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Abstract (300/300 words) 

Regular exercisers have lower fracture risk, despite modest effects of exercise on BMC. 

Exercise may produce localised cortical and trabecular bone changes that affect bone strength 

independently of BMC. We previously demonstrated that brief, daily unilateral hopping 

exercises increased femoral neck BMC in the exercise leg versus the control leg of older men. 

This study evaluated the effects of these exercises on cortical and trabecular bone and its 3D 

distribution across the proximal femur, using clinical computed tomography (CT).  

Fifty healthy men had pelvic CT scans before and after the exercise intervention. We used hip 

QCT analysis to quantify BMC in traditional regions of interest and estimate biomechanical 

variables. Cortical bone mapping localised cortical mass surface density and endocortical 

trabecular density changes across each proximal femur, which involved registration to a 

canonical proximal femur model. Following statistical parametric mapping, we visualised and 

quantified statistically significant changes of variables over time in both legs, and significant 

differences between legs.  

Thirty-four men aged 70 (4) years exercised for 12-months, attending 92% of prescribed 

sessions. In traditional ROIs, cortical and trabecular BMC increased over time in both legs. 

Cortical BMC at the trochanter increased more in the exercise than control leg, whilst 

femoral neck buckling ratio declined more in the exercise than control leg. Across the entire 

proximal femur, cortical mass surface density increased significantly with exercise (2.7%; 

P<0.001), with larger changes (>6%) at anterior and posterior aspects of the femoral neck 

and anterior shaft. Endocortical trabecular density also increased (6.4%; P<0.001), with 

localised changes of >12% at the anterior femoral neck, trochanter and inferior femoral head.  

Odd impact exercise increased cortical mass surface density and endocortical trabecular 

density, at regions that may be important to structural integrity. These exercise-induced 

changes were localised rather than being evenly distributed across the proximal femur.  
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Introduction 

Hip fractures are a major public health problem among older adults, incurring high economic 

and social costs (1). Low femoral neck areal bone mineral density (aBMD) is a strong 

predictor of hip fracture incidence (2-3), but the distribution of bone is also important in 

determining its strength and resistance to fracture (4-7). With increasing age, cortical thinning 

and trabecular loss may proceed at different rates, and differ in magnitude amongst localised 

regions of the proximal femur (8-12). Localised cortical thinning has been associated with an 

increased risk of hip fracture (13) and trabecular loss has been found in hip fracture cases 

(14). Consequently, interventions that target bone at regions susceptible to localised 

weakness may produce greater reductions in hip fracture incidence than could be expected 

from the changes in aBMD alone.  

Exercise is a simple lifestyle approach that may produce localised adaptations in bone. In the 

femoral neck, simulations indicate that exercise can induce bone formation (15). In animal 

models, site-specific loading has been reported to stimulate large increases in bone strength 

despite small changes in BMC (16-19), which may suggest a redistribution of bone mineral to 

localised regions where mechanical demands are greatest. The distribution of cortical bone at 

the femoral neck differs between athletes from different sports (20) and clinical trials have 

demonstrated  that exercise can differentially affect cortical and trabecular bone at the radius 

and tibia (21-22), although fractures at these skeletal sites are much less frequent and have 

fewer long-term consequences compared to the hip. One previous study of a short-term 

exercise intervention (~16 weeks) has quantified cortical and trabecular changes at the 

proximal femur using quantitative computed tomography (CT) in young adults (23).  

It is particularly important to determine whether exercise can affect the amount and 

distribution of cortical and trabecular bone in older people, who may have already 

experienced the cortical thinning and trabecular loss that may predispose to hip fracture. The 
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Hip-Hop study (24) demonstrated that short bursts of daily hopping exercises increased 

DXA-derived aBMD and bone mineral content (BMC) at the femoral neck in a randomly 

assigned exercise leg compared to a control leg in older men. This hopping programme 

provides high- and odd- impact loading, with similar characteristics to the training associated 

with cortical thickening at the femoral neck in athletes (20). We now aim to discover the 

effects of this hopping exercise programme on BMC and 3D distribution of cortical and 

trabecular bone throughout the entire proximal femur. We hypothesised that the hopping 

exercises would increase cortical and trabecular bone mass with localised variation in bone 

gains across the proximal femur.  

