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Acoustic performance of a resonating perforated liner
with incident axial and circumferential acoustic modes

Mark A. Cassell∗, Jon F. Carrotte

National Centre for Combustion and Aerothermal Technology (NCCAT),
Building 9, Holywell Park, Loughborough University,

Loughborough, LE11 3GR, United Kingdom

Abstract

Perforated liners are a common form of passive damping device used in engin-
eering applications to damp acoustic pressure fluctuations. The liner has many
orifices arranged over the surface with a rear cavity, where the liner can be de-
signed to resonate akin to an array of Helmholtz resonators in parallel. However,
whilst a Helmholtz resonator is insensitive to the incident mode, the large surface
area and rear cavity of a perforated liner can generate internal mode shapes that
affect the acoustic performance. This paper presents a quasi-one-dimensional
analytical model capable of capturing the variation in acoustic performance as
the internal cavity segmentation is altered with incident higher-order acoustic
modes in a narrow annular duct. Thus, the model can allow the generation of
circumferential mode shapes. The model shows, when the liner is highly segmen-
ted circumferentially, the liner behaviour is akin to that with an incident axial
wave. The segmentation causes the internal cavity pressure to fluctuate uniformly
at a similar frequency to a Helmholtz resonator with the same effective cavity
dimensions. When the cavity length is significant relative to the wavelength,
circumferential mode shapes are generated within the cavity and the frequency
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Nomenclature

A Cross-sectional area
c Speed of sound
f Frequency
fc Cut-on frequency
h Stagnation enthalpy
k Wave number
L Length
m Number of microphones
M Mach number
n Higher-order mode number
NS Number of sectors
p Pressure
p0 Total pressure
Pa Aperture pitch
Qr Resonance parameter
r Radius
R Reflection coefficient
ri Inner radius
ro Outer radius
r, φ, z Cylindrical coordinates
S Liner separation
St Strouhal number
t Time
u Velocity
V Volume
Z Acoustic impedance
Γ Inertia
γ Specific heat ratio
δ Admittance
ε Direction cosine of the wave-

front

η Compliance
θ Wall angle
ρ Density
σ Porosity
ϕ Phase
ω Angular frequency

Mathematical symbols
x′ Time derivative of x

Subscripts
0 Ambient condition
1 Damping skin parameter
2 Metering skin parameter
A Incident clockwise wave
avg Average
B Incident anti-clockwise wave
c Cavity
C Reflected clockwise wave
d Downstream value
D Reflected anti-clockwise wave
i Incident
r Reflected
r, φ, z Cylindrical component
tot Total
z Axial component
φ Circumferential component

Superscripts
+ Upstream travelling wave
− Downstream travelling wave
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of resonance increases based on the circumferential frequency component. The
model is then compared to an example experimental data set obtained from a
facility designed to allow circumferential modes to cut-on simultaneously with
an axial mode. A description of the facility and the multi-microphone decom-
position method applied to decompose simultaneous modes of unknown orders
and relative magnitudes is presented. The model has good agreement with the
experimental results for a small cavity segmentation, although there is deviation
observed at high frequencies when the cavity length becomes significant relative
to the circumferential wavelength.

Keywords: passive damping device, higher-order acoustic mode, resonating
perforated liner, linear wave superposition, reflection coefficient

1. Introduction

Passive damping devices are commonly used within engineering systems
to damp acoustic pressure fluctuations. For small devices, such as Helmholtz
resonators, spatial variations in the incident pressure wave are not typically an
issue with the pressure variation across the neck inlet being negligible regardless
of the mounting location. This is because the neck size is small relative to
the acoustic wavelength. However, perforated liners, which consist of many
distributed orifices on a plate, and may be backed by a cavity with a rigid rear
wall or a second plate of distributed orifices, can have a large internal cavity and
surface area. A non-uniform pressure distribution can occur across the face of the
damper when the damper is:

1. fully annular or having a minimal number of separating walls in the cavity
when a circumferential wave component is present; or

2. axially long.

This non-uniform pressure distribution can then lead to mode shapes forming
within the internal cavity that affect the acoustic response of the damper. In this
study, helical acoustic wave forms are considered in an infinitely narrow annular
duct, which have both axial and circumferential wave components ( f 2tot ≈ f 2z + f 2φ),
in addition to plane axial waves. These waves will impinge upon a perforated
liner mounted axially on the end of the annular duct such that the axial plane
waves cause a uniform pressure fluctuation on the damper face.

Much work has been done to consider the behaviour of perforated liners with
plane waves and the dependency of various geometric parameters. Generally
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however, the assumption is made that any variations in pressure across the damper
surface are negligible and only mode shapes formed axially between the primary
and secondary skin (or rear wall) are important. However, in the study by Eldredge
and Dowling [1], the damper cavity is annular around the main cylindrical duct
with no internal segmentation, with plane axial waves applied causing a significant
axial variation across the skin and in the cavity. A double-skin system is used
and it is shown that both liners are important for absorption. Troughs in the
absorption occurred when pressure nodes were present in the cavity as the axial
length became significant. Passive damping devices may be employed in a variety
of applications including automotive exhaust or gas turbine combustion systems.
In these environments the damper may be subject to high temperatures that
could cause hot gas ingestion and detune the damper. Thus, a bias flow may be
required for cooling or purging purposes. The bias flow rate has been studied in
several cases [2, 3, 4] alongside dependency studies on the cavity volume and
skin porosities; generally, an increasing bias flow causes a decrease in the peak
absorption and broadening of the response. However, Eldredge and Dowling [1]
(and Macquisten et al. [5] for high temperature validation) found the bias flow
capable of improving the effectiveness of the liner as it aids the dissipation of
vortices generated from the aperture edges.

In some circumstances, it can be assumed that the perforated liner cavity acts
akin to a Helmholtz resonator with the internal cavity volume divided between
the damping skin apertures. The large pressure fluctuations within the cavity at
resonance can cause flow reversal across the primary skin, which can necessitate
the use of a purging bias flow to prevent hot gas ingestion. For this resonant case,
the secondary skin, is used to meter the flow with a large pressure drop relative to
the primary damping skin. In addition the apertures within the metering skin have
a high length-to-diameter ratio. Thus, they have high acoustic inertias and there-
fore the skin has a minimal acoustic response allowing the cavity to resonate [2].
To effectively resonate, the cavity dimensions and the spacing between apertures
are presumed to be insignificant compared to the acoustic wavelength such that
they fill instantaneously creating a uniform isentropic fluctuation throughout the
damper cavity. However, with a non-uniform incident pressure the resonance of
the liner may be affected.

