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Effects of the sound speed vertical profile on
the evolution of hydroacoustic waves

S. Michele† and E.Renzi

Department of Mathematical Sciences, Loughborough University, Leics LE11 3TU, UK

(Received xx; revised xx; accepted xx)

We present a novel analytical model for the evolution of hydroacoustic waves in weakly
compressible fluids characterised by depth variations of the sound speed profile. Using
a perturbation expansion in terms of the small vertical variation of the sound speed,
we derive a novel expression for the second-order velocity potential and show that this
solution does not exist in the case of homogeneous sound speed. At the third order, we
derive a linear Schrödinger equation governing the evolution of the wave envelope for
large length and time scales, which features new terms depending on the sound speed
distribution. We show that for generalised sound speed vertical profiles the frequency
of the hydroacoustic signal can increase or decrease with respect to the constant sound
speed case, depending on the profile. This has substantial implications on the speed of
the wavetrain envelope. Our findings suggest the need to extend existing models that
neglect the sound speed vertical variation, especially in view of applications to tsunami
early warning.

Key words:

1. Introduction

In this paper, we derive an evolution equation for the wave envelope of acoustic-gravity
(hydroacoustic) waves in a weakly compressible fluid, characterised by depth variations
of the sound speed. Our results provide a novel analytical description of the role of the
sound speed vertical profile on the propagation of hydroacoustic waves over large spatial
and temporal scales.

Recent recordings of underwater acoustic sound associated with the generation of
earthquake tsunamis (Levin & Nosov 2009) and hurricane surges (Wilson & Makris
2008) have sparked an unprecedented development of analytical and numerical theories
to investigate the co-generation of gravity and hydroacoustic (HA) waves by the same
source. Such an interest is motivated by HA waves travelling much faster than surface
gravity waves, which makes the former excellent forerunners to predict the latter, e.g. to
trigger early warning systems for coastal flooding.

Sells (1965), Yamamoto (1982), Levin & Nosov (2009) and Stiassnie (2010) were among
the first to provide analytical descriptions of tsunamigenic HA waves propagating in
a two-dimensional ocean of constant depth. Later, Renzi & Dias (2014) extended the
analysis to HA waves generated by surface pressure perturbations localised in space and
time. Further developments included the effects of bottom elasticity (Eyov et al. 2013) and
two-dimensional depth variations (Kadri 2015). Analytical and numerical models were
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also devised to understand the motion of HA waves in more complex, three-dimensional
scenarios, see Sammarco et al. (2013), Cecioni et al. (2015), Abdolali et al. (2015a),
Abdolali et al. (2015b), Renzi (2017), Mei & Kadri (2018).

All the above-mentioned models are based upon the simplifying assumption that the
speed of sound in water is constant. In reality, the speed of sound in water has spatial
variability, as it depends on temperature, salinity and depth (Jensen et al. 2011). This
variability affects the way HA waves propagate in the oceanic waveguide, because the
sound speed in the ocean plays the same role as the refraction index in optics. Therefore,
using a constant speed profile is not entirely accurate and can lead to appreciable errors
in modelling HA wave propagation. Since temperature and salinity also depend on depth,
oceanographers have devised idealised sound speed vertical profiles representative of
specific oceanic environments, which are function of the depth coordinate. In deep water,
the exponential decrease of stratification with depth suggests the use of an exponential
form for the sound speed profile, first devised by Munk (1974) and known as the Munk
profile. Such a profile is characterised by the presence of a minimum sound speed
below the free surface, which reproduces the features of deep-sound-channel propagation
(SOFAR channel, see Jensen et al. 2011) discovered by Ewing & Worzel (1948) during
World War II. Indeed, using a numerical model based on the finite-difference method,
Jensen et al. (2011) showed that the normal-mode shapes are sensibly affected by a
vertical variation of the sound speed of the Munk type. However, to the best of our
knowledge, no study has been developed to date, which investigates this phenomenon
analytically.

