
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Self-adaptive trade-off decision making for autoscaling cloud-based servicesSelf-adaptive trade-off decision making for autoscaling cloud-based services

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1109/tsc.2015.2499770

PUBLISHER

Institute of Electrical and Electronics Engineers (IEEE)

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

LICENCE

All Rights Reserved

REPOSITORY RECORD

Chen, Tao, and Rami Bahsoon. 2015. “Self-adaptive Trade-off Decision Making for Autoscaling Cloud-based
Services”. Loughborough University. https://hdl.handle.net/2134/9876311.v1.

https://lboro.figshare.com/
https://doi.org/10.1109/tsc.2015.2499770

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 1

Self-Adaptive Trade-off Decision Making for
Autoscaling Cloud-Based Services

Tao Chen, Member, IEEE, Rami Bahsoon, Member, IEEE

Abstract—Elasticity in the cloud is often achieved by on-demand autoscaling. In such context, the goal is to optimize the Quality of
Service (QoS) and cost objectives for the cloud-based services. However, the difficulty lies in the facts that these objectives, e.g.,
throughput and cost, can be naturally conflicted; and the QoS of cloud-based services often interfere due to the shared infrastructure in
cloud. Consequently, dynamic and effective trade-off decision making of autoscaling in the cloud is necessary, yet challenging. In
particular, it is even harder to achieve well-compromised trade-offs, where the decision largely improves the majority of the objectives;
while causing relatively small degradations to others. In this paper, we present a self-adaptive decision making approach for
autoscaling in the cloud. It is capable to adaptively produce autoscaling decisions that lead to well-compromised trade-offs without
heavy human intervention. We leverage on ant colony inspired multi-objective optimization for searching and optimizing the trade-offs
decisions, the result is then filtered by compromise-dominance, a mechanism that extracts the decisions with balanced improvements
in the trade-offs. We experimentally compare our approach to four state-of-the-arts autoscaling approaches: rule, heuristic, randomized
and multi-objective genetic algorithm based solutions. The results reveal the effectiveness of our approach over the others, including
better quality of trade-offs and significantly smaller violation of the requirements.

Index Terms—Search-based optimization,multi-objective trade-offs,QoS interference,cloud computing

F

1 INTRODUCTION

C LOUD computing, grounded on the principle of shared
infrastructure, emerges as an increasingly important

computing paradigm. In such paradigm, Software as-a-
Service (SaaS) are typically supported by the software stack
in the Platform as-a-Service (PaaS) layer. They are also sup-
ported with Virtual Machines (VM) and hardware within
the Infrastructure as-a-Service (IaaS) layer. When running
cloud-based services under changing environmental condi-
tions (e.g., workload, size of incoming job etc.), governing
their Quality of Service (QoS) is among the primary con-
cerns of both cloud providers and service owners. The QoS,
for examples, can be response time, throughput or any other
non-functional attributes experienced by the end-users. In
the cloud, these QoS attributes can be often managed and
tuned through various internal control knobs, including
software configurations (e.g., number of service threads)
and hardware resources (e.g., CPU and memory of VM),
in a shared infrastructure subject to rental cost. During
such process, it is particularly important to consider the
interplay between software configurations and hardware
resources. This is because these software configurations can
significantly affect the QoS and the required resources, as
evident by many recent work [1] [2] [3].

To achieve elasticity and scalability in cloud, autoscaling
is usually considered as the key strategy. In general term, au-
toscaling refers to the elastic process(es) that adapts the con-

• T. Chen and R. Bahsoon are with CERCIA, the School of Computer
Science, University of Birmingham, Birmingham, UK, B15 2TT.
E-mail: t.chen@cs.bham.ac.uk, r.bahsoon@cs.bham.ac.uk

Manuscript received 8 Apr. 2015; revised 20 Sept. 2015; accepted 30 Oct.2015.
Date of publication 0 . 0000; date of current version 0 . 0000.For information
on obtaining reprints of this article, please send e-mail to:reprints@ieee.org,
and reference the Digital Object Identifier below.Digital Object Identifier no.
10.1109/TSC.2015.2499770

trol knobs on-demand according to the changing environ-
ment conditions. Its ultimate goal is to continually optimize
the QoS and cost objectives for all cloud-based services; thus
their requirements can be better complied. Here, the core
phase in autoscaling is the dynamic decision making process
that produces the optimal (or near-optimal) decision—a
set of newly configured values of the necessary control
knobs—for all the related objectives. However, objective-
dependency (i.e., conflicted or harmonic objectives) often
exist in the decisions making process, which implies that
trade-offs are necessary and hence it renders the reasoning
about the effects of decisions on objectives as a complex
task. This is especially true for the shared infrastructure of
cloud where objective-dependency exists for both intra- and
inter-services. That is to say, trade-off is not only caused
by the nature of objectives (intra-service), e.g, Throughput
and cost objective of a service; but also by the dynamic QoS
interference (inter-services) due to the co-located services on
a VM and co-hosted VMs on a Physical Machine (PM) [1]
[2] [3] [4]. Here, QoS interference refers to scenarios where a
service exhibits wide disparity in its QoS performance that
depends on the dynamic behaviors of its neighbors; this
is known as a typical consequence of resources contention
in cloud [3] [4]. Therefore, given the presence of complex
objective-dependency, it is clear that the decision making for
autoscaling in the cloud is very difficult, if not impossible,
to be handled by human decision makers; and thus urges
the need for self-adaptivity. Among the trade-off decisions
that quantified by the commonly used pareto-dominance
relation, we are particularly interested in the ones that
achieve well-compromised trade-offs (a.k.a. knee points).
A decision is said to result in well-compromised trade-
off, as when compared with its neighboring decisions, if
it largely improves the majority of the objectives; while

ar
X

iv
:1

60
8.

05
91

7v
1

 [
cs

.D
C

]
 2

1
A

ug
 2

01
6

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 2

causing relatively small degradations to others. In other
words, the improvements of all dependent objectives are
well-balanced.

The QoS performance of services and the cloud environ-
ment tend to fluctuate; consequently, the QoS interference,
the possible trade-off decisions for autoscaling and their
effects on the objectives are dynamic and uncertain. State-
of-the-art approaches often ignore QoS interference and its
related trade-offs in autoscaling. Furthermore, they tend
to be limited in handling two challenges related to the
trade-offs: Firstly, most of the work restricts the autoscaling
decisions into fixed bundles (e.g., VM instance), which is
rather inflexible, and thus it is necessary to consider any
combinations of the configured values for control knobs [5].
However, given the potentially large amount of possible
combinations of the configured values, finding the optimal
decisions and reasoning about their effects on objectives is
known to be an NP-hard problem [6] [7] [8]. Henceforth,
the key challenge is how to dynamically optimize diversi-
fied trade-off decisions and thus produce better coverage
of the trade-offs surface. Secondly, another challenge is
how to dynamically extract the decisions that achieve well-
compromised trade-offs under runtime uncertainty. This
challenge is not well-studied in cloud autoscaling.

Existing work for autoscaling decision making in the
cloud can be either static in the sense that the mapping be-
tween conditions and decisions are fixed; or dynamic where
the runtime conditions and behaviors are used to ’learn’
new decisions. The static approaches [9] [10] are insuffi-
cient as they are restricted by the simplified assumptions
about the conditions and the mapped decisions. Although
dynamic approaches have been proposed to address this
limitation, most of them [11] [12] [13] only focus on op-
timizing a single objective (e.g., cost), where other objec-
tives are treated as constraints. This means that the search
process tends to be limited in exploring trade-offs due to
the optimization of single objective. To this end, weighted-
sum formulation that aggregates all the objectives into a
single one has been widely applied [14] [15] [2] [16] [6].
Nevertheless, weighted-sum of objectives requires human
intervention to carefully design and tune the weights for
the objectives, which is often an extremely complex and
error-prone exercise. In addition, finding the right weights
in advance is extremely difficult in the presence of QoS inter-
ference, as it is difficult to presume the relative importance
of the services and their levels of importance. On the other
hand, a single aggregation can track the search in a smaller
search space and the resulted decisions are driven by coarser
and less information about the trade-offs surface. In other
words, the optimality and diversity of the resulted trade-
offs decisions tend to be limited and therefore causing it
difficult to achieve well-compromised trade-offs. There is a
limited amount of work that leverage on the notion of multi-
objective optimization [7] [8] [17] and pareto-dominance
[18] based sort. Most commonly, they apply Multi-Objective
Genetic Algorithm (MOGA), e.g., NSGA-II [19], to search
the trade-offs decisions without explicitly using weights.
However, since they do not focus on decisions that produces
well-compromised trade-off, the amount of resulted deci-
sions is unavoidably large and can easily lead to imbalanced
improvement.

