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Abstract 

Multi-criteria assessments are increasingly being employed in the prioritisation of health threats, 

supporting decision processes related to health risk management. The use of multi-criteria analysis 

in this context is welcome, as it facilitates the consideration of multiple impacts of health threats, it 

can encompass the use of expert judgment to complement and amalgamate the evidence available, 

and it permits the modelling of policy makers’ priorities. However, these assessments often lack a 

clear multi-criteria conceptual framework, in terms of both axiomatic rigour and adequate 

procedures for preference modelling. Such assessments are ad hoc from a multi-criteria decision 

analysis perspective, despite the strong health expertise used in constructing these models. In this 

paper we critically examine some key assumptions and modelling choices made in these 

assessments, comparing them with the best practices of multi-attribute value analysis. Furthermore, 

we suggest a set of guidelines on how simulation studies might be employed to assess the impact of 

these modelling choices. We apply these guidelines to two relevant studies available in the health 

threat prioritisation domain. We identify severe variability in our simulations due to poor modelling 

choices, which could cause changes in the ranking of threats being assessed and thus lead to 

alternative policy recommendations than those suggested in their reports. Our results confirm the 

importance of carefully designing multi-criteria evaluation models for the prioritisation of health 

threats. 

Key-words: decision processes, health threat prioritisation, health risk analysis, multi-criteria 

analysis, simulation. 

1 INTRODUCTION 

Multi-criteria evaluations are increasingly being employed in the prioritisations of health threats to 

support decision processes related to health risk management initiatives (Balabanova et al., 2011; 
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Cox et al., 2013; FAO, 2014; Havelaar et al., 2010; Humblet et al., 2012; Krause, 2008; O’Brien et al., 

2016). The use of multi-criteria analysis is welcome in these contexts. Firstly, it facilitates the 

assessment of multiple impacts, many of them without a natural quantitative attribute (such as 

number of cases), which are common in health threat prioritisations (Del Rio Vilas, Voller, et al., 

2013; Mourits& Oude Lansink, 2007). Secondly, it can encompass the use of expert judgment in the 

estimation of impacts, when hard evidence is not available or sufficiently reliable (Batz et al., 2005; 

Morgan, 2014). Thirdly, it permits the modelling of different priorities, reflecting the concerns of 

policy makers and experts when dealing with multiple impacts in their decision processes (Angelis et 

al., 2017; Baltussen et al., 2010; Del Rio Vilas et al., 2013b). 

The decision analysis literature provides extensive guidance on how to build up these models, for 

instance on how to frame the decision problem (Barcus and Montibeller, 2008; Keeney, 1992), 

structure value models (Franco and Montibeller, 2011; Keeney, 2013), define attributes (Keeney and 

Gregory, 2005) and elicit preference parameters (von Winterfeldt and Edwards, 1986). In addition, it 

provides warnings about modelling mistakes (Dillon-Merrill et al., 2008; Keeney, 2002) and identifies 

cognitive and motivational biases that may affect preference elicitation of individuals (Montibeller 

and von Winterfeldt, 2015) and of groups (Montibeller and Winterfeldt, 2018).  

Despite the availability of this body of literature, best practices are still ignored in a number of 

health threat prioritisation models (Del Rio Vilas et al., 2011). Some of these models may lack a clear 

conceptual multi-criteria framework, in terms of both axiomatic rigour and adequate procedures for 

preference elicitation and modelling. They are thus ad hoc models from a multi-criteria decision 

analysis perspective, despite the strong health expertise employed to build them. While the problem 

is widespread, examples of well-designed models do exist (e.g. Brookes et al. (2014); Cox et al. 

(2013)). 

Concern about best practices is emerging within the health evaluation community, as the recent 

reviews on multi-criteria models for health threat assessments (O’Brien et al., 2016) and healthcare 

decisions (Marsh et al., 2016) attest. In addition, thoughtful critiques of weak modelling practices 

have recently been published in health technology assessment (Morton, 2017) and life-critical 

medical decision making (Kujawski et al., 2019). However, these articles do not provide a critical 

assessment of health threat prioritisation models. 

To address this gap, we examine in this paper the key modelling assumptions  of ad hoc multi-

criteria health threat prioritisation models, discuss the main modelling choices adopted in the design 

of such models, and compare them with well-established best practices of multi-attribute value 
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analysis (Belton and Stewart, 2002; Keeney and Raiffa, 1993; von Winterfeldt and Edwards, 1986). 

We review several health-threat prioritisations that were published in recent years.  

In addition, we suggest a set of guidelines on how simulation studies might be employed to assess 

the impact of these modelling choices. We apply these guidelines to simulate the impacts of 

modelling assumptions and design choices on the overall ranking of health threats of two relevant 

studies available in the health threats domain: the prioritisation of communicable diseases 

developed by the Robert Koch Institute (RKI) in Germany (Balabanova et al., 2011; Krause, 2008)  

and the ranking of foodborne parasites conducted  by the Food and Agricultural Organization of the 

United Nations (FAO) (FAO, 2014). These studies were chosen because they provide extensive details 

of their multi-criteria models, were rigorous in gathering and aggregating data, and dealt with highly 

relevant health issues. 

This paper makes two main contributions. From a conceptual perspective, policy analysts and health 

experts involved in health threat prioritisations may benefit from an improved understanding of the 

consequences of adopting ad hoc modelling practices, ignoring axiomatic properties, and eliciting 

preferences parameters with inadequate protocols. The modelling assumptions that we scrutinize 

can serve as warnings, as they are, in our experience, frequently made in this context. From a 

methodological perspective, we suggest a set of guidelines for conducting simulation studies to 

assess modelling issues that can be extended to other classes of multi-criteria evaluations employed 

in risk-related assessments (Greenberg et al., 2012). In doing so we go beyond prescriptive advices 

about what should be done (e.g. Dillon-Merrill et al. (2008); Keeney (2002)) and provide a 

framework to assess the impact of modelling assumptions on the prioritisation results. 

The remaining of the paper has the following structure.  Section 2 describes briefly multi-criteria 

value analysis and formalises the components of this type of model. For each component we discuss 

conceptual modelling assumptions and provide examples of health threat multi-criteria assessments 

available in the literature. Section 3 details the simulation analyses conducted on the two selected 

studies, where we assess the range of changes in the rankings of health threats due to their 

modelling assumptions and choices. We conclude the paper by discussing the findings of our 

simulation analyses, mentioning the limitations of the research design, and providing directions for 

further exploration on this topic. 
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2 MODELING ASSUMPTIONS IN MULTI-CRITERIA HEALTH THREAT PRIORITISATIONS 

We searched for multi-criteria health threat assessments and identified sixteen studies covering a 

variety of human and animal health threats1 (see first and second columns in Table 1). We included 

only studies that: i) prioritised health-related threats (diseases, pathogens, etc.); ii) were published 

from 2000 onwards; iii) used a multi-criteria method (or claimed to use a multi-criteria assessment) 

or, else, iv) employed an additive model that resembles a multi-attribute value assessment (scores 

for the threats and weights for the impact criteria).2  

A number of multi-criteria health threat prioritisations models reported in the literature do not 

employ any conceptual multi-criteria framework or provide references to specific multi-criteria 

decision analysis methodologies, nor show any attempt of establishing links to the field (Del Rio Vilas 

et al., 2011). In our search, several of these applications do not make any explicit reference to the 

multi-criteria method employed (see third column in Table 1 which describes what method was 

employed in each study).   

Several features of these ad hoc multi-criteria models seem to indicate that they could be compared 

against a standard multi-attribute value analysis (MAVA), namely: i) the format of the evaluation, 

with riskless health threats (e.g. parasites, diseases); ii) the creation of the scoring systems, with 

functions mapping the impacts on attributes into value; and iii) the method by which partial 

performances are aggregated, with the use of weighted sums. In this section we thus briefly 

formalize MAVA, describe the best practices employed and axiomatic properties required within 

these models, and illustrate the modelling issues that we observed in the models for health threat 

prioritisation that we analysed when compared with a MAVA framework. 

