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ABSTRACT 
 

The work presented in this paper combines multiple non-synchronous planar measurements to reconstruct 

an estimate of a synchronous, instantaneous flow field of the whole measurement set. Temporal 

information is retained through the linear stochastic estimation (LSE) technique. The technique is 

described, applied and validated with a simplified combustor and FSN geometry flow for which 3-

component, 3-dimensional 

(3C3D) flow information is available. Using 3C3D data set, multiple virtual ‘planes’ may be extracted to 

emulate single planar PIV measurements and produce the correlations required for LSE. In 
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this example, multiple parallel planes are synchronised with a single perpendicular plane that intersects 

each of them. As the underlying data set is known it therefore can be directly compared to the estimated 

velocity field for validation purposes. The work shows that when the input time-resolved planar velocity 

measurements are first POD (proper orthogonal decomposition) filtered, high correlation between the 

estimations and the validation velocity volumes are possible. This results in estimated full volume velocity 

distributions which are available at the same time instance as the input field – i.e. a time resolved velocity 

estimation at the frequency of the single input plane. While 3C3D information is used in the presented 

work, this is necessary only for validation; in true application planar technique would be used. The study 

concludes that provided the number of sensors used for input LSE exceeds the number of POD modes used 

for pre-filtering, it is possible to achieve correlation greater than 99%.

INTRODUCTION 
 

The understanding of downstream velocity behavior is crucial to the design and 

development of many flow devices such as fuel injector nozzles. Great effort both in 

numerical modelling and experimental measurements is involved, with the state of the 

art in both areas becoming increasingly complex and expensive as more detailed 

information is sought. 

The work presented in this paper will focus on the characterisation of the 

downstream flow of a radially-fed single stream air swirler which provides a generic 

swirling flow case that is applicable to fuel swirl nozzles (FSN) and combustor flows in 

gas turbine engines. A common approach in this application is to make use of 

techniques such as large eddy simulation (LES), for example, work by Dunham et. al. [2]. 

However, mainly due to the significant computational cost, there is an increasing use of 

statistical techniques. For example, Treleaven et. al. [3,4] uses proper orthogonal 
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decomposition (POD) to identify and study acoustic instabilities in a lean-burn FSN. This 

use of POD shows that not only can these techniques reduce processing time – but they 

may also increase the output of useful information from a data set; be it experimental 

or computational. 

In the experimental measurement of flow fields, planar particle image 

velocimetry (PIV) has been commonplace for many years and it is possible to obtain high 

yield, high quality – both in terms of spatial and temporal resolution – data in relatively 

little time. Developments such as stereo-PIV (SPIV) have further improved the 

usefulness of the technique by allowing measurement of all three velocity components, 

albeit still on a single plane; 3-component, 2-dimensional (3C2D). Herein lies the 

problem, the measurement of volumetric data is still challenging; with several 

possibilities – many of which requiring increased optical access and significant 

investment in additional hardware. 

Extensions of the PIV technique such as holographic PIV and tomographic PIV 

allow 3C3D volume flow measurements to be carried out. Holographic PIV is generally 

considered the first true volumetric PIV technique [5–7] but its use is typically limited by 

its complex set-up [8] and fundamental imaging issues [9]. Spencer et. al. [1] present the 

application of tomographic PIV to the nearfield flow of an FSN and compare against SPIV 

measurements of the same condition. Whilst this allowed measurement of 64 x 64 x 18 

3-component, 3-dimensional (3C3D) velocity vectors, the authors describe additional 

complex calibration requirements for the technique. The presented experimental 

configuration also requires four highspeed cameras and a high-speed laser capable of 
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sufficiently illuminating a volume (rather than a sheet), positioned around a highly 

optically-accessible test rig.  Lastly, the authors suggest that tomographic PIV requires 

greater smoothing of the data and evaluate an error in comparison to the SPIV 

measurements. Despite these difficulties, the technique is increasingly popular for those 

applications that afford good optical access proving the appetite for 3C3D velocity 

information and additional flow characteristics that may be obtained. Raffell et. al. [10] 

describes an overview of current 3D PIV techniques. 

As computational / processing power continues to improve, particle tracking 

techniques are becoming more accessible to provide 3C3D velocity measurements. A 

growing body of literature makes use of a 3D Lagrangian particle tracking velocimetry 

(PTV). Examples such as shake-the-box (STB) [11,12] promises high quality 4D-PTV 

(spatial and time resolved) over a wide range of applications, which helps reduce some 

of the optical access requirements. However, as with techniques already discussed, 

there remains a significant hardware investment and increase in optical access 

requirement which may just not be possible in some applications such as gas turbine 

combustors. 

This trade-off between representative geometry and optical access requirements 

is well established in the experimental community and has led to increased effort to 

make use of alternative applications of planar PIV measurements. Scanning PIV [13] can 

provide a quasi 3C3D measurement using a light sheet which is stepped through the 

depth of the volume in time-steps which are sufficiently smaller than the PIV interframe 
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time (i.e. volume sample frequency). More recently this type of system has been used to 

generate a moving reference plane allowing the study of vortex dynamics [14]. 

