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Recently observed magnetophonon resonances in the magnetoresistance of graphene are investigated using the
Kubo formalism. This analysis provides a quantitative fit to the magnetophonon resonances over a wide range of
carrier densities. It demonstrates the predominance of carrier scattering by low-energy transverse acoustic (TA)
mode phonons: the magnetophonon resonance amplitude is significantly stronger for the TA modes than for the
longitudinal acoustic (LA) modes. We demonstrate that the LA and TA phonon speeds and the electron-phonon
coupling strengths determined from the magnetophonon resonance measurements also provide an excellent fit
to the measured dependence of the resistivity at zero magnetic field over a temperature range of 4–150 K.
A semiclassical description of magnetophonon resonance in graphene is shown to provide a simple physical
explanation for the dependence of the magneto-oscillation period on carrier density. The correspondence between
the quantum calculation and the semiclassical model is discussed.

DOI: 10.1103/PhysRevB.100.155120

I. INTRODUCTION

In 1961, theoretical work by Gurevich and Firsov pre-
dicted that inelastic scattering of electrons by phonons can in-
duce oscillations in the magnetoresistance of semiconductors
[1]. Magnetophonon resonance (MPR) has since been used
to probe spectroscopically electron-phonon interactions in a
wide range of bulk semiconductors [2–5] and semiconductor
heterostructures in which carriers are confined in two dimen-
sions (2D) by a quantum well potential [6–10].

Early studies of MPR focused mostly on carrier scattering
between Landau levels (LLs), induced by weakly dispersed
longitudinal optical (LO) phonons with a well-defined energy,
h̄ωLO, and a high density of states. The resonant condition is
given by h̄ωLO = ph̄ωc, where ωc = eB/m∗ is the cyclotron
frequency, B is the applied magnetic field amplitude, m∗ is
the carrier effective mass, and p is an integer. Absorption
or emission of a phonon can induce a shift of the electron’s
cyclotron orbit center. This causes it to drift in the presence
of an applied voltage and give rise to an enhancement of the
magnetoconductance when the resonant condition is satisfied.
The result is a series of oscillations in the magnetoconduc-
tance that are observable over a wide range of temperatures,
are periodic in inverse magnetic field, and are independent of
carrier density.

A different type of MPR was observed at low temperatures
in the magnetoresistance of a modulation doped (AlGa)As-
GaAs heterostructure [8–10]. Under these conditions MPR
was shown to arise from scattering of the two-dimensionally
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confined electrons by linearly dispersed acoustic phonons.
The oscillatory period, �(B−1), had a square-root dependence
on carrier sheet density.

Here we present a theoretical model to investigate large-
amplitude acoustic phonon-induced magnetoresistance oscil-
lations that were observed recently in wide, gated Hall bars of
monolayer graphene encapsulated in hexagonal boron nitride
(hBN) [11]. The spectroscopic nature of MPR complements
the extensive literature on the effects of electron-phonon
interactions on the carrier mobility of graphene [12–27] and
recent measurements of phonon-assisted tunneling in stacked
graphene-hBN-graphene devices [28,29]. Figure 1 compares
the results of our calculation with the experimental data [11].
The peaks in magnetoresistance are periodic in 1/B with a
frequency BF that is linearly dependent on the carrier density
ns of the Dirac fermions. The dependence of BF on ns allows
us to determine the speeds of the linearly dispersed transverse
acoustic (TA) and longitudinal acoustic (LA) phonons which
give rise to the magneto-oscillations. The analysis demon-
strates that it is necessary to include scattering by both TA
and LA phonons to obtain a quantitative understanding of
graphene’s phonon-limited resistivity. We demonstrate how
electrical screening of the deformation potential accounts, in
part, for the smaller amplitude of the LA phonon resonances.

II. SEMICLASSICAL ANALYSIS

Figure 2(a) shows a schematic diagram of the coordinate
and lattice orientation used in our calculation. The measure-
ments in Fig. 1(b) were made with a negative gate voltage
applied to the device so that the charge carriers are holes
with Fermi energy EF positioned below the Dirac point of
graphene’s band structure [11]. Our analysis considers the
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FIG. 1. (a) Calculated oscillatory part of the longitudinal magne-
toresistivity ρyy(B) and (b) measured longitudinal magnetoresistance,
Ryy(B), of a 13.8-μm-wide Hall bar with top and bottom gate elec-
trodes [11] at T =70 K. The blue, red, and green curves correspond
to carrier densities ns = 6.0, 7.5, and 9.0 ×1012 cm−2 respectively
in both sets of plots. For clarity, the green and red curves in (a) are
shifted from their calculated values by 1.5 and 0.75 �.

case when EF is above the Dirac point; electron-hole sym-
metry close to the Dirac point in graphene ensures that it is
applicable to both types of charge carrier.