Annular or cylindrical duct geometries may be employed within practical
engineering environments, for example within a gas turbine combustor, in which
circumferential modes can exist. If the damper is mounted around the azimuth,
circumferential pressure variations may occur; although, axial variations may still
be ignored if the dimension is kept small relative to the axial wavelength. Eldredge
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[6] develops a model to consider a fully annular cavity, which is subjected to
circumferential modes and finds that the results strongly agree with those obtained
from the plane wave model developed by Eldredge and Dowling [1]. Modelling
the effect of segmentation within the cavity with significant pressure variations
on the damping skin, which can lead to internal mode shapes, however have
not been widely considered. Rupp [3] created an initial one-dimensional model,
based on the work by Eldredge and Dowling [1], where the wave was treated as a
plane wave and the damper length assumed to be comparable to the excitation
wavelength. This creates pressure variations along the damper surface and causes
the onset of mode shapes in the cavity, leading to a significant decrease in energy
loss as the length of the damper increases.

In a real world engineering application the structure of the incident acoustic
mode can vary substantially in time with different acoustic modes existing simul-
taneously. Bauerheim et al. [7] experimentally show this variation with multiple
modal structures coexisting in gas turbine combustors and instabilities that switch
successively between dominantly standing and spinning. These experimental
studies on higher-order acoustic modes within combustion chambers to analyse
modal structures are rare, due to the complexity and cost involved. Large-eddy
simulations may be used to analyse these structures, as in the study by Wolf et al.
[8, 9]; although, the computational resources required mean such studies are gen-
erally prohibitive. For example, in the case by Wolf et al. [8], 400 000 CPU hours
were required for 0.1 seconds of physical time. However, these experimental and
computational investigations showed that the geometry of the combustor can influ-
ence the mode that dominates, and whether the entire system couples through the
cooling tiles in the walls of the combustor to the feed annuli [10]. The presence of
asymmetry can force the domination of a circumferentially standing mode. Modal
coupling can be explained with a simple example. Evesque and Polifke [11]
assume that in an annular system with a single point of asymmetry, for example,
a single blocked section of an annular damper, the resulting acoustic pressure
field must be asymmetric because of this circumferential variation. Therefore, if a
purely axial (and axisymmetric) mode is incident upon this damper it must cause
a superposition of circumferential modes to describe this asymmetric acoustic
field with a scattering of energy to acoustic modes of various orders. Additionally,
the scattered energy from this pure axial mode would lead to the formation of a
circumferentially standing acoustic field because of the fixed point of asymmetry.

Parrott and Watson [12] and Rademaker et al. [13] experimentally investigate
the effects of both circumferential and radial higher-order modes in a circular
duct and the absorption provided by a circumferentially segmented liner. Two
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sets of microphones are utilised, one set upstream of the liner to control the
amplitude and phase of nine loudspeakers, and the other set of microphones
positioned downstream of the liner to calculate the absorption before an anechoic
termination. Parrott and Watson [12] found that the desired dominant incident
mode contained more than 95 % of the total energy with other incident modes
from the sources being suppressed. Using this method, the modal scattering,
or the redistribution of acoustic energy to modes of different orders, could be
measured and evaluated as caused by asymmetry of the liner. The downstream
microphones are traversed radially and circumferentially during operation to
enable decomposition of the field. However, limitations on the radial distance were
applied as in the centre of the duct strong acoustic pressure gradients occur, which
make the field sensitive to the presence of the microphone rake [13]. Gerhold
et al. [14, 15] utilise a similar technique to analyse the impact of higher-order
modes and modal scattering in a rectangular duct. Modal scattering causes energy
to scatter equally between higher- and lower-order mode numbers, and the use of
a segmented liner with varying impedance can provide more effective broadband
performance and an equivalent peak absorption [16, 17, 18]. However, as Campos
and Oliveira [19] note while redistribution of energy may increase the apparent
absorption of a single mode, it can reinforce other modes that are potentially more
difficult to damp. Tester et al. [20] show that lower-order modes are generally
more difficult to absorb due to the relatively longer wavelengths associated with
the modes. Rigid mechanical joins and splices are used to fix and separate
adjacent liner panels circumferentially and/or axially. The splices can make the
damper face smaller relative to the wavelength and may thus cause a significant
reduction in acoustic performance at some conditions. The redistribution of this
energy from these rigid splices can be shown computationally to be a function
of the number and widths of the splices; although, the precise mechanics are
poorly understood with the three-dimensional analysis being computationally
demanding [18, 20, 21, 22, 23, 24].

It is necessary to consider these mixed acoustic mode structures and their
impact on perforated liners; although, while the acoustic field is linear and un-
coupled, as is assumed here, each mode may be considered independently. If the
acoustic field is non-linear, and becomes coupled, then it cannot be described ac-
cording to the theory of linear superposition. This theory relies on the calculation
of the amplitudes of each mode by balancing the excitation and damping forces,
and is thus potentially unverified for the non-linear case [25]. The non-linear
effects can include frequency spreading, non-linear wave interaction (as opposed
to the linear superposition) and non-linear absorption. For most practical damping
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applications, the wave is assumed to remain linear away from the face of the
damper and henceforth adequately described by the linear wave equations, with
the total field following the linear superposition of waves [26]. Additionally, any
fluctuations in the density due to the pressure perturbations are small and linear-
ised theory may thus be initially applied. Henceforth, non-linear acoustics shall
not be considered here, and the field is assumed to remain uncoupled, although
asymmetric segmentation of the damper could couple the system. By assuming
the response remains uncoupled this simplifies the modelling process and allows
for the development of an initial modelling tool. The model detailed here enables
the prediction of a perforated damping liner that can have incident axial and
circumferential modes. To this end the influence of various parameters on the
damper can be investigated along with characterisation of the potential mode
shape within the cavity. These could then be used to optimise the response of the
damper, with respect to the frequency and magnitude of peak loss, when in the
presence of both axial and circumferential modes. Furthermore, it is the purpose
of this study to experimentally investigate the variation in performance of a perfor-
ated liner as the segmentation of the cavity is altered. This experimental data can
be used to generate test cases to validate this and other models. The results that
will be presented here, from the larger experimental data set, are concentrating on
the first-order circumferential mode with an incident dominantly circumferentially
standing acoustic field and segmentation that is applied axisymmetrically as far
as possible. This will minimise any potential errors and interference arising from
acoustic modal coupling from the duct terminations. The field is dominantly
circumferentially standing with an average relative amplitude of 1.04 between the
circumferentially opposing incident waves.