An alternative approach has been to make use of statistical techniques and 

multi-plane (asynchronous) 2(or3)C2D measurements to extract information or even 

reconstruct a ‘measurement’ volume. Volpe et. al. [15] demonstrate how a series of ten 

intersecting planes arranged five vertically and five horizontally may be used to study 

the wake topology behind a square-back Ahmed body (applicable to the automotive 

external aerodynamics). To understand the bi-stable wake behind the body, the 

temporal average of each stable state is considered by calculating two conditional 

averages. These are informed by a pressure signal that indicates which side of the body 

the wake is currently on, allowing a left-right distinction to be made. Further application 

of this technique is presented by Perry et. al. [16] where the authors compare the 

information from four 2D planes in a similar arrangement to tomographic PIV 

measurements at the same conditions. In that work, the authors also carry out POD 

analysis on the planar data to reveal bi-modal behavior; which is further revealed by 

investigating the tomographic PIV measurements. 

In the swirling flows applicable to FSN and gas turbine combustors, the time 

average of planar data would not sufficiently describe the behavior of the highly three-

dimensional, periodic flow. Stöhr et. al. [17] and Martinelli et. al. [18] instead consider 

the conditional averages of the measurements according to their phase. This phase 

conditional averaging allows representation of the swirling flow and gives some time 

resolution to the reconstruction. This is an important advancement as the authors 
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demonstrate the revealing of thermoacoustic oscillations that would not be possible 

with ensemble averaging of the planes. However, unsteady features are still not fully 

revealed using this approach since a phase-averaged cycle will not resolve cycle-to-cycle 

variations. 

In conclusion, it is highly desirable to obtain time resolved volumetric velocity 

measurements (3C3D). Whilst techniques do exist and are fast producing high-yield, 

high-quality measurements, the application of these is still restricted to sufficiently 

optically accessible test rigs and require significant hardware investment over more 

traditional PIV methods. There exist a handful of statistical techniques that allow a 

quasi-3C3D reconstruction, some including phase information. But these do not provide 

a true temporal resolution. 

The work presented in this paper introduces the statistical technique, linear 

stochastic estimation (LSE), to application of volumetric velocity reconstruction using 

time resolved planar PIV (3C2D) as an input. It is an improvement over phase averaging 

as it does not require an explicit phase indicator on which to conditionally average the 

data. In this way LSE offers a way to improve on understanding the cyclic variation of 

rotating structures rather than recreating a single cycle average and importantly it is not 

limited to rotating quasi-periodic flows. 

LINEAR STOCHASTIC ESTIMATION 
 

The technique of stochastic estimation, introduced by Adrian [19–21], proposes 

that the velocity at one location can be stochastically estimated from conditionally 

correlated data at an unconditional source at the same instance in time, i.e. two-point 
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statistics. In the field of fluid mechanics, this presents a promising assistance to the 

experimental acquisition of velocity data and has been steadily developed in the time 

since its introduction by Adrian. The effect of higher order, quadratic stochastic 

estimation, QSE was soon after investigated, but found to give nearly identical 

estimations to the linear case, LSE [22,23]. 

Often, the sources for the estimation are from microphone (for example [24]) or 

pressure sensor arrays [25–28] as these measurements typically are less intrusive and 

can provide increased temporal resolution for a given experimental effort. However, 

disadvantages to the use of these typically wall-based sensors are described by Arnault 

et. al. [29] who show the limitations in the estimation of smaller turbulent structures 

which may not correlate well with these measurements. The study does however 

progress to show that it is possible to optimize the sensor locations to improve 

correlation using an algorithm developed by Muradore et. al. [30]. 

There are examples in literature that demonstrate the use of velocity 

measurements as the input sources for LSE. Work by Kerhervè et. al. [31] uses a hot-

wire rake with high temporal resolution of 30kHz correlated with high spatial resolution, 

low temporal resolution PIV measurements, generating a high spatial and temporal 

resolution estimation driven by the hot-wire. 

The LSE technique is described mathematically by Equations 1 and 2 where u is 

velocity, p represents the sensors (or sources), where there are NR sensors and a is the 

correlation matrix. This terminology will be used through the presented work. 

