
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



10

Journal of Applied Biomechanics, 2012, 28, 10-19 
© 2012 Human Kinetics, Inc.

Michael J. Hiley (Corresponding Author) and Maurice R. 
Yeadon are with the School of Sport, Exercise and Health Sci-
ences, Loughborough University, Loughborough, U.K.

The Effect of Cost Function on Optimum Technique 

of the Undersomersault on Parallel Bars

Michael J. Hiley and Maurice R. Yeadon

Loughborough University

The undersomersault, or felge, to handstand on parallel bars has become an important skill in Men’s Artistic 
Gymnastics as it forms the basis of many complex variations. To receive no deductions from the judges, the 

position. Two male gymnasts each performed nine undersomersaults from handstand to handstand while 
data were recorded using an automatic motion capture system. The highest and lowest scoring trials of each 
gymnast, as determined by four international judges, were chosen for further analysis. Three optimization 
criteria were used to generate undersomersault technique during the swing phase of the skill using a computer 
simulation model: minimization of peak joint torques, minimization of horizontal velocity before release, 
and maximization of angular momentum. The techniques used by both gymnasts could be explained using 

generated a technique advocated for beginners where strength might be expected to be a limiting factor. The 

according to the FIG Code of Points.
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The undersomersault, or felge, from handstand to 
handstand (Figure 1) on parallel bars is an important skill 
in Men’s Artistic Gymnastics as it provides the basis for 
more complex variations. From handstand the gymnast 
lowers the body by closing the shoulder angle (shoulder 
extension) and allowing the shoulders to move forward 
relative to the hands (Figure 1A-B). The gymnast then 
rotates backward and circles below the bar (Figure 1B-D). 
Release occurs after the gymnast’s mass center has passed 
above bar level (Figure 1E-F) and the gymnast then 
regrasps the bars before reaching the handstand position 
(Figure 1G). To receive no deductions from the judges, 
the gymnast must perform the undersomersault without 

elbows and should arrive in handstand without excessive 

Two techniques for the swing phase (Figure 1B-F) of 

literature (Davis, 2005). The technique depicted (Figure 
1) in the Code of Points (FIG, 2006) closely resembles 
a backward clear circle to handstand, which is normally 

performed on the high bar. During this technique the 
gymnast maintains the hip angle throughout the major-
ity of the circle, in particular while the gymnast is below 
the bars (Figure 1). Davis (2005) recommended that this 
technique be used during the initial stages of learning the 
undersomersault. Presumably this technique is recom-
mended for young gymnasts as it is less demanding in 
terms of the strength required to perform the skill.

However, the technique preferred by the majority 
of senior gymnasts more closely resembles a “stoop 
stalder” on high bar (Davis, 2005). As the gymnast 
circles beneath the bars a deep pike position (large hip 

extends passing through release (Figure 2). It is specu-
lated that the stoop stalder technique produces a more 
vertical path of the mass center near release, which 
would have advantages for both consistency and skill 
progression. The advantages of such a mass center path 

velocity changes less near to release leading to a more 
consistent performance. That is, if the release is mis-
timed slightly the mass center will still be moving in the 
correct direction (Hiley & Yeadon, 2003). Secondly, the 
undersomersault to handstand forms the basis of more 
complex skills: the undersomersault to handstand with a 
half or full twist. Having a vertical mass center velocity 
while the body is twisting will reduce the complexity 
of the hand grasp changes.
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Previous research has investigated the undersomer-
sault to handstand mount on parallel bars (Takei & Dunn, 
1996). The performances of 26 national gymnasts were 
divided into two groups by score and were then analyzed. 
It was found that the better performances were associated 
with a higher mass center position and greater vertical 
velocity at release. It was also found that in the poorer 
performances the gymnasts over-rotated before releasing 
the bars which lead to a poor body position on regrasp.

Limited work has been carried out on simulating 
swinging on parallel bars. A two-dimensional frontal 
plane model of the gymnast and bars has been used to 
look at the lateral movements of the bars during hand-
stand (Linge, Hallingstad, & Solberg, 2006). Although 
the model was able to simulate the lateral movements of 
the bars during these activities no data were presented 

Figure 1 — The undersomersault from handstand to handstand on parallel bars (adapted from the FIG Code of Points, 2006).