Application of a magnetic field, B = (0, 0,−B) where B =
|B|, perpendicular to the graphene sheet quantizes the electron
energy EN into a series of unevenly spaced LLs with index N ,
given by the relation

EN =
√

2N
h̄vF

lB
, (1)

where vF is the Fermi velocity in graphene and lB = √
h̄/eB

is the magnetic length.
In the absence of scattering, carriers would propagate

freely in the direction perpendicular to an applied electric field
so that the magnetoconductivity σxx = 0. When a carrier scat-
ters inelastically by the emission or absorption of a phonon
with wave vector q, momentum conservation requires that
its orbit center shifts, giving rise to a dissipative current and
finite σxx, and magnetoresistivity ρyy (=ρxx due to rotational
invariance).

The amplitude of the MPR oscillations increases with
increasing temperature up to ∼100 K. Thermal excitation of
phonons and broadening of the Fermi distribution enable a
carrier at the Fermi energy EF to absorb or emit a phonon. At
higher temperatures, phonon scattering is sufficiently strong
to prevent a carrier from completing a cyclotron orbit (μB <

1, where μ is the carrier mobility). The width of the LL then
becomes comparable with the LL energy separation, and MPR
oscillations are damped out.

FIG. 2. (a) Schematic diagram of the coordinate axes and scatter-
ing of a Dirac fermion in the graphene lattice. Red and blue circles
represent the real space cyclotron orbits, radii rN+p and rN , of an
electron (filled circle) before and after scattering by a phonon with
wave vector q and the shift of its orbit center. The area between the
dashed and full circles shows schematically the width of the largest
peak of the LL wave function adjacent to its classical turning point.
(b) The horizontal lines show the energies and diameters of cyclotron
orbits in k- pace before and after scattering by a phonon with
wave vector q. Red and blue lines show magneto-acoustic-phonon
resonance between an initial state with radius κN+p, and final state
with radius κN .

Inelastic scattering between two LLs with indices differ-
ing by the integer p = 1, 2, 3, . . . occurs when the acoustic
phonon energy h̄ωa equals the difference in their energies:

EN+p − EN = ±h̄ωa. (2)

For small q, acoustic phonons have a linear dispersion relation
given by

ωa
q = vaq, (3)

where va is the phonon velocity. In semiclassical Newtonian
dynamics, a carrier with energy EN performs closed cyclotron
orbits in real space with radius rN = lB

√
2N and, since h̄k̇ =

−ev × B, in k space with radius

κN =
√

2N

lB
. (4)

Inelastic scattering by a phonon shifts the center of the cy-
clotron orbit in k space by q and its position in real space by
(�X,�Y ) = l2

B(−qy, qx ). Semiclassically, this can occur only
when the orbits of the initial and final states intersect. The
onset of inelastic scattering occurs when the cyclotron orbits
just touch, giving rise to a trajectory with a “figure-of-8” orbit
[30], see Fig. 2. Thus

κN+p + κN = q. (5)
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To a good approximation, this semiclassical description cor-
responds to the condition for the maximum in the overlap
of the wave functions of the initial and final states. By com-
bining Eqs. (2)–(5) we obtain the magnetophonon resonance
condition:

vF (
√

N + p −
√

N ) = va(
√

N + p +
√

N ), (6)

from which we obtain the following semiclassical equation for
N = Np, when Eq. (6) is satisfied:

Np = pva

4vF

(
vF

va
− 1

)2

≈ pvF

4va
. (7)

The approximation is valid since vF � va. Our calculation
of the resonant scattering processes involves transitions be-
tween LLs with indices of up to N ∼ 100. The large energy
separation between LLs with N < Np requires a high-energy
phonon with a q that is too large to allow the semiclassical
orbits of the initial and final to intersect; scattering cannot
then occur. As will be discussed in Sec. III this condition is
relaxed in quantum mechanics. At the classical turning point
of the LL wave functions, each well-defined cyclotron orbit is
effectively broadened into a ring of width ∼lB, see dashed and
full circles in Fig. 2.