2.1 Multi-Attribute Value Analysis 

In decision analysis there is a conceptual distinction between value and utility, the former referring 

to situations of riskless choices, the latter to decisions with uncertain outcomes (Dyer and Sarin, 

1979; Keeney and Raiffa, 1993). Here we will focus on multi-attribute value analysis (Keeney and 

                                                           
1 The analysis follows the relevant components of the PROACT-URL framework (Hammond et al., 1999): the prioritisation 

Problem that each study addresses; the attributes to assess Objectives employed in the model; the type of Alternatives 
(health threats) being assessed; the value functions that measure Consequences; the attribute weights that represent value 
Trade-offs; and the sensitivity analysis performed to assess Uncertainties. 
2 We analysed the papers listed in previous literature reviews (ECDC, 2015; Mehand et al., 2018; O’Brien et al., 2016) and 

conducted an extensive search using Google Scholar (https://scholar.google.co.uk) with the following combinations of key-
words: (“multiple criteria decision analysis” OR “multi attribute decision analysis” OR “multi attribute value analysis” OR 
“MCDA”) AND (“diseases” OR “pathogens” OR “health threats” OR “health risks” OR “zoonoses” OR “emerging health 
threats” OR “emerging zoonoses”). 
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Raiffa, 1993; von Winterfeldt and Edwards, 1986), given the way that these ad hoc multi-criteria 

health threat prioritisations have been typically defined.  

Let a set of N attributes xi (i = 1, 2, …, N), be bounded between [xi
* ,xi

0]; and Vi a monotonic function, 

which measures the partial dis-value of a threat on the i-th attribute. (Health threat prioritisations 

have a ranking system in which the highest ranked threat receives the highest score. To be 

compatible with value theory we needed to introduce the concept of dis-value, in line with the 

concept of dis-utility widely employed in Economics.) 

Each dis-value function is usually normalized between Vi(xi
*) = 100 (maximum dis-value) and  Vi(xi

0) = 

0 (minimum dis-value). Let the impact caused by a k-th health threat on the i-th attribute be 

denoted by Vi(xi
k)(k = 1, 2, …, M) with M being the number of threats to be ranked. (In the paper we 

will use V(.) to denote generic dis-value functions and those used in the simulations and C(.) to 

denote dis-value functions taken from the models retrieved from the literature.) 

The dis-value functions Vi should be constructed using the difference value model, based on 

traditional difference measurement (Krantz et al., 1971), where differences of strength of preference 

are measured using pairwise comparisons. For instance, given four threats a, b, c, d ∈ A, where A is a 

set of threats, there exists a dis-value function V(.) ∈ ℝ which maps out the relationship between 

objects in the set A, such that if the strength of dis-preference of a over b (a,b) is at least as large as 

the strength of dis-preference of c over d (c,d) (Dyer and Sarin, 1979; von Winterfeldt and Edwards, 

1986), then: 

(a, b) ≿ (c,d) ⇔ V(a) – V(b) ≥ V(c) – V(d) 

A set of properties are required for such a dis-value function V(.) function to exist: connectivity, 

transitivity, summation, cancellation, solvability, and the Archimedian properties (for details see von 

Winterfeldt & Edwards(1986)). 

These partial dis-values scores Vi(xi
k) can then be aggregated by a function Φ, such that an overall 

dis-value score for the k-th health threat is assessed (Dyer and Sarin, 1979; Keeney and Raiffa, 1993) 

by: 

Vk = Φ[V1(x1
k), V2(x2

k), …, VN(xN
k)]      (Eq. 1).We relate our 

discussion below to these sixteen studies (Table 1), showing to which extent the issues that we 

found in a single case study are present in other applications.  



Gilberto Montibeller, Pratik Patel and Victor J. del Rio Vilas (2019). A Critical Analysis of Multi-Criteria Models for the Prioritisation of Health Threats. European Journal of Operational 
Research. doi.org/10.1016/j.ejor.2019.08.018 

 
Table 1. Multi-Criteria Health Threat Assessments Reported in the Literature. 

Paper Purpose of the 
evaluation 

Multi-
Criteria 
Method 

Employed 

Checks on the properties 
of attributes 

(see Sections 2.2 and 2.4) 

Design of attributes 
 

(see Section 2.2) 

Elicitation of value 
functions 

(see Section 2.3) 

Elicitation of 
weights 

(See Section 2.5) 

Sensitivity/robustness 
analysis 

(See Section 2.6) 

Balabanova 
et al. (2011) 

Prioritisation of 
communicable 
diseases in 
Germany 

Not 
mentioned 

Not mentioned Clear definition of levels for 
qualitative attributes and use 
of indices for quantitative 
attributes but with stepwise 
functions 

Three levels with a 
bivalent scale but with 0 
not reflecting a neutral 
level 

Elicited using the 
notion of direct 
importance 

None 

Brookes et 
al. (2014) 

Prioritisation of 
exotic diseases for 
the pig industry in 
Australia 

Multi-
attribute 
value theory 

Not mentioned Clear quantitative indices Assumed linear value 
functions for all attributes 

Use of scenarios 
representing value 
trade-offs 

Sensitivity analysis of 
weights on overall 
scores of threats 

Cardoen et 
al. (2009) 

Prioritisation of 
food born zoonoses 
in Belgium 

Not 
mentioned 

Not mentioned Not clearly defined  Experts provided directly 
qualitative labels to 
assess the threats which 
were converted into 
numbers 

Points distributed 
following the 
notion of direct 
importance 

Analysis of ranges for 
overall impact of 
threats from 
individual expert’s 
assessments 

Collineau et 
al. (2018) 

Risk ranking of 
antimicrobial-
resistant hazards in 
meat in Switzerland 

Not 
mentioned 

Not mentioned Clear definition of levels for 
qualitative attributes and use 
of indices for quantitative 
attributes, but assumed 
preference independence 
between incidence and 
severity 

Assumed equal value 
distance between ordinal 
levels of the attributes 

Weights were not 
elicited, assuming 
equal weights 

Sensitivity analysis on 
the weights of the 
model 

Cox et al. 
(2013) 

Prioritising 
Emerging or Re-
Emerging Infectious 
Diseases Associated 
with Climate 
Change in Canada 

Multi-
attribute 
value theory 

Not mentioned Clear definition of levels for 
qualitative attributes and use 
of indices for quantitative 
attributes but with stepwise 
functions 

Elicited from experts 
using the Macbeth 
software 

Elicited from 
experts using the 
swing weights 
procedure 

Criteria were 
weighted using 
probability 
distributions 
representative of 
expert opinion 

Dahl et al. 
(2015) 
 

Communicable 
Diseases Prioritised 
According 
to Their Public 
Health Relevance in 
Sweden 

Not 
mentioned 

Not mentioned Clear definition of levels for 
qualitative attributes and use 
of indices for quantitative 
attributes but with stepwise 
functions 

Three levels with a 
bivalent scale but with 0 
not reflecting a neutral 
level) 

Elicited using the 
notion of direct 
importance 

None 
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Paper Purpose of the 

evaluation 
Multi-

Criteria 
Method 

Employed 

Checks on the properties 
of attributes 

(see Sections 2.2 and 2.4) 

Design of attributes 
 

(see Section 2.2) 

Elicitation of value 
functions 

(see Section 2.3) 

Elicitation of 
weights 

(See Section 2.5) 

Sensitivity/robustness 
analysis 

(See Section 2.6) 

Del Rio 
Vilas et al. 
(2013b) 

Prioritisation of 
emerging animal 
health threats to 
the UK 

Multi-
attribute 
value theory 

Not mentioned Unambiguous descriptions 
and adequate handling of 
dependences  

Elicited from experts 
using the Macbeth 
software 

Elicited from 
experts using the 
swing weights 
procedure 

None 

Domanovici 
et al. (2017) 

Prioritistion of 
bacterial infections 
transmitted 
through 
substances of 
human origin in 
Europe 

Not 
mentioned 

Not mentioned Use of indices for 
quantitative attributes but 
with stepwise functions and 
overlapping thresholds 

Four levels with arbitrary 
conversions from 
attribute to a value scale 

Multiplicative 
function with 
weights that do not 
reflect value trade-
offs 

None 

FAO (2014) Ranking of food-
borne parasites 

Not 
mentioned 

Not mentioned Use of indices for 
quantitative attributes but 
with stepwise functions and 
overlapping thresholds; 
preferentially dependent 
attributes (severity and 
number of cases) were 
treated as independent 