 

Methods 

Study design  

The study was designed as a randomised controlled trial of a 12-month unilateral exercise 

intervention, where changes in a randomly allocated exercise leg were compared to those in a 

control leg of the same participant (24). Leg allocation was randomised by the researcher 

who recruited participants and administered the exercise intervention using minimisation. 

Randomisation was conducted by participants selecting a card indicating the exercise leg 

(right or left side) from opaque sealed envelopes. Right and left sides were allocated, 

irrespective of limb dominance. All participants were asked to perform a programme of 

hopping exercises on their randomly assigned exercise leg only and to avoid any other 

changes to their physical activity or dietary habits during the trial. The primary outcome 

measure was integral BMC (g) and the secondary outcome measures were cortical and 

trabecular BMC (g) assessed by CT. Clinical CT scans were performed by radiographers 

blind to the leg allocation before (pre-intervention) and after (post-intervention) the exercise 

programme. CT scans were then analysed in a blind-to-treatment manner. A 7-day food diary, 
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and health and physical activity questionnaires, were completed pre-intervention. 

Anthropometric measurements, and body composition assessment by dual-energy x-ray 

absorptiometry (DXA), were taken pre-intervention and repeated post-intervention (24).  The 

study was registered on a clinical trials database (clinicaltrials.gov; CTR number: 

NCT02007460) and the trial was approved by the National Research Ethics Service and the 

Loughborough University Ethical Advisory Committee.  

Participants 

Participants were healthy community dwelling men of white European origin, aged between 

65 and 80 yrs, with no recent involvement in exercise (strength, power or weight-bearing 

endurance) for more than 1hr/wk and had no diagnosed or symptomatic diseases likely to 

influence bone, neuromuscular function or ability to perform exercises. Assuming a 

comparable effect size as seen in femoral neck aBMD in a previous unilateral hopping 

intervention study in premenopausal women (25) we estimated that a sample size of 30 

participants would be needed to yield a statistical power of 80% at 95% significance levels. 

One hundred and twenty-five older men were screened via telephone, and of these, seventy-

five men were excluded, as described previously (24). The men were recruited from the local 

community from the area around Loughborough, UK, from March to June 2010. All 

participants provided written informed consent. Pre-intervention measurements were 

conducted between June to September 2010 and post-intervention measurements between 

June to September 2011. 

Prescribed exercise programme 

All men were asked to participate in a home-based impact exercise intervention. "Impact 

exercise" may be defined as activities that take advantage of the body mass impacting the 

ground to generate gravitational and musculoskeletal loading. The unilateral impact exercises 

prescribed in this study elicited vertical ground reaction forces during landing of 2.7 body 
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weight, which increased to 3.0 times body weight after 6-months of exercise (24). A full 

description of the impact exercise programme has been reported previously (24). Briefly, 

each training session lasted approximately 10 minutes and consisted of short bursts (five sets 

of 10 hops, with 15 second rest between each set) of unilateral hopping exercises that were 

performed in a variety of directions (vertical, anterior-posterior, medio-lateral and rotational 

hops). Participants were asked to perform the hopping exercises as high and fast as they could 

on a hard, even surface in barefoot and when another person was nearby. This programme 

design was based on evidence originating from loading models in animals that demonstrate 

rapidly applied, high intensity unusually-distributed strains, interspersed with short regular 

rest periods, produce a maximal osteogenic response in bone at the site experiencing strain in 

a short duration (26-28). The multidirectional hopping exercises were intended to provide 

unusual and variably distributed strains (compression, bending, twisting) distributed across a 

greater proportion of the femoral neck than predominantly vertical high impact exercise such 

as vertical jumping. The progression of the 12-month impact exercise programme was 

individualised according to each participant’s exercise tolerance and ability. To monitor 

progression and safety, participants were also asked to attend supervised training sessions at 

Loughborough University (in groups of five to six participants) each week for the first month 

of the training and every three months thereafter. The amount of training completed, 

occurrence of injuries and/or adverse events were noted in a training log book over the 12 

month period.  