In this paper we consider the effects of a non-homogeneous sound speed profile
on the propagation of HA waves in a two-dimensional, deep-ocean waveguide, over a
rigid bottom (Kadri 2016; Abdolali et al. 2018). We derive an analytical model of HA
propagation based on a perturbation expansion of the governing equations, showing that
for a depth-dependent sound speed vertical profile the frequency and time evolution of
the signal change with respect to the constant speed case.

Our results highlight that: (i) the depth variability of the sound speed is not generally
negligible and (ii) sound speed vertical profiles should be included in HA wave models
to ensure a more accurate estimation of the time of arrival of HA waves, especially when
these are to be used in practical applications, such as tsunami early warning.

2. Mathematical model

2.1. Governing equations

Let us consider an ocean of constant depth h′ and define a Cartesian reference system
(x′, z′) with the x′ axis lying on the undisturbed free-surface level and the z′ axis pointing
upward. Primes indicate physical variables. We assume that HA waves are generated by
a distant source (e.g. an earthquake) in the deep ocean. For deep-ocean waveguides the
sound speed can be considered range independent: c′ = c′(z′), see Jensen et al. (2011).

Let us express the total water density ρ′ and pressure p′ as follows (Levin & Nosov
2009; Jensen et al. 2011; Renzi & Dias 2014)

ρ′ = ρ′D + ρ′0, p′ = p′D + p′0, (2.1)

where ρ′D and p′D represent the dynamical quantities depending on space and time t′,
ρ′0 = 1030 kg m−3 is the static water density, while p′0 is the hydrostatic ambient pressure
in the absence of acoustic disturbances. Since dynamic processes in acoustic waves are
assumed to be adiabatic, if we consider small fluctuations of both pressure and density,
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i.e. ρ′D � ρ′0, p′D � p′0, the continuity equation and the Euler equation for a weakly
compressible flow can be written, respectively, as (Levin & Nosov 2009)

ρ′Dt′ + Φ′x′ρ′Dx′ + Φ′z′ρ
′
Dz′

+ ρ′0 (Φ′x′x′ + Φ′z′z′) = 0, (2.2)

−p
′
D

ρ′0
= Φ′t′ +

Φ′
2
x′ + Φ′

2
z′

2
, (2.3)

where Φ′ (x′, z′, t′) is the velocity potential defined in the fluid domain Ω (x′, z′). Fur-
thermore the equation of state reads (Brekhovskikh & Godin 1992)

c′2
(
ρ′Dt′ + Φ′x′ρ′Dx′ + Φ′z′ρ

′
Dz′

)
= p′Dt′ + Φ′x′p′Dx′ + Φ′z′p

′
Dz′
− ρ′0g′Φ′z′ , (2.4)

where g′ is the acceleration due to gravity. Substitution of (2.4) in (2.2) and usage of the
Euler equation (2.3) gives the following governing equation

Φ′t′t′ − c′2 (Φ′x′x′ + Φ′z′z′) +
1

2

[
Φ′x′

(
Φ′

2
x′ + Φ′

2
z′

)
x′

+ Φ′z′
(
Φ′

2
x′ + Φ′

2
z′

)
z′

]
+
(
Φ′

2
x′ + Φ′

2
z′

)
t′

+ g′Φ′z′ = 0. (2.5)

We remark that the governing equation (2.5) is similar to that already obtained by
Longuet-Higgins (1950) except for the depth-dependent function c′(z′). The variation of
c′(z′) with respect to the constant value c′0 = 1500 m s−1 can be generally written as
(Jensen et al. 2011)

c′ = c′0 [1 + εf (z′)] , (2.6)

where ε � 1 is a small non-dimensional constant, while f ′ (z′) represents the variation
along z′. We require that f ′ (z′) be a continuous and bounded function (Bender & Orszag
1999). Assume that the pressure on the free surface z′ = ζ ′ is null, hence the mixed
boundary condition on the free surface is given by (Mei et al. 2005)

Φ′t′t′ +g
′Φ′z′ +

(
Φ′

2
x′ + Φ′

2
z′

)
t′

+
1

2

[
Φ′x′

(
Φ′

2
x′ + Φ′

2
z′

)
x′

+ Φ′z′
(
Φ′

2
x′ + Φ′

2
z′

)
z′

]
= 0, z′ = ζ ′,

(2.7)
where g′ is the acceleration due to gravity. Finally, the no-flux condition at the rigid
bottom requires

