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Abstract 

In the present work, an overview of the developments of the geometrical acoustics (GA) 
theory of Lamb waves in plates of variable thickness is given, based mainly on the 
original results of the present author. The main attention is paid to the lowest order 
Lamb modes in plates of variable thickness, i.e. flexural and quasi-longitudinal plate 
waves. It is shown that the GA approach is an ideal tool to describe propagation of 
ultrasonic Lamb waves in complex plate-like and wedge-like structures. In particular, it 
is demonstrated that the developed GA theory involving both lowest order Lamb modes 
can be used for theoretical description of the classical problem of Rayleigh surface 
wave reflection from the tip of an elastic wedge of arbitrary angle, both at normal and at 
oblique incidence. The GA approach operating with flexural waves alone can be used 
for the development of the theory of localised waves propagating along sharp edges of 
different wedge-like structures. Another important application of GA is the 
development of the theory of ‘acoustic black holes’ for flexural waves that can absorb 
almost all of the incident wave energy. The obtained theoretical results are illustrated by 
recent experiments.  

1. Introduction

Geometrical acoustics (GA) theory or geometrical acoustics approximation is an 
asymptotic high-frequency solution (sometimes called ray-tracing solution) to the 
differential equations and boundary conditions describing wave propagation in any 
particular elastic medium or structure. Similarly to geometrical optics (GO) theory for 
electromagnetic waves, it can be used if elastic properties of media change slowly with 
the distance of propagation. Although geometrical acoustics is used widely to describe 
propagation of underwater or atmospheric sound (1, 2), its use in the acoustics of solids is 
not so common, which can be partly explained by the complexity of real 
inhomogeneous solid structures. In the same time, the use of GA to describe wave 
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propagation in such inhomogeneous solids is very efficient, and it can assist in 
obtaining explicit analytical solutions to many important practical problems (3).  
      In this paper, an overview of the developments of the geometrical acoustics theory 
of Lamb waves in inhomogeneous plates is given, based largely on the original results 
of the present author. The main attention is paid to the lowest order Lamb modes in 
plates of variable thickness, i.e. flexural and quasi-longitudinal plate waves. Although 
the developed GA approach can be used for general description of acoustic and 
ultrasonic wave propagation in complex solid structures, in this paper only three major 
topics will be discussed where GA was instrumental in obtaining fundamentally new 
theoretical results. Initially, it is demonstrated that the developed GA theory involving 
both lowest order Lamb modes can be used for theoretical description of the classical 
problem of Rayleigh surface wave reflection from the tip of an elastic wedge of 
arbitrary wedge angle, both at normal and at oblique incidence. Then, propagation of 
guided flexural waves in plates of variable thickness is considered. The obtained results 
are used for the development of the theory of localised flexural waves propagating 
along the tips of slender elastic wedges, also called ‘wedge elastic waves’. The use of 
GA in this case permits to consider wedges of arbitrary shape, curved wedges and 
truncated wedges. Another important application of geometrical acoustics to 
inhomogeneous plates is the development of the theory of ‘acoustic black holes’ for 
flexural waves. Acoustic black holes are one-dimensional wedges or two-dimensional 
indentations of power-law profile that can absorb almost all of the incident wave 
energy. They can be used for efficient damping of vibrations in light-weight structures.  
 
2.  Propagation of Lamb waves in plates of variable thickness  
 
Using geometrical acoustics approach, it is possible to predict propagation of Lamb 
waves in real life complex solid structures, for example those that are used in ultrasonic 
non-destructive testing applications. The most important modes of Lamb waves are 
lowest order symmetric (longitudinal) and antisymmetric (flexural) modes, or 
compression and flexural waves respectively. In what follows, a particular type of plates 
of variable thickness will be discussed – plates with linearly variable thickness, i.e. 
slender elastic wedges (Figure 1).  
      To develop a geometrical acoustics theory of longitudinal and flexural wave 
propagation in wedges having a small wedge angle θ one can refer to the well-known 
thin plate equations (4, 5) (see also the monograph (3)) for longitudinal and compression 
waves in plates of variable thickness  h(x) = 2x tan(θ/2) ≈ θx.  Considering, for 
example, wave propagation in  x- direction (one-dimensional case), the GA solutions to 
these equations can be sought in the forms (the time factor  exp(-iωt)  is assumed):  
 