〈𝑢𝑢(𝑥𝑥, 𝑡𝑡)𝑝𝑝𝑞𝑞(𝑡𝑡)〉 = ∑ 𝑎𝑎𝑟𝑟(𝑥𝑥)〈𝑝𝑝𝑟𝑟(𝑡𝑡)𝑝𝑝𝑞𝑞(𝑡𝑡)〉𝑁𝑁𝑅𝑅
𝑟𝑟=1   (1) 
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𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) = ∑ 𝑎𝑎𝑟𝑟(𝑥𝑥)𝑝𝑝𝑟𝑟(𝑡𝑡)𝑁𝑁𝑅𝑅
𝑟𝑟=1   (2) 

Equations 1 and 2 represent the two steps required for the LSE technique. Firstly, 

using a data set (known as the slave) where both velocity at the desired locations and 

the sensor values are known simultaneously are used to generate the correlation 

matrix, a. For the next step, using the generated correlation matrix, only the values at 

each sensor location are required with Equation 2 to generate the estimation of the 

entire velocity field. If one considers this application to a two-dimensional velocity field 

initially; the slave set may be provided by a single 3C2D SPIV measurement i.e. the XY 

plane. The sensors may be taken as a single line across that plane, i.e. (X=const). As the 

line of sensor points is taken directly from the plane measurement it satisfies the 

requirement outlined by Adrian [19] of being at the same instance in time. Once the 

correlation matrix is generated, the XY plane may be subsequently estimated using a 

line measurement at the X=const line used for the correlation. In summary, Equation 1 is 

used to determine 𝑎𝑎𝑟𝑟(𝑥𝑥)across the slave field as the only unknown, then equation 2 

uses this slave 𝑎𝑎𝑟𝑟(𝑥𝑥) matrix with sensor information 𝑝𝑝𝑟𝑟(𝑡𝑡) from the master plane to 

provide an estimated velocity field in the slave plane which is most likely to exist given 

the instantaneous state of the master plane indicated by the sensor points taken from 

the line of intersection. 

This approach may be further extended into the 3rd spatial dimension to 

generate an estimation of 3C3D velocity. Figure 1 shows the 𝑢𝑢𝑧𝑧 velocity component 

contour on the YZ master plane with several example XY slave planes superimposed 
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(faded). Sensors are highlighted for the upper most XY plane showing that they should 

lie on the intersection between each slave plane and the master plane. 

The steps involved in estimation of 3C3D velocity (in the presented orientation) 

is then as follows: 

1. Capture multiple slave XY planes (3C2D) at a range of (Z=const) values of 

interest. These should be long time averages to ensure convergence of the 2-point 

statistics calculated in that plane. 

2. Taking each slave plane independently, apply Equation 1. First take the 

multiple (𝑁𝑁𝑅𝑅) values of 𝑝𝑝 from along a (X=const) line, where this X location remains 

consistent between planes. Knowing 𝑢𝑢(𝑥𝑥) in this plane then allows the respective 

correlation matrix, 𝑎𝑎𝑟𝑟 to be determined as the unknown. The calculation is carried out 

for each velocity component independently. 

3. For those velocity conditions to then be estimated using LSE, capture a 

single master YZ plane at the (X=const) location from the previous step. Now in this 

data, each (X=const) line may be combined with the corresponding a matrix to generate 

a velocity estimate in the intersecting XY plane at that value of Z. 

Applying the technique in this manner means that all estimated velocity fields in 

XY planes will now be statistically synchronized to the same time instance as the master 

YZ plane. Any estimations of these planes may therefore be resolved at the frequency of 

the captured master YZ plane, even if this is greater than the frequency of the captured 

slave XY planes as was demonstrated by Kerhervè et. al. [31]. In fact, it is preferable to 
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calculate the correlation matrix over a long time period to ensure statistical 

convergence. 

In the application described in this work the orientation of the frames was 

arbitrarily chosen, but the technique could equally as well be applied with a different 

choice of slave / master orientation. 

PROPER ORTHOGONAL DECOMPOSITION 
 

It is quite common for the LSE technique to be used in combination with another 

statistical technique, POD, especially in the reconstruction of velocity fields. Also known 

as principle component analysis or Karhunen-Loève decomposition, POD has become 

widespread in the field of turbulent flow research since the 1960s [32]. It is generally 

used for the decomposition of turbulent flows into their larger, coherent motions and 

turbulence. As such a substantial body of literature exists, it is only briefly discussed in 

this paper. Equation 3 describes the snapshot variant of the POD technique [33] – where 

velocity fields, u are decomposed into a set of spatial modes, 𝜑𝜑(𝑘𝑘) and temporal 

modes, 𝑎𝑎(𝑘𝑘). 

𝑢𝑢(𝑥𝑥, 𝑡𝑡𝑖𝑖) = ∑ 𝑎𝑎𝑘𝑘(𝑡𝑡𝑖𝑖)𝜑𝜑𝑘𝑘(𝑥𝑥)𝑀𝑀
𝑘𝑘=1      𝑖𝑖 = 1, … ,𝑁𝑁  (3) 

It is widely accepted that the spatial early modes – when ordered by energy as is 

the norm – contains the coherent motions and the latter modes contain the turbulence. 

There exists a great number of techniques for choosing the ‘cut-off’ between these two 

sets. Many studies use a somewhat arbitrary value of 90% energy for example in the 

work by Graftieaux et. al. [34]. Butcher et. al. [35] shows how cross-correlation of the 

spatial modes may be used to identify the cut-off. In that work, the cut-off is used to 
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determine which POD modes are representative of coherent motions which vary 

cyclically. The selection of the number of POD used for the reconstruction will have a 

significant impact on the ‘smoothing’ effect of the filtering. 