Φ′z′ = 0, z′ = −h′. (2.8)

2.2. Multiple-scale analysis

Let us introduce the following non-dimensional quantities (Mei et al. 2005; Michele
et al. 2018, 2019; Michele & Renzi 2019)

(x, z) = 2π (x′, z′) /λ′, Φ = 2πΦ′/ (A′ω′λ′) , ζ = ζ ′/A′, c0 = 2πc′0/ (ω′λ′) ,

t = t′ω′, h = 2πh′/λ′, G = 2πg′/
(
ω′2λ′

)
, δ = 2πA′/λ′.

(2.9)

Using the Euler equation (2.3) and the dimensionless variables (2.9), equation (2.5)
becomes

Φtt − c20 (1 + εf)
2

(Φxx + Φzz) +
δ2

2

[
Φx
(
Φ2
x + Φ2

z

)
x

+ Φz
(
Φ2
x + Φ2

z

)
z

]
+ δ

(
Φ2
x + Φ2

z

)
t

+GΦz = 0. (2.10)
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The mixed boundary condition on the free-surface (2.7) gives

Φtt +GΦz + δ
(
Φ2
x + Φ2

z

)
t

+
δ2

2

[
Φx
(
Φ2
x + Φ2

z

)
x

+ Φz
(
Φ2
x + Φ2

z

)
z

]
= 0, z = δζ, (2.11)

while the non-dimensional no-flux condition at the bottom is given by

Φz = 0, z = −h. (2.12)

Now consider the physical scales of the problem. The typical maximum amplitude of
tsunamigenic HA waves is A′ ∼ 10−2 m (Kadri & Stiassnie 2012), whereas the wavelength
is λ′ ∼ 104 m and the angular frequency is ω′ ∼ 1 rad s−1 (see Stiassnie 2010; Cecioni
et al. 2015; Renzi 2017). Furthermore, the sound speed parameter in (2.6) is ε ∼ 10−1,
see Jensen et al. (2011), thus O (G) = O

(
ε2
)
, while the nonlinearity parameter δ ∼ 10−6.

Since δ is very small, the non-dimensional governing equation (2.10) and the free-surface
boundary condition (2.11) simplify as follows

Φtt − c20 (1 + εf)
2

(Φxx + Φzz) +GΦz + O
(
ε3
)

= 0, (2.13)

Φtt +GΦz + O
(
ε3
)

= 0, z = 0. (2.14)

Let us now introduce the following expansion of the non-dimensional velocity potential

Φ = Φ1(x, x1, x2, z, t, t1, t2)+εΦ2(x, x1, x2, z, t, t1, t2)+ε2Φ3(x, x1, x2, z, t, t1, t2)+O
(
ε3
)
,

(2.15)
where t1 = εt and t2 = ε2t denote two slow time scales of the amplitude evolution, while
x1 = εx and x2 = ε2x are two slow spatial scales which account for slow modulation
along the x-coordinate.

Since ε � 1, the perturbation expansion method is a valid approach to obtain an
approximated solution of the initial mathematical problem. We remark that in the case
of generalised sound speed profiles characterised by large parameters ε > 1 the scales
(2.9) fail and different approaches should be considered (Xu et al. 2012; Liao et al. 2016).

Substitution of expansion (2.15) for the velocity potential Φ in (2.13) yields for n =
1, 2, 3, the following governing equation

Φntt − c20 (Φnxx + Φnzz ) = Fn, in Ω, (2.16)

where the forcing terms are given by

F1 = 0, F2 = −2Φ1tt1
+ 2c20Φ1xx1

+ 2c20f (Φ1xx + Φ1zz ) , (2.17)

F3 = −2Φ2tt1
− Φ1t1t1

− 2Φ1tt2
− G

ε2
Φ1z

+ c20
[
f2 (Φ1xx + Φ1zz ) + 2f (Φ2xx + Φ2zz ) + 4fΦ1xx1

+ 2Φ2xx1
+ Φ1x1x1

+ 2Φ1xx2

]
.