Four levels with arbitrary 
conversions from 
attribute to a value scale 

Elicited using the 
notion of direct 
importance 

Sensitivity analysis of 
performance 
assessments and 
weights for different 
expert groups 

Garner et 
al. (2015) 

Assessment of 
antimicrobial 
resistant 
disease threats in 
Canada 

Not 
mentioned  
(except for 
the 
sensitivity 
analysis) 

Not mentioned Clear definition of levels for 
qualitative attributes and use 
of indices for quantitative 
attributes but with stepwise 
functions 

Three levels with 
arbitrary conversions 
from attribute to a value 
scale 

Elicited using the 
notion of direct 
importance 

Detailed robustness 
analysis comparing with 
outranking results, 
varying weights and 
with a different set of 
weights 

Havelaar et 
al. (2010) 

Prioritisation of 
pathogens in the 
Netherlands 

Not 
mentioned 

Not mentioned Use of indices for 
quantitative attributes but 
with stepwise functions and 
overlapping thresholds 

Convoluted conversion of 
levels into scores 

Elicited with the 
probabilistic 
inversion function 
method 

Sensitivity of results to 
different criteria 
weights and to 
distributions on scores 

Humblet et 
al. (2012) 

Prioritisation of 
diseases and 
zoonoses in Europe 

Not 
mentioned 

Not mentioned Clear definition of levels for 
qualitative attributes and use 
of indices for quantitative 
attributes but with step-wise 
functions 

Discrete set of four levels 
for quantitative attributes 
scored between 0 and 4 

Unclear procedure 
for the allocation of 
points from which 
weights were 
calculated 

Criteria were weighted 
using probability 
distributions 
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Paper Purpose of the 

evaluation 
Multi-

Criteria 
Method 

Employed 

Checks on the properties 
of attributes 

(see Sections 2.2 and 2.4) 

Design of attributes 
 

(see Section 2.2) 

Elicitation of value 
functions 

(see Section 2.3) 

Elicitation of 
weights 

(See Section 2.5) 

Sensitivity/robustnes
s analysis 

(See Section 2.6) 

Kadohira et 
al. (2015) 

Stakeholder 
prioritisation of 
zoonoses in Japan 
with analytic 
hierarchy process 
method 

AHP Not mentioned Use of indices for 
quantitative attributes but 
with stepwise functions and 
overlapping thresholds; 
preferentially dependent 
attributes (severity and 
number of cases) were 
treated as independent 

Four levels with arbitrary 
conversions from 
attribute to a value scale 

Elicited using the 
notion of direct 
importance (as it is 
standard in the 
AHP) 

Analysis of impact on 
ranking from weights 
defined by different 
groups of experts 

Mehand et 
al. (2018) 

Prioritisation of 
emerging infectious 
diseases 
in need of research 
and development 

AHP Not mentioned No attributes were defined 
and there are preferentially 
dependent criteria 

Value function indirectly 
assessed via the AHP 
method 

Elicited using the 
notion of direct 
importance (as it is 
standard in the 
AHP) 

Limited sensitivity 
analysis on the 
weights of the model 

Munyua et 
al. (2016) 

Prioritisation of 
zoonotic diseases in 
Kenya 

AHP Not mentioned Use of indices for 
quantitative attributes but 
with stepwise functions; 
preferentially dependent 
attributes (severity and 
prevalence) were treated as 
independent 

Value function indirectly 
assessed via the AHP 
method 

Elicited using the 
notion of direct 
importance (as it is 
standard in the 
AHP) 

Limited sensitivity 
analysis on the 
weights of the model 

Pieracci et 
al. (2016) 

Prioritisation of 
zoonotic diseases in 
Ethiopia 

Not 
mentioned 

Not mentioned Use of ambiguous levels for 
indices with stepwise 
functions; double-counting 
attributes (severity and 
burden of disease)  

Four levels with arbitrary 
conversions from 
attribute to a value scale 

Elicited using the 
notion of direct 
importance 

No 
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2.2 Definition of Criteria and Attributes 

The criteria in a multi-criteria evaluation should reflect the fundamental objectives of concern in the 

prioritisation (Keeney, 2013, 1992). These fundamental objectives should be identified from an 

appropriate decision frame (Barcus and Montibeller, 2008; Keeney, 1992), which balances their 

essentiality in relation to ultimate objectives versus their ability to assess impacts of health threats 

that are only influenced by the threats themselves, but not other events (“controllability”). This 

property seems to have remained unchecked in certain ad hoc models, such as for the 57 attributes 

employed by Humblet et al. (2012), which might not all be measuring fundamental objectives. In our 

review we have not found a single application that has mentioned explicitly that such properties 

have been checked (see fourth column in Table 1 which summarises if checks on the properties of 

the attributes were conducted in each model). 

An attribute should be carefully selected to measure the concern expressed by the respective 

fundamental objective. Whenever a natural quantitative attribute is available (for instance “total 

number of disease cases”) it should be used. If a natural attribute is not available, then the analyst 

needs to define either a constructed attribute specifically designed for the evaluation, or else, a 

proxy attribute measuring the achievement of a means objective to the fundamental objective (see 

Keeney and Gregory (2005) for details). 

The definition of attributes in ad hoc models provides skewed translations from impact into dis-

value. Firstly, quantitative attributes are discretized into categories, with steep jumps in value and, 

sometimes, overlapping categories. For example, in the model proposed by Havelaar et al. (2010) to 

prioritise emerging zoonoses, the attribute “transmission in animal reservoirs” CH (performance 

metric: XH = prevalence per 100,000 animals) is discretized into five categories, valued as: CH(XH< 1) = 

0; CH(1 ≤ XH ≤ 100) = 50; CH(100 ≤ XH ≤ 1,000) = 500; CH(1,000 ≤ XH ≤ 10,000) = 5,000; CH(XH> 10,000) = 

50,000. The categories overlap, so it is unclear if XH = 100 has a value of 50 or 500. Furthermore, the 

model suggests a steep increase in value that the rise of two cases (e.g. from 999 to 1001) would 

result in (from 500 to 5,000 units of dis-value). Secondly, the discretization of these scales is further 

compounded by a very limited number of  attribute levels, such as in the model proposed by the RKI 

(Balabanova et al., 2011; Krause, 2008), in which each attribute has only three levels (see Table A13). 

These  attributes with a limited number of levels are present even in models that are rooted on a 

sound multi-criteria framework (e.g. Del Rio Vilas et al. (2013a)).  

                                                           
3All tables with simulation data and simulation results are in the Online Appendix II. 
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Many of these models include attributes that are concerned with intangible issues. They often rely 

on qualitative labels that are ambiguously defined. For example, the model developed by the FAO 

(2014) (see Table A2) assesses the attribute C8“how relevant is the parasite for international trade” 

using the labels “not at all”, “some relevance”, and “high relevance”. In the context of probability 

elicitation, evidence has shown that there are wide variations of between-subject interpretation of 

such labels (Budescu and Wallsten, 1985; Wallsten et al., 1986). These results should be valid also for 

value assessments, a matter of concern when multiple experts are assessing the threats. In our 

survey of multi-criteria health threat evaluations, several studies presented ambiguous attributes 

(see the fifth column in Table 1 which analyses how attributes were designed in each model). 

2.3 Definition of Dis-Value Functions 

As mentioned previously, to each i-th attribute an associated dis-value function should be defined to 

assess every k-th threat: Vi(xi
k). For continuous variables, such as number of disease cases, a 

continuous function can be defined, anchored at Vi(xi
*) = 100 and  Vi(xi

0) = 0. These functions might 

be linear for some variables (such as number of disease cases) but are often non-linear to indicate 

decreasing /increasing marginal dis-value. Simulation studies have shown that linear multi-attribute 

value models are sensitive to the shape of value functions (Stewart, 1996), therefore such non-

linearities should be modelled whenever present. 