Approaches to the combination of POD and LSE fall into two categories – 

primarily based on whether LSE is applied to a POD filtered data set, or if the estimation 

is of the POD modes themselves. Podvin et. al. [36] demonstrates how coarse 

measurements of a single velocity component may be used in this manner to recreate 

POD modes and therefore reproduce the large-scale motions in the flow field on a finer 

mesh grid. 

POD-LSE coupling 
 

It is shown that when the LSE technique is applied to POD filtered data, there 

exists a coupling effect between the number of POD modes used for the initial filtering / 

reconstruction and the number of sensors used for the estimation of velocity fields [37]. 

They found that provided the number of independent sensors was sufficiently greater 

than the number of POD modes used for the filtering of the underlying velocity fields, a 

small error (<5% error vector magnitude) may be achieved. Figure 2 summarizes the 

relationship found between the number of sensors required for a desired maximum 

permissible error (up to a maximum of 100 sensors). In that work, the location of the 

multiple ‘master points’, 𝑝𝑝, were randomly selected rather than along a straight line. 

This mitigated the potential detrimental impact of selecting sensors in very close 

proximity because closely aligned locations of master points may not provide 

additional/independent statistical information. Therefore, it would follow that the work 
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presented here may not follow this exact trend, given that the points selected are next 

to each other, as was required along the lines of intersection between the planes. Hence 

it is possible more sensors would be required than Figure 2 indicates. 

ACQUISITION OF TEST CASE DATA 
 

For the development of the presented LSE technique, a large set of high-quality 

data is required. It was decided that a previously published tomographic dataset [1] be 

used for this purpose for a number of reasons. While it is the intention of the presented 

work to demonstrate the effectiveness of the LSE technique in application to planar 

data; for purposes of validation it is necessary to have the actual measurement of 

volumetric velocity for comparison to the estimates. However, the authors explicitly 

state that for the purposes of the estimation, virtual planes are extracted from the 

tomographic PIV data set to simulate SPIV acquisition. To ensure no direct a priori 

information about the estimated velocity fields is used in their calculation, 1000 training 

snapshots of PIV data are used to calculate the correlation matrix and then only a single 

‘master’ velocity plane is taken from an independent and subsequent 23 snapshots that 

are then used to estimate the velocity in the rest of that volume at those 23 time 

instances. 

The test rig and injector are the same as previously reported by Midgley et. al. 

[38,39] and Spencer et. al. [1] but is briefly described again here for completeness. The 

injector, depicted in Figure 3, is a radially-fed single stream swirl type, with a central jet 

which may be enabled as required – for the tests presented in this work, the jet is 

blanked. Tomographic PIV measurements of the nearfield flow were carried out in a 



ASME Journal of Engineering for Gas Turbines and Power 
 

GTP-19-1350 Butcher 13 

(single phase) water flow facility (Figure 4). The use of water as the flow medium has 

several beneficial consequences. In all PIV (and PTV) measurements, it is the velocity of 

particles suspended in the flow which is measured, which should be representative of 

the flow, assuming no slip. In air this presents a challenge, particularly in high frequency 

flows where the large disparity between fluid densities of air and oil (typically used as 

seed in these experiments) can lead to induced errors. In the case of water, the greater 

density allows density matching of neutrally buoyant seed to be used. In the work 

presented, polymide seeding with mean diameter of 55μm is mixed with the water in a 

sump tank to ensure homogeneous seeding. This seeding gives good reflective signals so 

is tolerant of the lower laser energy densities found in tomographic PIV due to the 

formation of an illuminated volume from the laser rather than a relatively thin sheet. 

The use of water as a test medium necessitates the change in refractive index to 

be considered. Therefore Figure 4 shows how water-filled prisms approximately 

matching the camera angles are positioned on the rig to ensure the change in refractive 

index occurs at a parallel surface to the lens plane. 

Water is fed to the injector via a closed loop system with a constant header tank, 

providing a constant driving pressure on the injector. Immediately downstream of the 

injector, the duct diameter relative to the injector exit diameter was chosen to be 

representative of gas turbine combustors. A central axisymmetric blockage is positioned 

downstream at a distance of 160 mm from the injector plane as a controlled boundary 

condition, avoiding an overly elongated recirculation zone. The design requirements of 

this feature were obtained with CFD predictions. Further downstream, flow rate is 
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controlled via a throttle valve restriction and is set to provide a nozzle exit Reynolds 

number of 7x104, where Reynolds number is defined using the swirler exit diameter. 

Using the geometrical exit area, a bulk mean velocity of 1.70 ms-1 is observed. 

