
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

On termination of a flooding process

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

ACM

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

© Owner/Author 2019. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in the Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, http://dx.doi.org/10.1145/3293611.3331586.

LICENCE

All Rights Reserved

REPOSITORY RECORD

Hussak, Walter, and Amitabh Trehan. 2019. “On Termination of a Flooding Process”. figshare.
https://hdl.handle.net/2134/9756566.v1.

https://lboro.figshare.com/

Brief Announcement: On Termination of a Flooding Process
Walter Hussak

Amitabh Trehan

W.Hussak@lboro.ac.uk

A.Trehan@lboro.ac.uk

Computer Science, Loughborough University

Loughborough, Leicestershire, U.K.

ABSTRACT
Flooding is a fundamental distributed algorithms technique. Con-

sider the following flooding process, for simplicity, in a synchronous

message passing network: A distinguished node begins the flood-

ing process by sending the (same) message to all its neighbours

in the first round. In subsequent rounds, every node receiving the

message relays a copy of the message further to all those, and only

those, nodes it did not receive the message from in the previous

round. However, the nodes do not remember if they’ve taken part

in the flooding before and therefore will repeat the process every

time they get a message. In other words, they execute an amne-
siac flooding process with memory only of the present round. The

flooding process terminates in a particular round when no edge in

the network carries the message in that, and, hence, subsequent,

rounds. We call this process Amnesiac Flooding (AF).
In this work, the main question we address is whether AF will

terminate on an arbitrary network (graph) and in what time? We

show that, indeed, AF terminates on any arbitrary graph. Further,

AF terminates in at most D rounds in bipartite graphs and at most

2D + 1 rounds in non-bipartite graphs - in this brief announcement,

we show this for the bipartite case only.

We also show that in a natural asynchronous variant of AF , an
adversary can always ensure non-termination.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; Combina-

torial algorithms; • Networks → Network algorithms; Network
protocol design; • Theory of computation→Graph algorithms
analysis; Concurrent algorithms; • Computing methodologies
→ Distributed algorithms; • Information systems → Social

networks;

KEYWORDS
Flooding, Memory, Termination, Bipartiteness, Synchrony

ACM Reference Format:
Walter Hussak and Amitabh Trehan. . Brief Announcement: On Termination

of a Flooding Process. In . ACM, New York, NY, USA, 3 pages.

1 INTRODUCTION
Flooding is among the most basic of distributed algorithms. To

quote Apnes [1]: Flooding is about the simplest of all distributed
algorithms. It’s dumb and expensive, but easy to implement, and

, ,
©

gives you both a broadcast mechanism and a way to build rooted
spanning trees. Often flooding is implemented with a flag that is set

when the message is seen for the first time to ensure termination

and with other mechanisms to detect termination of the process

(see e.g. [2]). We are interested in a variant of flooding which does

not explicitly use such a flag or even keep a memory of having

seen the message before. A node only sends the message to the

complement of its neighbours from whom it has just received the

message and subsequently forgets about that activity. In a way, the

node behaves like an aggressive social media (say, WhatsApp) user
that has a compulsion to forward every message but does not want

to annoy those who have just sent it the message it’s forwarding.

This idea of avoiding the most recently chosen node(s) has been

used before in distributed protocols e.g. in social networks [3] and

broadcasting [4] but we are not aware of this fundamental variant

of flooding having been studied before.

1.1 Model and Problem Definitions:
LetG(V , E) be the graph representing a network where the vertices

represent the nodes of the network and edges represent the con-

nections between the nodes. Consider the following process in a

synchronous network where the computation proceeds in synchro-

nous rounds where each round consists of every node receiving

messages from all its neighbours, doing local computation and send-

ing messages to all (or some of) its neighbours. No messages are

lost in transit.

Definition 1.1. Amnesiac Flooding (AF): A distinguished node,

say ℓ, sends a message (say,M) to all its neighbours in round 1. In

subsequent rounds, every node receivingM forwards a copy ofM
to every, and only those, nodes it did not receive the message from

in that round.

Note that this is an ‘amnesiac’ process i.e. nodes do not retain

memory of having received or sent the message in the previous

rounds. We say that AF terminates when no message (i.e. a copy

ofM) is being sent over any edge in the network. The question is

whether, for any finite graph G over n nodes, beginning from any
arbitrary node, will AF always terminate? In this work, we prove

that this is indeed true i.e. this flooding process will terminate for

every G. We prove that AF terminates in at most D rounds on a

bipartite graph, whereD is the diameter of the graph. We also prove

(in the full paper) that the termination time on any arbitrary graph

is, in fact, O(D) too (but strictly larger than D in non-bipartite

graphs).

