportomics and the use of metabolomics proposed in the present review is that the Sportomics 

approach typically provides a non-hypothesis driven analysis of a broad range of traditional 

metabolic variables, whereas non-targeted metabolomics monitors a wider range of metabolites 

that may be used to identify novel biomarkers of adaptations to exercise for health and 

performance. We believe that the metabolomics approach discussed in the present review may 

complement and extend the concept of Sportomics. 

In order for novel metabolic biomarkers to be identified for use in exercise and sport, 

non-targeted strategies must be employed. Research questions must be carefully designed so 

that correct collection and analysis of samples is performed, allowing for reliable statistical 

interpretation of the data. Global measurement of metabolites could be applied to help 

understand the athlete’s current state (e.g. fatigue, physical capacity etc.) or for use in aiding 

prediction of future events such as talent identification, onset of illness, susceptibility to injury 

or impaired physical performance.  

Once investigations have been successful in isolating single or multiple metabolites that 

offer beneficial measurements, methods to analyse these must be streamlined in order to allow 

future application with increased throughput (i.e. reduced analysis times) and reduced 

complexity. Methods to achieve these goals come through adaptations to the non-targeted 

analytical workflows that can allow for reduced analysis time and increased sensitivity through 

analyte filtering. Once these targeted strategies have been developed, validation of the 

usefulness of the metabolite screening must be performed and compared to any alternative 

measurements/techniques that are currently available.  

 The major stumbling block for these types of analyses in exercise and sport science is 

the high cost of purchase and maintenance of NMR and MS systems, with trained personnel 

required for the everyday functioning of the instrumentation. However, recent advances in 

technologies have allowed for complex software packages to be simplified and adopt a more 



 

 

‘plug and play’ style interface, thus increasing the ease of training for non-specialist users. A 

further issue is the space and provision required to operate these forms of instrumentation. 

NMR systems are bulky and extremely heavy due to the housed magnet, and MS systems are 

required to be under a vacuum with a constant supply of electricity and inert gases during 

operation. Efforts are being made to overcome these issues and a recent development in 

portable, compact mass spectrometers (e.g. Heaney et al., 2016) offer a reduced cost and 

footprint that may provide the important steps for the translation from the laboratory to field-

based investigations in exercise and sport. 

 

7. Conclusions 

 Although in its infancy, there is promise for the development of non-targeted 

metabolomic analyses applied to exercise and sport-based scenarios. Non-targeted strategies 

have been employed in the search of new biomarkers for personalised and stratified medicine, 

and present a new direction for the discovery of metabolite indicators for sport and exercise 

science. The coupling of chromatography to MS offers attractive methods for the analysis of 

many hundreds of metabolites in a single analytical run, and can be further developed to employ 

high-throughput, targeted methods for identified metabolites of interest. Moreover, improved 

information of fatigue, physical capacity and performance characteristics through metabolomic 

analyses may be beneficial to sportspeople to achieve their goals with maximum success and 

efficiency, as well as benefiting exercise testing for health and disease investigation.   
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Table Captions 

 

Table 1. A table to show the advantages and limitations of using nuclear magnetic resonance 

spectroscopy (NMR) and mass spectrometry (MS) for non-targeted metabolomics experiments.  

Nuclear magnetic resonance spectroscopy 

Advantages Limitations 

Non-destructive - prepared sample can be stored 

and reanalysed 

Lower sensitivity levels when compared to MS 

High levels of reproducibility Complex samples may exhibit overlapping 

spectral peaks that cannot be deconvoluted 

No requirement for vacuum or gas supply Expensive to purchase and specialised training 

required to operate 

Absolute quantification possible Large housed magnet can be troublesome for 

placement of instrument due to weight and 

interference with surrounding equipment 

Structural information available for measured 

metabolites 

 

  

Mass spectrometry 

Advantages Limitations 

High levels of sensitivity Destructive - injected portion of prepared 

sample cannot be reanalysed 

Ability to measure both intact and fragmented 

ions for improved identification 

Subject to instrument fluctuations across 

experimental periods 

Overlapping chromatographic peaks can be 

deconvoluted by extracting m/z values 

Instruments must remain in vacuum and most 

require access to constant supply of gases (e.g. 

N2, He) 

Highly accurate levels of measured mass 

achievable (e.g. with use of time-of flight and 

orbitrap mass analysers) 

Multiple ionisation states (positive/negative) 

and chromatographic techniques (e.g. reverse 

phase/HILIC) required for full metabolite 

capture 

Increased potential for number of measureable 

analytes from single analysis over NMR 

Constant temperature required to maintain mass 

accuracy (e.g. time-of-flight mass analyser) 
 

Expensive to purchase and specialised training 

required to operate 
 

Metabolite must ionise to be detected and 

potential for competition of ionisation in co-

eluting metabolites 
 

Quantitative data requires presence of an 

internal standard and additional calibration 

curves performed on known standard after 

metabolite identification 

  



 

 

Figure Captions 

 

 

Figure 1. A generalised workflow for metabolite identification using nuclear magnetic 

resonance spectroscopy (NMR) and mass spectrometry (MS) based technologies for non-

targeted metabolomics experiments. 

*denotes relation to experiments using NMR; ‡ denotes relation to experiments using GC/LC-

MS 

GC = gas chromatography; LC = liquid chromatography; m/z = mass to charge ratio  

  



 

 

 

Figure 2. Graphical visualisations of plots for a hypothetical non-targeted metabolomics 

experiment in sport and exercise science utilising principle components analysis (PCA; A) and 

orthogonal partial least squares-discriminant analysis (OPLS-DA; B) with its corresponding S-

plot (C). 

A Example PCA plot to show a shift in metabolic profile of participants from pre- (squares) to 

post-exercise (circles), with a tendency to return to pre-exercise characteristics after a period 

of recovery (triangles). Circled stars represent multiple analyses of a quality control (QC) 

sample at regular intervals throughout the analytical period. Close clustering of these indicates 

that low levels of instrumental variation (i.e. good reproducibility) are present across the study. 

B Example OPLS-DA plot to show a supervised multivariate analysis focussed on identifying 

metabolites that exhibit significant differences between pre-defined groups. This plot shows 

differences in metabolite values between pre- (square) and post-exercise (circles) samples. 

C Example corresponding S-plot to visualise the most contributory metabolites to the statistical 

model for separation of pre-defined groups observed from OPLS-DA (Fig 1B). The triangles 

in grey ovals signify the metabolites with the greatest magnitude and reliability of change 

between groups and would commonly be selected for further statistical testing using more 

targeted approaches (e.g. paired t-test, Wilcoxon test, etc.). 