2. Analytical model

The model developed by Bellucci et al. [27, 28] can be used to model the
absorption of a perforated liner damper or Helmholtz resonator across both the
linear and non-linear absorption regimes. It assumes that an incident acoustic
pressure wave will create a uniform pressure fluctuation throughout the cavity;
hence, it can be used to model a damper mounted normal to the direction of
propagation of an axial wave in an annular duct (e.g. it is mounted on the end of
the duct). Thus, any circumferential cavity segmentation (assuming a constant
cavity volume) may be disregarded. It is also assumed that when modelling the
perforated liner the apertures have a sufficient pitch-to-diameter ratio such that
they can be considered independently. This model is hereafter referred to as the
‘axial wave model’.
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p̂c(φ, z, t)
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Figure 1: Perforated axial liner geometry as used by Rupp [3] for modelling a segmented damper
system

However, with a significant variation across the damper surface or in the
damper cavity this axial wave model will become invalid. Eldredge and Dowling
[1] developed a one-dimensional model to investigate the absorption of axial
plane waves, below the cut-on of higher-order modes, by a fully annular liner
that is mounted parallel to the direction of propagation of the waves. Thus, the
axial length of the liner can be significant. Eldredge [6] extended the model to
analyse the impact of circumferential modes in a narrow annular duct and the
resulting three-dimensional interaction using a Green’s function approach. It was
found, however, that the one-dimensional approach remained valid at frequencies
above cut-on. Similar behaviours are noted between the modes when plotted
as a function of the axial frequency component. Rupp [3] adapts the model by
Eldredge and Dowling [1] to approximate a segmented damper system with a
pure spinning wave in a duct of infinite radius, as illustrated in Fig. 1. It equates
the system to an axially travelling wave that runs parallel to the liner and thus
creates a pressure distribution along the axial dimension of the damping skin. It
demonstrates the potential importance of the number of cavity divisions going
between many small cavities, which could resonate, to a single cavity that can
form mode shapes. As the cavity length increases, this causes the absorption
predicted by the model to sharply decrease. Practical considerations, however,
mean that how the cavity is segmented may not be purely down to acoustic
damping reasons.

Here the described quasi-one-dimensional model is intended to assess the
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û1(φ, z, t) û2(φ, z, t)

p̂d = 0

p̂c(φ, z, t)
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Figure 2: Axial cross-sectional view of the perforated liner mounted on the end of an annular
main duct in the helical wave model.

impact of circumferential modes that may travel helically with circumferential
and axial wave components. The damper is mounted normal to the direction of
propagation of the axial mode at the duct termination (as illustrated in Fig. 2),
with the duct and the damper having the same annular diameters and thus hav-
ing consistent circumferential cut-on frequencies. A double perforated skin is
presented here, where the model follows a similar method to that by Eldredge
and Dowling [1] and Rupp [3]. This model is hereafter referred to as the ‘helical
wave model’. The acoustic velocity amplitude variation with the cavity (ûc) is
characterised as:

∂ûc (φ, z, t)
rc∂φ

= − iĥc (φ, z, t)ω
c2

+
û1 (φ, z, t)

S
− û2 (φ, z, t)

S
(1)

where the term rc is the mean radius of the damper cavity, θ is the sector angle (2π
for the fully annular case). The change in stagnation enthalpy within the cavity
(ĥc) is defined as:

∂ĥc (φ, z, t)
rc∂φ

= − iωûc (φ, z, t)
εφ

(2)

where the term εφ is the direction cosine of the circumferential mode wave-front
relative to the circumferential axis.

The fluctuating flow across the damping (primary) and metering (second-
ary) skins is related to the stagnation enthalpy across the liners and each skin
compliance:

û1 (φ, z, t) =
εφη1

iθωS

(
ĥc (φ, z, t) − ĥ0 (φ, z, t)

)
(3)

û2 (φ, z, t) =
εφη2

iθωS

(
ĥd (φ, z, t) − ĥc (φ, z, t)

)
(4)
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Figure 3: Sensitivity of the model to axial length of the cavity and frequency based on the
percentage error between the left- and right-hand sides of the associated equations evaluated for
an acoustic helical wave propagating without loss. (a) Eq. 1 and (b) Eqs. 3 and 4.

The model is regarded as being quasi-one-dimensional as the axial length of the
cavity is considered to be negligible relative to the wavelength. Hence, only the
circumferential variation is considered within the cavity. However, to estimate the
errors associated with this assumption an acoustic wave can be considered that
propagates, without loss, along the narrow annular duct. For this configuration
the acoustic wave pressure (and be association the wave velocity and enthalpy)
at axial positions separated by a distance S can be considered. Using Eq. 1 the
imbalance between the left- and right-hand sides can be evaluated at z = 0 (for û1),
z = S/2 (for ûc, ĥc), and z = S (for û2), this imbalance being due to the left-hand
side of the equation ignoring any velocity variation in the axial direction. Figure 3
shows the associated error which is, not surprisingly, sensitive to both frequency
and separation distance (S ). However, at 1000 Hz a cavity depth greater than
40 mm is required for 1 % error. Similarly, errors associated with differences in
the left- and right-hand sides of equations Eq. 3 or 4 can also be evaluated (both
equations produce comparable results), in which a porosity of 100 % is assumed
for calculation of the liner compliance. In this case a cavity depth greater than
40 mm is required to give an error greater than 2 % at 1000 Hz. The system that
is experimentally investigated in this paper has a liner skin separation of 22.3 mm.
Hence, over the range of frequencies investigated (up to 1000 Hz) it is assumed
the errors associated with ignoring the axial variation in enthalpy and velocity
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within the cavity are acceptable.
The compliance for each skin is [3]:

η =
2θσrc (Γ (St) + iδ (St))

πr
(5)

The inertia (Γ) and admittance (δ), which are functions of the Strouhal number
(here using the definition of St = ωr/ū), can be related to the axial impedance of
each skin by:

Γ (St) + iδ (St) = − iπρωr
2

1

Zz
(6)

where the axial impedance here is calculated from the unsteady momentum
balance across each skin given by Bellucci et al. [27]. It is capable of modelling
both the linear and non-linear absorption regimes based on the ratio between
the bias flow and acoustic velocities. When the bias flow is greater than the
acoustic velocity absorption occurs within the linear regime wherein absorption
is independent of the incident pressure amplitude. However, in the non-linear
absorption regime, caused by a relatively small or no bias flow, the amount of
energy absorbed is a function of the incident acoustic pressure with diminishing
returns as the pressure increases.

While the bias flow velocity through the orifices may be significant, in the
cavity and upstream duct this velocity component is negligible under all normal
operating conditions. Thus, the fluctuating stagnation enthalpy is simplified as
ūc = ū0 = 0, such that it is defined as ĥ = p̂/ρ̄ [1], and hence the damping skin
velocity fluctuation given by Eq. 3 becomes:

û1 (φ, z, t) =
εφη1c2

iγθωS

(
p̂c (φ, z, t)

p̄c
− p̂i (φ, z, t)

p̄0

)
(7)

For the metering skin, with the assumption that upstream of the metering skin is a
plenum, so ĥd (φ, z, t) = 0 and thus Eq. 4 becomes:

û2 (φ, z, t) =
εφη2

iθωS

(
−ĥc (φ, z, t)

)
(8)

=
εφη2c2

iγθωS

(
− p̂c (φ, z, t)

p̄c

)
(9)

The acoustic velocity in the cavity can be related to the circumferential
pressure variation, per Eq. 2:

ûc = − εφ

iρωrc

∂ p̂c

∂φ
(10)
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The incident travelling acoustic wave in the narrow annular duct is based upon
the clockwise (p̂A) and anti-clockwise (p̂B) rotating incident pressure amplitudes
for the circumferential mode:

p̂i (φ, z, t) = p̂Aei(ωt−φn−kzz) + p̂Bei(ωt+φn−kzz) (11)

The model remains valid, and yields only negligible differences for all relative
combinations of incident pressure amplitudes, so for example where 0 ≤ p̂A ≤
p̂B. A circumferentially standing wave has relative pressure amplitudes that
are approximately equal (p̂A ≈ p̂B). A purely circumferentially spinning wave
requires one incident component to be approximately zero (p̂A ≈ 0 or p̂B ≈ 0).