We believe that we pose an interesting theoretical question. We

believe our resultsmay have applications in designing amnesiac/low-

memory algorithms, in topology detection (e.g. to detect/test non-

bipartiteness of graphs), analysing social media and natural flooding

processes, among others. We also show that in a natural asyn-

chronous variant of AF , an adversary can always ensure non-

termination and pose a number of interesting questions.

1.2 Some illustrative examples:

(a) Round 1 (b) Round 2

(c) Round 3

Figure 1: Amnesiac Flooding over a line network beginning
with node b in 2 (< diameter = 3) rounds. Circled nodes are
sendingM in that round.

(a) Round 1 (b) Round 2

(c) Round 3 (d) Round 4

Figure 2: AF over a Triangle (Odd Cycle/Clique) network be-
ginning with node b. Both node a and c sendM to each other
in round 2 and to b in round 3. Also, this is an odd (# nodes)
cycle and termination takes 2D + 1 time (D= diameter = 1).

Figure 1 shows AF over a line graph. The process begins with

the node b and terminates at the ends of the graph and takes only

2 rounds, which is less than the diameter of the graph. Note that a

line is an example of a bipartite graph. The triangle graph is another

interesting illustrative example (Figure 5) – here, termination takes

3 rounds, whereas, the diameter is only 1. Note that the triangle is

also the smallest clique and the smallest non-trivial cycle with odd

number of nodes (an important topology for us). The even cycle

is another interesting topology but here termination will happen

in D rounds (as expected according to our bipartite graphs result).

Of course, a graph can have far more complicated topology with

cyclic and acyclic subgraphs. For lack of space, we do not discuss

more indiividual topologies in detail.

2 TERMINATION IN BIPARTITE GRAPHS

(a) Round 1 (b) Round 2

(c) Round 3 (d) Round 4

Figure 3: Termination in a bipartite graph (an even cycle) in
diameter D = 3 time.

First, we show thatAF terminates on a bipartite graph and, in fact,

terminates, in the least time possible visiting each node exactly once

and terminating in time equal to the eccentricity of the originating

node. Figure 1 shows termination in a simple bipartite graph i.e.

in a line. It is easy to see that AF terminates in 2 rounds which is

the maximum distance from node b to any other node in the graph.

Consider a more sophisticated example in Figure 3 - that of a cycle

with six nodes. Here, AF from any originating node will terminate

in diameter (=3) rounds. Since the eccentricity of nodes is upper

bounded by the graph diameter, AF terminates in at most diameter

rounds. Consider a connected bipartite graph. The following holds.

Lemma 2.1. In a connected bipartite graph B, Amnesiac flooding
terminates in rounds = e(a), where e(a) is the eccentricity of the vertex
a in graph B, where a is the node originating the process.

Proof It is straightforward to see that amnesiac flooding executes a

parallel BFS traversal from node a, which is the originating process.

Nodes at a distance i from a receive the message at the same time

in round i . All and only the nodes at distance i + 1 will now receive

the message in round i + 1 since all the edges from distance-(i − 1)

nodes to distance-i nodes have been used and nodes at distance i
do not share any edge since this is a bipartite graph.

The process terminates at the leaves of the BFS tree which have

a maximum depth of e(a).

Since the maximum eccentricity in a graph is its diameter, this

corollary follows:

Corollary 2.2. In a connected bipartite graph, the process termi-
nates by round D, where D is the diameter of the graph.

3 TERMINATION IN SYNCHRONOUS
NETWORKS

The following theorem gives a proof of termination in general for

synchronous networks. Note that Figure 3 illustratesAF in a triangle

which is the smallest non-bipartite graph, showing termination,

and in 2D + 1 synchronous rounds where D = 1 is the diameter.

Theorem 3.1. Given a finite graph G, Amnesiac Flooding (AF)
from a single source will terminate in a finite number of rounds.

Proof
Let G be the network graph. We define round-sets R0,R1, . . . as:

R0 is the singleton containing the initial origin node,
Ri is the set of nodes which receive a message at round i (i ≥ 1).