(2.18)

The boundary condition on the free surface is

Φntt = Gn, z = 0, (2.19)

where

G1 = 0, G2 = −2Φ1tt1
, G3 = −2Φ1tt2

− 2Φ2tt1
− Φ1t1t1

− G

ε2
Φ1z , (2.20)

while the homogeneous no-flux boundary condition at the horizontal rigid bottom reads

Φnz = 0, z = −h. (2.21)
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Now let us formulate the mathematical problem for a generic frequency ω. Since the
boundary-value problem given by equations (2.12)-(2.14) is linear, we return to physical
variables except for x1, x2, t1 and t2, omit the primes for convenience and assume the
following harmonic expansion:

Φn = φne
−iωt + ∗, (2.22)

where the symbol ∗ indicates the complex conjugate. Having obtained the governing
equations at each order n, we can now investigate the evolution of HA waves.

2.3. Leading-order solution

The leading-order solution outgoing from a source at x→ −∞ is

φ1 =

∞∑
m=0

φ1m =

∞∑
m=0

eikmxψ1m =

∞∑
m=0

eikmxAm (x1, x2, t1, t2) sinβmz, (2.23)

where the eigenvalues are given by

βm =
1

h

(π
2

+mπ
)
, km =

√
ω2

c20
− β2

m, m = 0, 1, . . . , (2.24)

while Am represents the amplitude of the mth HA normal mode depending on the slow
variables. In the following we will only consider propagating modes, for which k2m > 0.
Furthermore, since the problem is linear, we will assume that the evolution of each HA
wave does not involve mode coupling (adiabatic approximation, see Jensen et al. 2011).

2.4. Second-order solution

Expanding the second-order velocity potential

φ2 =

∞∑
m=0

φ2m =

∞∑
m=0

eikmxψ2m, (2.25)

we obtain the following governing equation for ψ2m forced by the first order solution:

ψ2mzz + ψ2mβ
2
m = 2 sinβmz

(
−

iω2Amt1
c20

−
ikmAmx1

λ
+
fω2Am
c20

)
, (2.26)

and the respective boundary conditions on the free surface and at the bottom

ψ2m = 0, at z = 0; ψ2mz = 0, at z = −h. (2.27)

Since ψ1m solves the homogeneous problem at the leading order, a solvability condition
must be applied to ψ1m and ψ2m to avoid secularity. Green’s theorem gives

Amt1
ω2

c20
+Amx1

km
λ

+Am
2iω2

hc20

∫ 0

−h
f sin2 βmz dz = 0. (2.28)

The general solution of the latter equation is readily given by (Hildebrand 1962)

Am = Am
(
x1 − t1

Cgm
ωλ

)
exp

(
−2iω2I0mλx1

hc20km

)
, (2.29)

where

I0m =

∫ 0

−h
f sin2 βmz dz, (2.30)
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while Cgm is the group velocity for the mth HA mode, defined by

Cgm =
dω

dkm
=
kmc

2
0

ω
. (2.31)

The solution (2.29) is valid until x1 and t1 become both of order O (1). Now substitute
(2.29) into (2.23) and transform x1 and t1 back to physical variables via (2.9). Using
x = Cgmt reveals that each modal component of the harmonic decomposition (2.22) is,
at the leading order,

Φ1m = φ1me−iωt + ∗ = Am(0) exp

[
−i

(
ω − Cgmkm +

2εωI0m
h

)
t

]
sinβmz + ∗. (2.32)

Physically, to an observer moving with the envelope at the group velocity x/t = Cgm,
the apparent frequency of the wave signal propagating within the envelope is

ω̃m = ω

(
1 + 2ε

I0m
h

)
− Cgmkm. (2.33)

Note that for a constant speed profile the apparent frequency becomes ω̃m =
ω [1− Cgm (km/ω)]. The latter naturally results from the Doppler effect associated
with the observer moving at the group velocity away from a stationary source that emits
waves propagating at the phase speed ω/km. On the other hand, for a variable sound
speed vertical profile the frequency grows (reduces) by a term proportional to ε|I0m|/h,
if I0m > 0 (< 0), as shown by (2.33). This in turn increases (decreases) the apparent
frequency ω̃m. Furthermore, if

I0m = − (π/2 +mπ)
2
c20

2εω2h
, (2.34)

the apparent frequency ω̃m = 0 and the signal would be constant in time to an observer
moving at the group velocity. Hence, in principle the dynamics would be nondispersive.
This can be possible for large frequencies and specific sound speed vertical profiles for
which f(z) < 0 over much of the depth, like in the Arctic (Jensen et al. 2011).