Figure 2 
the bars.

for swinging in the sagittal plane. However, there are 
many examples in the literature of planar simulation 
models used to investigate swinging in the sagittal plane 
on high bar (Arampatzis & Bruggemann, 1999; Hiley & 
Yeadon, 2003a; Linge & Hallingstad, 2002). To optimize 
technique using a simulation model, an appropriate cost 
function must be chosen. Depending on the nature of 
the cost function, different optimum techniques may be 
obtained. Typically in high bar swinging the amount of 
angular momentum at release for a dismount has been 
maximized (Hiley & Yeadon, 2003a). However, in the 
study by Takei and Dunn (1996), excessive angular 
momentum appears to be undesirable for successful 
performance. The question arises, “What would happen 
to technique if maximizing angular momentum were the 
optimization criterion?”

 A B C D E F G
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The aim of the current study was investigate the 
effect of cost function on optimum technique for the 
swing phase of the undersomersault. The techniques of 
two gymnasts are optimized with three different cost 
functions based on (a) minimizing peak joint torques at 
the hip and shoulder (b) producing a vertical path of the 
mass center leading up to release and (c) maximizing 
angular momentum about the mass center at release.

Methods

Subsections in Methods describe the protocol used 
to optimize the technique used in the swing phase of 
the undersomersault from handstand to handstand on 
parallel bars. Data collection was carried out using a 
three-dimensional motion capture system and the data 
from several undersomersault to handstand trials were 
processed to provide input to the computer simulation 
model and comparison data for the model evaluation. The 
model was initially used to obtain matching simulations 
of the undersomersault performances to determine model 
parameters. The matching simulations were then used as 
the starting point for optimizing the gymnast’s technique 
(i.e., determine the joint angle time histories) using the 
different cost functions.

Data Collection

Data were collected on two senior male gymnasts compet-
ing at national level (Gymnast 1: mass = 61.2 kg, height 
1.65 m; Gymnast 2: mass = 63.5 kg, height 1.75 m) to 
provide input data for the simulation model and provide 
comparison data with which to evaluate the model. Each 
gymnast gave informed consent (in accordance with 
the procedures of the university ethics committee) and 
each performed nine undersomersaults from handstand 
to handstand. All trials were recorded using 13 Vicon 
M2 cameras operating at 100 Hz. Before data collection 
a volume centered on the parallel bars spanning 5 m × 
2 m × 5 m was wand calibrated using the Vicon motion 

diameter were attached to the lateral side of the wrist, 
elbow, shoulder, hip, knee and ankle joint centers and toes 
on each side of the body. Offset measurements, using an 
anthropometer, were recorded from each marker center 
to the adjacent joint center for subsequent determination 
of joint centers. Markers were also attached to each side 
of the gymnast’s head and on top of each parallel bar at 
its center. Three-dimensional marker coordinates were 
reconstructed and joint centers were determined, using 
the offset measurements, from which arm orientation 

1990a). The inertia parameters of each gymnast were cal-
culated using the model of Yeadon (1990b) from a set of 
95 anthropometric measurements taken on each gymnast.

All trials were also recorded with a standard 50 Hz 
digital video camcorder (Panasonic NV-GS200EB). Four 
international judges (FIG) scored each undersomersault 

from the video recordings. The highest and lowest scoring 
trials of each gymnast were chosen for further analysis. 

position without the use of strength.

Simulation Model

A three-segment planar model was used to simulate the 
swinging movement on the parallel bars (Hiley & Yeadon, 
2003a). The gymnast model included arm, torso, and 

-

lead to deductions from the judges, a single segment 

represent straight legs. The elastic properties of the bars 
and gymnast were modeled as damped linear springs 
(Figure 3). The spring at the shoulder represented the 
stretch at the shoulder and any extension of the spine. 
Movement of the shoulder (gleno-humeral) joint center 
due to scapular rotation was represented by allowing 
the torso length to vary as a function of shoulder (arm 
elevation) angle (Begon, Wieber & Yeadon, 2008). The 
model was driven using the joint angle time histories at 
the shoulder and hip (Figure 3, α and β, respectively) in 
the form of Fourier series.