In this paper, we propose a multi-objective self-adaptive
approach for autoscaling decision making in the cloud with-
out heavy human intervention. This approach dynamically
and adaptively adjust its own behaviors to (i) optimize and
discover the diversified trade-offs decisions at runtime; and
(ii) extract the decisions that produce well-compromised
trade-offs with respect to all related objectives. To the best
of our knowledge, we are the first to address the problem
of reaching well-compromised trade-offs for autoscaling in
the cloud while considering the trade-offs caused by QoS
interference. In particular, we show the effectiveness of the
approach for up to 30 dependent objectives, which is sig-
nificantly larger than what is considered in state-of-the-art
work. Precisely, we make the following novel contributions:

Firstly, by leveraging on our prior work [20] [21] [22],
we implement the proposed approach as a self-adaptive and
standalone system that is QoS interference aware.

Secondly, in light of many successful applications of
Metaheuristic Algorithms (MAs) in the cloud [2] [6] [7]
[8] [23] [24], we design Multi-Objective Ant Colony Opti-
mization (MOACO) to search the optimal (or near-optimal)
trade-offs decisions for cloud autoscaling. The search pro-
cess in our MOACO is similar to conduct many single
objective optimizations in one run, which aims to optimize
and to make trade-off for large number of objectives without
specifying weights on them.

We have chosen MAs over the deterministic algorithms
because (i) since the problem tends to be NP-hard, existing
deterministic algorithms can perform poorly on high dimen-
sionality as they aim for exact result. On the other hand, the
MAs are capable to efficiently achieve approximated results
with good enough quality. (ii) Deterministic algorithms of-
ten rely on and take advantages from the nature of the prob-
lem, e.g., whether or not it is convex. However, the decision
making problem in autoscaling tends to be dynamic and
uncertain due to the changing QoS and the environment.
In contrast, MAs often have broad applicability and less
sensitive to the problem’s nature. (iii) Additionally, the
stochastic nature of MAs allows it to efficiently achieve good
coverage in the dynamic and uncertain trade-offs surface
of the problem. This improves diversity in the search and
hence allows the MAs to efficiently discover better decisions
and well-compromised trade-offs.

Majority of the existing multi-objective optimization
work [7] [8] [17] apply MOGA, most commonly the NSGA-
II [19], to make decision for autoscaling (we will experi-
mentally compare against them in Section 6). They have
ignored QoS interference and thus only considered a limited
number of objectives (i.e., up to 4). Unlike their approaches,
we have chosen MOACO because (i) it has been shown
that MOGA, such as NSGA-II, cannot optimize and make
trade-offs for more than 4 objectives [25]; while our problem
needs to handle larger numbers as we consider the trade-
offs caused by QoS interference, e.g., we have considered
30 objectives in our experiments. (ii) As discussed in [25],
the limitation of MOGA for large number of objectives is
due to it needs pareto-dominance to evaluate the overall
quality of decisions for all objectives as the algorithm runs;
henceforth, causing the MOGA to obscure and miss impor-
tant information about the trade-off surface, which restricts
its optimality and diversity when the number of objectives

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 3

increases. Unlike MOGA, the nature of MOACO allows us
to design it in a way that decisions are evaluated against
each objective for many single objective optimizations in
one run, and thus avoiding the use of pareto-dominance
in the optimization. This is achieved by using aggrega-
tive heuristics and different pheromone structures for the
objectives. Hence, we only need to evaluate the overall
quality of decisions for all objectives (i.e., the compromises)
after the optimization has been competed. By doing so, the
optimization can optimize and make trade-offs for larger
number of objectives while ensuring good diversity. (iii) The
sequential pareto-dominance sorting of MOGA can incur
large overhead; in contrast, MOACO can gain benefits from
parallel programming as each ant works in isolation. (iv)
In other problem domains of cloud, e.g., [24], it has been
shown that MOACO tends to outperform MOGA.

Thirdly, by separating MOACO and the evaluation of
decisions’ overall quality for all objectives, the MOACO is
encouraged to explore more information about the trade-
offs surface while saving computational efforts. This design,
as shown in [26], tends to produce better optimized and
diversified trade-off decisions. Hence, we intend to search
for well-compromised trade-offs from a set of optimized
decisions that exhibit high diversity. Instead of using pure
pareto-dominance [18] to evaluate the overall quality of
decisions for all objectives during optimization, we propose
a new mechanism, namely compromise-dominance, to search
well-compromised trade-offs based on the final result of
MOACO. Here, we use pareto-dominance [18] to measure
superiority, and a combination of nash-dominance [27] and
the distance of decision to measure fairness. In this way,
we aim to achieve a well-balanced improvements for the
objectives without explicitly weighting them.

Fourthly, we experimentally evaluate our approach us-
ing RUBiS [28] benchmark and FIFA 98 workload trend [29].
We compare our approach to four widely used approaches
for autoscaling: rule-based, heuristic based, randomized and
MOGA based. We have considered four commonly used
QoS attributes, these are: Response Time, Throughput, Reli-
ability and Availability. The results suggest that with a large
number of objective (i.e., up to 30), our approach produces
better trade-offs quality in terms of the numbers of favorable
objectives and the extents to which they are optimized; it
also produces smaller violation for requirements. Moreover,
our approach results in acceptable overheads and has bal-
anced elasticity in terms of over-/under-provision.

The paper is structured as the following: Section 2
present a motivating example, assumptions and the for-
mulations of autoscaling problem in the cloud. Section 3
presents an overview of the autoscaling system. Section 4
illustrates the multi-objective ant colony optimization so-
lution. Section 5 describes the compromise-dominance mech-
anism for finding well-compromised trade-offs. Section 6
presents experiments and evaluations. Section 7 and 8
present related work and conclusion respectively.

2 FORMAL DEFINITION OF THE PROBLEM MODEL

2.1 Background and Motivating Example
Consider, for example, a company called Rbay that deploy
their services on a public PaaS and IaaS cloud provider, who

is currently serving many other cloud consumers. We as-
sume that Rbay’s services and numerous other cloud-based
services might run in a shared VM or PM, and that these
services have different, possibly conflicted QoS and cost
objectives, together with time-varying environment changes
(e.g., changes in workload). Often, cloud-based services can
have multiple replicas for various purposes, e.g., service
differentiation and load balancing etc. Therefore we assume
that different concrete services S1, S2, ... Si might have
multiple replicas deployed on different VMs, or even PMs.
In this work, we refer to the replicas of concrete services as
service-instances: the jth service-instance of the ith concrete
service is denoted by Sij . Multiple service-instances are de-
ployed on a cloud software stack running on VM, which can
be setup using various control knobs. These control knobs
are either shared amongst the service-instances (e.g., CPU
of the VM) or specific to one service-instance (e.g., threads
of a service-instance). Suppose that, from time to time, the
QoS or cost requirements of Rbay’s service-instances are
violated, autoscaling system needs to continually find the
best autoscaling decision—w.r.t. the QoS and cost objec-
tives—as to the amount of scaling that should be applied
to the necessary control knobs. Such decision making needs
to consider the dynamic, uncertainty and trade-offs related
to the conflicted objectives, e.g., throughput and cost.