By substitution and differentiating with respect to the circumferential coordin-
ate it is possible to obtain an inhomogeneous ordinary differential equation of the
second-order with respect to the circumferential component:

∂2ûc (φ, z, t)
∂φ2

− αûc (φ, z, t) = β
(
p̂Aei(ωt−φn−kzz) − p̂Bei(ωt+φn−kzz)

)
(12)

where the constants α and β are independent of space and given here by:

α =

(−iθω2S 2 + iεφc2 (η1 + η2)
γθω p̄cS 2

) (
− iρωrc

εφ

)
(13)

β =

(
εφη1c2rc

iγθωp̄0S 2

)
(−in) (14)

Solving Eq. 12 gives the general solution as:

uc (φ, z, t) = Const1 (z, t) e−φ
√
α+Const2 (z, t) eφ

√
α−
β
(
p̂Aei(ωt−φn−kzz) − p̂Bei(ωt+φn−kzz)

)
α + n2

(15)
where the unknown constants Const1 (z, t) and Const2 (z, t) are independent of the
circumferential coordinate and can be solved by defining the relevant boundary
conditions. In the case where the cavity is circumferentially divided into sectors,
the circumferential velocity amplitude at the dividing walls must be a node:

ûc (φ = 0, z, t) = ûc (φ = θ, z, t) = 0 (16)

Alternatively, for a fully annular cavity the boundary conditions must ensure the
acoustic velocity remains periodic throughout the cavity such that:

ûc (φ = 0, z, t) = ûc (φ = θ = 2π, z, t) (17)
dûc (φ = 0, z, t)

dφ
=

dûc (φ = θ = 2π, z, t)
dφ

(18)
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Thus producing:

Const1 (z, t) =
β
(
ei(ωt−kzz)eφ

√
α (

p̂A + p̂B
) − p̂Aei(ωt−φn−kzz) − p̂Bei(ωt+φn−kzz)

)
(α + n2)

(
eφ
√
α − e−φ

√
α
) (19)

Const2 (z, t) =
βei(ωt−kzz)

α + n2
− Const1 (z, t) (20)

The acoustic pressure in the cavity can hence be calculated and used to solve
for the acoustic velocity amplitudes over the skins. These acoustic velocities
can then be used to calculate the skin axial impedances (Zz = p̂/ûz) and yield a
total representative axial impedance boundary condition for each mode. The total
acoustic pressure and axial velocity fluctuations are based on the incident and
reflected components such that:

p̂ (φ, z, t) = p̂i (φ, z, t) + p̂r (φ, z, t) (21)

ûz (φ, z, t) =
εz p̂i (φ, z, t)

ρc
− εz p̂r (φ, z, t)

ρc
(22)

where the term εz, as defined by Morfey [29], is the direction cosine of the
circumferential mode wave-front relative to the axial axis. Thus, for an axial
wave εz = 1. If the duct mean flow is sufficiently small such that M ≈ 0, as in the
current investigation where the Mach numbers in the duct and cavity are less than
M = 0.002, then the wave-front direction cosine can be calculated using:

εz =

√
1 − k2 − k2z

k2
(23)

Using Eqs. 21 and 22 the axial impedance can hence be written using the
reflection coefficient (R = p̂r/ p̂i):

Zz =
ρc

(
p̂i + p̂r

)
εz

(
p̂i − p̂r

) (24)

=
ρc (1 + R)
εz (1 − R)

(25)

Thus, the axial impedance can be used to determine the reflection coefficient:

R =
εzZz − ρc
εzZz + ρc

(26)

Results from the helical wave based model are shown in Fig. 4 with only
13
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Figure 4: Effect of segmentation using the helical wave model for an incident first-order mode on
the total reflection coefficient of the damper.

first-order helical waves and axial waves considered. By segmenting the cavity
into sectors with walls, seven configurations are evaluated, with the acoustic
response of the complete system considered for a direct comparison. In addition
to the annular cavity that has no walls, there is a 360◦ sector with one dividing
wall, 2×180◦ sectors, 4×90◦ sectors, 8×45◦ sectors, 16×22.5◦ sectors, and 32×
11.25◦ sectors. The configurations assume the cavity is axisymmetrically divided
with a constant total skin porosity. The axial wave model predicts a constant
response for the different configurations as it is assumed the dividing walls are
infinitely thin and therefore the combined cavity volume remains constant. Due
to the infinitely thin wall assumption it calculates the 180, 360◦, and annular
sectors as all having a consistent response. While the cavity is highly segmented
(e.g. 22.5◦ sectors), with the angular length of the cavity being small relative to
the wavelength of the circumferential component, the cavity resonates without
significant circumferential variation as with an incident axial wave. Although
when the cavity is relatively large, for example with a single dividing cavity
wall (360◦) or annular, mode shapes can form within the cavity. This causes
the frequency at which peak absorption occurs to increase and the minimum
reflection coefficient to decrease. The frequency increase relates to the axial and
circumferential frequency components within the cavity, with the total frequency
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Figure 5: Comparison of the reflection coefficient of the damper from the helical wave model to a
finite element method solution for an annular cavity with an incident first-order mode with no
mean flow across the liner.

given by:

f 2tot = f 2z + f 2φ (27)

⇒ f 2tot =

 c
2π

√
A

LP2
aS


2

+

(
c
2π

n
rc

)2

∴ f tot =
c

2πrc

√
Ln2P2

aS + Ar2c
LP2

aS

Based on a frequency of peak absorption with an incident axial wave of 495 Hz, if
the first-order circumferential mode has a cut-on frequency of 186 Hz the resulting
total frequency is 529 Hz as approximately predicted by the helical wave model.

Figure 5 shows the comparison of the model against a higher-fidelity finite
element method solution that was obtained using COMSOL Multiphysics. The
condition presented has an incident first-order mode with no mean flow across the
liner, so absorption is within the non-linear regime. The model fails to capture
the initial roll-over, although the agreement is generally very good, particularly in
regards to the response at resonance. The finite element method solution for this
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Figure 6: Simple illustration of the low intensity acoustic facility.

case took approximately 15 hours, in comparison to the time to solve the helical
wave model which took less than 30 seconds. It is also dependent upon the mesh
resolution of small elements, such as the finite thickness of walls, which could
increase the solution time further.