,                                           (1) 
 

.                                          (2) 
 
Here  u(x)  is the longitudinal displacement,  w(x)  is the flexural (normal) displacement 
of a plate (this displacement is linked to  u(x)),  A1(x)  and  A2(x)  are slowly varying 
functions describing the change of wave amplitudes with the distance of propagation,  
ks(x)  is the local wavenumber of a symmetric (longitudinal) wave in a thin plate (for 
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very thin plates  ks(x) = kp = ω/cp,  where  cp= 2ct(1-ct2/cl2)1/2  is the so-called plate 
wave velocity,  cl  and  ct  are the velocities of longitudinal and shear acoustic waves in 
the plate material),  ka(x) =121/4 kp1/2(θx)-1/2  is the local wavenumber of a flexural wave 
in a plate of linearly variable thickness. It can be shown that equations (1) and (2) 
satisfy the thin plate equations asymptotically at relatively high frequencies (4, 5). In 
practice though these frequencies are well within the range of practically used 
frequencies.  
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Geometry of a slender solid wedge  
 
Functions  A1(x)  and  A2(x)  can be obtained from the so-called transport equations 
following from the geometrical acoustics theory (4, 5). In addition to the transport 
equations, they can be also defined from the energy conservation law.  
 
3.  Rayleigh wave reflection and transmission in a wedge  
 
One of the important applications of the above-mentioned GA approach to Lamb wave 
propagation is the development of the analytical theory of Rayleigh wave reflection and 
transmission in a wedge undertaken by the present author and his co-workers (6, 7). As it 
is well known, the displacements in the Rayleigh waves on the upper and lower surfaces 
of a plate (or a wedge in the case under consideration),  uupp  and  ulow,  can be 
represented as the sum or difference respectively of symmetric and antisymmetric Lamb 
modes of the lowest order (or longitudinal and flexural waves):  
 

,                                                       (3) 
 

.                                                       (4) 
 
Considering propagation of the incident Rayleigh wave in the normal direction towards 
the edge of a wedge (see Figure 1), one can represent  us  and  ua  in line with the 
geometrical acoustic expressions (1) and (2) (6, 7):  
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.                                            (6) 

 
Here  u0  is the amplitude of the incident Rayleigh wave (either normal or longitudinal),  
x0  is a certain initial coordinate located sufficiently far from the edge (so that the local 
thickness  h(x0)  is larger than the Rayleigh wavelength),  ks(x)  is the local wavenumber 
of the lowest order symmetric Lamb mode (longitudinal plate wave) that tends to the 
thickness independent (nondispersive) value  kp =  ω/cp  for very thin plates,  ka(x)  is 
the above-mentioned local wavenumber of the lowest order antisymmetric Lamb mode 
(flexural wave), which is dispersive. It is obvious from equations (5), (6) and (3), (4) 
that, if a Rayleigh wave is generated at the point  x = x0  on the upper surface of a plate 
or a wedge, its amplitude on the lower surface at  x = x0  is zero, as expected.  
      It is important to note that for values of the plate thickness being larger than the 
Rayleigh wavelength at given frequency (i.e. at relatively high frequencies) the 
velocities of both symmetric and antisymmetric Lamb modes tend to the Rayleigh wave 
velocity  cR.  However, when these Lamb modes approach the wedge tip, their phase 
velocities begin to differ from each other, resulting in phase difference between these 
modes accumulated during their propagation to the tip and back. This may cause 
oscillations in the amplitudes of the reflected and transmitted Rayleigh waves with 
changing the wedge angle  θ.   
      It should be also noted that amplitude dependence on the propagation distance 
(described by the functions  A1(x)  and  A2(x)  in equations (1) and (2)) is ignored in 
equations (5) and (6) because, if to consider the final coordinate as  x = x0,  i.e. to 
assume that the reflected signal is observed at the same point where the incident signal 
was generated, the amplitudes of both symmetric and antisymmetric modes will be 
restored to their initial levels after the direct reflection of each of them from the wedge 
tip and their propagation back to the initial position  x = x0.  The direct reflection of 
each of these modes from the wedge tip is considered as reflection from a free edge of a 
plate, i.e. the modules of the corresponding reflection coefficients are assumed to be 
equal to one, whereas their phases are either zero or  π/2  for symmetric or 
antisymmetric modes respectively.  
      The resulting expressions for the absolute values of Rayleigh wave reflection and 
transmission coefficients in a wedge defined at the position  x = x0  have the form (6):  
 