Matching Simulations

To determine model parameters which could not be 

torques) and provide a starting point for the optimization 

Figure 3 — Three segment simulation model of the gymnast 
and parallel bars with bar spring and shoulder spring.
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of technique (i.e., joint angle time histories), a close 
match between simulated and recorded performance was 
required for the two selected trials of each gymnast. The 
simulation model was implemented with the Simulated 
Annealing optimization algorithm (Goffe, Ferrier & 
Rogers, 1994) to minimize the difference between the 
simulated and recorded performance. The matching 
cost function (equation 1) included terms for differences 
between simulated and recorded rotation angle, bar dis-
placements and joint angle time histories at the hip and 
shoulder, normalized angular momentum at release and 
linear velocity at release (Table 1).

F = 10ϕ + 200(xb + zb) +
                    20(h + X

.
 cm + Z

. 
cm) + 20(α + β)  

(1)

where ϕ = root mean squared (RMS) difference in 
degrees between recorded and simulated rotation angle, 
xb and zb are the RMS differences between recorded and 
simulated bar displacements, h = absolute difference 
in normalized angular momentum at release between 
simulation and actual performance, X

.
 cm and Z

. 
cm are 

the absolute differences in linear velocity at release 
between simulation and actual performance, α and β 
are the RMS differences between the joint angle time 
histories determined from the Fourier series and the 
actual performances. Angular momentum was normal-
ized by dividing by 2π times the moment of inertia 
of the body about its mass center when straight and 

Since the model was designed to simulate the swing-
ing portion of the skill, each simulation was started once 
the angular velocity of the arm segment was in the posi-
tive direction (anticlockwise, Figure 2). The end of the 

lost contact with the bars. Initial conditions, including the 
initial angle, angular velocity and bar displacements, for 
each simulation were taken from the corresponding trial. 
During the matching process the following parameters 

were allowed to vary to obtain a match between the simu-
lated and recorded performance. The horizontal and verti-

to vary to conform with the norms of the International 
Gymnastics Federation (FIG, 2006). The stiffness and 

to vary between 0 and 30,000 N⋅m–1 and between 0 and 
5,000 N⋅s⋅m–1, respectively (Hiley and Yeadon, 2007). 
The masses of the arms and legs were allowed to vary 
independently by ± 5% and the torso mass was adjusted 
to maintain whole body mass, since density values were 
taken from the literature for the segmental mass calcula-
tions. The torso length parameter was allowed to vary 
between 0 and 0.15 m. In addition variations in the initial 
conditions (rotation angle and angular velocity) were 
permitted (up to 6° and 40°⋅s–1) to compensate for any 
errors propagated during calculation. Finally, the coef-

vary to obtain a close match with the recorded joint angle 
time histories. All model parameters and initial conditions 

during the subsequent optimization of technique.

Optimizations

Three separate cost functions (minimization of peak 
joint torques, production of vertical mass center path and 
maximization of angular momentum at release) were used 
to optimize the gymnasts’ technique during the swing 
phase of the undersomersault. All simulations started 
from the same position as in the matching process and 

vertical, since release should occur before this point in a 
good performance (Takei & Dunn, 1996). The matching 
simulations were used to provide the initial estimates 
of the joint angle time histories. To produce realistic 
solutions the peak joint torques were limited to those 
determined from the matching simulations (Table 2). 
A reduced joint torque limit based on the results of the 
matching simulations (Table 2) was also used once the 