We develop the semiclassical model by considering elec-
trons within a range of ≈EF ± 2kBT . Thus we set ENp =
h̄vF kF = EF , where kF = √

πns is the Fermi wave vector and
ns is the carrier density. We then obtain

Np = l2
Bk2

F

2
= h̄πns

2eBp
, (8)

where Bp is the magnetic field corresponding to a maximum
in σxx and ρyy. Using this expression in Eq. (7), we obtain

Bp = nshvF

peva

(
vF

va
− 1

)−2

≈ nshva

pevF
. (9)

This relation describes accurately the data shown in Fig. 1(b)
and described in Kumaravadivel et al. [11]. The measured
magneto-oscillations in Fig. 1(b) reveal a strong set of peaks
labeled “TA, p = 1, 2, . . . ” that are periodic in B−1 with a
well-defined frequency, BF = pBp, that is linearly dependent
on ns. We associate these peaks with MPR due to TA phonons.
The dependence of BF on ns indicates a constant ratio between
the speed of the TA acoustic phonon, vTA, and the Fermi
velocity so that vTA/vF = 0.0128. We also observe a weaker
peak at higher B, labeled “LA, p = 1”, with a BF value
that is linearly dependent on ns. We associate this peak with
MPR due to LA phonons with speed vLA and we obtain
vLA/vF = 0.0198. With a Fermi velocity of vF = 1.06 ±
0.05 × 106 ms−1 extracted from the temperature-dependent
Shubnikov de Haas measurements on the devices reported by
Kumaravadivel et al. [11], we obtain vTA = 13.6 ± 0.7 km s−1

and vLA = 21 ± 1 km s−1. These values are in good agree-
ment with calculations of the speeds of linearly dispersed
acoustic phonons in graphene [17–19]. We note that the mea-
sured constant ratio between va/vF is fully consistent with the
constancy of both vF and va over the range of ns from 1.5 to
9 × 1016 m−2 and q from ∼0.5 to 1.0 × 109 m−1. A constant
vF is expected in graphene devices on dielectric substrates

over this range of ns [31] due to screening of electron-electron
interactions that cause velocity renormalization [32].

To conclude this section we compare relation (9) with ear-
lier work on 2D electron gases (2DEGs) in III-V heterostruc-
tures [9,10] where electrons have a parabolic dispersion and
well-defined effective mass m∗. The energy separation be-
tween LLs, h̄ωc, is then independent of N . In this case the
MPR resonant condition is given by

h̄ωc = h̄va(κN+p + κN ), (10)

so that

B2DEG
p ≈ 2m∗vakF

pe
= 2m∗va

√
2πns

pe
. (11)

This expression is similar to relation (9) for graphene,
in particular the oscillations are periodic in 1/B. However,
in contrast to graphene, the position of the resonant peak
depends on the square root of the carrier density.

III. QUANTUM CALCULATION OF ρyy

The semiclassical model in Sec. II can be used to obtain the
resonance condition but not the amplitude and shape of the os-
cillations. We therefore present in this section a full quantum
mechanical calculation of ρyy based on the Kubo formalism
[33–35]. It is convenient to choose the Landau gauge where
A = (0,−Bx, 0). The Dirac fermion wave function in the K+
valley for |N | > 0 is given by the pseudospinor

ψN,X = 1√
2

(
φ|N |(x − X )

−sgn(N )iφ|n|−1(x − X )

)
, (12)

where φ are simple harmonic oscillator states given by

φN (x) = AN HN

(
x

lB

)
exp

(
− x2

2l2
B

)
exp(ikyy). (13)

A similar expression applies to carriers in the K− valley. Here,
AN = 1/

√
LlB2N N!π1/2 is a normalization constant, HN are

the Hermite polynomials [36–38], and L is the size dimension
of the Hall bar. With this choice of gauge, the wave functions
can be thought of as a series of strips along the y axis of the
Hall bar centered on X = l2

Bky and comprising plane waves
with wave vector ky along the y and Hermite polynomials
along x [39]. The magnetoconductance depends on the rate
of drift of the orbit center due to phonon scattering and is
given by