Now, suppose that the autoscaling system has decided
to improve the throughput of Rbay’s service-instance Sij by
provisioning more memory to the underlying VM. Such a
decision might not be an issue when the contention is light.
However, as the provision increases, eventually it will result
in throughput degradation to the other service-instances on
the co-hosted VMs, leading to dynamic QoS interference
[1] [2] [4]. The same issue applies when we increase the
number of service threads for a service-instance, where
the co-located service-instances on the same VM might be
interfered [2] [3]. These phenomenons imply that there are
trade-offs between the throughput of Sij and those of the
other service-instances, which might be owned by different
cloud consumers. It becomes more complex when we need
to consider trade-offs between conflicted objectives, e.g., the
throughput and cost of Sij . All these facts can lead to a
large number of dependent objectives in a decision making
process (i.e., more than 4). Since it is often too expensive to
completely eliminate QoS interference [4], we aim to opti-
mize the services’ objectives till the point where interference
becomes significant, and then mitigate the effects of QoS
interference by making well-compromised trade-offs.

However, well-compromised trade-offs cannot be guar-
anteed by purely existing pareto-dominance based ap-
proaches [18] (we present the definition of pareto-
dominance in Section 5). Given the large number of de-
pendent objectives caused by QoS interference, quantify-
ing compromise in the trade-offs purely based on pareto-
dominance can lead to a large number of trade-off decisions,
which also contain the ones that have imbalanced improve-
ments. Suppose that the autoscaling system has reached two
decision A and B where A leads to 9 significantly better
objectives than B; while B can only lead to one slightly
better objective than A. These two decisions are regard as
indifferentiable in the sense of pareto-dominance. Assuming
that both decisions satisfy all the requirements constraints,

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 4

it is generally the case that A is more preferable than B.
However, since they are equivalent in pareto-dominance,
B can be selected instead of A, which results in badly
compromised trade-offs.

2.2 Cloud Primitives
In this work, we term both control knobs and environment
conditions in the cloud as cloud primitives, which serve as
the fundamental inputs of a QoS model. Without the lose of
generality, we further decompose the notion of cloud prim-
itives into two major domains: these are Control Primitive
(CP) and Environmental Primitive (EP). Control Primitives
are the internal control knobs and can be either software
or hardware, which can be tuned to support QoS. At the
PaaS layer, software control primitives are the key software
configurations in cloud; such as the number of threads in
thread pool of service/application, the buffer size and load
balancing policies etc. The hardware control primitives are
computational resources, such as CPU and memory at the
IaaS layer. In particular, it is non-trivial to consider software
control primitives when autoscaling in the cloud as they
have been shown to be important features for QoS [1] [2]
[3]. On the other hand, Environmental Primitives refer to
the external stimulus that cause dynamics and uncertainties
in the cloud. These, for examples, can be the workload and
unpredictable incoming data etc.

2.3 Objective Model
The basic notations are explained in Table 1. Formally, the
QoS objective model at the tth sampling interval is:

QoS ij
k (t) = f ijk (SP ij

k (t), δ) (1)

where the selected primitives input matrix SP ijk (t) is:

SP ij
k (t) =

 CPxy
a (t) · · · EPmn

b (t− 1) · · ·
...

. . .
...

. . .
CPxy

a (t− q + 1) · · · EPmn
b (t− q) · · ·

(2)

whereby q is the number of order. In this work, we dy-
namically create and update SP ijk (t) and the function f ijk
using the online QoS modeling approach in our prior work
[20] [21]. Here, we update SP ijk (t) to contain only the
most significant cloud primitives that can influence the QoS,
including those that cause considerably high level of QoS
interference. This is achieved by using Symmetric Uncertainty
[30]: a metric that quantifies the relevance between two
time-series data, which in our case are QoS and cloud
primitives. The primitives, which provide the most relevant
information to a QoS attribute while causing minimal re-
dundancy to other already selected primitives, are the ones
that we are seeking. On the other hand, f ijk and the required
historical data points are determined by a set of machine
learning algorithms [20] [21].

The total cost model for Sij can be represented as:

Cost ij =

n∑
a=1

CP ij
a (t)× Pa (3)

where n is the total number of control primitive type that
used by service-instance Sij to supports its QoS attributes.

TABLE 1
The Basic Notations of Autoscaling Decision Making Problem.

QoSij
k
(t) The kth QoS attribute of Sij , and its value (e.g., mean

response time) at interval t.
f ij
k

The QoS function for the kth QoS attribute of Sij .
SP ij

k
(t) The selected primitives matrix of Sij at t, its column

contains the most relevant and significant inputs for
the QoS, including the primitives that tend to directly
influence the QoS (e.g., the threads of the correspond-
ing service-instance); and the primitives that belong
to the co-located service-instances and the co-hosted
VMs. The row indicates the number of order, which
represents how many historical data points need to be
used as inputs for improving model accuracy.

δ Any other inputs, e.g., historical time-series QoS points
and tuning variables etc., that improve model accuracy.

CP ij
a (t) The value of the ath control primitive for Sij at interval

t, e.g., CPU, memory and thread etc.
EPmn

b (t-1) The value of the bth environmental primitive for Smn

at interval t-1, e.g., workload etc.
Pa The price per unit of the ath control primitive for a

service-instance.
d An autoscaling decision consists of newly configured

values at t, i.e., d = 〈CP 11
1 (t), CP 11

2 (t), ...CP ij
a (t)〉.

Oo(t) The oth dependent objective in a region. It can be either
QoS (1) or cost (3) for the same or different services.

To reach a trade-offs decision for autoscaling, particu-
larly in the presence of the objective-dependency at both
intra- and inter-services level, we dynamically cluster the
objectives into different regions in terms of whether they
have the common inputs that are parts of the decision. If
these common inputs exist, it means that the objectives are
dependent (i.e., harmonic or conflicted) and can be affected
differently by the same decision; hence, they need to be
considered in conjunction with each other in the decisions
making process. On the other hand, the objectives, which are
independent, are omitted from the same decision making
process as they can benefit nothing but generate overhead.
Please refer to our prior work [22] for detailed specification
of the region clustering approach. As a result, autoscaling in
the cloud needs to optimize multiple independent regions,
each of which contains a different set of objectives.

For each region, our ultimate goal is to produce an
autoscaling decision d that uses the minimal costs to achieve
the best possible QoSs, shown as the following:

Maximize or Minimize
〈
O1(t), O2(t)...Oo(t)

〉
(4)

subject to
∀QoSijk (t) � SLAijk (5)

∀Costij(t) ≤ Budgetij (6)

minija ≤ ∀CP ija (t) ≤ maxija (7)

whereby (5) states that any QoS attribute should meet its
Service Level Agreement (SLA). (6) denotes that the cost
of each service-instance should not exceed its budget re-
quirement on a VM. Finally, (7) represents that the possible
configured values of control primitives must be selected
from a given range of the underlying hardware or software.
minija and maxija are the thresholds to control the range
of possible configured values, and they are dynamically
updated online, as we will see in Section 3.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 5

...

......

Decision Maker

QoS Modeler

Region Controller Optimizer

Compromise
Explorer

Sensor Actuator

VM VM VM

Dom0

1

2

3
4

5

Fig. 1. The architecture of autoscaling system.

It is obvious that, by omitting any predefined weights of
objectives in (4), we render the problem as a discrete multi-
objective optimization problem, which involves multiple
trade-offs and is usually NP-hard [6] [7] [8].