,                                             (7) 

 

,                                             (8) 
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is a dimensionless constant depending on the elastic properties of the wedge material 
(integration in (9) is taken over the local thickness  h  rather than over the distance  x). 
Functions  ka(h)  and  ks(h)  in equation (9) should represent the complete dependences 
valid for the whole range of  h.  The approximate analytical expressions for such 
functions have been constructed (6), so that for  h → 0  they coincide with the 
corresponding functions for flexural and longitudinal waves in thin plates, whereas for  
h → ∞  they go to the dispersion relation for Rayleigh waves. Calculations show that, 
for example, for duraluminium  δ = 2.75.   
      Calculated values of  |R|  and  |T|  as functions of the wedge angle  θ  are shown in 
Figure 2 for  δ = 2.75  by solid lines. Dots indicate experimental values earlier obtained 
by Viktorov (8). It can be seen that the developed theory based on GA explains the 
experiment well, correctly describing the nature of the observed decreases in the periods 
of oscillations of both  |R| and  |T|  as the angle  θ  decreases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Reflection and transmission of Rayleigh waves in a solid wedge as 
functions of the wedge angle θ (6)  

 
      It is evident from equations (7) and (8) that the theoretical values of  |R|  and  |T|  
satisfy the condition  |R|2 + |T|2 = 1.  This condition describes energy conservation law 
for reflection and transmission of Rayleigh waves in a wedge, meaning that there is no 
energy conversion into other plate modes. Comparison with the measurements (8) shows 
that for measured values of  |R|  and  |T|  the sum  |R|2 + |T|2 is less than one, but it is 
very close to it for most values of the angle  θ, except for the range of  θ  between 1000 
and 1500, where GA theory is not expected to be valid.  
      In addition to the problem of reflection and transmission of Rayleigh wave in a 
wedge at normal incidence, which was discussed above, it is important to consider a 
more general case of oblique incidence (7) (see Figure 3). In this case, even for a fixed 
wedge angle  θ, the total accumulated phases for propagating flexural and longitudinal 
waves depend on the angle of incidence  α. Therefore, according to the GA theory, 
oscillations of the reflection and transmission coefficients of Rayleigh waves can take 
place as a result of changing the angle of incidence  α.  Naturally, the developed theory 
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of Rayleigh wave reflection and transmission is more complex in the case of oblique 
incidence.  
      First of all, one should take into account the different characteristics of refraction of 
the symmetric and antisymmetric Lamb modes during their propagation to the wedge 
tip and back as their velocities vary according to different laws near the tip. The velocity 
of the antisymmetric (flexural) mode tends to zero near the edge. This is why it 
approaches the tip almost at normal angle (see Figure 3, trajectory 1). On the other 
hand, the velocity of the symmetric (longitudinal) mode increases near the edge from 
the Rayleigh wave velocity  cR  to the plate wave velocity  cp. As the result of this, the 
ray trajectory of the symmetric mode is more oblique.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Geometry of Rayleigh wave propagation in a wedge at oblique incidence;  

a Rayleigh wave is represented as a sum of two lowest order Lamb modes (7)  
 