As value functions are measured on interval scales (Dyer and Sarin, 1979), they admit positive linear 

transformations such as: V’(.) =  𝛼V(.) + 𝛽 with 𝛼 > 0. Thus the zero of the scale need not be 

necessarily set at the lowest level of the attribute (xi
0) and instead it can be placed at a ‘neutral’ level 

(Bana e Costa et al., 2008). This flexibility about the location of the zero needs to be used only for 

those attributes that are bivalent (i.e. with positive and negative ranges, indicating regions of 

desirability and undesirability, respectively). This aspect has not been observed in some of the health 

threat models we analysed. For instance, the model proposed by the RKI (Balabanova et al., 2011; 

Krause, 2008), features single valence attributes, such as the number of cases (C1) scored using a 

bivalent scale: {-1,0,1} (Table A1). 

The discretisation of continuous variables into a small set of categories often leads to inconsistencies 

between impacts and valuations. For instance, in the FAO model (see Table A2), the attribute 

“number of global food-borne illnesses” (C1) is scored in the following levels (bins) (where X1 = 

number of cases): C1(X1< 104) = 0; C1 (104 ≤ X1 ≤ 105) = 25; C1(105 ≤ X1 ≤ 106) = 50; C1(106 ≤ X1 ≤ 107) = 

75; C1(XF1> 107) = 100. The value of a case in Bin2 is thus (25 – 0)/(106 – 105) = 2.77x10-4, while for 

Bin3 each case is worth (75 - 50)/(107 – 106) = 2.77x 10-6, consequently a case in the former is 

considered as 100 times more valuable than the latter. It is not clear if these valuations are an 



Gilberto Montibeller, Pratik Patel and Victor J. del Rio Vilas (2019). A Critical Analysis of Multi-Criteria Models for the 
Prioritisation of Health Threats. European Journal of Operational Research. doi.org/10.1016/j.ejor.2019.08.018 

 
unintended consequence of the way the attribute was built, instead of a deliberate attempt of 

allocating a non-linear marginal value for life (Dickert et al., 2012). 

Another common issue is the implicit assumption of equal marginal value reductions between the 

categories. Consider the attribute related to the likelihood of increased human burden (C7) in the 

FAO model (Table A2). The scoring system assumes that the marginal dis-value in moving from 0-

25% (Bin1) to the 25-50% category (Bin2), of 25 value points, is the same as moving from this to the 

75-100% category (Bin3). A similar assumption is made in Cox et al. (2013)’s model. As before, this 

might be an unintended consequence of the way the attribute was defined. 

Adequate elicitation procedures should be used to define value functions (von Winterfeldt and 

Edwards, 1986) either using numerical judgments, indifference judgments, or qualitative judgments 

that are adequately translated into values (Bana e Costa et al., 2012). Our review shows that value 

functions are often arbitrarily set, with unrecognized consequences on the evaluation of dis-value of 

threats (sixth column Table 1 which analyses how value functions were elicited). 

2.4 Definition of Properties for the Set of Attributes 

As discussed previously, appropriate decision framing should lead to the definition of attributes that 

are associated with fundamental objectives. Other properties are also necessary for the set of 

attributes, specifically they should be comprehensive, concise, understandable, decomposable, non-

redundant, and if possible, preferentially independent (Belton and Stewart, 2002; Keeney and Raiffa, 

1993).  

The non-redundancy property is contingent on avoiding double-counting, so the impact is not over-

weighted within the aggregation. For example, in the Humblet et al. (2012)’s model for the 

prioritisation of diseases, it seems that “lower human consumption of animals” and “impact on an [a 

given] animal industry” could be, at least partially, double-counting the same concern. Attributes in 

ad hoc models might have been chosen because data is readily available for some indices, or 

alternatively because modellers want to accommodate all the issues that experts raise.  

The preferential independence property among attributes must be observed if the multi-criteria 

model employs a simple weighted sum as the aggregation function Φ (in Eq. 1), i.e.: 

Vk = Φ[V1(x1
k), V2(x2

k), …, VN(xN
k)] = ∑ 𝑤𝑖

𝑁
𝑖=1 𝑉𝑖(𝑥𝑖

𝑘); with  ∑ 𝑤𝑖
𝑁
𝑖=1 = 1 (Eq. 2). 

Where wi is the weight associated with the i-th attribute. We noticed that this aggregation rule has 

been commonly used in the ad hoc health threat assessments.  
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In the case of a multi-attribute value function, the required property for performing the aggregation 

shown in Eq. 2 is weak-difference independence (Dyer and Sarin, 1979; Keeney, 1992). This property 

can be easily formalized for two attributes x1 and x2 with four attribute levels x1’’ > x1’ (with x1’’, x1’ ∈ 

[x1
* ,x1

0]) and x2’’ > x2’ (with x2’’, x2’ ∈ [x2
* , x2

0]). The attribute x1 is independent of attribute x2 if 

V[x1’’, x2’’] - V[x1’, x2’’] = V[x1’’, x2’] - V[x1’, x2’] ∀x1’’, x1’, x2’’, and x2’. This is graphically illustrated in 

Figure 1.  The property is not symmetrical (Keeney, 1992), so the same test must to be done for x2 

against x1. 

 

Figure 1: The weak-difference independence condition (adapted from von Winterfeldt and Edwards(1986)). 

In the health context, a common case where this preferential independence does not hold is when 

assuming number of disease cases and disease severity as two preferentially independent attributes. 

Consider that x1 is the value for the first attribute, ranging from x1’= 100 to x1’’ = 1,000 cases; and x2 

is the value for the second attribute, ranging from x2’= “mild”  to x2’’ = “life threatening”.  In this case 

the value distance when the disease is life threatening is probably much larger than when it is mild, 

thus: V[x1’’, x2’’] - V[x1’, x2’’] ≫V[x1’’, x2’] - V[x1’, x2’]. Some of the ad hoc health threat assessments 

proceed to use an additive value function as if these two attributes were preferentially independent 

(e.g. Cardoen et al.(2009), Balabanova et al. (2011), Krause et al. (2008)). 

For example, consider attributes C1 (“Number of global food-borne illnesses”) and C4 (“Chronic 

morbidity severity”) in the FAO model (Table A2)4 and assume, without loss of generality, that C5 

(“Fraction of illness that is chronic”) is Bin 4 (this just defines a proportion, thus 100% chronic and 

0% acute morbidity severity). C1 and C4 are normalized between 0 and 100, with the bins equally 

spaced in value. 

                                                           
4The aggregation formulas of the FAO model are detailed in Equations 3 and 4 in Section 3.1 of this paper. 
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As preferential independence is assumed between these attributes C1 and C4, and the baseline 

weights for both attributes C1 and C345 are identical (see Table A3) this implies iso-value lines as 

shown in Figure 2, with all combinations over a given line receiving the same score. The aggregate 

dis-value C1 + C345 for this example is shown in Table A4. Notice the same dis-value gap between Bin 

0 and Bin 4 of C1 for a given Bin of C4 (Table A4, last column). However, it is likely that this dis-value 

gap should be higher when the cases are severe (Bin4 on C4) than when there is no severity (Bin0 on 

C4).  

 

Figure 2: The assumption of preferential independence between attributes C1 and C4 for the FAO model. 

A related consequence of considering these types of attributes (number of cases and severity) as 

preferentially independent is that iso-value curves are generated in a way that may lead to illogical 

prioritisations. To illustrate, suppose there exist two threats in the FAO model, again setting up C5 as 

Bin 0: the first threat leading to more than 107 cases but no chronic morbidity, i.e. C14
1[x1=Bin4, 

x4=Bin0]=22; and a second one with less than 104 cases but severe chronic morbidity severity, 

i.e.C14
2[x1=Bin0, x4=Bin4] =22 (see cells in bold in Table A4). Both have the same dis-value score, and 

therefore are mathematically considered equally serious, but there is no morbidity in the former 

despite the large number of cases, so we would expect its score to be lower. In our survey, we have 

not found any explicit checks on the axiomatic or preference properties of the multi-criteria models 

that were developed (see the fourth column in Table 1 which analyses if these properties were 

checked in each model).  
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2.5 Elicitation of Attribute Weights 

Weights in a multi-criteria model reflect the trade-offs that must be made among conflicting 

objectives. In a multi-attribute value function, weights are scaling constants that convert partial 

values into an overall value (Keeney and Raiffa, 1993), given both the range of each i-th attributes 

[xi
0 , xi

*] associated with attribute xi(.) and the relative importance of the “swing” from level xi
0 to 

level xi
* in comparison with other swings in the remaining attribute set.  