3 OVERVIEW OF THE AUTOSCALING SYSTEM

To enable self-adaptive decision making for autoscaling in
the cloud, we have designed and implemented an autoscal-
ing system using decentralized, multiple feedback loops,
which run on the root domain of each PM, as shown in Fig.
1. The components in our system, except QoS Modeler, are
triggered when it detects violations of the requirements, i.e.,
violations of SLA, and utilization constraints in case of over-
provision. The sensors on a PM does not only sense data,
but also the QoS models from other PMs. This is because
in some cases, a cloud-based service can be functionally
dependent on services running on the other PMs, thus
creating the chances for objective-dependency.

To build the QoS model in (1), we have realized self-
adaptive and online QoS modeling in the QoS Modeler,
as described in our prior work [20] [21]. Subsequently, in
the self-adaptive Region Controller, the most up-to-date QoS
models and the cost models are dynamically clustered into
regions; more details can be found in our prior work [22].

Once the regions of objectives are identified, the fo-
cus of this work is to adaptively produce decision that
achieves well-compromised trade-offs with respect to the
objectives in each region. To this end, we design the self-
adaptive Decision Maker component. Specifically, one of the
subcomponents of Decision Maker is the Optimizer compo-
nent, which leverages on MOACO to search and optimize
for the possible set of trade-offs decisions. Next, another
subcomponent, namely Compromise Explorer, extracts the de-
cisions that achieve well-compromised trade-offs from the
result of Optimizer for autoscaling in the cloud. Theses two
subcomponents are specified in Section 4 and 5 respectively.
To control the diversity of possible decisions, the possible
configured values for each control primitive of a service-
instance are bounded within a range, as mentioned in (5).
The lower bound is set to the maximum of a predefined
value and the latest observed one. On the other hand,
after the upper bound is set as an initial value, it is then
dynamically adjusted based on the newly decided value
and the latest observed one, i.e., it is increased by k% if both

values converge to the upper bound; likewise, it is decreased
by k% if both values diverge from the upper bound.

We consider both vertical scaling and horizontal scaling
in the actuators. The former refers to change the configu-
rations and provision of control primitives within a PM;
the later refers to boots up/shutdown VMs on the other
PMs via migration or replication. In our system, vertical
scaling always takes higher priority, providing that modern
hypervisors (e.g., Xen [31]) achieve dynamic vertical scal-
ing with negligible overheads. The resources on a PM are
provisioned to the VMs in a first-come-first-serve basis. The
horizontal scaling, on the other hand, is only triggered when
the resources of the PM tends to be exhausted, i.e., when
the total upper bounds of all co-hosted VMs for a resource
type exceeds the PM’s capacity. Likewise, a VM is removed
when its provisions and utilizations for all resource types
are below thresholds.

4 SEARCHING AND OPTIMIZING TRADE-OFFS DE-
CISIONS FOR AUTOSCALING IN THE CLOUD

Recall that for each region, our aim is to optimize (4) subject
to the requirements and constraints in (5)-(7). To this end,
we follow the multi-objective ant system described by [26],
in which there are one colony and m pheromone structures
where m is the number of objectives being optimized. The
MOACO relies on probabilistic search-based optimization
that assumes a fixed number of iterations. In each iteration,
the ants select different QoS or cost objectives to optimize
for. By the end of an iteration, each ant produces an au-
toscaling decision containing the selected configured values
for those cloud control primitives that are inputs of the
objectives in (4). This is achieved by the use of a probabilistic
rule, which expresses the desirability for an ant to choose a
particular value for a control primitive. This rule is based on
the information about the current pheromone trail, which
drives the ants to search better decisions for a particular
objective that is selected; and an aggregative heuristic that
guides the ants toward choosing better overall decisions
with respect to all objectives. Hence, the higher the amount
of pheromone and heuristic information is associated with
a particular value of a control primitive, the higher the
probability is that an ant will choose it. This stochastic
nature of the algorithm allows the ants to explore largely
diversified decisions as the search proceeds.

4.1 Probabilistic Rule
Suppose that an ant selects the oth QoS or cost objective
to optimize; the probability for selecting the xth configured
value of the ath control primitive is defined by:

px,a,o =
(τx,a,o)

α × (ηx,a)β∑
y∈S(τy,a,o)α × (ηy,a)β

(8)

whereby S denotes the set of possible configured values
for the ath control primitives; τx,a,o is the pheromone for
the xth configured value of the ath control primitives when
optimizing the oth objective. ηx,a is the heuristic factor
for the xth configured value of the ath control primitive.
α and β are two parameters that determine their relative
importance. It is worth noting that for each ant, the control

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 6

primitives, which we need to find configured values for, are
not restricted to the inputs of the oth objective function, but
also include those of the other QoS or cost objectives in (4).

4.2 Heuristic Factor
Instead of aggregating the objectives to be optimized, we
aggregate the heuristic information to favor the decisions
that tend to improve the overall quality of all objectives. In
this way, we aim to handle large number of objective while
do not require to specify weights on objectives. To this end,
we leverage on the normalized, scalar-valued difference
between the total improvement and the total degradation
for all objectives. This is achieved by comparing the outputs
when using a newly configured value to that of the original
value, formally expressed as:

ηx,a =

∑m

o=1
Ix,a,o

1+
∑m

o=1
Dx,a,o

if
∑
Ix,a,o 6= 0

ηmin
x,a

1+
∑m

o=1
Dx,a,o

otherwise
(9)

whereby, for all m objectives that need to be optimized,∑m
o=1 Ix,a,o is the total improvement over the current setup

when using the xth configured value of the ath control
primitive in the decision. Likewise, the total degradation
in contrast to the current setup is denoted by

∑m
o=1Dx,a,o.

To prevent zero heuristic factor in case where the configured
values cannot improve any objectives, we use the minimum
non-zero heuristic over all possible configured values, de-
noted by ηminx,a , as the initial value. In this way, even though
the ants select different single objectives to optimize for, the
heuristic still ensure that the configured values, which lead
to overall better decisions, are relatively more attractive.

4.3 Pheromone Update
After all ants complete the search in an iteration, the
pheromone trails need to be updated in order to help
guiding the search towards better decisions. Unlike the
heuristic information, the pheromone is designed to favor
the decisions that improve each objective individually. As a
result, the pheromone for a particular configured value of a
control primitive is specific to an objective. Each pheromone
trail is updated by using the rule below:

τa,x,o = (1− ρ)× τa,x,o + ∆τbesto (10)

where ρ (0 < ρ < 1) is a constant that simulates the evapo-
ration of pheromone trails, it determines the speed of evap-
oration—a larger value implies faster evaporation. Thus,
the corresponding configured value becomes unattractive
quicker. ∆τbesto is a factor that deposits the pheromone for
some favorable decisions. In this work, we follow the MAX-
MIN Ant System [26] in which only the configured values
that belongs to the iteration’s best decision can deposit the
pheromone, as defend by:

∆τbesto =

1

1+h(dbesto)−1−h(dglobal−best
o)−1

if x ∈ dbesto ,max h

1

1+h(dbesto)−h(dglobal−best
o)

if x ∈ dbesto ,min h

0 otherwise
(11)

where dbesto is the best decision for the oth objective at
the current iteration, and dglobal−besto denotes the best ever

decision for the same objective; h is the corresponding
objective function. As such, the configured values in the
best decisions would become more attractive; whereas the
others, which are not part of the best decisions, will lose
pheromone based on the speed of evaporation. In addition,
by introducing the best ever decision in the update, we force
the search towards the optimal decision for an objective. It is
easy to see that, by incorporating the heuristic information
and pheromones, the MOACO favors the decisions that do
not only benefit all objectives, but also tend to improve each
individual objective as much as possible. In this way, the
harmonic objectives can be continually optimized in parallel
till they reach the point where trade-off needs to be made;
while the conflicted objectives would be forced to make
trade-offs from the beginning. Consequently, the MOACO
is able to produce higher diversity in the trade-off decisions.