Illumination was provided by a Litron LDY303HE laser with each of the two 

cavities set to 1kHz. This was directed through LaVision volume optics to provide a 

collimated illuminated volume of cross-section 70mm x 25mm. An aperture was applied 

to ensure sharp edges to the illuminated volume. Images were acquired using four 

Photron APX-RS CMOS highspeed cameras fitted with Nikor 105 mm macro lenses, each 

operating at 2kHz (synchronized) giving 1kHz of double frame PIV. The synchronization 

and control of all PIV equipment was via a LaVision high speed controller and LaVision 

DaVis software. The additional step required for the tomographic PIV vector calculation, 

error analysis and discussion is described in detail in [1] including a comparison to 

stereo PIV data and a self-calibration technique to reduce the effect of ghost particles. A 

summary of the PIV set-up and processing parameters is given in Table 1. 

A total of 1023 time-steps were captured each with a resolution of 68 x 64 x 21 

velocity vectors, covering 1.023 seconds of flow, a significant number of flow time 

rotational periods. However, there are two areas in the corner of the recorded region 

where vector measurement was not achieved. The resulting average velocity magnitude 

are shown in Figure 5.  

There were a few interesting points highlighted in previous work [1] about the 

flow condition. As it may be run with or without the central jet; the jet case had the 

effect of stabilizing the flow. Without the jet – as is the case here – a large central 
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recirculation zone (CRZ) exists, demonstrating a precessing vortex core. This has the 

effect of inducing velocity fluctuations in this region. This unsteady – time-dependent – 

feature should be predicted correctly by the application of the proposed technique. 

Figure 6 and Figure 7 show slices of velocity magnitude with vectors displayed 

taken through the domain in the YZ and XY orientations respectively – each taken at 

mid-length. In general, these planes will be used for discussion and illustration 

throughout the remainder of the paper, as it is difficult to efficiently and effectively 

represent 3D data in print, particularly comparisons between 2 sets of 3D data. 

However, all calculations will be carried out on the full volume. 

DEFINITION OF PLANES 
 

Using the presented test case data, it is necessary to define which data will be 

used as slave fields and which will be used as the master plane (to drive the subsequent 

estimations). Firstly, of the 1023 PIV fields (time-steps) captured, let 1000 be used for 

the generation of the correlation matrices and contain slave planes. The remaining 23 

fields shall not be used in the generation of the correlation matrices – and only the 

master plane from this data set shall be extracted, containing all of the intersection 

points (sensors) velocity. In addition, the remaining volume of this set shall later be used 

to allow comparison to the generated estimations. 

Slave planes 
 

Given the orientation depicted in Figure 1, the XY planes shall provide slave 

planes. The intersection line will be defined at (x = 0) of this plane; although it should be 
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noted it would not necessarily need to be at this location if there were optical access 

issues for example. As the XY dimension is (68x64), the sensor line is therefore all data 

along the line (Nx=const, Ny=1…64) for all slave planes. 

To calculate the correlation matrix for each slave plane, the plane velocity matrix 

(68x64x1000) is collapsed to a (4352x1000) matrix. This may then be used together with 

the sensor velocities for that plane (a matrix of 64x1000) in Equation 1 to generate the 

correlation matrix for that plane. 

Each slave fields’ correlation matrix effectively represents the correlation 

between each spatial location in the plane and every sensor. The dimensions of each 

correlation matrix are therefore equal to the total number of spatial locations in the 

plane by the number of sensors. Figure 8 presents an example of a spatial correlation 

matrix for the Ux velocity component. There are a few noteworthy features of this plot. 

Firstly, one may expect that the correlation should be similar to the spatial correlation 

about that point, with a peak at the same location. However, there exist several peaks 

of this (normalized) distribution, none of which are near. This is due to the velocity field 

correlation being an ensemble of contributions from several sensors (64 in this case). 

However, if there were only one sensor used, then the distribution would mimic a 

spatial correlation. 

For the presented example application there are a total of 21 slave planes (i.e. 

equal to the Z dimension), each with three correlation matrices; one for each velocity 

component. However, in practice the reconstructions could be achieved with fewer (or 
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greater) slave planes, depending on the permissible reliance on interpolation between 

estimated planes. 

Master plane 
 

Following the same orientation, the master plane shall be defined as a mid-

length (in the X-direction) YZ plane. Each (X=const) line (examples presented in Figure 9) 

is taken from the master plane set and used with the appropriate correlation matrix and 

Equation 2 to generate the volume velocity field. 

ASSESSMENT OF GENERATED ESTIMATIONS AND DISCUSSION 
 

The process is carried out as described using the MATLAB program for each of 

the 23 validation master planes (time-steps) using 60 POD mode pre-filtering. Firstly, the 

ensemble average of the reconstruction of the estimated fields is presented in Figure 10 

and can be compared to the ensemble average for the PIV data presented earlier (Figure 

5). 

It can be seen in Figure 10 that there are slight differences to the PIV data posted 

in Figure 5. In fact, the validation shows agreement between the estimation and the 

validation data set. Differences arise as Figure 10 is the ensemble of only the 

estimations from the 23 master planes extracted from the validation set; whereas 

Figure 5 shows the ensemble of the 1000 slave velocity fields. Further exploration of the 

quality of the estimation is given in the remainder of this paper. 