 

CT image acquisition  

Pre- and post-intervention scans were performed on a high resolution, 64 slice CT scanner 

(AquilionTM, Toshiba Medical Systems Corporation, Tokyo, Japan) at University Hospitals 

Leicester, UK. Scans were performed with a table height of 74 cm at 120 kV and with a tube 
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current of 70 to 200 mA, depending on the height and weight of participants. Participants 

were positioned supine on the scanner table, lying on top of a solid calibration phantom 

(Mindways) and bolus bags, which were placed from the lumbar vertebrae to the femoral 

shaft. To standardise placement of the proximal femur pre- and post-intervention, 

participants’ knees were positioned with 10o of knee flexion and their legs and feet were 

medially rotated by 15º and secured to a foot positioning block with Velcro straps, as used for 

DXA scan proximal femur positioning. All scans were acquired from 2 cm superior to the 

highest point of the acetabulum to 2 cm inferior to the lesser trochanter with a detector 

collimation of 64 x 0.5 mm and a gantry rotation time of 0.5 s in helical acquisition mode. 

The pitch was set at 0.828 (helical pitch 53) and the scan field of view was 500 mm with a 

256 x 256 matrix. The helical image data was reconstructed at 2 mm slice thickness with 2 

mm intervals, using the body reconstruction kernel FC13 for optimum spatial resolution and a 

380 mm reconstructed field of view. Quality assurance (QA) scans were performed with a 

solid phantom (Mindways QA Model 3, Mindways Software Inc, Austin, USA) on each day 

when study measurements took place to monitor the CT scanner performance characteristics 

during the study period.  

Cortical, trabecular and integral BMC and biomechanical variables 

QCT-Pro Software Version 4.2.3 (Mindways Software Inc, Austin, USA) was used to analyse 

participant pelvic CT scans and the CTXA-Hip analysis estimated cortical, trabecular and 

integral mineral mass (BMC; g at traditional regions of interest within the proximal femur 

(femoral neck, trochanter and inter-trochanter sites). CTXA-Hip analysis was performed 

according to the QCT-Pro instruction manual (version 4.2.3) and involved the following 

automated steps, i) extraction of the proximal femur and ii) rotation and segmentation of bone 

voxels from soft tissue in three planes (axial, sagittal and coronal). Pre- and post-intervention 

scans were analysed together to ensure consistent positioning between scans. For each scan at 
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each time point, a fixed threshold (450 mg/cm3) was used to delineate cortical from 

trabecular bone. QCT-Pro Bone Investigational Toolkit version 2 (Mindways Software Inc, 

Austin, USA) was then used to estimate biomechanical variables, including cross-sectional 

area (CSA; cm2), the minimum and maximum cross-sectional moment of inertia (CSMImin 

and CSMImax; cm4) and buckling ratio (BR) at the mid femoral neck, located where 

eccentricity (ratio of lengths of major and minor principal axes) was 1.4.  

Distribution of cortical and trabecular bone across the proximal femur 

Cortical Bone Mapping (29) was applied to each CT scan to display local, pointwise 

measurements of the thickness (mm) and mass surface density (the mass of bone per unit 

surface area at each point on the cortex; mg/cm2) of cortical bone and the density (mg/cm3) of 

endocortical trabecular bone, as a colour map over each participant’s 3D bone surface, with 

several thousand independent measures across each proximal femur. A single value of 

average cortical density (mg/cm3) was estimated for the whole proximal femur (29), by 

reference to the calibration standards in the Mindways phantom, converting Hounsfield Units 

into mg/cm3 of bone. The process of measuring cortical thickness, mass surface density and 

endocortical trabecular density at every vertex on a 3D bone surface has been described in 

detail previously (29-32). In brief, this procedure involved segmentation of each femur using 

Stradwin software (Treece, Gee, Cambridge UK) to create a 3D surface rendered image, 

followed by registration of each proximal femur to an average right canonical proximal femur 

model. Each participant’s map from the post-intervention scan was subtracted from his own 

pre-intervention bone map to give a difference map for each leg (EL and CL). Statistical 

parametric mapping was used to find and quantify where the cortical mass surface density, 

thickness and endocortical trabecular density differed pre and post-intervention.  
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Statistical analysis  

Statistical analysis for anthropometric (height, body mass, BMI) and QCT-Pro derived 

variables was conducted using PASW Statistics (21.0; SPSS Inc, Chicago, IL, USA). Paired 

t-tests were used to determine differences pre and post-intervention for anthropometric 

variables. Two-way repeated measures analysis of variance (RM-ANOVA) was used to 

examine the influence of the hopping exercise programme on natural log transformed data for 