Finally, given the fact that only the iterations’ best deci-
sions are allowed to deposit the pheromone, the ants may
always conclude in the same or similar decisions, which
causes the search to be tracked in local spaces. To resolve this
issue, we leverage on the solution as used by the MAX-MIN
Ant System [26], where the pheromone for the oth objective
are bounded within a given range, denoted as τmaxo and
τmino . By the end of an iteration, the bounds are updated
using the iteration’s best decision:

τmax
o =

{
1

h(dbesto)−1×(1−ρ) if max h
1

h(dbesto)×(1−ρ) if min h
(12)

τmino = v × τmaxo (13)

where h is the corresponding objective function. v is a factor
that controls the length of the range.

4.4 Workflow of MOACO

The workflow of MOACO can be described as the following:
• Step 1: setup the configurations, e.g., number of itera-

tions (maxIteration), number of ants (maxAnt) and the
number of runs for an ant to find satisfactory decision
(maxRun).

• Step 2: compute the heuristic information (9) and initial-
ize the pheromone trails with an identical value.

• Step 3: each ant simultaneously selects an objective to op-
timize. To form a decision, an ant chooses the configured
value of each related control primitive via probabilistic
rule (8). If no satisfactory decisions found (i.e., those that
have no violations of requirements for all objectives), the
ant repeats till it reaches maxRun and returns the best
decision for the selected objective.

• Step 4: upon completion of an ant, it stores the identified
decision. If such decision is the best for the selected
objective in the current iteration, the ant updates the
objective’s local best decision.

• Step 5: after all ants produce decisions for all the ob-
jectives, the best global decision for an objective, which
results in the best value so far, is updated if a better
decision found.

• Step 6: update pheromone bounds using (12) and (13),
and the pheromone trail of each possible configured
value for an objective using (10) and (11).

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 7

• Step 7: the search terminates when it reaches its maxi-
mum iterations, and returns all the decisions identified.
Otherwise it repeats from Step 3.

5 IDENTIFYING WELL-COMPROMISED TRADE-
OFFS FOR AUTOSCALING

It is clear that MOACO is able to search the possible trade-
off decisions for autoscaling in the cloud; however, it does
not cater for the dynamic and uncertainty of the good
compromises in the trade-offs. In this section, we present
a simple but efficient mechanism, namely compromise-
dominance, to adaptively find the decisions that achieve well-
compromised trade-offs from the result of MOACO. Specif-
ically, our compromise-dominance consists of two phases: su-
periority phase and fairness phase.

5.1 Superiority Phase
The first phase in our compromise-dominance mechanism is
to ensure the superior decisions, which are clearly more
favorable than the others. To achieve this, we use the well-
known principle of pareto-dominance [18]:

Pareto-Dominance: A decision d1 pareto-dominates
another d2, if and only if, (i) all the objective results
achieved by d1 are better than or equivalent to those
achieved by d2; and (ii) the result of at least one objective
achieved by d1 is better than the result of the same
objective achieved by d2.

It is easy too see that if a decision pareto-dominates another,
then it is better than another in terms of the quality of every
individual objective and the overall quality for all objec-
tives. In such context, the decisions, which are not pareto-
dominated by any others, are called non-pareto-dominated
decisions. These decisions are pareto optimal in case no
objective can be further improved without making the other
objectives worse off. Our aim in this phase is to identify the
non-pareto- dominated objectives. If they do not exist, we
use the decisions that being pareto-dominated the least.

5.2 Fairness Phase
After the superior decisions are determined, the second
phase aims to ensure the fairness in a decision. That is to
say, we are interested in making the trade-offs well-balanced
with respect to all objectives. To this end, we leverage on
nash-dominance [27]:

Nash-Dominance: A decision d1 nash-dominates an-
other d2 , if and only if, there are less objectives that can
improve their results by switching from d1 to d2 than
vice-versa.

If a decision nash-dominates another, it means that it is more
fair with respect to all objectives, and thus more stable. In
particular, the decisions, which are not nash- dominated by
others, are called non-nash-dominated decisions. As proven
in [27], a non-nash-dominated decision reaches Nash Equi-
librium where no objective can be further improved without
changing the results of other objectives. It has been shown
that, Nash Equilibrium is the most fair state for all objectives
in the sense that it exhibits fair competition, or compromise
[27]. Here, our aim is to identify the non-nash-dominated

objectives; or those that being nash-dominated the least if
there is no non-nash-dominated objectives.

However, nash-dominance tends to be limited in reduc-
ing the number of decisions when the number of dependent
objectives is small, e.g., less than 4 objectives. To this end,
we use an additional metric, namely distance of decision,
to select well-compromised trade-offs under those cases.
Concretely, we select the best value of each objective from all
the decisions identified; these values form a reference point.
We then calculate the normalized Euclidean Distance of the
result, which is achieved by each decision, to this reference
point. The decision(s), which leads to result that has the
minimal distance, is the one(s) that we are seeking.

5.3 Workflow of Compromise-Dominance

We now explain the workflow of the compromise-
dominance mechanism using the following steps:
• Step 1: find the satisfactory decision from the set of

decisions identified by MOACO. If it fails to do so, it
selects the decisions that result in the least number of
violated requirements. This is because in some cases, the
violations are inevitable outcomes due to, e.g., heavy
conflicts amongst the objectives and/or improper set-
tings of the requirements.

• Step 2: rank each decision in the set based on the number
of other decisions that pareto-dominate it. Smaller num-
ber represent higher rank of a decision. Thus, we select
a subset of decisions that is ranked the highest in terms
of pareto-dominance.

• Step 3: rank the reduced set from Step 2 using nash-
dominance. The less a decision is nash-dominated, the
higher the rank is. Likewise, we select a set of decisions
that is ranked as the highest under nash-dominance.

• Step 4: calculate the reference point. Based on the re-
duced set from Step 3, search the decisions that leads to
result that has the smallest distance to that point.

• Step 5: randomly select one decision from the final set.

6 EXPERIMENTS AND EVALUATIONS

We integrate our MOACO and the compromise-dominance
(CD) mechanism, denoted as MOACO-CD. To evaluate the
proposed approach, we have conducted various quantita-
tive experiments. The primary goal of these experiments is
to validate the effectiveness of our approach against other
state-of-the-art autoscaling approaches in cloud, these are:
• RULE - A conventional rule-based autoscaling approach

that makes decisions using predefined if-conditions-then-
action mapping, e.g., [9] [10]. This approach does not
require explicit QoS model as the QoS of a service-
instance is assumed to be sensitive to its own control
primitives only, e.g., the CPU and thread of the said
service-instance. Specifically, violations of QoS would
increase all the relevant control primitives to the next
higher value; while low utilization would decrease them
to the next lower value.

• HILL - A more sophisticated autoscaling approach that
relies on our QoS modeling [20] [21] and region con-
trolling technique [22], but the decision making process
leverages on a weighted-sum formulation of all the

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 8

dependent objectives, e.g., [15] [16]. Here, the approach
leverages on greedy and heuristic based solution: the
random-restart hill-climbing algorithm for optimization,
in which it starts with an arbitrary decision, then at-
tempts to find a better decision by incrementally and
independently changing the values of each control prim-
itives in the models. The algorithm terminates when a
maximum iteration has been reached. The best decision,
in terms of the weighted-sum formulation, is returned.

• RANDOM - Another autoscaling approach that is sim-
ilar to HILL, but instead of using hill-climbing, a ran-
dom optimization algorithm is applied (e.g., [22]). This
algorithm randomly changes the values of each related
control primitive, and terminates when it reaches a max-
imum number of iterations. The best decision is selected
as indicated by the weighted-sum formulation.

• MOGA - A most commonly used multi-objective genetic
algorithm derived from NSGA-II, e.g., [7] [8] [17]. We
have also designed MOGA to benefit from our QoS
modeling [20] [21] and region controlling technique [22].
In addition, we configure the optimal population size
and number of iterations through careful profiling on
our testbed.