3. Experimental facility and method

The mixed mode facility is built on an existing axial wave facility (as described
in Rupp et al. [2] and Cassell [30]), which allows for small individual components
to be tested when subjected to a plane wave. The isothermal test facility operates
at atmospheric conditions. A simple schematic of the test facility is given in Fig. 6.
Mean flow, either in the direction of propagation of the incident waves, or against
them, can also be introduced. Two loudspeakers, positioned in a lower plenum,
generate the acoustic waves. The annular duct for generating higher-order modes
is formed from two long concentric PVC tubes as shown in Fig. 7. The ducts are
mounted vertically, extending from the lower plenum into the main test cell where
the test section is situated. This annulus has a mean outer diameter of 331.6 mm
(with a peak eccentricity of ≈ 0.079) and an inner diameter of 273.0 mm; thereby,
giving an average diameter of 302.3 mm. Hence, the fundamental circumferential
mode, based on the mean duct radius, occurs at approximately 360 Hz. The radial
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Figure 7: Low intensity mixed mode rig.

modes can be assumed to be highly cut-off and decay rapidly, with the cut-on of
the radial modes estimated by [31]:

fc =
c̄

2 (ro − ri)

√
1 − M̄2 (28)

Thus, with no mean flow, radial modes are predicted to cut-on at approximately
2927 Hz and is far greater than the frequencies considered here.

By connecting each of the loudspeakers at different circumferential locations,
preference can be given to the acoustic wave structure in the duct in a method
similar to that by Parrott and Watson [12] or Rademaker et al. [13]. This prefer-
ence is given to the dominant circumferential mode number by the relative phase
shift applied by each speaker around the circumference. A VPG608 function
generator controls the phase shift between the two loudspeakers, it can generate
frequencies up to 1.2 kHz; hence, up to a third-order mode can potentially be
generated. Each loudspeaker has its amplitude independently set and so the exper-
iment can be run with only a single channel operational. The excitation voltage is
monitored to ensure the safe operation of the speakers within predefined limits as
calculated by Biron and Simon [32]. Beyond these excitation limits the speaker
response becomes non-linear; at low frequencies, this is due to limitations in the
displacement of the cone and at high frequencies this is because of overheating of

17



the voice coil. The aim was to generate an RMS wave amplitude of 135 dB for
several reasons. For example, when suitably scaled, it is equivalent to the normal
safe operating condition of a gas turbine combustor. In addition, it provides an
acceptable signal-to-noise ratio. However, at several frequencies this was not
always possible due to the limitations in excitation voltage.

Adjustments to the length of the duct can be achieved by removing or relo-
cating sections of the duct; thus, it can be used to alter the acoustic boundary
conditions. At the opposing end to the testing section the duct can be left open or
have an additional plate attached. This additional plate is intended to create an
acoustically closed termination. However, to allow air flow to be drawn through
the rig the plate has ten axisymmetric long copper pipes fitted that provide suitably
high inertia to simulate a closed end.

Eight Kulite XCS-093 series miniature dynamic pressure transducers are posi-
tioned on the main duct at a suitable distance from the test section interface. Static
and dynamic calibration of the transducers was carried out. Static calibration
consists of connecting the transducers to a pressure vessel alongside a calibrated
reference static pressure transducer and logging the voltage across a range of
pressures to calculate the sensitivity of each transducer. Dynamic calibration is
performed by positioning all the Kulite transducers at the same axial height in a
relatively small cross-sectional area duct. This area limitation means that when
an acoustic wave is generated in the duct it propagates axially as a plane wave
exciting all the transducers concurrently. Therefore, any phase shift between the
pressure-time trace is due to the data acquisition process and can be corrected to
less than 0.52◦.

3.1. Perforated liner test section
A reconfigurable double-skinned damper has been designed that mounts

axially onto the end of the annular duct. The liner, as illustrated in Fig. 8, is
formed of a damping skin, an inner and outer annular wall, dividing cavity walls,
and a metering skin. The skin porosity and pitch-to-diameter ratios are chosen to
ensure that the apertures are suitably separated to act in isolation. The inner and
outer annular walls of the damper are of the same diameters as those in the main
duct at 273.0 and 331.6 mm respectively. Thus, this keeps the circumferential
frequency constant. The main cavity has a separation between the two skins of
22.3 mm and is equally divided into 16 sectors, each divided by a removable 2.5◦

wall.
To investigate the effect of sector length the dividing cavity walls are remov-

able; allowing sectors to be merged until a full annulus is formed. Because of the
finite thickness of the walls, as they are removed this causes a volume increase in
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Figure 8: Perforated liner test section.

the cavity. Treating the cavity as a Helmholtz resonator, the effect of the additional
volume can be quantified by the shift in resonant frequency. Based on this, the
standard volume is V = Sπ(r2o − r2i ), and the reduced volume from having NS

walls of θ rad each: V = S (π − θNS ) (r2o − r2i ). This results in a decrease of 46 Hz
from having 16 walls to no walls. To aid location and minimise cross-sector
leakage, the walls fit into shallow grooves in the inner and outer walls. The extra
volume, added to the total because of the groove, is negligible compared to that of
the wall thickness (a further 6 Hz decrease). The predicted responses of the liner
with an incident axial or helical wave are shown in Fig. 9 using the resonance
parameter to normalise the frequency. A value of one in the resonance parameter
corresponds to the theoretical resonant frequency, which for the double perforated
skin system is equated to a Helmholtz resonator with two throats as described by
Keller and Zauner [33]:

f =
c
2π

√
1

V

(
πr21
L1

+
πr22
L2

)
(29)

Thus, the resonance parameter is defined as [3]:

Qr =
k20

πr22
L2Pa

2
1
S

+
πr22

L2Pa
2
2
S

(30)

The two responses with an axial wave both resonate with a similar response as
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Figure 9: Predicted reflection coefficient (defined per Eq. 26) of the 22.5◦ sector and annular
configurations against resonance parameter for the experimental rig using the helical wave model.

expected, although with a slight difference in the reflection coefficient due to the
cavity volume difference. As modelled previously, with an incident helical wave
the 22.5◦ sector configuration resonates at a similar frequency to the incident axial
wave, although the large annular cavity generates a internal circumferential mode
shape shifting the resonant frequency higher than that predicted by Eq. 29.

A frequency increase is observed between the predicted response of the
annular cavity relative to the 22.5◦ sector with an incident helical wave that is
not present with an incident axial wave because of the formation of mode shapes
within the cavity. Equation 29 calculates a resonant frequency that is different
to that predicted by the model, due to the mean flow that is applied across the
damper.

3.2. Higher-order multi-microphone method
For an axial wave, it is assumed the total fluctuation is based on the super-

position of up to two waves of the same frequency; an incident and a reflected
wave. However, for a helical wave of a single mode, the fluctuation at a single
frequency may be the linear superposition of up to four individual waves as
illustrated in Fig. 10, with two reflected and two incident waves travelling either
clockwise or anti-clockwise directions. The following method assumes that the
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Figure 10: Four possible waves in a single circumferential mode.

interaction of different waves and modes within the entire field can be described
using the principle of linear superposition. It is acknowledged however, in the
very near field of the damper face, it may invalidate this principle as the field may
become acoustically coupled. Assuming the waves can always be described with
a linearised method allows for an initial comparison of these conditions; however,
the error associated with the decomposition process may increase.