QCT-Pro derived variables over time (pre vs. post); between legs (exercise leg [EL] vs. 

control leg [CL]) and to detect leg × time interactions. Repeated measures multivariate 

analysis of variance (RM-MANOVA) was used to determine whether exercise effects 

differed according to hip site over time (leg × time × site [femoral neck, trochanter, inter-

trochanter] interactions). For variables derived from Cortical Bone Mapping, Surfstat 

(http://math.mccgill.ca/keith/surfstat/33) was used to test whether the difference value at each 

vertex was significantly different from zero using a fixed-effects general linear model. Paired 

t-tests were calculated to test the significance of differences pre and post-intervention and any 

difference between legs. Results for cortical and endocortical trabecular bone mapping 

variables are expressed either as an absolute measure or as a percentage change of the pre-

intervention value. For all statistical analysis, the significance level was set at P<0.05. 

 

Results 

Intervention adherence and physical characteristics  

Fifty men completed pre-intervention assessments and commenced the intervention. Fourteen 

(28%) withdrew from the study because of health problems or injuries unrelated to the 

intervention (n=9), time commitments (n=2) or musculoskeletal discomfort during exercise 

(n=3) (24). Two participants’ CT scans were affected by movement or other artefact and were 
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therefore excluded from further analysis. Data were analysed for the remaining thirty-four 

men, who completed 92% of prescribed sessions (mean (SD) 308 (30) sessions out of the 336 

prescribed sessions). Pre-intervention, the men reported completing 1.9 (2.0) hrs/wk current 

physical activity, and consuming a dietary intake of 3.1 (1.7) µg/d dietary vitamin D and 

1065.8 (261.8) mg/d calcium.  

There were no significant changes pre- to post-intervention for height [175.0 (6.2) vs. 174.9 

(6.1) cm, paired t-test, P=0.603), body mass [80.0 (8.2) vs. 79.8 (7.8) kg, paired t-test, 

P=0.667) or body mass index [26.1 (2.3) vs. 26.1 (2.2) kg/m2, paired t-test, P=0.913). There 

were no significant differences between physical characteristics (height, body mass, BMI) for 

the men that withdrew from the study (n=16, including those missing CT scans) and those 

that completed the trial (n=34) (paired t-test, 0.145<P<0.365). 

Cortical, trabecular and integral BMC and biomechanical variables 

At femoral neck, trochanter and intertrochanter sites, both cortical and trabecular BMC 

increased significantly over time in each leg, leading to a statistically significant increase in 

integral BMC at each region of the proximal femur (all P<0.05 for time factor in RM-

ANOVA; Table 1, Figure 1).  

At the trochanter, cortical BMC increased significantly more in the EL compared to CL (net 

benefit in exercise relative to control leg of 12.6%), although the increase in trabecular BMC 

did not differ significantly between legs (net benefit 1.2%). This contributed to a significant 

increase in integral BMC at the trochanter (net benefit of 4.0%; RM-ANOVA interaction; 

P=0.004; Table 1, Figure 1). 

At the intertrochanter and femoral neck sites, the net benefits in the exercise relative to the 

control leg were smaller (changes in cortical, trabecular and integral bone mineral masses 

were +0.9, -2.1 and -0.1% at intertrochanter and +0.6, -1.3 and +0.5% at femoral neck) and 
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did not differ significantly between exercise and control legs (leg x time interaction P>0.05; 

Table 1, Figure 1). 

When effects were compared between sites (femoral neck, trochanter, inter-trochanter) by 

RM-MANOVA, an overall exercise effect was evident for cortical BMC (significant leg x 

time interaction, P=0.041), which differed according to site (leg × time x site, P=0.003). 

There were no overall exercise effects for trabecular (leg × time, P=0.455), or integral BMC 

(leg ×, P=0.185) and consequently no effects between sites (leg x time x site, P>0.05). 

The effects of the exercise intervention on biomechanical variables of femoral neck strength 

are shown in Table 1. Buckling ratio decreased significantly more in the EL (-8.3%) than the 

CL leg (-4.6%) (RM-ANOVA interaction, P=0.014; Table 1) and there were significant 

changes over time for all other biomechanical variables (Table 1). CSMImax, CSMImin and 

CSA increased by 2.4%, 1.7% and 2.0% in the EL and by 0.9%, 3.1% and 2.1% in the CL.  