Notably, we have configured the approaches to use the
identical number of global iterations for the worst case.
However, to prevent them from completing with arbitrary
latency, we have set a running time threshold (i.e., 75s),
which forces the algorithms to terminate and return the
best decision found. For HILL and RANDOM, we normalize
each objective’s result in the weighted-sum of objectives and
set all the weights to 1. We use the following 5 criteria to
quantify the comparisons:

Coverage of two approaches (C-metric) [32] - this metric
performs pairwise comparison to measure the comparative
quality of trade-offs achieved by two approaches. It is
calculated using the number of (relatively) better objectives
achieved by one approach, divided by the total number of
considered objectives. Formally, the C-metric is defined as:

C(A,B) =
|ro,a ∈ A : ro,b ∈ B, ro,a � ro,b|

m
(14)

whereby A and B represent two approaches and their
corresponding sets of average objective results for all in-
tervals that are being considered. ro,a and ro,b are the
average results of the oth objective, as achieved by the
two approaches; these average results are calculated by
averaging the objective values for n intervals, as denoted
by ro,a = 1

n ×
∑n
i=1 ri,o,a. m is the total number of

objectives that we consider. |ro,a ∈ A : ro,b ∈ B, ro,a � ro,b|
counts how many objective results achieved by A are bet-
ter than those achieved by B. Intuitively, the C-metric is
an effective method to quantify the quality of trade-offs
with respect to the number of the favorable objectives. The
greater the value is, the better the approach is. C(A,B) = 1
means that the results of all objectives achieved by A are
better than those achieved by B.

Generational Distance (G-Distance) [33] - this is another
intuitive metric that measures the quality of trade-offs.
Unlike the C-metric, G-Distance focuses on the generational

extents to which the objectives are optimized as achieved by
an approach. Formally, it is calculated by:

G−Distance =

√√√√ m∑
o=1

(
1

rmax
o

× ((
1

n
×

n∑
i=1

ri,o,a)− rbesto))2

(15)
where ri,o,a is the result of the oth objective at the ith interval,
as achieved by the ath approach. rbesto and rmaxo are the best
and the max average result (over all approaches) for the oth
objective respectively. Smaller value of G-Distance means
better result. The remaining notations are the same as (14).

Violations of Requirements - for each approach, we
measure the extent to which the requirements (i.e., SLA or
budget) of an objective are violated, as defined in:

100

n
×

n∑
i=1

vi s.t ., vi =

{
|ri,o,a−to|

to
if to � ri,o,a

0 otherwise
(16)

whereby vi is the extent of violation at the ith interval; to is
the requirement threshold for the oth objective, i.e., SLA or
budget; and n is the total number of intervals.

Over- and Under-Provisioning - for each approach, we
quantify over-/under-provision by means of the average
difference between the provision and demand for each
control primitive type. The over-provision is calculated as:

100

m× n
×

m∑
j=1

n∑
i=1

Ui,j s.t ., Ui,j =

{ |ui,j−u′i,j|
u′
i,j

if ui,j > u′i,j
0 otherwise

(17)
where ui,j is the provision of the ith control primitive for the
jth VM (for hardware control primitives) or the jth service-
instance (for software control primitives) on a PM. n and m
are respectively the number of intervals and VMs/service-
instances. u′i,j is the corresponding demand using the high-
est possible value that we have observed. The calculation of
under-provision can be similarly applied.

Overhead - We measure the overhead of each approach
in terms of the latency in making decisions. Particularly, we
report on the results for both the best and worst cases.

6.1 Experiments Setup
We conducted experiments on private cloud using a cluster
of PMs, each of which has Intel i7 2.8GHz Quad Cores and
4GB RAM. The PMs use Xen v3.0.3 [31] as the hypervi-
sor and the autoscaling process is running on Dom0. To
eliminate the interference caused by Dom0, we allocated
one CPU core and 600 MB RAM to it, which tends to be
sufficient. Our approach and the other competitors are im-
plemented using Java JDK 1.6. To simulate QoS interference
caused by the VMs while not exhausting resources, we run
three co-hosted VMs on each PM. Initially, we allocate the
same amounts of hardware resources for each of the co-
hosted VMs, these are 30% cap of a dedicated CPU core and
250 MB RAM. All VMs run linux kernel v2.6.16.29.

Our experiments leverage on RUBiS [28], which is a
cloud-based application consists of 26 co-located services
using the eBay.com model. For simplicity, we have used
three RUBiS snapshots, each of which consists of a 2-tiers
(i.e., application and database tiers) based RUBiS applica-
tion. A RUBiS snapshot is deployed with a software stack in-
cluding linux kernel v2.6.16.29, Tomcat v6.0.28 and MySQL

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 9

v3.23.58 on each co-hosted VM of the master PM. The
snapshots use heterogeneous database volume size ranging
from 1GB to 5GB data. We have implemented sensors and
actuators on each service-instance/VM for collecting the
online data and scaling the control primitives respectively.

In this work, we have realized vertical scaling actions
(a.k.a. scale-up/-down) by using a customized listener on
Tomcat and the management module of Xen. As for hori-
zontal scaling actions (a.k.a. scale-in/-out), we leverage on
master-salves based replication. Each of the three RUBiS
snapshots and its replicas are linked to a dedicated load
balancer. Three client emulators are used and they apply
read/write pattern to generate requests for each load bal-
ancer. To simulate a realistic workload within the capacity
of our testbed, we vary the number of clients according
to the compressed FIFA98 workload [29]. This setup can
generate up to 400 parallel requests, which is large enough
to simulate QoS interference.

6.2 QoS Attributes, Primitives and Configurations
For the simplicity of exposition, we have selected commonly
used QoS attributes and cloud primitives in the evaluation.
In our experiments, we have used identical setups for all
approaches. As listed in Table 2, these QoS attributes and
primitives are per-service except for CPU and memory as
they are shared on a VM. Table 3 shows the configura-
tions for each control primitive type. Scale-out occurs if
the summed max of CPU or memory for all the co-hosted
VM exceeds the PM’s capacity. The hardware and software
control primitives of a new replica VM and service are
set as the initial value i. Likewise, scale-in occurs if CPU
and memory of a VM are provisioned as min, and their
utilizations are below u. Table 4 illustrates the SLA and
budget (per interval on a VM) for each managed service-
instance and Table 5 is the configurations for MOACO. By
carefully examining the objective-dependency of services
based on our prior work [20] [21] [22], we intend to manage
and autoscale the services that exhibit the most fluctuated
performance, and those that are the most likely to lead to
the largest number of dependent objectives in a decision
process. We have identified two such services on each RUBiS
snapshot while leaving the other 24 services as unmanaged,
generating interference only. All these setups give us up to
30 dependent objectives in one decision making process.

In each experiment run, the sampling and modeling
intervals are both 120s with the total of 70 intervals; and
there is one new sample per interval for updating the
QoS models. The autoscaling process is triggered when any
violations of SLA or low utilization is detected. Given that
the QoS modeling requires certain historical data to build
the models, we report the achieved QoS and cost of all
managed service-instances on the master PM for the rear
50 intervals. Each approach is examined for 10 runs.

6.3 Quality of Trade-offs
To evaluate the quality of trade-offs achieved by our ap-
proach, we leverage on the aforementioned C-metric (14)
and G-Distance (15); the results are plotted in Table 6. For
C-metric, our MOACO-CD is better than MOGA as the
later is limited in optimizing and making trade-off for a

TABLE 2
The Examined QoS Attributes and Primitives.

QoS and Primitives Description

Output

Response
Time (ms)

The average leaped time between a service-
instance receives and replies a request.

Throughput
(req/min)

The average rate of completed requests.

Reliability
(%)

The percentage of requests that being com-
pleted faster than the SLA. (2-4 ms)

Availability
(%)

The percentage of time that the average
response time above a threshold. (4 ms)

CP input
CPU (%) Observed average CPU utilization of a VM.
Memory

(MB)
Observed average Memory utilization of a
VM.