The requirement for weights to be always anchored on the extreme levels of the attributes brings 

two important consequences. Firstly, any protocol for the elicitation of weights must ask for 

preference information in relation to such anchors. For instance, the trade-off method for elicitation, 

when applied for two attributes x1 and x2, with V[x1
*, x2

0] <V[x1
0, x2

*], will ask the evaluator for a level 

x2, such as V[x1
*, x2

0] = V[x1
0, x2]. Weights can be then calculated from the two equations: w1V1(x1

*) + 

w2 V2(x2
0) = w1 V1(x1

0) + w2 V2(x2) (from Eq.2 and the equal value point) and w1 + w2 = 1 (from Eq. 2). 

Other methods, such as swing weighting, simplify the elicitation protocol, but again use the anchors 

to elicit weights (von Winterfeldt and Edwards, 1986). Most decision analysts prefer to elicit such 

priorities directly from experts, helping them to think explicitly about trade-offs, but conjoint 

methods  can also be employed to derive weights, based on the ranking of dummy threats 

(Kurowicka et al., 2010). Secondly, any elicitation protocol that does not use anchors, or asks for 

“direct importance” of attributes should be avoided, as empirical results show that the answers 

provided are unreliable and incompatible with the way that weights are conceptualized in multi-

attribute value functions (Keeney, 2002; von Nitzsch and Weber, 1993).  

The direct elicitation of importance, as employed in some health threat prioritisations (see the 

seventh column in Table 1 which describes how the weights were elicited in the sample we 

analysed) is known as the “most common critical mistake” in the prioritisation of objectives (Keeney, 

2002, 1992) and may have a serious impact on the prioritisation of health threats. It is not surprising, 

for instance, that the weights elicited asking for direct importance were quite distinct from the ones 

derived from the application of conjoint analysis, as in the probabilistic inversion method proposed 

by Kurowicka et al. (2010), with the latter weights being more likely to represent the experts’ real 

value trade-offs than the former. 

2.6 Conduct Sensitivity and Robustness Analysis 

Despite the uncertainties about impacts that are usually present in health threat assessments, which 

ideally would require risk modelling (see Morgan and Henrion (1992)), they are typically 

conceptualised as deterministic evaluations in the models that we searched. In addition, the 

uncertainty related to the impacts of a threat, coupled with the uncertainty related to the priorities 
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of policy makers (reflected on the attribute weights) require the analyst to perform a sensitivity 

analysis on the impact of inputs on the ranking of threats, and there are several tools available to 

perform it (Rios-Insua, 1990). However, many of the prioritisation models that we analysed portray a 

rather limited sensitivity analysis (see the eight column of Table 1 which describes how sensitivity 

analysis was performed in each model). 

Furthermore, a full robustness analysis can identify to which extent the ranking of threats is robust 

to changes in the input parameters. The role of robustness analysis is considered as crucial in 

decision analysis, given the uncertainties involved in assessments and decision making (Roy, 2010). 

We have identified only one robustness analysis in the sample of models that we considered, the 

one developed by Garner et al. (2015). 

While this conceptual critique discussed the issues most commonly observed in ad hoc multi-criteria 

health threat assessments, policy makers and experts may question the actual impact of such 

problems on the ranked order of options. In the following section we assess the possible impacts of 

specific assumptions made in the rankings of the FAO and RKI models using simulation. 

3 SIMULATION OF MODELING ASSUMPTIONS IN HEALTH THREAT PRIORITISATIONS 

Simulation has frequently been used in multi-criteria analysis, either for dealing with uncertainties of 

model parameters (e.g. Butler et al.(1997)) or, instead, for comparing idealized models against non-

idealized ones. Within this latter purpose, Stewart (1996) compared the robustness of generic multi-

attribute value models to those with missing attributes or preferential dependences, Durbach and 

Stewart (2009) simulated how simplified models deal with decision under uncertainty against the 

classical expected utility model, Keisler (2008) evaluated the impact of different weighting rules in 

portfolio multi-criteria analysis, and Jimenez et al. (2009) considered the assessment of alternatives 

with some missing performances. To the best of our knowledge, no simulation study has been 

conducted to assess the impact of modelling assumptions in health threat prioritisations. We suggest 

a set of guidelines in Table 2 on how these modelling issues might be assessed via simulation studies 

(the ones indicated with a star (*) in the table will be illustrated in this section). 

In the two studies that are presented here, we have used Monte-Carlo simulation to test the 

parametric stability of the rankings, running 1,000 iterations and ensuring the outputs showed 

convergence (for the mean values, with a tolerance of 3% and a confidence level of 95%). For the 

FAO model we simulated four modelling assumptions that we discussed previously: the limited 

number of levels for attributes in the scoring functions, the presence of preferential dependencies 

among attributes, the use of inadequate elicitation protocols for weighting, and the ambiguity of 
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attribute definitions. For the RKI model we simulated only the limited number of levels for attributes 

and the inadequate elicitation of weights.  

The analyses focus was on changes of rankings, instead of scores of threats, as the former is typically 

more relevant as input in health decision processes. For the two studies we assume that the 

evidence about the impacts of each health threat is adequate, and any changes of ranking are due 

only to modelling assumptions. Therefore, we are not questioning the quality of the evidence about 

the threats employed in those two assessments. 

Table 2. Guidelines for simulation studies modelling issues in health threat prioritisations. 

Modelling Step 

Issue 

Specific Modelling Issue Possible Simulation 

Misspecification 

of fundamental 

objectives 

Absence of a fundamental 

objective and its 

respective attribute 

Include a new attribute xi (i = N +1) and assess the impact 

on the ranking by varying its weight in Eq. 2. 

Presence of redundant 

objectives and respective 

attributes 

Vary weight of the double counted attribute in Eq. 2, from 

the current weight down to zero, and assess its impact on 

the ranking. 

Misspecification 

of attributes 

Ambiguity in the 

assessment of, or 

classification of, 

performances 

Vary up and downwards the impacts of each threat xi
k 

within reasonable bounds, and assess consequent impact 

on the ranking (*). 

Inadequate use of a proxy 

attribute instead of using 

a more direct one 

Vary weight of the proxy attribute from current weight 

downwards to zero, as it tends to receive excessive weight 

(Fischer et al., 1987), and assess its impact on the ranking. 

Inadequate 

elicitation of 

value/utility 

functions 

Inadequate elicitation of 

continuous value/utility 

functions 

Consider different (monotonic) shapes of  value function 

Vi(xi) by using a parametric function and varying its 

parameter(s),  then assess their impact on the ranking.  

Inadequate elicitation of 

discrete value/utility 

functions 

Range score associated with each attribute level of a value 

function Vi(xi), within reasonable bounds,  then assess their 

impact on the ranking (*). 

Inadequate 

elicitation of 

attribute 

weights 

Incorrect assumptions of 

preference structure 

Compare the assumption of a simple weighted sum in Eq. 2 

against the aggregation required by the preference 

structure and assess its impact on the ranking (*). 

Incorrect elicitation of 

attribute weights 

Vary weights wi in Eq. 2 considering only ordinal 

information, or alternatively, no prior information and 

assess the impact on the ranking (*). 
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Obs.: (*) Simulation employed in the two case studies. 

3.1 Simulation 1: The FAO Ranking of Parasites 

The first multi-criteria model we analyse is the one by the FAO to rank food-borne parasites (FAO, 

2014). This model was developed with 21 international experts supported by a team of risk analysts, 

who identified the attributes to be assessed, evaluated and scored the impact of each parasite on 

these attributes, and weighted these attributes in terms of their “importance”.  The published report 

presents details about the project and the results of this analysis with the overall ranking of 

parasites. 