To calculate the four potential amplitudes for a single mode the higher-order
multi-microphone method software solves Ax = b for a system using m micro-
phones where the terms are:

A =


ei(k+

z z1+φ1n+ϕn) ei(k+
z z1−φ1n+ϕn) ei(k−z z1+φ1n+ϕn) ei(k−z z1−φ1n+ϕn)

ei(k+
z z2+φ2n+ϕn) ei(k+

z z2−φ2n+ϕn) ei(k−z z2+φ2n+ϕn) ei(k−z z2−φ2n+ϕn)

...
...

...
...

ei(k+
z zm+φmn+ϕn) ei(k+

z zm−φmn)+ϕn ei(k−z zm+φmn+ϕn) ei(k−z zm−φmn+ϕn)

 ,

x =


p̂A
p̂B
p̂C
p̂D

 , b =


p′1
p′2
...

p′m

 (31)

where the column vector x is the four wave amplitudes to be calculated, and b is
the pressure measured by each microphone. Matrix A is formed from the known
microphone positions (z and φ), and the axial wave number that varies based on
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the mean flow direction relative to the incident wave according to [31]:

k±z =

ωM̄ ±
√
ω2 − c̄2n2

r2avg

(
1 − M̄2

)
c̄
(
1 − M̄2

) (32)

The software attempts to solve for the least squares solution of x that minimises
‖b − Ax‖2 for each possible circumferential mode value (e.g. n = {0, 1, 2, . . .}) or
combination of simultaneous modes. The combination of wave amplitudes, mode
number, and phase that result in the lowest residuals are hence taken as being the
best solution.

Synthetic data was generated across a range of operating conditions and mode
structures to assess the errors produced by the decomposition software. During
this process, the dependency on the number of microphones was studied to de-
termine the minimum number required to accurately decompose the field [30].
Additionally, the placement of the microphones was assessed, which was initially
based on the routine described by Pickett et al. [34, 35]. With a circumferentially
travelling acoustic field, which will not be presented here, the errors were minim-
ised using this optimisation routine. Although for a dominantly circumferentially
standing acoustic field, which is the focus of this paper, these layouts provided
negligible benefit and instead an L-shaped layout of microphones was utilised for
convenience.

A flat plate mounted across the duct termination to reflect the acoustic energy
was used to establish the potential error from the measurement and decomposition
process, as the closed end should provide a reflection coefficient of one. The
results for both a circumferentially standing and spinning field are presented in
Fig. 11 show that the experimental uncertainty for the total response over the
frequency range of interest, is on average below 10 %. The error increases with
frequency as it becomes increasingly difficult to resolve the acoustic field with
the limited number of microphones used. Peaks in the decomposed mode errors
occur close to the cut-on of the circumferential modes, and could be due to the
transfer of energy between modes at these conditions or error associated with the
decomposition method. This causes the reflection coefficient values higher than
one in the decomposed modes.

4. Acoustic absorption measurements

An example data set is presented here with the speakers in-phase with each
other producing a nominally circumferentially standing acoustic field where the
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Figure 11: Reflection coefficients of the total and decomposed acoustic modes with frequency
with a closed duct termination. (a) circumferentially standing and (b) circumferentially travelling
acoustic field. The grey shaded regions indicate the possible frequency ranges of first- and
second-order circumferential mode cut-on.
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axial mode dominates the acoustic field. Analysis is performed with respect to
variations in liner pressure drop and the number of cavity divisions within the
damper. The same analysis has also been applied to a larger data set across a
range of axial and circumferential component combinations although these are
not presented here for clarity. As with a circumferentially spinning mode the field
is more susceptible to errors during decomposition that can arise from acoustic
modal coupling.

The magnitude and phase of the measured reflection coefficient are presented
in Figs. 12 and 13 respectively for an annular cavity with a total pressure drop
(∆p̄/p0) between 0 and 4 %. Figure 12(a) presents the total combined reflection
coefficient of the cut-on acoustic modes, similarly Fig. 13(a) shows the phase
for these modes. This includes only the modes that have cut-on across the radial
variation of the duct and thus do not have an attenuation rate which causes the
mode to decay noticeably as it propagates to the measurement locations. This
total response is a function of the magnitudes of the different modes present
(in the current configuration the axial mode generally dominates this response
with on average 59.9 % of the total incident pressure amplitude) and has less
inherent error than the decomposed modes. The lightly shaded regions illustrate
the possible range in frequencies of cut-on for the first- and second-order modes.
This cut-on frequency range is a result of the annular geometry, with the outer
wall having the first-order mode cut-on at 328 Hz and the inner wall cutting-on at
399 Hz. Because of the uncertainty and variation in cut-on, it therefore means that
the error can be higher in this region. Through the cut-on region the instability of
the mode causes a local minimum in the associated modal reflection coefficient as
the mode can still decay. At a frequency 50–100 Hz higher than the inner wall
cut-on (450–500 Hz for the first-order mode) the reflection coefficient tends to a
value of one indicating the mode has cut-on throughout the acoustic field.

There is a clear disparity in the magnitude of the reflection coefficient shown
in Fig. 12 between a total pressure drop of 0 and 1 %, due to the transition from
non-linear to linear absorption. With further increases in pressure drop, that are
also in the linear absorption regime, a slight decrease in absorption is observed
for both modes; although, this is most evident in the axial mode. Variations in
incident pressure amplitude may cause non-linear absorption at some frequencies.
An example of this non-linearity is observed for all pressure drop conditions
at 575 and 600 Hz. The relative phases and amplitudes of the circumferential
and axial modes cause an interference pattern around the circumference, which
can have sufficient pressure amplitude to cause non-linear absorption over part
of the skin. However, while this region of non-linear absorption is noticeable
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Figure 12: Reflection coefficient with frequency for the annular cavity with a liner pressure
drop of 0–4 % with a dominant incident axial mode ( p̂i = 135 dB). (a) the total (cut-on modes)
field response, (b) the axial mode response, and (c) the first-order circumferential mode re-
sponse. The grey shaded regions indicate the possible frequency ranges of first- and second-order
circumferential mode cut-on.
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Figure 13: Reflection coefficient phase with frequency for the annular cavity with a liner pres-
sure drop of 0–4 % with a dominant incident axial mode (p̂i = 135 dB). (a) the total (cut-on
modes) field response, (b) the axial mode response, and (c) the first-order circumferential mode re-
sponse. The grey shaded regions indicate the possible frequency ranges of first- and second-order
circumferential mode cut-on.
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in the axial mode response (Fig. 12(b)), no distinct variation is observed in the
circumferential mode (Fig. 12(c)). This is due to the circumferential variation in
acoustic pressure for the circumferential mode, such that while one portion of the
skin may be non-linear, others are within the linear absorption regime, and thus
when averaged is not noticeable.