The purpose of carrying out the LSE technique – rather than the earlier discussed 

ensemble average reconstructions – is to provide time-volume velocity fields. And as 
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explained earlier, using fewer POD modes in the master field reconstruction than 

number of LSE sensors leads to less than 1% error in the estimation. The following 

discussion is regarding 60 POD mode reconstruction; the reader is reminded that there 

are a total of 64 LSE sensors at each intersection of planes, and therefore this condition 

is satisfied. By selecting an extract of an estimated XY plane from this data set; a direct 

comparison can be made to the equivalent field extracted from the PIV validation set (at 

the same time instance). This is presented in Figure 11a & b respectively. 

Whilst the comparison is presented in this way (Figure 11), the two fields have 

very small disparity between them, << 1%. This confirms the finding in literature [37] 

regarding POD pre-filtering. 

As part of the investigation, all three velocity components, across all 23 

validation fields were compared to their validation measurement counterparts. A similar 

finding was observed in every condition. Therefore, the study concludes that the 

application of this technique may effectively estimate time-volume velocities from a 

single master plane measurement set. 

Further, an investigation is carried out to establish the level of error introduced 

to the estimation if the number of POD modes is increased beyond the number of LSE 

sensors. For this purpose, five conditions were investigated, based on the number of 

POD modes used for pre-filtering: 70, 100, 130, 160 and no POD pre-filtering. 

Considering the first mentioned condition, 70 modes, they may be directly 

compared by overlaying the data-set – this was not previously possible due to there 

being no discernable discrepancy between the two. Figure 12 shows how now that the 
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number of sensors is greater; albeit by only around 10%, there is some discrepancy 

between the estimation and the validation data. However, note the scale change in 

Figure 12 required before this difference is visible – showing there is still a strong 

similarity between the two velocity fields. This would be expected to become more 

significant as less pre-filtering (i.e. more POD modes) are included in the master planes. 

 

To efficiently assess the accuracy of the estimations, a quantitative approach is 

taken. Two velocity fields may be directly compared by a correlation between the two. 

Equation 4 gives the correlation, R for a velocity component i between two vector fields, 

A and B. Note, there is no time component of this equation, and it is therefore applied 

to each of the 23 timesteps independently and the value of R for each condition is 

averaged. 

𝑅𝑅𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴 = 〈𝑢𝑢𝑖𝑖(𝑥𝑥)𝐴𝐴𝑢𝑢𝑖𝑖(𝑥𝑥)𝐵𝐵〉

�〈𝑢𝑢𝑖𝑖
2(𝑥𝑥)𝐴𝐴〉�〈𝑢𝑢𝑖𝑖

2(𝑥𝑥)𝐵𝐵〉
 (4) 

Each of the pre-filtered cases are estimated and the correlation between 

estimations and validation time-volume calculated. Correlations for these conditions are 

shown in Figure 13. 

The correlations in Figure 13 show that reasonable estimations may be made in 

the cases where the number of POD modes used for pre-filtering exceeds the number of 

LSE sensors, but this is dependent on what the acceptable level of error is deemed to 

be. Also included is the condition with no POD filtering (represented by the dashed line). 

Even in the worst-case scenario, where there is no POD pre-filtering of the data, greater 

than 95% correlation exists between the estimated fields and the validation fields. It is 
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suspected that while the no-filtering cases did not utilize POD, it was necessary in their 

capture for gaussian filtering of the data due to noise on the tomographic 

measurements which may have impacted this result – leading to an unexpectedly high 

correlation in the no POD filtering condition. A side effect of this initial filtering (applied 

to all data in previous works [1]) will have been to remove some of the smaller 

structures that would otherwise have been represented by the higher order modes. 

Therefore, effectively less information is required to estimate the velocity fields than 

may otherwise be the case. 

METHOD CRITIQUE AND FUTURE WORK 
 

This paper provides a validation of the LSE technique using a 3D-3C tomographic 

PIV data set where direct measurements are available to test the accuracy of the 

estimation results. This has been done carefully to ensure a priori knowledge available 

in this data set has not been used to assist the methodology. The origins, quality and 

uncertainty in this data has been previously described in [1]. Based on the divergence of 

the velocity field which should be zero, in this incompressible flow, it was estimated the 

instantaneous velocity uncertainty from the tomographic PIV was better than ±10% to 

95% confidence. 

The tomographic set up required for this validation does require a high degree of 

optical access. However, the technique is aimed at enabling 2D planar 2or3C PIV data to 

be volume reconstructed on an instantaneous basis. Without such an approach only 

time or phase averaged statistics can be meaningfully reconstructed into a volumetric 

picture. The proposed LSE method is aimed for use with a standard mono or stereo PIV 
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system. Thus, the optical access to employ the technique would ordinarily be 

commensurate with a standard mono or stereo PIV systems with sufficient flexibility to 

traverse the measurement plane through the volume of interest. 