σ a
xx = gvgsπe2

L4kBT h̄

∑
q

(
l2
Bqy

)2|Ca(q)|2Nq(Nq + 1)

×
∑
N,N ′

∑
ky,k′

y

[
f
(
EN − h̄ωa

q

) − f (EN )
]

× δ
(
EN − h̄ωa

q − EN ′
)∣∣Ia

N,N ′ (ky, k′
y, q)

∣∣2
(14)

for the TA (a = TA) and LA (a = LA) phonons, where gv =
2 and gs = 2 are the valley and spin degeneracies, kB is the
Boltzmann constant, and T is the lattice temperature. The term

|Ca(q)|2 = h̄

2ρva
q, (15)
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where the mass density of graphene ρ = 7.6 × 10−8 g cm−2,
Nq = (exp(h̄ωa

q/kBT ) − 1)−1 is the Bose-Einstein distribution
function for the phonons, and f (E ) = {exp[(E − EF )/kBT ] +
1}−1 is the Fermi-Dirac distribution of the electrons. The
scattering matrix element is given by

Ia =
∫

dSψ∗
N ′,k′

y
V a

q ψN,ky , (16)

where V a
q are the electron-phonon coupling matrices for the

TA and LA phonons [13–17]:

V TA
q = eiq.r

(
0 −ggei2ϕ

gge−i2ϕ 0

)
(17)

and

V LA
q = ieiq.r

(
gd (q) ggei2ϕ

gge−i2ϕ gd (q)

)
. (18)

The terms gg and gd (q) are the electron-phonon
coupling matrix elements corresponding to “gauge”- and
“deformation”-like distortions of the graphene lattice
[13,14,17]. The off-diagonal gauge matrix elements arise
from pure shear distortions of the graphene lattice in which
the local area of the lattice remains constant and the fermion
couples to the phonon via changes in the local bond lengths.
This type of distortion can be described by a “synthetic”
gauge field in the Dirac equation [40]. It has the effect of
changing the position of the Dirac point in the Brillouin
zone and is unaffected by screening. The matrix elements
gg have been estimated using density functional theory
(DFT) to have a value in the range 1.5–4.5 eV [40]. In our
model, we obtain a good fit to the data with gg = 4 eV. The
diagonal matrix elements gd (q) arise from deformations of
the graphene lattice whereby local areas of the lattice change
in size. These terms shift the energy of the Dirac point. They
result in local redistributions in the charge density and are
consequently affected by electron screening in the layer and
also by the dielectric environment of the graphene layer. The
Thomas-Fermi screening of the deformation electron-phonon
coupling matrix element for a phonon with wave vector q is
given by

gd (q) = g̃d/ε(q). (19)

Here g̃d = 25 eV [22] is the “bare” unscreened electron-
phonon coupling constant

ε(q) = εr

(
1 + qt f

q

)
, (20)

and qt f = 4e2√nsπ/(4π h̄ε0εrvF ) is the inverse Thomas-
Fermi screening radius. This takes into account screening
by the dielectric environment of the graphene layer with
dielectric constant εr and by the electronic charge in the
graphene layer [40,41]. When εr = 1, i.e., for free-standing
graphene, qt ∼ 8kF . Therefore, assuming that on resonance,
q ∼ 2kF , ε(q) ∼ 5, and the deformation potential is strongly
suppressed. The gd (q) term is further screened for graphene
on a substrate or when encapsulated by hBN. Therefore, the
TA phonons are unaffected by screening but, in contrast, the
on-diagonal parts of the coupling matrix for the LA phonon
can be strongly suppressed by screening.

Evaluating the summations over ky, k′
y and converting the

sum over q to an integral in polar coordinates, we obtain the
relation for the magnetoconductivity

σ a
xx = e

4π2BkBT ρv2
a

∑
N,N ′

∫∫
dϕdq q4 sin2(ϕ)Nq(Nq + 1)

× [ f (EN − h̄vaq) − f (EN )]δ

(
EN − EN ′

h̄va
− q

)

× ∣∣Ia
N,N ′ (q, ϕ)

∣∣2
. (21)

In the high carrier density regime [11] there are no transitions
between the conduction and valence band, so that

∣∣ITA
N,N ′ (q, ϕ)

∣∣2 =
∣∣∣∣ igg

2
(ei2ϕ�N−1,N ′ + e−i2ϕ�N,N ′−1)

∣∣∣∣
2

(22)

for the TA phonons and∣∣ILA
N,N ′ (q, ϕ)

∣∣2 = ∣∣ 1
2 [igd (q)(�N,N ′ + �N−1,N ′−1)

− gg(e−i2ϕ�N,N ′−1 − ei2ϕ�N−1,N ′ )]
∣∣2

(23)

for the LA phonons. Here

�N+p,N = (ie−iϕ )p

√
N!