Define R to be the set of finite sequences of consecutive round-sets

of the form:

R = Rs , . . . ,Rs+d where s ≥ 0, d > 0, and Rs ∩ Rs+d , ∅ . (1)

In (1), s is the start-point s(R) and d is the duration d(R) of R.
Note that, a node x ∈ G belonging to Rs and Rs+d may also belong

to other Ri in (1). Consider the subset Re
of sequences in R where

d is even.

Lemma 3.2. AF is non-terminating only if Re is non-empty.

Proof Since G is finite, some node x ∈ G must occur in infinitely

many round-sets Ri . If Ri1 , Ri2 and Ri3 are the first three round-sets
that x occurs in, then the duration between Ri1 and Ri2 , Ri2 and Ri3 ,
or Ri1 and Ri3 will be even.

To prove termination, it suffices to prove that Re
is empty as

follows from Lemma 3.2. We assume that Re
is non-empty and

derive a contradiction. Let Re
md be the subset of Re

comprising

sequences of minimum (even) durationmd , i.e.

Re
md = {R ∈ Re | ∀ R′ ∈ Re . d(R′) ≥ d(R) =md} (2)

Clearly, if Re
is non-empty then so is Re

md . Let R
∗ ∈ Re

md be

the sequence with earliest start-pointms , i.e.

R∗ = Rms , . . . ,Rms+md (3)

where

∀ R′ ∈ Re
md . s(R

′) ≥ s(R∗) =ms (4)

By (1), there exists x ∈ Rms ∩ Rms+md . Choose a node y which

sends a message to x in roundms +md (y must exist sincemd > 0).

As y is a neighbour of x , either y sends a message to x in roundms
or x sends a message to y in roundms + 1. Each of these cases leads

to a contradiction:

Case (i): x receives a message from node y in roundms (Figure 4(a))
or Case (ii): x sends a message to y in roundms + 1 (Figure 4(b))

For lack of space, we give an informal sketch for the rest of the

proof. Refer to Figure 4(a) for case (i). Notice that node y hasM in

both rounds Rms−1 and Rms+md−1. However, this is a contradiction

since it shows a R∗ with an earlier starting point than ms . Now,
consider case (ii) referring to Figure 4(b). Notice from the figure

that node y hasM in both Rms+1 and Rms+md−1 - this shows a R
∗

with a shorter durationmd − 2. Again, this is a contradiction by

our assumptions on R∗.

(a) Node x receives M from node y in

roundms
(b) Node x sendsM to node y in round

ms + 1

Figure 4: Termination in an arbitrary graph: two cases for a
shortest even length sequence

We also show the following in the full paper:

Theorem 3.3. In a connected non-bipartite graph, the process
terminates by round 2D + 1, where D is the diameter of the graph.

4 ASYNCHRONOUS AMNESIAC FLOODING

(a) Round 1 (b) Round 2 (c) Round 3

(d) Round 4 (e) Round 5

Figure 5: AsynchronousAF over a Triangle. Both node a and
c sendM to each other in round 2. In round 3, a sendsM to b
but the adversary makes c holds the message for one round
(shaded node). In the next round, we have a round analogous
to round 2 and so on.

Non-termination in an adversarial asynchronous setting: In-
formally, consider an asynchronous setting where a scheduling

adversary can adaptively choose the delay on every message edge

i.e. which round to forward a message on. Consider round 3 in

the triangle in Figure 5. The adversary delays M at node c but a
continues and sends to b. In round 4, node b and c both sendM so

that the beginning of the next round is now identical to round 2.

This process can now continue ad infinitum.

REFERENCES
[1] James Aspnes. 2019. Flooding. http://www.cs.yale.edu/homes/aspnes/pinewiki/

Flooding.html

[2] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. John Wiley & Sons.

[3] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. 2011. Social Networks

Spread Rumors in Sublogarithmic Time. Electronic Notes in Discrete Mathematics
38 (2011), 303 – 308. The Sixth European Conference on Combinatorics, Graph

Theory and Applications, EuroComb 2011.

[4] Robert Elsässer and Thomas Sauerwald. 2008. The Power of Memory in Random-

ized Broadcasting. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’08). SIAM, Philadelphia, PA, USA, 218–227.

http://www.cs.yale.edu/homes/aspnes/pinewiki/Flooding.html
http://www.cs.yale.edu/homes/aspnes/pinewiki/Flooding.html

	Abstract
	1 Introduction
	1.1 Model and Problem Definitions:
	1.2 Some illustrative examples:

	2 Termination in bipartite graphs
	3 Termination in synchronous networks
	4 Asynchronous Amnesiac Flooding
	References