Distribution of cortical and trabecular bone across the proximal femur 

Overall proximal femur averages for cortical mass surface density, cortical density and 

endocortical trabecular density increased significantly after the 12-month exercise 

programme in both legs. The average increase in cortical mass surface density across the 

entire proximal femur was 2.7% (+4.5(1.3) mg/cm2, P<0.001) in the exercise leg and 1.6% in 

the control leg (+2.8(1.4) mg/cm2, P=0.002), yielding a net benefit of 1.1% (P=0.007).  

Statistically significant increases in regional cortical mass surface density were also apparent. 

The increases in cortical mass surface density varied across the proximal femur, with 

substantially larger increases (over +6%) evident at localised regions of the exercise leg: 

inferoanterior and superoposterior aspects of femoral neck and anterior aspect of 

intertrochanter region (Figure 2A). The control leg showed statistically significant increases 

in cortical mass surface density at the inferoanterior and posterior femoral neck, the anterior 
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aspect of the intertrochanter region and the lesser trochanter (Figure 2A), although changes 

were smaller in magnitude than those in the exercise leg.  

Cortical density increased by 1.8% (P=0.0001) in the exercise leg and 1.6% (P=0.001) in the 

control leg, although the net benefit of 0.1% did not differ significantly between legs 

(P=0.776). Cortical thickness increased by 0.5% in the exercise leg and decreased by 0.2% in 

the control leg, although these changes were not statistically significant (P=0.24 and 0.57 

respectively) and the net difference between legs (0.8%) was not statistically significant 

(P=0.127). 

The average density of the endocortical trabecular layer increased across the entire proximal 

femur by 6.4% (+9.8(3.1) mg/cm3, paired t-test, P<0.001) in the exercise leg and 4.5% (+6.5( 

paired t-test, P<0.001) in the control leg, with the net benefit of 1.9% being statistically 

significant (P=0.019).   

The changes in endocortical trabecular density were also varied across the proximal femur in 

the exercise leg, up to 12% (Figure 2B). The largest relative percentage increases in 

endocortical trabecular density in the exercise leg (over +12%) were at the inferoanterior 

aspect of the femoral neck, the anterior aspect of the greater trochanter and the inferior of the 

femoral head, and increases of up to 6% were also evident at the lateral shaft (Figure 2B). 

The control leg also showed some statistically significant increases in endocortical trabecular 

density at similar regions, although these affected a much smaller proportion of the proximal 

femur (Figure 2B). 

Discussion 

This is the first randomised controlled trial using clinical CT to investigate the longitudinal 

effects of exercise on the mass and 3D distribution of cortical and trabecular bone across the 

proximal femur. We discovered that cortical and trabecular BMC increased at the trochanter, 

femoral neck and intertrochanter during the study. Cortical BMC at the trochanter increased 
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more in the exercise leg than control leg, whilst femoral neck buckling ratio declined more in 

the exercise than control leg. Across the entire proximal femur, cortical mass surface density 

and endocortical trabecular density increased significantly with exercise, with larger localised 

changes evident in some localised regions. We therefore demonstrated that 12-months of very 

brief (~3 minutes) hopping exercises produced varied and focal changes in cortical and 

trabecular bone throughout the proximal femur as well as changes in biomechanical 

properties of bone strength at the mid femoral neck.  

Substantial cortical bone adaptation was evident during the hopping intervention. The relative 

magnitude of the exercise-induced increases in cortical BMC were proportionally greater 

than those found for trabecular BMC. Cortical and integral BMC at the trochanter, and across 

the proximal femur, increased significantly more in the exercise leg than the control leg, and 

cortical bone mass surface density responses differed substantially across the proximal femur. 

Since we did not detect significant changes in cortical thickness or cortical density, we cannot 

determine whether the increase in focal cortical mass was due to thickening of the cortex or 

by infilling of cortical pores. At the femoral neck, the increase in cortical mass surface 

density we found after 12 months of very brief exercise (over 6%) was of a similar magnitude 

to the increase previously reported following 36 months of treatment with Denosumab (4-

5%) (28), suggesting that exercise could produce localised changes in cortical bone at key 

regions of proximal femur that are at least of comparable magnitude as pharmaceutical 

treatment. 