(N + p)!

× exp

(
−q2l2

B

4

)(
qlB√

2

)p

Lp
N

(
q2l2

B

2

)
(24)

and Lp
N are Laguerre polynomials [42]. The magnetoresistivity

components are given by ρyy = σxx/(σxxσyy + σ 2
xy) and σxy =

nse/B. Under the condition of the experiment [11], the carrier
mobility μ is high so that μB � 1 even for fields of a few
tesla. Hence σxy � σxx ≈ σyy. By summing the contributions
of LA and TA phonon scattering, we then obtain the following
relation for the magnetoresistivity:

ρyy =
(

B

nse

)2(
σ LA

xx + σ TA
xx

)
. (25)

IV. DISCUSSION

The black curve in Fig. 3 shows the calculated magne-
toresistivity ρyy(B) when both TA and LA phonon scatterings
are included. The red and blue curves show the separate
contributions to ρyy(B) of the TA and LA phonons respec-
tively [ρTA

yy (B) and ρLA
yy (B)]. First we consider this calcu-

lation for free-standing graphene, εr = 1, at T = 70 K and
ns = 9 × 1016 m−2. Recent DFT calculations [17] have esti-
mated the phonon speeds to be vLA = 21.4 km s−1 and vTA =
13.6 km s−1, which we use in our calculation along with [38]
vF = 1.00 × 106 m s−1. We find that ρyy(B) has an oscillatory
form that corresponds accurately with oscillations observed
in recent experiments [11], see Fig. 1(b). The maxima in
ρTA

yy (B), and ρLA
yy (B), indicated by vertical red and blue arrows,

are periodic in 1/B and their positions correspond closely
to the resonance condition in Eq. (9). The plot shows that
the contribution of the LA phonons to the total resistivity is
relatively weak and appears only as the small peak (p = 1) in
ρyy at B ≈ 7.5 T. This is due partly to the suppression of the
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FIG. 3. Calculated ρyy(B) (black) (off-set by 0.5 � for clarity),
ρTA

yy (B) (red), and ρLA
yy (B) (blue) with vTA = 13.6 km s−1, vLA =

21.4 km s−1, ns = 9 × 1016 m−2, and T = 70 K. Red and blue
solid arrows highlight peaks corresponding to the magnetophonon
resonance condition in Eq. (9). Dotted red arrows show additional
resonance corresponding to features in KTA

n+p,n(q), see Eq. (26).

deformation part of the electron-phonon coupling matrix by
electronic screening, see Eq. (18). In addition, the energy of
the LA phonon is larger than the energy of the TA phonon.
Hence there is a lower population of LA phonons than TA
phonons at a given temperature.

Despite the good agreement between experiment and the-
ory with regard to the line shape, the damping, and the relative
amplitudes of the TA and LA phonon peaks (see Fig. 1),
we note that there is a discrepancy between the calculated
and measured values of the magnetoresistance for the double-
gated Hall bar. The length to width ratio of this Hall bar
is ∼1.2 : 1, whereas the ratio between the measured and
calculated MPR oscillation amplitude suggests a larger value
of ∼4 : 1. In Ref. [11] we investigated the width dependence
of the measured MPR resistance oscillation amplitude and
found it was strongly nonlinear. In particular, the MPR oscil-
lations were almost completely suppressed for device widths
�9 μm, due to the dominating effect of scattering off the side
walls [11]. Our calculation of ρyy is based on a Kubo model
for a macroscopic conductor. It neglects the effects of weak
disorder-induced scattering and of scattering off the edges of
the Hall bar [43]. A further explanation for the discrepancy
noted above is the nonideal geometry of our large-area Hall
bars in which the voltage probes are close to the source and
drain contacts. This would have a significant effect on the
uniformity of the current flow down the Hall bar.