Table 1 Mass center height and velocity for the four 

undersomersault to handstand performances

Variable

Gymnast 1 Gymnast 2

Best Worst Best Worst

CMh release (m) 0.177 0.187 0.176 0.145

CMh regrasp (m) 0.642 0.595 0.614 0.656

CMh handstand (m) 0.902 0.902 1.018 1.018

Vert. velocityrelease (m⋅s–1) 3.115 2.902 3.171 3.169

Horiz. velocityrelease (m⋅s–1) 0.097 0.164 0.035 0.319

Angular momentum (SS) 0.000 0.007 -0.004 -0.002

Note. CMh is mass center height. Angular momentum is measured in straight somersaults (SS) during 



14  Hiley and Yeadon

to vary, all other model parameters obtained during the 

to vary by ± 25% from the initial values.

based on the peak joint torques at the hip and shoulder 
joints while seeking an improved undersomersault per-
formance through the use of penalties. The optimum 

above the bars. The 90% of handstand position was 
chosen as gymnasts regrasp the bars before handstand is 

-
ment from the gymnast performances (i.e., would allow 
the gymnasts to perform the skill with straight arms). The 
vertical velocity required to reach 90% of handstand was 
calculated from the height of the mass center at release 
using the equations of motion under constant accelera-
tion. The simulation incurred penalties if the horizontal 
velocity and normalized angular momentum at release 
exceeded the range spanned by the video analysis of the 
18 trials of the gymnasts and the values reported for high 
scoring performances by Takei & Dunn (1996) (0.3 m/s > 
horizontal velocity > –0.2 m/s and 0.025 SS > normalized 
angular momentum > –0.025 SS). An additional penalty 

-
tions on regrasping the bars (Takei & Dunn, 1996). The 
cost function was calculated at each integration interval 
during the upward phase of the swing (Figure 1D–F) until 
the end of the simulation. The lowest value obtained for 

the cost function during this period was returned to the 

The second optimization effectively minimized 
horizontal velocity so as to produce a vertical path of 
the mass center during the upward swing to release. 
A root mean squared (RMS) difference was calculated 
between the angle of the resultant mass center velocity 
and the upward vertical from a rotation angle of 225° 
until release. In addition to minimizing the RMS dif-
ference, exactly the same penalties used to produce an 

the constraints of horizontal velocity, angular momentum 
and hip angle at release).

The third optimization maximized the forward nor-
malized angular momentum of the model at release from 
the bars. Since this skill was unlikely to regrasp the bars 

until the mass center was level with the bars. Similarly 
there was no penalty associated with horizontal velocity at 
release. A simulation model of aerial movement (Yeadon, 
Atha & Hales, 1990) was used to determine what skills 
would be possible based on the increase in normalized 
angular momentum.

Results

The mass center release height and velocity were similar 
for the four performances (Table 1). In each of the four 
matching simulations the model was able to reproduce 
the whole body rotation angle to within 2° (RMS differ-
ence), the bar displacements to within 0.005 m (RMS 
difference), the joint angle time histories to within 4° 
(RMS difference), and the mass center velocity at release 

Table 2 Peak joint torques for the four undersomersault to 

handstand matching simulations and the joint torque limits used in 

the optimizations

Variable

Gymnast 1 Gymnast 2

Best Worst Best Worst

Peak shoulder torque (N⋅m): max 374 402 354 429

 min –427 –377 –169 –212

Peak hip torque (N⋅m): max 93 191 213 184

 min –209 –398 –469 –460

Shoulder torque limit (N⋅m): max 405 430

 min –430 –215

Hip torque limit (N⋅m): max 200 215

 min –400 –470

Shoulder torque limit release (N⋅m) ± 175 ± 175

Hip torque limit release (N⋅m) ± 200 ± 200

Note.
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to within 1%. The mean vertical stiffness and damping 

were 63,573 N⋅m–1 and 686 N⋅s⋅m–1, respectively. The 

the bar were considerably larger, due to the construction 
of the apparatus (152,189 N⋅m–1 and 7,880 N⋅s⋅m–1). 

were 14,308 N⋅m-1 and 1,656 N⋅s⋅m–1, respectively. The 
peak torques at the hip and shoulder joints during the 
matching simulations were generally similar for the two 
gymnasts with the exception that Gymnast 2 had lower 

torques were minimized, the model was able to achieve 

criteria for a successful performance. This represents an 

improvement in performance of 25% and 36% in terms 
of the height achieved by the mass center for each gym-
nast, respectively. As expected the peak joint torques 
were lower than in the actual performances (Tables 3, 
4; Figure 4—positive torques correspond to shoulder 

of optimized simulations (Figure 5b) differed from the 
technique of the gymnasts (Figure 5a) and more closely 
resembled the clear circle technique (Figure 1).