We also found that buckling ratio decreased significantly more in the exercise than control 

leg at the femoral neck, although increases in cortical and trabecular masses and cross-

sectional area did not differ significantly between legs. That buckling ratio should increase 

more in one leg than the other, when both showed similar increases in mass implies a 

redistribution of bone. Cross-sectional moment of inertia increased over time which may also 
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imply a redistribution of bone at the femoral neck and this finding is consistent with our 

findings from DXA (24). The cortical mass maps demonstrated that there was indeed 

substantial regional variation in cortical mass surface density. Our findings are important 

because previous studies using clinical CT have shown women with femoral neck fractures 

have a lower bending strength and higher buckling ratio than controls (34), so this 

redistribution of bone may reflect increased bone strength and reduced fracture risk. 

There was substantial regional variation in bone changes following exercise. At the femoral 

neck, we discovered particularly large increases in cortical mass surface density and 

endocortical trabecular density at the inferoanterior aspect (over 6% and 12%, Figures 2) and 

the superoposterior aspect (over 6% and 10%, Figures 2). Clear visual differences between 

the exercise and control leg were also evident at these sub-regions (Figures 2). With ageing, 

substantial declines in cortical thickness and trabecular density occur in the superoposterior 

region (10-12) which compromises the femur's capacity to resist fracture in a sideways fall 

(35-36). Thinning of the superolateral cortex has been associated with femoral neck fracture 

(13) and trabecular weakness in the superior region has been reported in femoral neck 

fracture cases (14). Our findings suggest that these regional age-related effects may be 

counteracted by targeted exercise which could reduce risk of fracture. 

After 12 months of exercise, we also found large focal increases in cortical mass surface 

density (over 5%) at the posteromedial conjunction of the femoral neck and shaft, i.e. the 

calcar femorale. This finding may potentially have clinical importance because the calcar 

femorale is a fundamental anatomical structure for the proximal femur that increases its 

mechanical strength (37) by bearing compression load and redistributing stress (38) and thus 

may also be important in fracture risk (39). Increased trabecular density was also evident at 

the inferior aspect of the femoral head, whose trabecular density contributed most strongly to 

hip fracture discrimination in vivo (40). 
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Most studies regarding hip fracture risk have focused on cortical bone in the femoral neck 

sub regions, but recent evidence has shown that trabecular bone loss in hip fracture patients 

occurs not only at femoral neck but also expanded to the intertrochanteric region (41-42) 

which is a region of the proximal femur that is rich in trabecular bone. We detected 

substantial changes in endocortical trabecular density in the lateral trochanteric region 

(between 10-13%) with exercise, but little change in cortical mass surface density at this site. 

Our demonstration of these endocortical trabecular responses to exercise suggests that 

exercise induced bone adaptations may reduce risk of trochanteric and femoral neck 

fractures.  

Overall trabecular BMC changes (as assessed by analysis of trabecular BMD by Mindways 

software) did not differ significantly between legs, although the endocortical trabecular 

density (as assessed by cortical bone mapping) increased more in the exercise than the control 

leg. This discrepancy between the two trabecular bone measures most likely reflects the 

different volume assessed and may possibly suggest a redistribution of trabecular mass with 

exercise. The bone mapping demonstrated substantial variation in endocortical trabecular 

density changes. The greater cortical (and endocortical trabecular) response may reflect 

adaptation to increased strain distributed primarily through the cortex and endocortical layer 

of trabecular bone, or a shorter remodelling cycle in cortical bone (median of 120 days) (43) 

than in trabecular bone (up to 2 years). 

Cortical and trabecular BMC increased at the trochanter, femoral neck and intertrochanter 

over time in both legs. The increase in the control leg was not detected by DXA (24) whereby 

there was no increase aBMD and BMC of the femoral neck, whilst increases in means at 

trochanter and total hip sites were not statistically significant. It is possible that CT provides 

greater power than DXA to detect localised changes in bone. The increases in control leg 

BMC may have been due to "cross-education"; a neurophysiological phenomenon whereby 
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muscular strength gains can occur in the opposite, untrained limb following unilateral 

training, which may have contributed to greater bone mass. However, there was no evidence 

of increased lean mass in either leg by DXA. Alternatively, training of one limb may have 

increased the impact forces imposed on the contralateral limb during habitual activities such 

as stair ascent/descent. A further explanation is that participants may have increased physical 

activity.  