Our results support previous theoretical studies of the
electron-phonon-induced resistivity in a zero magnetic field
which show that the contribution to the resistivity by TA
phonons is larger than that due to LA phonons [17,18].

We now consider how the overlap integrals of the wave
functions of the Dirac fermions lead to small but subtle differ-
ences in the magnetophonon resonance condition compared to

FIG. 4. Calculated Ka
N+p,N (q) for LA (blue) and TA (red)

phonons when p = 1 (a) and p = 2 (b). The vertical dashed lines cor-
respond to the values of Np determined using the classical cyclotron
orbit relation in Eq. (7). (c) and (d) show the probability density of
the electron wave function before (red) and after (blue) it is scattered
by a phonon with wave vector qy = qr , for N = Np(a = LA) = 11
(c) and N = 14 (d).

the semiclassical model based on overlapping cyclotron orbits
described in Sec. II.

These differences illustrate the relaxation of the correspon-
dence principle between classical and quantum mechanics.
Figures 4(a) and 4(b) show the dependence of the function

Ka
N+p,N (qr ) =

∫
dϕIa

N+p,N (q = qr, ϕ), (26)

on n when p = 1 and 2 respectively and qr = (EN+p −
EN )/h̄va. As discussed in our semiclassical analysis
[Eq. (7)], the probability of scattering between Landau levels,
Ka

N+p,N (qr ), is nonzero for N � Np [vertical dashed lines in
Fig. 4(a) and (b)]. The maximum in Ka

N+p,N (qr ) occurs when
N is slightly larger than the semiclassical value Np given by
Eq. (7) because the peak in the probability density of the wave
function does not occur exactly at rN . The maximum overlap
between the initial and final states occurs at slightly larger q
than the classical estimate in Eq. (5), see plots of |�N+p,X=0|2
(blue) and |�N,X=l2

Bqr
|2 (red) in Fig. 4(c). This leads to a slight

systematic deviation between the position of the peaks calcu-
lated using Eq. (21) and that estimated by Eq. (9). Therefore
the ratios of the phonon speeds to the Fermi velocity deduced
from the semiclassical cyclotron orbit relation given by Eq. (9)
are slightly lower, by ∼5%, than those obtained from the
quantum calculation presented in Sec. III.

For both the LA and TA phonons there are a series of
peaks in Ka

N+p,N (qr ) for N > Np, see Figs 4(a) and 4(b).
These weaker additional peaks correspond to the overlap of
the additional antinodes in the wave function for k < κ , see
Fig. 4(d). The red dashed vertical arrows in Fig. 3 highlight
additional peaks in ρTA

yy that arise from these extra resonances
in KTA

N+p,N (qr, ϕ). These subtle features do not appear in the
experimental data due to LL broadening.
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FIG. 5. (a) Calculated ρyy(B) with broadened level carrier distri-
bution when T = 70 K and γ = 0.1 (black), 0.3 (blue), 0.5 (red), and
0.7 (green) meV T−1/2. (b) Calculated ρyy(B) when T = 70 K and
γ = 0.5 meV T−1/2 with εr=1 (blue), εr = 3.5 (red), and ε(q) = 1
(green).

To model LL broadening we replace the delta function in
Eq. (21) by

δ(E ) → vah̄

�
√

2π
exp

(
− E2

2�2

)
, (27)

where E = EN − EN ′ − qh̄va. We use a Gaussian function
to aid convergence of our calculation at high LL indices.
It is known that for the case of elastic short-range scatter-
ing, for example, from charged impurities or defects, the
broadening of the LLs depends on the square root of the
magnetic field [35,36,44,45]. Phonon scattering also makes
an increasing contribution to LL broadening with increasing
temperature. At sufficiently high temperatures (�150 K), a
combination of scattering-induced broadening of the LL lev-
els and broadening of the Fermi distribution quenches out the
MPR oscillations, as reported in Ref. [11]. The contribution
of phonon scattering to the LL broadening also varies with√

B, see Ref. [47]. Therefore, we set � = γ
√

B, where � and
γ are broadening parameters. Future work could include a
fully self-consistent temperature-dependent model of MPR in
graphene that includes temperature-dependent LL broadening
arising from phonon scattering; for a discussion of this point
see, for example, Refs. [5,46,47]. This could provide a more
accurate fit to the data and a detailed understanding of the
relative contributions of elastic and inelastic scattering in
these devices.