      Especially interesting situation happens for angles of incidence  α  that are larger 
than a certain angle  α0. For such angles, the symmetric mode turns back before 
reaching the edge, thus forming a simple caustic (7). It is well known from the general 
geometrical acoustics (optics) theory (2) that, upon reflection from a simple caustic (ray 
congestion), the reflected wave obtains an additional phase shift of  -π/2  called the 
'caustic phase shift'. This phase shift must be added to the total accumulated phase of 
the symmetric plate mode in the process of calculations of Rayleigh wave reflection and 
transmission coefficients. It can be shown (7) that the caustic phase shift results in the 
additional spike around the angle  α = α0. This prediction has been confirmed by the 
experiments (7). 
 
4.  Geometrical acoustics theory of wedge elastic waves  
 
One of the important applications of geometrical acoustics of antisymmetric (flexural) 
Lamb waves is the development of the analytical theory of localised elastic waves 
propagating along the tip of an elastic wedge, also known as wedge elastic (or acoustic) 
waves. The GA theory of localised elastic waves in slender solid wedges has been 
developed by the present author (4, 5) (see also the monograph 3), and it is based on the 
geometrical acoustics approach considering a slender wedge as a plate with a local 
variable thickness  d ≈ xθ,  where  θ  is the wedge apex angle and  x  is the distance from 
the wedge tip measured in the middle plane (see Figure 1). The velocities  c  of the 
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localised wedge modes propagating in y-direction can be determined in the geometrical 
acoustics approximation as the solutions of the Bohr - Sommerfeld type equation (4, 5):  
 

,                                     (10) 

 
where  b = w/c  is yet unknown wavenumber of a wedge mode,  ka(x)  is a local 
wavenumber of a flexural wave in a plate of variable thickness,  n = 1,2 3, ... is the 
mode number, and  xt  is the so called ray turning point being determined from the 
equation  ka2(x) - b2 = 0.   
      As was mentioned in the previous section, for a slender wedge in contact with 
vacuum  ka(x) =121/4 kp1/2(θx)-1/2,  so that  xt=2Ö3kp/θb2.  Here  kp = w/cp  and  cp= 
2ct(1-ct2/cl2)1/2  is the plate wave velocity,  cl  and  ct  are the velocities of longitudinal 
and shear acoustic waves in the plate material. Taking the integral in equation (10) 
analytically and solving the resulting algebraic equation yields the extremely simple 
analytical expression for wedge wave velocities (4, 5):  
 

.                                                           (11) 

 
The expression (11) for wedge wave velocities agrees well with the other (numerically 
based) theories and with the available experimental results. The analytical expressions 
for amplitude distributions of wedge modes are rather cumbersome (4), and they are not 
displayed here for shortness. Figure 4 illustrates the first three modes of wedge elastic 
waves calculated in geometrical acoustics approximation (4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. First three modes of wedge elastic waves calculated using 
geometrical acoustics approach (4) 
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      The structure of the wedge modes shown in Figure 4 agrees well with the results of 
the numerical calculations, with the exception of the clearly seen singularities in the 
areas marked by dashed vertical lines. Beyond these lines, which show the locations of 
caustics (ray congestions), the modes do not penetrate into the depth of a wedge. The 
above singularities manifest the well-known limitation of all geometrical acoustics 
(optics) theories that become invalid near caustics (1, 2).  
      The above-mentioned geometrical acoustics theory of wedge elastic waves can be 
generalised to consider localised modes of quadratically-shaped elastic wedges (9), 
wedges immersed in liquids (10), cylindrical and conical wedge-like structures (curved 
wedges) (11), wedges of general power-law shape (12), and wedges made of anisotropic 
materials (13).  
 