In this model, let 𝐶i be the dis-value function associated with each i-th attribute shown in Table A2 

(except the last row), 𝑤i
𝑗
being the i-th attribute weight for the j-th group of experts (see Table A3) 

and 𝑏i
𝑘  the bin of the i-th attribute for the k-th parasite. Then the overall scores for a given k-th 

parasite 𝑪𝒌 is calculated by:  

𝑪𝒌 =  𝑤1
𝑗
(𝑏1

𝑘) + 𝑤2
𝑗
𝐶2(𝑏2

𝑘) + 𝑤345
𝑗

𝐶345(𝑏3
𝑘, 𝑏4

𝑘 , 𝑏5
𝑘) + 𝑤6

𝑗
𝐶6(𝑏6

𝑘) + ⋯ + 𝑤9
𝑗
𝐶9(𝑏9

𝑘) (Eq. 3) 

With: 

𝐶345(𝑏3
𝑘, 𝑏4

𝑘, 𝑏5
𝑘) =  𝐶3(𝑏3

𝑘) [1 −
𝐶5(𝑏5

𝑘)

100
] + 𝐶4(𝑏4

𝑘)𝐶5(𝑏5
𝑘)/100   (Eq. 4) 

The bins are scored between 0 (Bin 0) and 100 (highest Bin) for each attribute and are equally 

spaced in value. 

We created replica parasites to conduct the simulation using goal programming (Jones and Tamiz, 

2010), as the individual expert judgments were not presented in the report (see Online Appendix I). 

A replica parasite is one that would be classified in the bins of each attribute in a way that it would 

provide overall values similar to the ones found in the report (see Table A5). We are thus replicating 

an individual expert reaching the actual assessments and the resulting ranking provided in the FAO 

report (see Table A6).  

The first four simulations described below (Sections 3.1.1 to 3.1.4) assume a single expert making an 

individual assessment of the threats. The fifth simulation to be presented (Section 3.1.5) assumes a 

group of experts, each one making an individual assessment of the threats, with the individual 

results then aggregated. This latter analysis tries to assess the impact of modelling issues on the 

individual rankings, as well as the impact of the ambiguity of attributes on the group’s results. Next, 

we detail the simulation model and the results for the assumptions analysed. 
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3.1.1 Scoring Functions with Limited Number of Attribute Levels 

The scoring functions for the attributes in FAO’s model feature stepwise increases from one category 

to the next (for example a jump in dis-value from 25 to 50 when the disability weighting reaches 

0.03, as depicted in Figure 3 – attribute C3). What would be the impact on the ranking of the threats 

if we considered a less steep scoring function? To answer this question we assumed in our 

simulation model a continuous and monotonic function, which is linear between two consecutive 

levels (e.g. V3 in the same figure) and uniformly distributed: V3(Bin0)=0,  V3(Bin1) ~U(0.001,25), 

V3(Bin2) ~U(25.001,50), V3(Bin3) ~U(50.001,75), and V3(Bin4) ~U(75.001,100). We are hence using a 

conservative assumption in the simulation model, which favours the existing model as much as 

possible. We have created similar scoring functions for the other attributes. The only exception was 

for attribute C2 where the index is an integer and so we kept the original deterministic scores for all 

bins except Bin3, where we defined a distribution V2(Bin3) ~U(75,99.999). 

 

Figure 3: Score function for Attribute 3 (C3 = FAO model; V3 = simulation model). 

We then compared the actual scores from the FAO model (baseline results in Table A5) with those of 

our simulation (Table A7, column R1), which are aggregated into an overall simulated score 𝑽𝑘 

(using the same Eqs. 3 and 4 above, replacing each Ci by the respective Vi). We calculated the 

Spearman’s rank order correlation (ROC) between the FAO ranking and the simulated ranking (based 

on the overall simulated score 𝑽𝑘for each k-th threat) for every iteration of the simulation. The 

mean ROC between the two rankings was 0.9688 with a range of [0.9226, 0.9956].  
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We also compared the percentage of iterations where the simulated rankings were the same as 

those of the FAO model (Table A7, column R1). For instance, the parasite ranked 1st in the FAO 

model was also ranked 1st in 79.1% of the iterations of the simulation, however dropping down to 

the 3rd position in some instances (highlighted in bold in the table). Notice that the positions in the 

simulated ranks vary rather drastically after the 5th parasite, and even top ranked parasites have a 

widespread position in the simulated results (e.g. Parasite 4, ranging from the 1st to 6th position). 

3.1.2 Neglecting Preferential Dependences 

As we discussed previously, the FAO model assumes that attribute C1 is preferentially independent 

from C3 and C4 (Table A2). What is the impact of this assumption on the overall ranking of parasites? 

To analyse this issue, we compare the FAO ranking with an alternative model, where the ordinal 

ranking of levels considers simultaneously the number of cases (C1) and morbidity (C4) and follows 

the strict preferences displayed by the arrows in Figure 4 (for example, the combination (x1=0, x3=0) 

is always less serious than (x1=1, x3=0) and thus always receives a lower score).  This suggested 

ordering, in effect displaying dependencies between attributes, may represent a more logical 

sequence than the original one (Figure 2). 

 

Figure 4: Strict preference relations assumed for the preferential dependence simulation in the FAO model. 

The bounds of the dis-value scales are V1(x1
*) + V345(x3

*, x4
*) = 200 and V1(x1

0) + V345(x3
0, x4

0) = 0. The 

scale was thus built up, given the 24 possible ordered combinations, such as V13(x1 = 4, x3 =4) 

~U(200×23/24 + Δ,200); V13(x1 = 4, x3 = 3) ~U (200*22/24+ Δ, 200*23/24), …, V00(x1 = 0, x3 = 0) ~U (0, 
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200*1/24), with Δ = 0.0001. The same type of uniform distributions were defined for V14, and V1345 

was given by a convex combination of them: V1345 = (1 - C5)V13 + C5 V14. 

The inclusion of preferential dependences had some impact on the ROC between the FAO ranking 

and the simulated ranking. The mean ROC was 0.9388, with a range of [0.9061,0.9661]. Table A7 

(column R2) presents the simulation results. Notice that the assumption of preferential 

independence has a major impact on the parasites ranked in the bottom half of the ranking – as they 

were placed in lower bins of attributes 3 and 4 and thus over-valued in the FAO scoring system. 

3.1.3 Modelling Attribute Weights as Measuring Direct Importance 

The elicitation of weights in the FAO model adopted the concept of direct importance instead of 

value trade-offs (which would require an elicitation protocol that considered the range of the 

attributes). What would be the impact on the ranking of threats, if the FAO elicitation protocol of 

weights had indeed affected the values that the experts provided for such parameters? We again 

make a conservative assumption, which favours the FAO model as much as possible, that the order 

of the baseline weights in Table A3 is always preserved, i.e.: 

𝑤1 =  𝑤345 > 𝑤6 > 𝑤2 > 𝑤8 = 𝑤9 > 𝑤7 

The weights in the simulation are randomly generated for every iteration using the procedure 

suggested by Butler et al. (1997) for rank order weights, but following the order described above. 

We kept the scores as the original baselines, to isolate the effect of weighting in the simulation, 

obtaining a mean ROC of 0.9485 and a range of [0.8696,0.9974]. As Table A7 shows (column R3), the 

impacts on the ranking are also significant in terms of differences of allocation. 

3.1.4 Considering Modelling Assumptions Simultaneously 

We now simulate the scales, preferential dependences, and weights, simultaneously, and compare 

resultant rankings against the FAO rankings. The ROC mean in this case falls to 0.9059, with a range 

of [0.7713, 0.9696]. Table A7 (Column R4) shows the impact of these three modelling assumptions 

on the parasite rankings. Once again there are wide variations in the simulated rankings, for instance 

for Parasite 4, which may fall to the 9th ranked position, and for Parasite 1, which fell to the 4th 

position in some iterations. 

We examined the lowest ROC for the FAO rankings, as well as the lowest ROC for the top 15, 10 and 

5 parasites5, as shown in Table A8. Notice that there are some instances where the highest scored 

                                                           
5While calculating ROC is not advisable below 15 data points, this analysis allows us to identify the most dramatic changes 

in the top tiers of the ranking, positions that are particularly important for policy making. 
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parasite in the FAO model takes only the third place in the simulation (row Top 5). There are also 

other differences, for instance Parasite 15 in the FAO ranking is now placed in 6th position in the 

simulation and Parasite 4 is now in the 10th position (row All 24).  