Moving to the second-order problem, the method of variation of parameters allows
us to find the solution of the forced differential equation (2.26), see Hildebrand (1962).
The homogeneous solution coincides with ψ1m, thus it can be included in the expression
for the velocity potential at the leading order. Consequently, the mth component of the
second-order velocity potential ψ2m is only given by the particular solution, i.e.

ψ2m =
i (h+ z) cosβmz

βm

(
Amt1

ω2

c20
+Amx1

km
λ

)
+Am

2ω2Fm (z)

c20βm
, (2.35)

where the function Fm (z) has expression

Fm (z) =

∫ z

−h
f (u) sinβmu sin [βm (z − u)] du. (2.36)

Finally, substitution of (2.28) in (2.35) yields

ψ2m = Am
2ω2

c20βm

[
I0m (h+ z) cosβmz

h
+ Fm(z)

]
. (2.37)

Note that the potential ψ2m is a peculiar signature of the variable sound speed vertical
profile c and does not exist for constant c = c0. Indeed, in that case I0m = Fm = 0.
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2.5. Third-order problem and evolution equation

Let us use the following fast-coordinate expansion for the third-order potential φ3

φ3 =

∞∑
m=0

eikmxψ3m(z). (2.38)

The governing equation for ψ3m is then given by

ψ3mzz + ψ3mβ
2
m =

(h+ z) cosβmz

βm

[
2ω2

c20

(
Amt1t1

ω2

c20
+Amx1t1

km
λ

)
+

2iω2f

c20

(
Amt1

ω2

c20
+Amx1

km
λ

)
+

2km
λ

(
Amx1t1

ω2

c20
+Amx1x1

km
λ

)]
+

2ω2F

c20βm

(
Am

2ω2f

c20
−Amt1

2iω2

c20
−Amx1

2ikm
λ

)
+ sinβmz

[
ω2

c20

(
Amt1t1 − 2iAmt2 − 3f2Am + 4ifAmt1

)
−
Amx1x1
λ2

−Amx2
2ikm
λ

]
,

(2.39)

while the boundary conditions on the free surface and at the bottom read, respectively,

ψ3m = Am
gβm
ω2ε2

, in z = 0, and ψ3mz = 0, in z = −h. (2.40)

The governing equation is forced by the second-order and first-order solutions, thus we
invoke the solvability condition by applying Green’s theorem to ψ1m and ψ3m over z ∈
[−h, 0]. Going back fully to physical variables, after some lengthy but straightforward
algebra we obtain the following evolution equation

−iAmt
(

1− c20gmε

ωh

)
−Amx

ic20
ω

(
km −

bmε

h

)
+Amxx

amc
2
0

ωh
+
Am
h

(
2ωI0mε+

dmc
2
0

ω

)
= 0,

(2.41)
where am, bm, gm and dm are real coefficients with expressions

am = − c20
2ω2h

(π
2

+mπ
)2
, bm = km

[
I0m

(
1 +

ω2

c20β
2
m

)
+

2ω2

c20βm
(I1m − 2I2m)

]
,

(2.42)

gm =
4I3mε

2ω4

c40βm
− 3I4mε

2ω2

c20
+
gβ2

m

ω2
− g

2c20
, (2.43)

dm =
ω

c20

[
I0m

(
3 +

ω2

c20β
2
m

)
+

2I1mω
2

c20βm
− 4I2mω

2

c20βm

]
, (2.44)

in which the integrals I1m, I2m, I3m and I4m are defined by

I1m =

∫ 0

−h
f · (h+ z) cosβmz sinβmz dz, I2m =

∫ 0

−h
Fm sinβmz dz, (2.45)