Alignment of the measurement planes is an issue that has not been directly 

addressed in this validation. For the approach to work, the line of intersection in the 

master and slave planes will need to be identified with some degree of accuracy, 

otherwise the sensors from the master and slave plane will not be at identical locations. 

Additionally, there may be some differences in velocity uncertainty from the two planes 

through alternate calibration of the PIV planes. There are solutions to these issues and is 

the subject of current work. 

Where there is not good PIV vector yield (less than ~95% first choice vectors) 

then additional steps are required to ensure the LSE methodology provides 

mathematically robust estimates. Again, this is the subject of future work, but it would 

be expected that uncertainty of velocity from the stereo PIV would be reduced to 

typically around half of that of this tomographic PIV data, and this should help to 

improve the LSE results. 

It is seen in this validation exercise that there can be very good correlation in the 

estimated and actual instantaneous velocity fields. This is unlikely to be as good if large 

scale coherent structures do not exist in the turbulence field. LSE can work with small 

scale turbulence, but sensor locations would need to be more uniformly distributed 

around the slave plane so that their typical spacing was not too far from the integral 

length scales that exist in the flow. Where sensors come from a line of intersection 
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between two planes the user would not have the luxury of choosing the required sensor 

distribution and this application of LSE would be less valuable. However, there would be 

little to gain of instantaneous volume reconstruction as the flow field becomes more 

and more self-similar throughout, as in the case of near-homogeneous turbulence. 

As a point in the estimated flow field becomes more remote from the sensor 

locations located on the plane of intersection then the magnitude of the 2-point 

correlations becomes smaller and the quality of the reconstruction would be expected 

to become poorer. This is demonstrated in Figure 14. 

The profiles in Figure 14 are along two secant lines through a of the near circular 

swirl cone (z/Ds=0.02). They run parallel to the diametral line on which the sensor 

points are taken from the master plane. In Figure 14 the profile is close to the diametral 

line. In Figure b the profile is at about a quarter diameter further away. The two peaks in 

the turbulent profile associated with the swirl cone and the inner shear layer helical 

vortex structures are thus thickened on the far field chord line as it cuts the swirl cone 

obliquely. In this flow where the turbulence field has a strong coherence to it, it can be 

seen the LSE estimation captures the flow features, and the higher order statistics 

associated with them, well. The quality of the second order statistic degrades as the LSE 

estimated flow field becomes more remote from the sensor locations. In the example 

above the tke is up to 40% lower using LSE directly. However, using POD filtered data 

prior to applying the LSE reconstruction as advocated in this paper, then in the example 

presented, the turbulence statistics are captured with as good fidelity as allowed by the 
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POD reconstruction, where that POD reconstruction is generated by as many spatial 

modes as there are sensor locations available in the master plane. 

CONCLUSION 
 

A method is developed and presented allowing a time-volume velocity 

estimation to be generated based on a set of sensors of planar measurements. To 

demonstrate the methodology, it has been applied to a simplified gas turbine 

combustor and FSN flow for which existing time-volume velocity measurements were 

available to allow for effective validation. Although the full volume information was 

available, virtual planes have been extracted and used to emulate planar measurement 

inputs. The advantage of this approach is a priori knowledge of the flow field allows a 

direct comparison between the estimations and the measured velocities. 

During the first step of the technique, akin to a calibration procedure, the spatial 

resolution of the final estimations is determined by the number of slave fields to be 

captured, and subsequent correlations generated against the master plane intersection. 

The temporal resolution of the estimations is then determined by the frequency 

of the master plane measurements under test conditions. This highlights a potential 

further use of the technique; if high-speed planar information is available, then the full 

volume estimation will also be at this frequency. 

The link between POD filtering and LSE reconstructions suggested in literature 

has been investigated in this application. The findings generally agree strongly, but there 

is some evidence that other PIV filtering techniques have smoothed the data and 

removed some of the smaller structures of the flow. 
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Finally, the application of this technique does not necessarily require new data 

sets, it may be retrospectively applied to any data where intersecting non-synchronised 

measurements have been carried out. Indeed, these may generally be velocity fields 

from PIV data but the mathematical approach would work well with other quantities 

such as pressure or scalar fields from LIF in both non-reacting or reacting flow fields.  
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NOMENCLATURE 
 

3C3D 3-component, 3-dimensional (velocity) 

ar Correlation matrix (component r) 

CRZ Central recirculation zone 

FSN Fuel swirl nozzle 

LES Large eddy simulation 

LSE Linear stochastic estimation 

pr Sensor (r) 

PIV Particle image velocimetry 

POD Proper orthogonal decomposition 

PTV Particle tracking velocimetry 

Rii,AB Correlation between fields A and B 

SPIV Stereo particle image velocimetry 

STB Shake-the-box 

Uest(x,t) Estimated u velocity component 
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Table 1 Summary of experimental set-up parameters 
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Figure Captions List 

 
Fig. 1 Location of YZ (master) plane and examples of XY (slave) planes with 

sensors highlighted with 'o'. FSN exit at (0,0,0) 

Fig. 2 Relationship between number of POD modes used for input velocity fields 

and the number of sensors required for a maximum permissible error 

(data from [37]) 

Fig. 3 Radially-fed single stream injector 

Fig. 4 Water flow test facility with tomographic PIV 

Fig. 5 Velocity magnitude contour and iso-surface showing the ensemble 

average flow field from the captured tomographic PIV data 

Fig. 6 YZ slice showing ensemble average velocity vectors from the captured 

tomographic PIV data (X = 0) 

Fig. 7 XY slice showing ensemble average velocity vectors from the captured 

tomographic PIV data (Z = 0.25) 

Fig. 8 Example of correlation matrix for Ux for the indicated sensor location. 