We proceeded to perform dominance analysis between each pair of t-th and s-th parasites, 

considering their simulated overall score (Vt and Vs) for each iteration, where the dominance index d 

is defined as: 

{
𝑑 = 1, 𝑖𝑓 𝑉𝑡 > 𝑉𝑆 ; 𝑤𝑖𝑡ℎ 𝑡 ≠ 𝑠 𝑎𝑛𝑑 𝑡, 𝑠 = 1, 2, … ,24.

𝑑 = 0, 𝑖𝑓 𝑉𝑡 ≤ 𝑉𝑆 ; 𝑤𝑖𝑡ℎ 𝑡 ≠ 𝑠 𝑎𝑛𝑑 𝑡, 𝑠 = 1, 2, … ,24.
 

The mean of the dominance index, �̅�, is shown in Table A9. The table assess whether a higher ranked 

threat might be dominated by a lower ranked threat, which happens whenever �̅�< 100%. Note that 

such cases are prevalent in the table. For instance, there were iterations where Parasite 1 in the FAO 

ranking was dominated by Parasite 5, and others where Parasite 6 was dominated by Parasite 24 

(highlighted in bold in the same table). In general, the local ranking is unstable among parasites in 3 

or 4 subsequent positions below (e.g. Parasite 7, against Parasites 8, 9, 10, and 11 – see highlighted 

range in the table). In addition, the ranking of parasites in adjacent positions are also unstable, as 

identified by values in the diagonal portion of the table (e.g. Parasite 2 dominates Parasite 3 in only 

86.6% of the iterations). 

3.1.5 Developing Ambiguous Attributes  

Up to now we have considered a scenario where a single evaluator assessed the parasites. However, 

in the FAO evaluation 21 evaluators independently assessed the health threats. What impact can 

ambiguous attributes have on the ranking of parasites when assessed by multiple experts?  

To simulate the ambiguity of attributes we assumed that different experts, despite having the same 

underlying evidence, might choose distinctive bins when assessing each parasite. Notwithstanding 

evidence that qualitative labels for probability elicitation have very wide quantitative ranges among 

subjects (Budescu and Wallsten, 1985; Wallsten et al., 1986) we again take a conservative position. 

We assume in the simulation model that there is a 20% chance that an assessor will chose a category 

above or below the one originally selected for qualitative attributes (e.g. Bin1 in C9 in Table A2), and 

that there is a 1% chance that s/he will select a category above or below the original for quantitative 

attributes where the bounds overlap (e.g. C1 between Bin2 versus Bins 1 or 3 in the same table). 

To emulate the single-expert evaluation process, in this simulation the bins are initially selected 

according to the ambiguity of the labels: for those bins without ambiguity (e.g. Bin0 in C1) the 

original bins have been used (Table A2), for those with ambiguity the bins are determined following 
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the discrete distributions described in the previous paragraph. Then 1000 iterations of the model 

described in the previous section are performed. This is repeated 21 times, each one representing an 

expert (the same seed for the random number generator is used for every simulation). 

Aggregate results from these 21 simulations are shown in Table A7 (column R5). It shows the range 

of the proportion of iterations in which the threat was positioned in that ranking and the mean of 

these proportions across the 21 simulations. For instance, considering the first threat, one simulated 

expert positioned this parasite as the first one in only 31.9% of its iterations, while for another 

simulated expert this figure was 99.1%. The mean proportion among the 21 simulated experts for 

this parasite was 79.0%. In this analysis, while the average mean ROC has decreased only slightly 

from the previous model to 0.8984, as well as the lower bound of the range of ROCs 

[0.7609,0.9696], individual simulated results for the threats are significantly divergent from the FAO 

ranking. In particular, both the percentage agreement between the FAO model and the simulated 

model has decreased considerably for most parasites, and the spreads from the highest to the 

lowest rank for each threat have all heavily increased. These increased spreads are result of the 

ambiguity of levels in combination with the other modelling assumptions described in Section 3.1.4. 

 

3.2 Simulation 2: the RKI Disease Prioritisation Ranking 

The second multi-criteria model analysed is the RKI disease prioritisation system, which assesses 127 

diseases, the rankings of which is fed into a set of priority blocks: Highest, High, Medium and Low 

priority (Balabanova et al., 2011; Krause, 2008). This study was conducted for the German public 

health institute and involved a group of 10 external experts to score the diseases according to ten 

attributes. An additional group of 86 experts were employed to weight the attributes. Details about 

the project and the analysis of results were published in PloS ONE. 

The RKI model provides us with the opportunity to assess the robustness of a model which exhibits 

attributes with less levels than the FAO model, coupled with similar issues in weight elicitation 

practices. The overall score for disease k, 𝑪𝒌is calculated by: 

𝑪𝑘 = 𝑤1𝐶1(𝑏1
𝑘) + 𝑤2𝐶2(𝑏2

𝑘) + ⋯ + 𝑤10𝐶10(𝑏10
𝑘 )    (Eq. 5) 
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where 𝐶𝑖 denotes the dis-value function associated with the i-th attribute, 𝑤𝑖 is the weight assigned 

to each attribute and 𝑏𝑖
𝑘 represents the bin of the i-th attribute for disease k. A comprehensive 

breakdown of each disease score and weights was available for this model online6. 

3.2.1 Scoring Functions with Limited Number of Attribute Levels 

 

Figure 5: Dis-value function for Attribute 1 (C1 = RKI model; V1 = simulation model). 

The attribute scoring functions of the RKI model exhibit similar step increases to the FAO model, 

where for each attribute there were three possible bin values (-1,0,1) (see Table A1). An example of 

this is depicted in Figure 5 (dis-value function C1), where disease incidence rates score a bin value of 

1 after the threshold of 20/100,000 is crossed. Similar to the FAO simulations, we compare the step-

increasing RKI model against a value function that takes a continuous linear distribution between 

consecutive score bins. The -1, 0, 1 scales were converted into [0,100], [100,200], and [200,300] to 

avoid using bivalent scales for single valence attributes. This is performed for all attributes, as 

scoring labels for the model do not indicate a discrete value and are all of continuous ranges. As 

shown in Figure 5, the simulated values are uniformly distributed, with: V1(Bin-1) ~U(0.0001,100), 

V1(Bin0) ~U(100.0001,200), V1(Bin1) ~U(200.0001,300). Thus, the simulation, similarly to the FAO 

one, adopts a conservative assumption, favouring the existing model as much as possible. 

For all iterations, we calculated the ROC between the RKI ranking and the simulated ranking based 

on the less steep scoring functions, calculated from the overall simulated score 𝑪𝒌. The mean ROC 

was 0.9643 with a range of [0.9431,0.9787] (Table  A10, column R1). Due to the large number of 

entries in the RKI model, we adopt a different approach to summarize results of our simulations, 

                                                           
6Data available at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025691 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025691
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opting to split each disease priority block into four clusters of roughly equal size. While each priority 

block is not of equal length (for example, the highest block contains 26 diseases, whereas the lowest 

contains 17), quartile divided blocks allow us to compare diseases of perceivably differing priority 

levels rather than just simply by rank obtained. There is little consistency between the ranks yielded 

by the simulation and the original RKI ranks, with no disease cluster, bar the lowest exhibiting a case 

of over 10% of simulated events providing the same rank.  

3.2.2 Varying the Attribute Weights 

As the weighting methodology in the RKI model also used the concept of direct importance, we used 

the rank order weighting method similar to the FAO model analysis to simulate this issue, ensuring 

the following relation from the model’s baseline weights is maintained: 

𝑤5 > 𝑤4 = 𝑤6 = 𝑤9 > 𝑤10 = 𝑤1 > 𝑤2 = 𝑤3 > 𝑤7 = 𝑤8 

By multiplying the simulated weights with the baseline scores, we obtained the results in shown in 

Table A10 (column R2). The resulting mean ROC was much lower than the scoring simulation at 

0.8892, with an increased range of [0.6075,0.9992]. Notice the increase in discrepancy between the 

highest and lowest simulated rank, particularly for the Highest to Medium disease clusters, with in 

11/16 instances the range being wider than 70 places, compared to six cases in the score simulation. 