The second set of optimizations, in which the 
path of the mass center was encouraged to be vertical, 

release while satisfying the criteria for a successful 
performance (i.e., same level of improvement in per-

the peak joint torques did not exceed the limits set from 

Table 3 Gymnast 1: Release parameters and peak joint torques for the 

three sets of optimisations

Variable

Optimization 1 Optimization 2 Optimization 3

Best Worst Best Worst Best Worst

CMh release (m) 0.196 0.201 0.230 0.223 0.245 –0.046

Vert. velocity release (m⋅s–1) 3.57 3.54 3.38 3.40 4.34 4.46

Horiz. velocity release (m⋅s–1) –0.14 0.11 –0.20 –0.19 1.41 3.25

Angular momentum (SS) –0.025 –0.023 –0.024 –0.022 –0.628 –0.611

Max shoulder torque (N⋅m) 136 139 406 371 298 307

Min shoulder torque (N⋅m) –124 –179 –430 –430 –430 –420

Max hip torque (N⋅m) 143 139 101 114 200 139

Min hip torque (N⋅m) –206 –195 –399 –378 –400 –401

RMS vertical velocity (°) 21 21 6 10 27 42

Note. RMS vertical velocity is the RMS difference in degrees between the direction of the mass center velocity 
and the upward vertical leading up to release.

Table 4 Gymnast 2: Release parameters and peak joint torques for the 

three sets of optimisations

Variable

Optimization 1 Optimization 2 Optimization 3

Best Worst Best Worst Best Worst

CMh release (m) 0.249 0.274 0.284 0.381 0.306 0.220

Vert. velocity release (m⋅s–1) 3.62 3.56 3.52 3.24 3.64 3.08

Horiz. velocity release (m⋅s–1) –0.10 –0.08 –0.19 –0.20 1.41 1.24

Angular momentum (SS) –0.017 –0.019 –0.023 –0.023 –0.408 –0.404

Max shoulder torque (N⋅m) 383 281 392 417 376 430

Min shoulder torque (N⋅m) –138 –126 –192 –217 –196 –214

Max hip torque (N⋅m) 165 195 189 215 210 215

Min hip torque (N⋅m) –200 –226 –474 –475 –467 –409

RMS vertical velocity (°) 21 21 7 8 29 31
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the actual performances they were considerably higher 

(Figure 6; Tables 3, 4). The technique from the second 
set of optimizations (Figure 5c) closely resembled the 
technique of the two gymnast performances (Figure 5a). 
The main difference between the second set of optimum 

techniques and the gymnasts’ technique was a more 
rapid hip extension over a slightly larger hip angle range 
in the optimized solutions (Figure 6a).

In the third set of optimizations, where the for-
ward normalized angular momentum was maximized, 
considerably more angular momentum at release was 

Figure 5 — Graphical sequences of (a) matched (regrasp position taken from video analysis), and optimum simulations (b) mini-
mizing joint torques and (c) producing vertical mass center path of the best trial of Gymnast 2.

Figure 4 — Time histories of (a) joint angles and (b) joint torque at the hip (circles) and shoulder (crosses) for the matched and 

(a) (b)

(a)

(b)

(c)
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produced (Tables 3, 4) when compared with the gymnasts’ 
performances. This was accompanied by a considerable 
increase in horizontal velocity, compared with the other 
two sets of optimizations, as this was no longer con-
strained by the cost function. For Gymnast 1 the model 
was able to produce more normalized angular momen-

perform a “cast to straddle cut” (Figure 7a). The model 

to perform a similar skill, but in a tucked position and 
without the straddle cut (Figure 7b).