The response of bone to exercise is dependent upon the mechanical loads (i.e. strains) 

imposed upon it from the activity (44). The hopping exercises in our study incorporated a 

variety of multidirectional movements that were designed to distribute a variation of stresses 

and strains throughout the proximal femur. Large increases in cortical and trabecular bone 

were discovered in key locations throughout the proximal femur, suggesting that the 

multidirectional hopping exercise were effective at modulating the strain distributions more 

widely than in those regions (i.e. inferior femoral neck) which typically experience a high 

amount of loading during habitual activity such as walking. Noticeably, some of the localised 

gains coincided with attachment points (namely the lateral facet and anterior border of the 

greater trochanter and lesser trochanter) of the primary hip abductors (gluteus medius), 

extensors (gluteus minimums) and primary hip flexors (iliopsoas) and studies comparing 

impact exercises have shown that the gluteal muscles are most activated during 

multidirectional single legged hops (45). Therefore, compression and/or tensile stresses 

generated through skeletal muscle contraction as well as ground impact may have contributed 

to the localised bone gain on cortical and trabecular surfaces.   

Individuals who take part in regular exercise have substantially reduced fracture risk (46), 

despite only modest effects of exercise on aBMD. Our findings of localised skeletal 

adaptations to exercise suggests that specific exercises designed to target regions important to 

structural integrity could increase bone strength disproportionately more than aBMD and 
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could further explain the lower fracture risk in exercisers. Thus, previous exercise studies 

using aBMD as the main outcome measurement may have underestimated the changes in 

bone strength that occurred with exercise. Current exercise guidance for bone health e.g. the 

American College of Sports Medicine (47) is based on findings from intervention studies that 

have measured aBMD. However, exercise that is most effective for increasing aBMD may 

not necessarily be the most effective exercise for targeting other important biomarkers of 

bone strength such as cortical and/or trabecular structures. Our findings highlight the 

importance of using 3D scanning technologies in future trials for identifying localised 

structural changes in both cortical and trabecular bone compartments, to determine the 

optimal training components (i.e. type, intensity, frequency and duration) of exercise for 

increasing bone strength and resistance to fracture. Application of modelling techniques such 

as finite element analysis to 3D CT data would add important information about the stresses 

and strain distributions (e.g. compression, tension) experienced on the proximal femur from 

exercise and ultimately help with this endeavour.   

Currently the lack of persistence with exercise over a period of years is a major problem for 

exercise invention trials in bone health research. In older adults, exercise induced changes in 

bone mass and structure seem to be largely dependent on continued compliance and ability to 

maintain sufficient exercise intensity (48). In the current study, adherence to the exercise 

programme was 92% which suggests that short bursts of high intensity exercise (home-based) 

was not only effective for producing localised changes in cortical and trabecular bone 

compartments, but, importantly, was also feasible for this group of healthy older men to 

continue with in the longer term.  

There are strengths and limitations to this work. A major strength was using 3D scanning 

technologies and computational anatomy techniques to provide a detailed delineation of 

exercise effects on the distribution of mass and cortical and trabecular bone throughout the 
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proximal femur; effects that would have otherwise been overlooked by DXA. A limitation is  

that we did not include an independent control group, as changes in a control leg did not 

differ significantly from changes in an independent control group in our previous study in 

premenopausal women (25); however increases in the control leg were evident in this study. 

A further limitation is that we did not objectively assess physical activity or estimate dietary 

habits after the intervention, so we are unable to quantify any changes in these factors but we 

requested that participants maintained their normal habits during the trial. The benefits of 

exercise in the control leg, the relatively small sample size and subsequent high variability 

may have confounded our ability to find some statistically significant changes in the exercise 

leg relative to control. The study was conducted in healthy older men so findings may be less 

generalizable to other groups, for whom the exercise prescription may need modification. 