By decomposing the acoustic field, the amplitudes of the axial and each
circumferential mode can be calculated. Thus, the reflection coefficients calcu-
lated for the axial and first-order circumferential modes are shown in Figs. 12(b)
and 12(c). The decomposition software calculates that a second-order circumfer-
ential mode has cut-on within the duct at frequencies above 700 Hz, although with
a relatively low magnitude over the frequency range of interest (and is thus not
plotted). The frequency of minimum reflection coefficient is observed to increase
from the axial mode at approximately 720 Hz to the first-order circumferential
mode at 800 Hz. This is a result of the added circumferential component as, using
Eq. 27, it is expected a frequency increase will occur from 720 Hz to 805 Hz
based on the mean cut-on frequency. This increase is supported by the phase
of the reflection coefficient (shown in Figs. 13(b) and 13(c)) and is particularly
noticeable in the non-linear case where at resonance a change in sign that occurs.
Plotting the first-order circumferential mode with axial frequency against the
axial mode results in the comparison given in Fig. 14(b) and demonstrates that the
data largely collapses as expected (except at 600 Hz when non-linear effects are
dominant in the axial mode). The axial frequency error bars are based on the inner
and outer duct diameters. The data are also cross-plotted with total frequency
in Fig. 14(a). For the circumferential mode the associated axial frequency com-
ponent is derived from the total frequency as a pure spinning wave, based on the
mean duct radius. While only the data for a pressure drop of 1 % are shown for
clarity, all the cases share similar trends. The data generally collapse better when
plotted against the axial frequency component; although, with a slight disparity
due to the variation in cut-on frequency but is within the limits of experimental
error.

4.1. Cavity segmentation
The removable walls in the cavity, illustrated in Fig. 8, allow the configuration

to be varied from 16 individual sectors to a fully annular cavity. The walls are
removed to preserve symmetry and keep the sector lengths uniform. Six configur-
ations are tested; 16 walls to form 16 sectors of approximately 22.5◦ each, 8 walls
resulting in 45◦ per sector, 4 walls for four 90◦ sectors, 2 walls with two 180◦

sectors, a single wall producing a 360◦ sector, and the fully annular configuration.
A peak absorption frequency increase, of around 50 Hz, is expected due to the
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Figure 14: Reflection coefficient for the axial and first-order circumferential decomposed modes
for the annular cavity with a total pressure drop of 1 % with: (a) the total frequency and (b) the
axial frequency component. The axial frequency error bars are based on the inner and outer duct
diameters.
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finite thickness of the walls between the 22.5◦ and annular configurations. The
experimental results presented have been conducted with a 3 % total liner pressure
drop, and thus the damper is expected to generally operate in the linear absorption
regime.

Figure 15 presents the magnitude of the reflection coefficients obtained for
the different configurations. The reflection coefficients presented represent: (a)
the total response from the cut-on modes, (b) the decomposed response of the
axial mode, and (c) the decomposed response of the first-order circumferential
mode. Figure 16 shows the phase of the reflection coefficients, for the total
and decomposed axial and helical modes. It can be initially observed from the
reflection coefficient responses that the axial mode fills each cavity uniformly and
is independent of how many segments are present. Thus, cavity segmentation has
no effect on the acoustic response, aside from as mentioned, the small frequency
variation due to the volume change associated with the presence/removal of the
segment walls. The first-order circumferential mode response shows there is
a noticeable increase in the frequency at which peak absorption occurs as the
number of cavity segmentations is reduced. This frequency increase causes an
appreciable disparity in reflection coefficient between 500 and 700 Hz. The 22.5,
45, and 90◦ configurations reach a peak noted at approximately 725 Hz, whereas
the 180, 360◦, and annular configurations are suggested to have a peak at a higher
frequency. From the previous study of pressure drop for the annular cavity,
illustrated in Figs. 12, 13, and 14(a), this frequency of resonance should be at
approximately 800 Hz. This increase for the circumferentially long cavities is
related to the circumferential frequency, which results in a mode shape being
generated within the cavity circumferentially. Non-linear absorption occurs within
the axial mode at 575 and 600 Hz for all the cavity configurations.

When the first-order mode initially cuts-on, a low reflection coefficient is
initially observed. This is due to the variation in the cut-on frequency through the
annular height potentially producing a cut-off mode that has a high attenuation rate
and decays rapidly as it propagates. The circumferentially compact configurations
(22.5, 45, and 90◦) have greater loss measured between 500 and 700 Hz. This
is attributable to the resonance of the cavity being dependent upon the axial
frequency component. For the circumferentially compact systems, the cavity axial
frequency is approximately the total frequency ( f tot ≈ f zc). Alternatively, when
circumferential cavity mode shapes are generated the axial frequency component
of the cavity is now based upon the circumferential frequency component ( f 2tot −
f 2φc
≈ f 2zc

); hence, cavity resonance occurs at a higher frequency. As a result, the
loss measured for the circumferentially long configurations is lower over the 500–
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Figure 15: Effect of cavity segmentation on the reflection coefficient with frequency with a
dominant axial mode (∆p̄/p0 = 3 %). (a) the total (cut-on modes) field response, (b) the axial
mode response, and (c) the first-order circumferential mode response. The grey shaded regions
indicate the possible frequency ranges of first- and second-order circumferential mode cut-on.
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Figure 16: Effect of cavity segmentation on the reflection coefficient phase with frequency with a
dominant axial mode (∆p̄/p0 = 3 %). (a) the total (cut-on modes) field response, (b) the axial
mode response, and (c) the first-order circumferential mode response. The grey shaded regions
indicate the possible frequency ranges of first- and second-order circumferential mode cut-on.
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700 Hz range, as it is comparatively further from resonance. As the total frequency
increases away from circumferential cut-on, this disparity in loss reduces as the
axial frequency for that mode tends to the total for all configurations.

As plotted previously (Fig. 14) the axial and circumferential modes can be
shown to broadly collapse when plotted using the axial frequency component
of the helical cavity wave instead of the total if the cavity is not compact (180,
360◦, and annular). Presenting the reflection coefficient of the 22.5◦ and annular
configurations in this way yields Figs. 17 and 18 respectively. The reflection coef-
ficient for each mode is the ratio of the reflected and incident pressure amplitudes
associated with the mode. The annular configuration has a cavity length that is
long relative to the circumferential wavelength and produces a total frequency
shift relative to the axial mode response. However, the 22.5◦ configuration does
not generate this total frequency shift. This is because the pressure distribution
across the liner for the 22.5◦ configuration is sufficiently small such that it can be
initially considered as being equivalent to an incident axial wave. Hence, this does
not result in a collapse of the data when plotted against axial frequency component
and, instead, generally better agreement is achieved with total frequency for this
configuration. The response of the annular (Fig. 18(b)) collapses well against
the axial frequency component, as would also the 180 and 360◦ configurations;
although, disparity is noted due to the uncertainty in the circumferential mode
cut-on frequency. The limits of the error bars are determined from the cut-on of
the inner and outer annulus walls. As Fig. 19 shows the first-order circumferential
mode data collapses with good agreement when each sector configuration is
plotted against the relevant frequency component, although with some disparity
because of the difference in cavity volume.