I3m =

∫ 0

−h
fFm sinβmz dz, I4m =

∫ 0

−h
f2 sin2 βmz dz. (2.46)

Equation (2.41) can be further simplified if we consider the moving coordinate

ξm = x− t c
2
0

ω

(
km −

bmε

h

)(
1− c20dmε

ωh

)−1
, (2.47)
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and introduce

Am = Bm exp

[
− it

h

(
2ωI0mε+

gmc
2
0

ω

)(
1− c20dmε

ωh

)−1]
. (2.48)

Hence (2.41) becomes

−iBmt + Bmξξ
amc

2
0

ωh

(
1− c20dmε

ωh

)−1
= 0, (2.49)

where, from now on, it is understood that ξ = ξm for the sake of brevity. Expression (2.49)
is the linear Schrödinger equation without potential in quantum mechanics (Debnath
2005). If the speed of sound is constant, i.e. f = 0, equation (2.49) simplifies to

−iBmt + Bmξξ
amc

2
0

ωh
= 0. (2.50)

The latter is similar to the evolution equation for the wave envelope of gravity wave
packets in Mei et al. (2005), thus similar considerations can be easily extended here.
Assuming Bm → 0 for |ξ| → ∞, (2.49) can be solved by using the Fourier transform

Bm =
1

2π

∫ +∞

−∞
B0 exp

[
− iu2amc

2
0

ωh− c20dmε
t+ iuξ

]
du, B0 =

∫ +∞

−∞
Bm0e−iuξ dξ, (2.51)

where Bm0 is the initial value of Bm in ξ = 0.

3. Evolution of the front

Let us consider a sinusoidal disturbance generated by a monochromatic source. If at a
fixed station located at ξ → −∞ a steady sinusoidal oscillation of amplitude Bm = Bm0

is attained and if the envelope of the wavetrain decays to zero ahead of the front, the
boundary conditions for the evolution equation (2.49) can be written as

Bm = Bm0
for ξ → −∞ and Bm = 0 for ξ → +∞. (3.1)

Assuming a solution of the form

Bm = Bm0Hm (χ) , with χ = − ξ√
t
, (3.2)

we obtain the following boundary-value problem

H′′m + iH′m
ωh− c20dmε

2amc20
= 0, (3.3)

Hm (χ→ −∞) = 0, Hm (χ→ +∞) = 1. (3.4)

The solution can be found in terms of Fresnel cosine and sine integrals C and S,
respectively (Mei et al. 2005). The main difference with the constant sound speed vertical
profile is due to the term multiplying the first derivative in (3.3), which can be either
positive or negative. In particular, we obtain

Bm
Bm0

=
e∓

iπ
4

√
2

{
1

2
+ C (µm)± i

[
1

2
+ S (µm)

]}
, (3.5)
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Figure 1. Behaviour of the ratio cM/c0 versus the depth z.

where

C (µm) =

∫ µm

0

cos
πv2

2
dv, S (µm) =

∫ µm

0

sin
πv2

2
dv, µm = −ξ

√∣∣∣∣ωh− c20dmε2tπamc20

∣∣∣∣,
(3.6)

while the ∓ and ± signs in (3.5) are to be taken if
(
ωh− c20dmε

)
/(2amc

2
0) ≶ 0. Finally,

the magnitude of (3.5) reads∣∣∣∣ BmBm0

∣∣∣∣ =
1√
2

{[
1

2
+ C (µm)

]2
+

[
1

2
+ S (µm)

]2} 1
2

. (3.7)

In the next section we discuss the results for a deep-water Munk profile and compare
them to the constant sound speed case c = c0.

4. Results and discussion

In this section, we consider the Munk profile c = cM to model deep-water propagation
and to perform comparisons with the simplest case c = c0. This idealised profile allows
us to illustrate many features that are typical of deep oceanic waters at mid-latitudes,
like the propagation in the deep sound channel, also referred to as the SOFAR channel
(Jensen et al. 2011). The mathematical expression for the Munk profile is given by (2.6)
with ε = 0.1 and

f = 0.0737
(
z̃ − 1 + e−z̃

)
, where z̃ = −2 (z + 1300) /1300. (4.1)

Figure 1 shows the ratio cM/c0 along the vertical coordinate z. Let us now compare the
velocity potential distribution up to O (ε) when c = c0 and when c = cM . Let us consider
also h = 5000 m, and two different values of the frequency, namely ω = 2 rad s−1 and
ω = 6 rad s−1.