In conclusion, we discovered that short bursts of regular hopping exercises increased cortical 

mass surface density and endocortical trabecular density throughout the proximal femur (12 

months). These exercise induced changes were varied across the proximal femur, but 

included some substantial localised adaptations at regions that may be important to structural 

integrity and hip fracture risk. Therefore, exercise that targets localised cortical and/or 

trabecular regions of the proximal femur could produce greater increases in bone strength and 

resistance to fracture than would be expected from areal BMD.  
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Figure Legends 
 

Figure 1 Changes in integral, trabecular and cortical bone mineral content of the exercise leg 

(EL) and control leg (CL) during the 12 month hopping intervention. Values are 

median±interquartile range. 

* RM-ANOVA of log transformed data revealed a difference in response between legs for 

cortical BMC (significant leg x time interaction, P=0.041).  

 



24 

 

Figure 2 Changes in cortical surface mass density (A) and endocortical trabecular density (B) 

in the exercise leg and control leg. Data are expressed as a percentage change from pre-

intervention values. 3D colour maps are displayed across an average right proximal femur in 

anterior, posterior and inferior anatomical views. Areas where there were no statistically 

significant changes are shown in the grey colour.  
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Table 1 Proximal femur cortical and trabecular bone mineral mass and biomechanical variables in the EL (n=34) and CL (n=34) before and after 
the exercise programme. Data are expressed as mean (95% CI). 

  EL (exercise leg), CL (control leg), BR (buckling ratio), CSMI (cross section moment of inertia), CSA (cross-section area) 
 
 

 

 EL (n=34) CL (n=34) P value from RM-ANOVA 
 Pre Post Pre Post Time Leg Leg x 

Time 
Trochanter         
Cortical BMC (g) 2.37 (2.01-2.80) 2.74 (2.32-3.24) 2.55 (2.18-2.98) 2.63 (2.20-3.14) 0.000 0.606 0.001 
Trabecular BMC (g) 6.53 (6.19-6.89) 6.76 (6.38-7.17) 6.58 (6.21-6.98) 6.73 (6.29-7.21) 0.005 0.961 0.434 
Integral BMC (g)  9.04 (8.40-9.72) 9.66 (8.93-10.45) 9.25 (8.58-9.98) 9.50 (868-10.40) 0.000 0.832 0.004 
        
Intertrochanter         
Cortical BMC (g) 12.20 (11.06-13.46) 13.26 (12.00-14.65) 12.09 (11.00-13.29) 13.03 (11.88-14.29) 0.000 0.585 0.813 
Trabecular BMC (g) 8.29 (7.83-8.77) 8.40 (7.91-8.93) 8.15 (7.64-8.70) 8.43 (7.89-9.00) 0.016 0.599 0.239 
Integral BMC (g)  20.61 (19.14-22.19) 21.79 (20.15-23.57) 20.36 (18.87-21.96) 21.55 (19.97-23.27) 0.000 0.529 0.951 
        
Femoral Neck        
Cortical BMC (g) 1.89 (1.72-2.08) 2.08 (1.86-2.33) 1.90 (1.71-2.11) 2.08 (1.87-2.33) 0.000 0.935 0.852 
Trabecular BMC (g)   2.44 (2.31-.2.58) 2.49 (2.36-2.62) 2.40 (2.24-2.58) 2.48 (2.32-2.64) 0.001 0.588 0.565 
Integral BMC (g)  4.37 (4.11-4.65) 4.63 (4.35-4.93) 4.37 (4.11-4.65) 4.61 (4.28-4.96) 0.000 0.826 0.705 
        
Mid Femoral Neck Geometry         
BR 13.7 (12.4-15.1) 12.5 (11.3-13.9) 13.6 (12.3-15.0) 12.9 (11.6-14.4) 0.000 0.587 0.014 
CSMImin cm4) 12.8 (11.8-13.8) 13.0 (12.0-14.1) 12.5 (11.6-13.4) 12.8 (11.9-13.9) 0.004 0.326 0.251 
CSMImax (cm4) 15.9 (14.7-17.1) 16.3 (15.1-17.5) 16.2 (15.0-17.4) 16.3 (15.1-17.7) 0.037 0.616 0.154 
CSA (cm2)                    12.4 (12.0-12.8) 12.6 (12.2-13.0) 12.4 (12.0-12.8) 12.6 (12.2-13.1) 0.000 0.999 0.819 