5.  GA theory of acoustic black holes for flexural waves  
 
Another important application of geometrical acoustics of Lamb waves in plates of 
variable thickness is the theory of the so-called ‘acoustic black holes’ for flexural waves 
that can absorb almost 100% of the incident wave energy. This effect can be used as a 
new method of damping structural vibrations. It should be noted that vibration damping 
represents a vitally important topic of general vibration engineering (14).  
      To understand the phenomenon of acoustic black holes, or the acoustic black hole 
effect, one can start with the simplest one-dimensional case of plane flexural wave 
propagation in the normal direction towards the edge of a free wedge having the local 
thickness  h(x)  described by a power-law relationship  h(x)= exm,  where  m  is a 
positive rational number and  e  is a constant (see Figure 5).  
 

 

Figure 5. Solid wedge of power-law profile  
 
Since flexural wave propagation in such wedges can be described using the geometrical 
acoustics approach (4, 5), the total accumulated phase  F  representing part of the 
geometrical acoustics solution in the form described by equations (1) or (2) and 
resulting from the wave propagation from an arbitrary point  x  located in the wedge 
medium plane to the wedge tip (x = 0) can be written as  
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.                                           (12) 

 
Here  ka(x)  is a local wavenumber of a flexural wave for a wedge in contact with 
vacuum. For a slender wedge,  ka(x) =121/4 kp1/2(exm)-1/2, where  kp = w/cp  is the 
wavenumber of a symmetrical plate wave,  cp = 2ct(1-ct2/cl2 )1/2  is its phase velocity, 
and  cl  and  ct  are longitudinal and shear wave velocities in the wedge material.  
      It is easy to see that the integral in equation (12) diverges for  m ³ 2.  This indicates 
that the total accumulated phase  F  becomes infinite under these circumstances, which 
means that the wave never reaches the edge. Therefore, it never reflects back either, i.e. 
the wave becomes trapped at the edge, thus indicating that the above mentioned ideal 
wedges of power-law profile for  m ³ 2  materialise what can be called 'acoustic black 
holes’ (ABH) for flexural waves (15, 16). The above-mentioned effect of zero reflection of 
flexural waves from the edge of a wedge of power-law profile has been first predicted 
by Mironov (17) who gave a slightly different interpretation of this phenomenon.  
      Real fabricated wedges, however, are not ideally sharp, and they always have 
truncated edges, which adversely affects their performance as ‘black holes’. If for ideal 
wedges of power-law shape (with m ³ 2) it follows from equation (12) that even an 
infinitely small material attenuation, described by the imaginary part of  ka(x), would be 
sufficient for the whole wave energy to be absorbed, this is not so for truncated wedges. 
Indeed, for truncated wedges the lower integration limit in equation (12) must be 
changed from 0 to a certain value  x0  describing the length of truncation, thus resulting 
in the amplitude of the total reflection coefficient  R0  being expressed in the form (17)  
 

.                                               (13) 