Correlation is normalized according to the maxima in the contour. 

Fig. 9 Example of instantaneous master plane with 3 example sensor sets 

highlighted. Contour shows velocity magnitude and in-plane vectors are 

displayed 
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Fig. 10 Ensemble mean of estimated velocity fields. Contours show velocity 

magnitude. Obtained from master fields with 60 POD mode 

reconstruction. 

Fig. 11(a) Example extract of estimated velocity field, generated using 60 POD 

spatial modes 

Fig. 11(b) Extract of the same plane and time instance taken from the validation PIV 

data set 

Fig. 11 Comparison of estimated velocity and validation velocity measurements 

for the same time instance (validation data set, t=1010) 

Fig. 12 Comparison between validation data and estimated field (master plane 

pre-filtered, 70modes) 

Fig. 13 Mean correlation of estimated velocity and validation velocity for a range 

of pre-filtered and non-pre-filtered conditions 

Fig. 14(a) Near field, y/Ds = 0.03, z/Ds = 0.02 

Fig. 14(b) Far field, y/Ds = 0.27, z/Ds = 0.02 

Fig. 14 Profiles of turbulent kinetic energy on a line parallel to the line of sensors. 

(intersection line at, y/Ds = 0.00, z/Ds = 0.02) 
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Table 1 Summary of experimental set-up parameters 
Seeding  
Material Polymide 
Mean diameter 55 µm 
Imaging  
Lens focal length 105 mm 
Resolution 1 M.pixel 
Mounting angle ~ 25° (relative to x-axis) 
Interframe time, δt 30 µs 
Illumination  
Volume cross-
section 

70x25 mm 

PIV processing  
Measurement 
volume 

1000x1000x250 voxel 

Pre-processing 
steps: 

• Sliding minimum 
subtraction (1000 frames) 

• 3x3 gaussian smoothing 
• Volume self-calibration 

MART iterations 2 x (64x64x64 with 75% 
overlap) 

Vector resolution 64x64x18 3C3D 
Post-processing 3x3 gaussian smoothing 
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Fig. 1 Location of YZ (master) plane and examples of XY (slave) planes with sensors highlighted with 
'o'. FSN exit at (0,0,0) 
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Figure 2 Relationship between number of POD modes used for input velocity fields and the number of 
sensors required for a maximum permissible error (data from [37]) 
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Figure 3 Radially-fed single stream injector 
  

Annulus Pipe

Feed pipe for central jet  

Premixing ports (x12)

Radial entry swirl slots (x12)

Spigotted flange

Swirler passage

Central jet passage

Core Pipe

Feed holes for premixing ports (x6)
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Figure 4 Water flow test facility with tomographic PIV 
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Figure 5 Velocity magnitude contour and iso-surface showing the ensemble average flow field from the 
captured tomographic PIV data 
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Figure 6 YZ slice showing ensemble average velocity vectors from the captured tomographic PIV data 
(X = 0)  
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Figure 7 XY slice showing ensemble average velocity vectors from the captured tomographic PIV data 
(Z = 0.25)  
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Figure 8 Example of correlation matrix for Ux for the indicated sensor location. Correlation is 
normalized according to the maxima in the contour.  
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Figure 9 Example of instantaneous master plane with 3 example sensor sets highlighted. Contour shows 
velocity magnitude and in-plane vectors are displayed  
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Figure 10 Ensemble mean of estimated velocity fields. Contours show velocity magnitude. Obtained 
from master fields with 60 POD mode reconstruction.  
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(a) Example extract of estimated velocity field, 

generated using 60 POD spatial modes 

 
(b) Extract of the same plane and time instance taken 

from the validation PIV data set 
 

Figure 11 Comparison of estimated velocity and validation velocity measurements for the same time 
instance (validation data set, t=1010)  
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Figure 12 Comparison between validation data and estimated field (master plane pre-filtered, 
70modes)  
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Figure 13 Mean correlation of estimated velocity and validation velocity for a range of pre-filtered and 
non-pre-filtered conditions  
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(a) Near field, y/Ds = 0.03, z/Ds = 0.02 

 
(b) Far field, y/Ds = 0.27, z/Ds = 0.02 

 
Figure 14. Profiles of turbulent kinetic energy on a line 
parallel to the line of sensors. (intersection line at, y/Ds = 0.00, 
z/Ds = 0.02) 
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