Thread
(no. of

req)

Observed maximum concurrent threads of
a service-instance. (a modified control knob
of Tomcat’s maxThread property)

EP
input

Workload
(req/min)

Observed average request rate of a service-
instance.

TABLE 3
Configurations for Each Control Primitive Type.

i u step min max t k p
CPU 30% 50% 1% 15% 40% 70% 10% $0.01

Memory 250MB 50% 5MB 230MB 280MB 70% 10% $0.002
Thread 5 50% 1 4 10 70% 10% $0.017

i = the initial value; u = the lowest possible utilization for triggering
autoscaling; step = the margin between two neighbor values; min =
the minimum value; max = the maximum value; t = the % threshold
to trigger change of the max value; k = the % extent to which the
max value is changed; p = the price per unit per interval for a service-
instance.

TABLE 4
SLA and Budget for The Managed Service-Instances.

Response
Time (ms)

Throughput
(req/min)

Reliability
(%)

Availability
(%)

Cost
($)

VM1 Service1 2 180 85 90 1.2
Service2 2 180 85 90 1.1

VM2 Service3 3 150 85 90 1.17
Service4 2 180 85 90 1.33

VM3 Service5 4 140 90 85 1.02
Service6 2 180 90 90 1.17

TABLE 5
Configurations of MOACO.

α β ρ v maxIteration maxAnt maxRun
4 1 0.1 0.5 5 150 100

large number of objectives; it also does not consider well-
compromised trade-offs. MOACO-CD is superior to RULE,
which does not allow explicit optimization and trade-off. Fi-
nally, MOACO-CD is also better than HILL and RANDOM,
because the weighted-sum of objectives in these two has
greatly restricted their search into local areas of the search
space, henceforth they tend to be limited in improving
the diversity of trade-offs decisions. As a result, we can
conclude that our MOACO-CD is the best according to C-
metric, meaning that it has the best quality of trade-offs in
terms of the number of the favorable objectives.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 10

TABLE 6
Quality of Trade-offs. (The Best is Highlighted in Bold)

Pairwise Comparison on C-metric
C(MOACO-CD,MOGA):C(MOGA,MOACO-CD)=0.8:0.2
C(MOACO-CD,RULE):C(RULE ,MOACO-CD)=0.73:0.27

C(MOACO-CD,HILL):C(HILL, MOACO-CD)=0.8:0.2
C(MOACO-CD,RANDOM):C(RANDOM,MOACO-CD)=0.73:0.27

MOACO-CD MOGA RANDOM RULE HILL
G-Distance 0.4071 1.2707 0.9407 1.5892 1.6958

123
4

5
6

7

8

9

10

11
12
13
14 15 16 17

18
19
20
21

22

23

24

25

26
27

28
2930 123

4
5

6

7

8

9

10

11
12
13
14 15 16 17

18
19
20
21

22

23

24

25

26
27

28
2930

MOGA MOACO-CD RULE MOACO-CD

123
4

5
6

7

8

9

10

11
12
13
14 15 16 17

18
19
20
21

22

23

24

25

26
27

28
2930 123

4
5

6

7

8

9

10

11
12
13
14 15 16 17

18
19
20
21

22

23

24

25

26
27

28
2930

HILL MOACO-CD RANDOM MOACO-CD

Fig. 2. Pair-wised comparison between MOACO-CD and each of the
other approaches (the larger area means better trade-offs; objective
number 1-6 are Response Time; 7-12 are Throughput; 13-18 are Re-
liability; 19-24 are Availability and 25-30 are Cost).

As for G-Distance, we note that our MOACO-CD again
has the best result, producing the best quality of trade-offs
in terms of the extents to which the objectives are optimized.
We can see that RANDOM is better than MOGA, RULE
and HILL, this is because even though it is restricted by
the weighted-sum of objectives, RANDOM tends to largely
improve on a few objectives and thus leading to second best
G-Distance result. The MOGA is ranked the third, because
despite it caters for multi-objective, the inability to handle
large number of objective and the limited diversity have
caused it to optimize only a small amount of objectives. We
can also see that the RULE and HILL are the worst and
they exhibit marginal difference. This is because RULE is
not capable to perform explicit trade-offs and optimization;
while HILL is affected by overhead due to its greedy nature.

To provide a detailed view of the achieved QoS and
cost values, Fig. 2 shows pair-wised comparisons between
MOACO-CD and other approaches with respect to each of
the 30 objectives that we have considered. We can clearly
see that in contrast to the other autoscaling approaches, the
MOACO-CD covers larger area. In particular, its decisions
tend to be significantly better than those of the others
on most QoS objectives while slightly worse, mainly on
the Availability (against MOGA) or Cost (against RULE,
HILL and RADNOM) objectives, which are smaller in num-
ber. This means MOACO-CD favors decisions that largely

TABLE 7
The Average Violations (%). (The Best is Highlighted in Bold)

MOACO-
CD

MOGA RULE HILL RAN-
DOM

Service1 Response Time 102.02 190.42 921.62 853.32 259.94
Throughput 10.49 13.45 14.37 14.52 14.26

Service2 Response Time 86.37 316.74 2370.53 434.88 401.09
Throughput 19.15 20.46 21 21.86 21.06

Service3 Response Time 99.52 389.12 405.33 293.55 457.53
Throughput 39.71 39.93 39.79 41.57 40

Service4 Response Time 73.79 614.90 797.53 730.25 617.17
Throughput 19.84 21.33 20.75 21.58 19.86

Service5 Response Time 0 186.71 357.58 676.56 236.49
Throughput 13.06 13.08 13.22 16.48 14.81

Service6
Response Time 16.37 560.74 214.88 2364.84 192.83

Throughput 61.81 61.93 60.18 62.49 62.3
Availability 0 0 0 0.02 0

Standard Deviation 0.52 2.69 6.62 7.55 2.49

improve on the majority of the objectives; while causing
smaller degradation to others.

In conclusion, the MOACO-CD produces better trade-
offs than the others in terms of the numbers of favorable
objectives and the extents to which they are optimized. This
is because it favors the autoscaling decisions that do not
only benefit all the objectives, but also tend to improve on
each individual objective as much as possible. Therefore,
MOACO-CD is capable to perform better optimization and
find trade-offs decisions with higher diversity for large
number of objectives. In addition, the compromise-dominance
balances the improvements in the objectives, which leads
to well-compromised trade-offs. In particular, the possible
trade-offs are handled properly, not only for the naturally
conflicted objectives (e.g., Throughput and cost of a service);
but also for the conflicts caused by QoS interference.

6.4 Violations of Requirements

Next, we examine whether the decisions made by our
approach can eliminate runtime violations of the SLA and
budget, as listed in Table 4. We use (16) to assess the extents
of these violations when they occur. As shown in Table
7, violations do exist, mainly for the Response Time and
Throughput objectives. However, we can see that MOACO-
CD leads to significantly smaller violations as when com-
pared with the others—it has the best results for 12 out
of the 13 cases. In contrast, MOGA is ranked the second
as it obtains the second best results for most cases. This
proves that MOACO-CD outperforms MOGA in reducing
SLA violations, while optimizing and making trade-offs for
large number of objectives. RANDOM is ranked the third
while HILL and RULE do not differ much in terms of
the overall violations. In particular, the maximum violation
of MOACO-CD is only 102.02%, which is at least 6 times
better than the 2307.53% for RULE, the 2364.84% for HILL,
the 617.17% for RANDOM and the 614.9% for MOGA. We
can also see that MOACO-CD has the smallest standard
deviation on the violations for different service-instances,
meaning that the results of MOACO-CD are better balanced
than the other four. This implies that the trade-offs caused
by QoS interference are better compromised; otherwise, it
can result in imbalanced scenarios where the QoS attributes

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 11

0 5 10 15 20 25 30 35 40 45 50

0

1

2

3
MOACO-CD
MOGA
RULE
HILL
RANDOM
SLA

R
e

sp
o

ns
e

 T
im

e
(m

s)

0 5 10 15 20 25 30 35 40 45 50

0

50

100

150
MOACO-CD
MOGA
RULE
HILL
RANDOM
SLA

R
e

sp
o

ns
e

 T
im

e
(m

s)

0 5 10 15 20 25 30 35 40 45 50

0.88

0.93

0.98 MOACO-CD
MOGA
RULE
HILL
RANDOM
SLA

R
e

lia
bi

lit
y

(%
)

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
MOACO-CD
MOGA
RULE
HILL
RANDOM
Budget

C
o

st
 p

er
 In

te
rv

al
 (

$
)

Fig. 3. The achieved trend of Response Time, Reliability and Cost for Service 6 in one experiment run.

of some service-instances are advantaged while those of the
others are severely violated, e.g., as RULE and HILL.