 
According to equation (13), for low values of wave attenuation in such typical wedge 
materials as steel, even very small truncations  x0  result in the reflection coefficients  R0  
becoming as large as 50-70 %, which makes it impossible to use such wedges in 
practice.  
       In order to improve the situation for real wedges (with truncations), it has been 
proposed by the present author to cover wedge surfaces near the edges by thin 
absorbing layers (films) of thickness  dl,  e.g. by polymeric films (15, 16). To analyse the 
effect of thin absorbing films on flexural wave propagation in a wedge using 
geometrical acoustics approximation one should consider first the effect of such films 
on flexural wave propagation in plates of constant thickness. The simplest way of 
approaching this problem is to use the already known solutions for plates covered by 
absorbing layers of arbitrary thickness obtained by different authors with regard to the 
description of damped vibrations in sandwich plates (14). Using this approach, one can 
derive the analytical expressions for the reflection coefficients of flexural waves from 
the edges of truncated wedges covered by thin absorbing layers (15, 16).  
      Typical calculated values of the reflection coefficient R0 for flexural waves in real 
quadratic wedges are as follows: in the presence of the damping film  R0 = 2 – 4 %, 
whereas in the absence of the damping film  R0 = 50 –70 %. Thus, in the presence of 
the damping film the values of the reflection coefficient are much smaller than for a 
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wedge with the same value of truncation, but without a film. Note that almost all 
absorption of the incident wave energy takes place in the vicinity of the sharp edge of a 
wedge. The above-mentioned theoretical predictions have been confirmed 
experimentally and numerically (18, 19).  
      Figure 6 shows the measured point mobility (particle velocity divided by the value 
of an applied concentrated force) for a free quadratic wedge made of steel and for the 
same wedge covered by a thin strip of an absorbing polymeric layer (18). It can be seen 
from Figure 6 that the addition of a thin absorbing layer leads to a dramatic increase in 
damping (up to 20 dB) of resonant peaks in the initial mobility function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Measured point mobility of a quadratic steel wedge:  free wedge (solid 
curve) and wedge covered by a thin adhesive strip of thickness dl = 0.2 mm (dashed 

curve) (18)  
 
      The logical developments of acoustic black holes based on wedges of power-law 
profile, which can be considered as one-dimensional ABH, are two-dimensional 
acoustic black holes formed by nearly or slightly protruding cylindrically symmetrical 
indentations (pits) of power-law profile drilled in a regular thin plate of constant 
thickness (20). To consider flexural wave propagation over two-dimensional pits of 
power-law profile it is convenient to use the geometrical acoustics approach in 
Hamiltonian formulation (20). The analysis shows that the presence of a pit influences 
the rays of flexural waves that propagate through it. In particular, in the case of 
symmetrical pits of power-law profile with  m ³ 2,  all rays incident at angles  a0  less 
than a certain critical value  acr  (that depends on the distance  r0  from the source to the 
centre of the pit), including a direct ray for which  a0 = 0,  will deflect towards the 
centre of the pit. If a piece of polymeric film is attached to the central area of a pit, then 
all such rays will be efficiently absorbed by the pit, which thus materialises a two-
dimensional acoustic black hole (20).  
     For practical purposes, the above-mentioned two-dimensional acoustic black holes 
(power-law pits) can be placed at any point of a plate- or shell-like structure. The effect 
of such black holes will be in eliminating the flexural wave rays intersecting with them 
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from contributing to the overall frequency response function of a structure, which will 
result in substantial damping of its resonant vibrations. To amplify the effect of two-
dimensional acoustic black holes one can use combinations or arrays of several black 
holes distributed over the structure, if this does not compromise the main functions of 
the latter (20).  
     One of the most important advantages of the acoustic black holes as dampers of 
structural vibrations is that they are efficient even for relatively thin and narrow strips of 
attached absorbing layers (15, 16, 18, 19). This is in contrast with the traditional techniques 
requiring covering the entire surfaces of structures by relatively thick layers of 
absorbing materials (14). This important feature of acoustic black holes can be very 
attractive for many practical applications, e.g in transport engineering, where the 
reduction of mass of a vehicle is highly desirable for fuel economy and environmental 
reasons. Because of these attractive features, the topic of acoustic black holes has 
become popular within the research community, which is reflected in numerous recent 
publications, for example (21-24).  
 
6.  Conclusions 
 
It has been demonstrated in this work that geometrical acoustics theory of Lamb waves, 
especially flexural waves, is a powerful tool that provides researchers with the 
possibility to develop theoretical descriptions of wave propagation in a variety of 
important complex solid structures.  
     In many practical cases, including those described in this work, geometrical 
acoustics also gives clear and physically explicit explanations of the physical 
mechanisms behind the wave phenomena in question.  
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