This may be partially reflected in the mean percentage of instances where the simulated rank 

equated the reported rank; in all but three cases the results were lower than obtained in the score 

simulation. 

3.2.3 Considering Modelling Assumptions Simultaneously 

Finally, we consider simultaneously the impact of both conceptual assumptions in the RKI system on 

the overall model. In the last column of Table A10 (column R3) we report the results of the 

combined simulation, where the mean ROC is lower than previously at 0.8472 and the range has 

widened to [0.4388,0.9727]. In addition, the differences between the highest and lowest possible 

rank obtained in each disease cluster have increased further, with the range exceeding 100 places in 

11/16 instances. 

Similar to our analysis of the FAO case, we compared the existing rankings with those obtained from 

the lowest ROCs in the model, firstly with the full list of diseases, secondly with those allocated to 

the highest priority group, and finally with the top 15, 10 and 5 ranked diseases. The comparisons 

are displayed in Table A11, where we observe that the consistency between simulated and actual 

rankings decrease substantially when fewer diseases are analysed (for the top 15, 10 and 5 lowest 
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ROC simulated rankings, the ROC falls below zero). This highlights the extent to which even rankings 

in the highest tail of the RKI model can change. 

To analyse the results further, Table A12 provides simulation results exclusively of the 26 diseases in 

the highest priority block. The simulations rarely yield the same rank for each disease, even in the 

instances where ordinal ranks are tested solely among the top 26 where no rank consistency 

exceeds 30%. For the simulation simultaneously assessing the impact of both modelling assumptions 

(column R3), the mean ROC falls further than the separate assessments, at 0.5832, with the largest 

range at [0.2150,0.8762].  

Furthermore, we notice that scoring range (Table A12, column R1) or weighting elicitation issues 

(Table A12, column R2) do not impact rankings uniformly throughout the model, with scoring 

adjustments substantially reducing mean observed ROC values more in the Highest priority block 

compared to weighting throughout the whole model. When comparing the ROC of the entire model 

to just the highest priority group, the drop from 0.9643 (Table A10, column R1) to 0.6811 (Table A12, 

column R1) for score simulations is substantially larger than the equivalent for weights, which drops 

from 0.8892 (Table A10, column R2) to 0.7417 (Table A12, column R2). 

To identify where the main discrepancies are occurring throughout, a similar dominance analysis to 

the one done for the FAO model was performed across priority blocks. The dominance index in this 

case is defined as 1 in events where all scores obtained in disease cluster t exceed all scores in 

cluster s, where t>s, and a 0 value otherwise. The mean values of this dominance index are shown in 

Table A13. The table portrays considerable numbers of instances of diseases in higher blocks being 

frequently dominated by lower ranked entries.  

4 Conclusions 

Multi-criteria evaluations have been increasingly employed to prioritise health threats. A number of 

models reported in the literature, however, lack a clear conceptual framework rooted on Multi-

Criteria Decision Analysis – they are ad hoc models from this perspective. In this paper we critically 

analysed the main conceptual assumptions made in these ad hoc models, illustrating the issues with 

several examples from published papers and technical reports, in comparison with the best practices 

of multi-attribute value analysis. Our critique pointed out serious conceptual issues, which may lead 

to ranking of threats that do not reflect either the relative significance of the aggregate impacts, or 

the values and priorities of policy makers. 
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We also considered in depth two health threat prioritisations: the ranking of foodborne parasites 

developed by FAO (FAO, 2014) and the ranking of diseases developed by the RKI (Balabanova et al., 

2011). For each one of them, we developed a simulation model to assess the impact of their 

modelling choices on the ranking of threats. While there was earlier evidence that multi-attribute 

linear models are sensitive to their parameters (Stewart, 1996), here we were interested instead in 

simulating the impact of specific modelling assumptions on the health threat rankings. In these two 

simulation analyses, we found significant changes in their ranking of threats. It should be a concern 

for both policy makers and analysts that, for instance, a threat ranked in the first position in the 

original ranking could have been placed in the 6th position, as well as the large spreads in ranking 

that the evaluation system may generate, both issues caused by weak conceptual assumptions and 

poor design choices made in these evaluation models7. In addition, it is a matter of concern that 

recent attempts to promote standard assessments in health threat prioritisations have promoted 

modelling practices that are suboptimal, such as defining weights as measurement of direct 

importance (ECDC, 2017; O’Brien et al., 2016) and overlapping attribute levels for quantitative 

indices (ECDC, 2017). 

As in any type of conceptual analyses and simulation study, ours has also some important 

limitations. Firstly, we have compared ad hoc models with the best practices in multi-attribute value 

analysis. While there are good reasons for our choice, given the resemblance of ad hoc models with 

this type of framework, a comparison with other types of well-conceptualized multi-criteria 

methodologies (see Belton and Stewart(2002)) could lead to different conclusions. Secondly, in 

trying to simulate the modelling issues in ad hoc models, we made several assumptions, e.g. 

regarding the shape of value functions, the ranking of weights, and the clustering of threats. While 

they were conservative, our results rely on their choice. Thirdly, the results from the two in-depth 

case studies cannot be directly generalized to other ad hoc models (Yin, 2008), albeit, we believe, 

they are indicative of trends in models that have similar issues. 

These limitations suggest some directions for further research. Firstly, ad hoc multi-criteria models 

could be compared with other well-known frameworks in multi-criteria analysis, for instance multi-

                                                           
7Another conclusion from this analysis would be to stress that the mean ROCs are indeed stable, which means that “on 

average” the simulated scoring system produced similar rankings to those of the original prioritisation. Although this is 
true, ROCs are relatively insensitive to small variations and do not distinguish whether the changes are occurring in the first 
tier of the ranking, which typically is more relevant for policy makers, or in its bottom tiers. Furthermore, contrary to 
standard investment problems, in which expected values matter (as it is assumed that such decisions are made repeatedly) 
these health threat rankings are typically employed in one-off studies with the ranking recommendations provided to 
policy makers.  

 



Gilberto Montibeller, Pratik Patel and Victor J. del Rio Vilas (2019). A Critical Analysis of Multi-Criteria Models for the 
Prioritisation of Health Threats. European Journal of Operational Research. doi.org/10.1016/j.ejor.2019.08.018 

 
attribute utility theory (Keeney and Raiffa, 1993), in which risk attitude is formally modelled, or 

outranking methods (Roy, 1996), which enable the representation of more sophisticated preference 

relations. Secondly, within a MAVA framework, it would be interesting to assess the extent to which 

different modelling issues, other than the ones we examined here, would impact on the rankings of 

the simulated models. In addition, the issue of ambiguity in the definition of attributes is very 

relevant as most of these assessments are made by multiple experts and many attributes are highly 

ambiguous. Future studies could explore other ways of simulating the impact of ambiguity in more 

sophisticated ways. In the same vein, the elicitation of weights as measurements of direct 

importance is prevalent in these models and could be simulated in more detail. Thirdly, extending 

this type of analysis to other fields, applications and types of multi-criteria prioritisation may 

highlight similar issues or shed light on new relevant ones. Furthermore, comparisons of these 

models with standard risk analysis models could provide fruitful insights.  

We conclude the paper on a positive note. While the issues we analysed here are frequently 

observed in multi-criteria health threat prioritisation, there are some examples of sound practice in 

this field, such as the prioritisation of diseases for the pig industry in Australia (Brookes et al., 2014) 

and of emerging animal health threats in the UK (Del Rio Vilas et al., 2013b), among others. This has 

been accomplished either by assembling interdisciplinary teams of health experts and decision 

analysts, or by health experts trained in multi-criteria decision analysis. Recent attempts to establish 

best practices in health prioritisations are also welcome (Brookes et al., 2015; Marsh et al., 2016; 

O’Brien et al., 2016) as well as the use of participative processes to engage with the experts and 

share their knowledge and expertise (Dias et al., 2018; Franco and Montibeller, 2010). We hope that 

the paper also helps to sensitize more experts involved in these assessments to the importance of a 

careful design of multi-criteria evaluation models. It is crucial that they are robust from a 

methodological perspective if they are being used to inform decision processes in health risk 

management.  
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