5. Comparison of experimental results to analytical model

Figure 20 presents a comparison between the axial wave model and the
decomposed axial mode results that were presented in Fig. 15(b). Reasonable
agreement is obtained for all the configurations against the axial wave model using
theoretical length correction and discharge coefficients. The axial wave model
predicts a shift in resonant frequency related to the increase in cavity volume by
the reducing number of dividing walls, although practically this shift is difficult
to observe.

A comparison is given in Fig. 21 for the decomposed first-order circumferen-
tial mode results, presented originally in Fig. 15(c) with a relative speaker phase
of zero, against the axial and helical wave models. The helical wave model is
generally in very good agreement for the acoustically compact (22.5, 45, and 90◦)
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Figure 17: Reflection coefficient for the axial and first-order circumferential modes for the 22.5◦

configuration and a dominant axial mode (∆ p̄/p0 = 3 %) with: (a) the total frequency, and (b) the
axial frequency component.
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Figure 18: Reflection coefficient for the axial and first-order circumferential modes for the annular
cavity and a dominant axial mode (∆p̄/p0 = 3 %) with: (a) the total frequency and (b) the axial
frequency component.
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Figure 19: Reflection coefficient for the first-order circumferential modes with 22.5◦ sectors and
an annular cavity plotted against the axial cavity frequency (∆p̄/p0 = 3 %).

configurations. The helical wave model assumes that the field cuts-on uniformly
based on the mean radius, although it can be modified to cut-on at the inner or
outer wall radii. However, it fails to correctly capture, in all instances, the initial
increase in the reflection coefficient from a value of approximately 0.5 at the
mean radius cut-on frequency to a value of approaching one once the entire field
has cut-on (≈ 475 Hz). The helical wave model accurately captures the response
of the 180, 360◦, and annular configurations below ∼ 700 Hz. However, above
this there is some disparity observed, which could be related to the cut-on of the
second-order circumferential mode and the potential transfer of energy to this
mode. Thus, additional work is required to understand this characteristic with
additional instrumentation to accurately decompose this mode simultaneously.

6. Conclusions

This work has shown the variation in performance of a perforated double-skin
liner with a mixed acoustic mode field within a narrow annular duct. The damping
system is mounted on the end of the duct at the axial termination so any axial
plane waves present are uniformly incident upon the damper face. The liner is
configured such that, based on the relative cavity volume per aperture on the
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Figure 20: Comparison of the theoretical axial wave model and decomposed axial mode experi-
mental data (∆p̄/p0 = 3 %). (a) 22.5◦ sectors, (b) 45◦ sectors, (c) 90◦ sectors, (d) 180◦ sectors,
(e) 360◦ sector, and (f) annular cavity. The grey shaded regions indicate the possible frequency
ranges of first- and second-order circumferential mode cut-on.
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Figure 21: Comparison of the theoretical models and first-order circumferential mode experimental
data for various liner cavity segmentations (∆ p̄/p0 = 3 %). (a) 22.5◦ sectors, (b) 45◦ sectors, (c)
90◦ sectors, (d) 180◦ sectors, (e) 360◦ sector, and (f) annular cavity. The grey shaded regions
indicate the possible frequency ranges of first- and second-order circumferential mode cut-on.
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primary (damping) skin, it can resonate. Removal of circumferential segment-
ations within the cavity allow the potential generation of circumferential mode
shapes that can alter the modal response. In this work, a quasi-one-dimensional
model has been developed. The model captures this effect of circumferential
mode generation within the cavity with an incident helical wave when the length
of the rear cavity is significant relative to the wavelength of the circumferential
component. Cavity resonance occurs for all the incident modes analysed, with
the effect of circumferential mode generation causing the frequency at which
resonance occurs to increase based on the circumferential frequency component.

An experimental facility was used to evaluate the damper performance where
it was subjected to mixed acoustic modes with different orders simultaneously.
The facility uses two loudspeaker inputs that are positioned around the circum-
ference of an annular duct, which thus allows circumferential modes to cut-on.
The amplitude and relative phase of the speakers can be controlled to dictate the
dominant mode within the test facility. Analysis techniques have been developed
to enable the decomposition and measurement of the mixed acoustic field. Exper-
imental results, obtained from this facility, have been presented as an example
data set that show both the impact of varying the total liner pressure drop and the
effect of segmenting the cavity, with an incident dominant axial mode. The total
acoustic response can be decomposed into the axial and circumferential modes to
highlight the contribution of each mode. The same decomposition method has
also been successfully applied to others in the data set across a range of axial and
circumferential component combinations.

While the no mean flow case, causing non-linear absorption, has a large effect
on the axial mode the change in the first-order circumferential mode for the
geometry tested is relatively small. For the axial mode, it causes a narrowband
response with high peak absorption and is thus suited for targeting a single specific
frequency. As the liner pressure drop is increased this response becomes more
broadband with reducing peak absorption, and as such targets a wider range of
frequencies. While the same trends are observed for the first-order circumferential
mode the effects are relatively small. However, in the non-linear absorption regime
the absorption is a function of the incident acoustic pressure, with diminishing
returns as the pressure increases. Non-linear absorption is observed at some
frequencies even in the presence of flow due to the interaction of the acoustic
pressure fields; however, these non-linear absorption effects are only noticeable
within the axial mode. While the circumferential mode may provide non-linear
absorption over some circumferential sections, there are simultaneously also areas
of linear absorption, and thus from total damper response this non-linearity is less
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observable.
Segmenting the cavity, as shown, can potentially cause significant variations

in the acoustic characteristics of the damper. The response of the axial mode
is relatively unchanged by cavity segmentations, aside from a small frequency
change caused by the volume difference. In the current experiment, this frequency
variation was too small to measure accurately. The response of the first-order
circumferential mode shows that for a cavity with a small angular length relative
to the circumferential wavelength the damper can be considered to cause peak
absorption at a similar frequency to the axial mode. This is shown experimentally
to be true for the 22.5, 45, and 90◦ configurations. However, a circumferentially
large, or annular, sector causes the generation of mode shapes within the cavity
that result in an increase in the frequency of peak absorption. The data can
be shown to broadly collapse by calculating the axial frequency component of
the wave; thus, proving that the increase is related to the circumferential cut-
on frequency. The cut-on frequency is, however, not well-defined and there is
significant variation through the annulus based on the inner and outer diameters.
This cut-on frequency disparity results in an initial increase in the reflection
coefficient measured as the mode becomes cut-on throughout the annulus.

The analytical models generally have good agreement with the experimental
data. The axial mode is well predicted by the axial plane wave model, which
has been previously validated for other geometries on an experimental rig that
geometrically limits the incident wave to an axial plane wave. Good agreement
is achieved with the acoustically compact configurations for the circumferential
mode. When a mode shape is generated within the cavity, the response below
the cut-on of the second-order mode is good, although the rolling over of the
reflection coefficient shortly after cut-on of the field is not captured correctly. The
second-order mode cut-on causes disparity against the model that also requires
further study.
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