Figure 2 shows the behaviour of (ψ1m + εψ2m) /Am for the first couple of normal
modes m = 0, 1 and sound speed vertical profiles, c = c0 and c = cM , respectively. In
particular, Figure 2(a) represents the case for ω = 2 rad s−1, while Figure 2(b) shows
the case for ω = 6 rad s−1. The difference between the velocity potentials increases with
the frequency and decreases with the integer m. In any case, the sound speed vertical
profile modifies the velocity potential along z. In particular, for ω = 6 rad s−1 the
minimum moves significantly upwards. This has an influence on the vertical HA pressure
distribution which cannot be neglected.
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Figure 2. Behaviour of the firsts two normal modes m = 0 and m = 1 for different sound
speed vertical velocities c and frequency ω. (a) ω = 2 rad s−1 and (b) ω = 6 rad s−1.

Finally, let us focus our attention on the propagation of the wavetrain front and
investigate the effects of the sound speed c on the the amplitude ratio (3.7). Figures
3(a) and 3(b) show the behaviour of the envelope amplitude ratio |Bm/Bm0| versus time
t, for fixed x = 2 × 105 m, ω = 2 rad s−1 and integers m = 0, 1, respectively. Similarly,
figure 3(c) and figure 3(d) show the same physical quantity but for larger frequency, i.e.
ω = 6 rad s−1. All figures show a similar phenomenon, i.e. the envelope travels faster
when c corresponds to the Munk profile cM . For example, Figure 3(a) shows that the
envelope peak in the case of c = cM , arrives ∼ 4 seconds earlier than the envelope peak
for c = c0 constant. Furthermore, figure 3 also shows that normal modes with smaller m-
index and larger frequency ω reach the steady-state limit Bm0 faster than normal modes
with larger vertical eigenvalues and smaller frequencies.

5. Conclusions

We analysed the propagation of HA waves in the presence of a depth-dependent sound
speed profile using a perturbation expansion up to the third order, three-timing and two
slow horizontal length scales.

At the second order, we found a correction for the velocity potential due to the variation
of the sound speed in the fluid. We showed that the potential can be significantly affected
if the sound speed is not constant throughout the fluid layer and that the frequency
increases or decreases depending on the profile, with effects on the phase speed. This
clearly has implications on the dynamic pressure distribution in the fluid domain, a
physical quantity of interest for detecting HA waves with hydrophones and underwater
equipment.

At the third order, asymptotic analysis for the Schrödinger equation allowed us to
describe the behaviour of the envelope front in terms of Fresnel integrals. We compared
the results obtained in the case of a Munk profile, valid in deep oceanic waters, with
the case of a constant sound speed. The idealised Munk profile is mainly used to
simulate deep-water propagation in mid-latitudes oceanic waters having depth exceeding
2000 m and has been widely applied in computational ocean acoustics. We found
that the envelope travels faster in the case of the Munk profile. This result highlights
the importance of including variable sound speed vertical profiles in the design of
tsunami early warning systems based on HA waves. Finally, we investigated the envelope
propagation for different normal modes and frequencies. Our results show that the
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Figure 3. Evolution of the envelope amplitude ratio (3.7) for different sound speed vertical
velocities cM and c0 and fixed horizontal coordinate x = 2 × 105 m. (a) ω = 2 rad s−1 and
m = 0, (b) ω = 2 rad s−1 and m = 1, (c) ω = 6 rad s−1 and m = 0, while (d) ω = 6 rad s−1

and m = 1.

evolution reaches a steady state faster when the frequency increases and when the mode
number decreases.

Other effects such as variable topography or seabed attenuation are inevitable as one
get closer to the nearshore environment. These phenomena complicate the dynamics and
should be also investigated to better evaluate the propagation of HA waves for practical
applications.
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