Discussion

The aim of the paper was to investigate the effect of the 
cost function on optimal technique for the undersomer-

-
tions the goal was to improve upon the performance of the 
undersomersault to handstand of two elite gymnasts. In 

upon the gymnasts’ performances with the mass center 

phase, which would enable the gymnasts to regrasp the 

(a) (b)

Figure 6 — Time histories of (a) joint angles and (b) joint torque at the hip (circles) and shoulder (crosses) for the matched and 
optimized (solid line) simulations of the worst trial of Gymnast 2 from the second set of optimizations.

Figure 7 — Graphical sequences of the new skills that could be performed from the undersomersault optimized for angular momen-
tum of (a) Gymnast 1 and (b) Gymnast 2.

(a)

(b)
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bars with straight arms (Figure 5). The average heights 
achieved by the two gymnasts in their actual perfor-
mances were 72% and 66% of handstand, respectively. 
The improvement was achieved through a combination 
of increased vertical velocity and an increase in height 
of the mass center at release (Tables 1, 3, 4). In the case 
of the optimum technique which closely resembled the 
gymnasts’ technique, this was achieved through a more 
rapid hip extension over a slightly larger range (Figure 
6). Although similar demands in terms of a successful 
performance were required, the cost functions used in 

joint torque limits. Although it would be desirable to have 
limits based on a joint torque—angle—angular velocity 
relationship, the results do not depend on excessively 
large joint torques compared with the actual performances 
(Figures 4 and 6). Inspection of the joint angular veloc-
ity time histories revealed that peak angular velocity 
occurred at periods of relatively low joint torque for the 

optimizations, at the shoulder joint, there were instances 

is expected that the inclusion of a torque–angle–angular 
velocity relationship might make small changes to the 
optimal technique, but would not affect the conclusions 
regarding the two techniques. It could also be argued that 
a further limitation of the study was constraining the opti-
mization to the swing phase of the skill. However, since 
simulations started from the beginning of this almost 
stationary phase future studies could address this aspect 

of the technique by allowing the initial conditions (i.e., 

joint angle time histories.
The minimization of joint torques may be an 

appropriate optimization criterion where the gymnast 
strength limits are approached during the movement. 
When minimizing the joint torques a technique similar 
to the backward clear circle technique was obtained. This 

clear circle technique is adopted in the initial stages of 
learning, as it is physically less demanding (Figure 4b).

In the case of the stoop stalder technique it is clear 
that minimizing peak joint torques is not the goal of the 
gymnast. The stoop stalder technique was obtained from 
the optimization that encouraged a vertical path of the 
mass center as the gymnast approached release (Figure 
8). As outlined in the introduction, the advantages of such 
a linear mass center path are consistency of performance 
and the potential for increasing the complexity of the skill 

is a sport that relies on consistency and the continuing 
development of new and more complex skills. In effect 
the clear circle technique may be redundant, beyond the 

for skill progression that the stoop stalder has.
The third set of optimizations also demonstrates 

that gymnast’s technique is more often based on task 
requirements than minimization of torques or energy. 
Replacing the requirements for a good undersomersault to 
handstand with the maximization of normalized angular 

(a) (b)

Figure 8 — Path of the mass center for optimization 1 (solid black), optimization 2 (dashed line) and optimization 3 (solid gray) for 
(a) the best trial of Gymnast 1 and (b) the best trial of Gymnast 2.
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produce a completely new skill (although still within the 

angular momentum was produced to perform a “cast to 

(skills are ranked from A to E).
In this article, optimizations have been based upon 

minimizing peak joint torque, having a vertical release 
velocity, and maximizing normalized angular momentum 
in undersomersaulting movements. Each of these crite-
ria produces a characteristic technique associated with 

criterion for a given skill is not always a simple matter 
since the over-riding factor might be strength (optimiza-
tion 1), skill development (optimization 2), mechanical 
(optimization 3) or something else such as timing (Hiley 
& Yeadon, 2003). Indeed it may not always be possible 
to explain technique in terms of a single optimization 
criterion since sometimes there may be a number of 
competing factors that are relevant and important.
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