Figure 5(a) shows the calculated ρyy(B) when broadened
Landau levels with different values of γ are included in our
calculation. For values of γ > 0.3 meV T−1/2, the secondary
resonances in resistivity, which are clearly observed without
broadening, see dashed arrows in Fig. 3, are absent, which is
consistent with the measured data. The secondary resonances,

along with the p = 2 peak for the LA phonon, sum to produce
a weak shoulder-like feature of primary peak of ρyy(B) when
γ = 0.5 and 0.7 meV T−1/2 (see horizontal arrow), consistent
with the line shape of the primary peak in the measurements,
see horizontal arrow in Fig. 1(b). The best fit to the exper-
imental data is obtained when γ = 0.5 meV T−1/2, see also
Fig. 1(a).

Finally, we consider the effect of screening on the magne-
toresistance oscillations. The blue and red curves in Fig. 5(b)
are plots of ρyy(B) calculated when εr = 1 and εr = 3.5 cor-
responding to graphene suspended in free-space and graphene
encapsulated by boron nitride respectively. We find that the
total resistivity is not strongly dependent on the value of
εr . This indicates that screening by carriers in the graphene
layer is dominant at these high carrier densities. We also
calculate ρyy(B) with no screening, i.e., ε(q) = 1, green curve
in Fig. 5(b). In this case, the magnetoresistance peak corre-
sponding to LA phonon scattering dominates over that from
TA phonon scattering and its position is shifted due to the
dominance of the on-diagonal terms in the electron-phonon
scattering matrix element. This is inconsistent with the mea-
surements [11] and highlights the importance of including
carrier screening to understand the nature of the measured
MPR oscillations.

V. TEMPERATURE DEPENDENCE OF RESISTIVITY IN
THE ABSENCE OF A MAGNETIC FIELD

This section considers the temperature dependence of the
phonon contribution to the resistivity, �ρ(T ), of the Hall
bar when B = 0. To calculate the temperature dependence
of the resistivity due to both the TA and LA phonons, we
use the linearized Boltzmann equation for temperature-limited
resistivity in graphene [15]. The parameters we use in the
model are the same as those we use to calculate the form

FIG. 6. The increase of the resistivity, �ρ(T ), with temperature
at B = 0 measured on a 15 μm Hall bar with a single gate (open
blue circles) and the corresponding calculation (solid black curve)
for ns = 3.2 × 1012 cm−2. The blue and red curves show separately
the calculated contribution of the LA and TA phonons respectively
to the resistivity, ρLA(T ) and ρTA(T ).
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of the MPR oscillations, and we also include the screening
of the deformation potential, see Sec. III. The black curve
in Fig. 6 is the calculated total resistivity when ns = 3.2 ×
1012 cm−2 for graphene encapsulated by hBN, and εr = 3.5.
This model agrees quantitatively with the measured depen-
dence of resistivity on temperature (blue open circles) for
the graphene sample used in [11]. The blue and red curves
show the contribution to the resistivity of the LA, ρLA(T ), and
TA, ρTA(T ), phonons respectively. They reveal that ρTA(T ) ∼
2ρLA(T ) consistent with the analysis in [18]. This result
provides further confirmation of our model parameters and
the higher contribution of TA phonon scattering over LA
phonon scattering. It also demonstrates how MPR can be used
to elucidate spectroscopically the electron-phonon coupling
parameters, which are fundamental to the electronic properties
of two-dimensional materials, and which are not accessible by
conventional techniques.

VI. CONCLUSIONS

We have presented a model to describe quantitatively the
magneto-acoustic phonon resonance recently measured in

graphene. The results of our calculations at low magnetic
fields and high carrier densities show a series of oscillations
with a form which agree well with the measurements. This
phenomenon can be used to determine the speeds of the
LA and TA phonons and their relative contributions to the
resistivity. The results thus provide insight into the nature
of phonon-limited resistivity in graphene. Previous theoreti-
cal work has investigated how high-energy optical phonons
could give rise to magnetophonon peaks in graphene [35].
An experimental realization would require the generation of
hot carriers with energies well in excess of those reported
here, either by applying very large electric fields or by optical
excitation.
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