As a detailed example, Fig. 3 illustrates the fluctuations
of QoS and cost for Service 6 in one experiment run. For Re-
sponse Time (Fig. 3 left), we can clearly see that, in contrast
to the others, our MOACO-CD does not only significantly
reduce violations, but also produce better and more stable
response time when the SLA is complied. From Fig. 3 (top
right), we can also observe that there are no violations
for Reliability. In such case, MOACO-CD does not only
constantly produces the best performance, but also tends to
have the most stable results along the trend: we can clearly
see that for the other approaches, the achieved reliability
drops gradually at around 25-30 time step; whereas the
results achieved by MOACO-CD do not fluctuate much.
Finally, we can see that the cost incurred by MOACO-CD
is similar to MOGA, but slightly higher than the others (Fig.
3 bottom right); however, the extra cost is within the budget
and it is therefore acceptable. That is to say, MOACO-
CD might come with some extra costs but it can lead to
significantly better results on many other QoS objectives.

In summary, we can conclude that MOACO-CD per-
forms significantly better than the other approaches for
reducing SLA violations on a large number of objectives. In
addition, it leads to better and more stable results when the
SLAs are complied. This might come with slightly higher
cost, yet still comply with the budget requirements. Further,
MOACO-CD achieves well-balanced improvement on the
QoS attributes for different service-instances, which implies
that the trade-offs caused by the QoS interference for both
services and VMs are well compromised, even for large
number of objectives.

6.5 Elasticity
We now evaluate elasticity of the proposed approach by
means of over- and under-provisioning using (17). Table 8
shows the average results for all managed service-instances
and VMs on the master PM.

For CPU and thread, the results of MOACO-CD do not
differ much as when compared to the other four. In addi-
tion, the amounts of over-/under-provision are balanced.
Interestingly, for memory, we can see that MOACO-CD
and MOGA perform significantly better than the others on
under-provision, but they are the worst on over-provision
with considerable difference. This is because they detect
that memory can be the most critical control primitives

TABLE 8
Over- and Under-Provisioning (%). (The Best is Highlighted in Bold)

MOACO-
CD

MOGA RULE HILL RANDOM

CPU Over 6.69 15.09 9.48 20.36 15.07
Under 14.40 9.86 11.82 13.06 9.46

Memory Over 10.50 10.66 0.52 0.94 3.00
Under 2.21 2.50 19.13 20.40 11.13

Thread Over 22.29 37.05 21.94 32.38 40.00
Under 22.92 15.55 39.05 27.42 9.30

that significantly influences the QoSs. Moreover, they have
assumed that some extra costs can lead to significantly
better performance on other objectives. Consequently, both
MOACO-CD and MOGA try to avoid under-provisioning
by allocating more memory than the actual demand. Indeed,
in contrast to MOACO-CD and MOGA, although the other
three have better results on over-provision, their bigger
under-provision have resulted in significantly worse QoS
and SLA violations (especially for RULE and HILL), as
evident in Section 6.4. Finally, although MOACO-CD and
MOGA obtain similar results for elasticity, we have shown
that MOACO-CD outperforms MOGA on the quality of
trade-offs and the ability to reduce SLA violation.

In conclusion, our approach results in good elastic-
ity, providing that the amounts of over-/under-provision
achieved by MOACO-CD are balanced and acceptable for
CPU and thread. Among the others, MOACO-CD tends
to have the best under-provision and the second worst,
yet acceptable over-provision for memory. However, this
is a trade-off between cost and QoS attributes, where the
MOACO-CD has assumed that large improvements on the
QoS attributes can be achieved by having slightly more
costs, which are mainly spent on the memory.

6.6 Overhead

Finally, we validate the overhead of our approach by com-
puting latency of the decision making process. We have
omitted RULE as it has negligible overheads. As shown in
Table 9, we can see that for all four approaches, there is a
considerable difference between the worst case and best case
scenarios. Indeed, their actual overhead can be sensitive to
the complexity of the used models (i.e., by the QoS Modeler);
and the number of objectives that are assigned in the same
decision making process (i.e., by the Region Controller). For

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 12

TABLE 9
The Overhead (s). (The Best is Highlighted in Bold)

MOACO-CD MOGA HILL RANDOM
Best case 1.2 12.3 6.8 3.5

Worst case 50.3 69.7 75.09 38.91

the best case scenario, our MOACO-CD has the smallest
overhead (1.2s) while the HILL has the biggest. However,
the results of all four approaches are acceptable. On the
other hand, the RANDOM achieves the smallest overhead
(38.91s) in the worst case scenario; while the MOACO-CD,
MOGA and HILL report 50.3s, 69.7s and 75.09s respectively.
Nevertheless, as we have seen in previous sections, the
MOACO-CD is significantly better than RANDOM in terms
the quality of trade-offs and its capabilities in reducing SLA
violations. For both cases, MOGA has bigger latency than
MOACO-CD due to the overhead of pareto-dominance sort
during optimization. Another observation is that HILL is
often forced to terminate as it reaches the runtime threshold
(i.e., 75s); thus its actual overhead in the worst case scenario
can be bigger than 75.09s. This is the main reason that
causes its poor performance in the quality of trade-offs and
violations. Overall, MOACO-CD has acceptable overhead
even for the worst case with a sampling interval of 120s.

6.7 Discussion on Complexity and Scalability
One benefit of MOACO, as we have shown, is that it can
efficiently achieve approximated results for NP-hard prob-
lems by exploring in diversified parts of the search space,
leading to less effort on computing the objectives’ results.

Lemma 1: Let ci be the number of possible configured
values for the ith control primitive; n be the total number
of control primitives for all the m dependent objectives.
An exhaustive search requires to perform combinatorial
permutation, resulting a complexity of O(m ·

∏n
i=1 ci).

In contrast, the MOACO has a runtime complexity of
O(m ·

∑n
i=1 ci +m · i · a · r), where i, a and r are the number

of iteration, the number of ants and the number of runs for
an ant to find satisfactory decision, respectively.

Proof: The complexity of MOACO can be discussed in
two sequential stages: updating heuristics and updating
pheromone. Since the aim of updating heuristics is to cal-
culate the quality of each individual configured value with
respect to all the objectives, it is only performed once in
a linear manner, resulting a complexity of O(m ·

∑n
i=1 ci).

Updating the pheromone, on the other hand, is achieved
using the decisions found by the ants and it is an iterative
process throughout the algorithm. Therefore, its complexity
is sensitive to m, i, a and r. This gives us the upper bounded
complexity of O(m · i · a · r). In total, the MOACO has a
complexity of O(m ·

∑n
i=1 ci +m · i · a · r). It is easy to see

that, depending on the chosen i, a and r, the complexity
of MOACO can be closed to or far away from that of
an exhaustive search. Indeed, the optimal setting can vary
according to the scenarios. However, as we have shown, our
approach produces good results even with a considerably
small setting of those parameters.

Lemma 2: Let N, Np and Nn be the number of de-
cisions produced by MOACO, the number of decisions

filtered by pareto-dominance and the number of decisions
filtered by nash-dominance, respectively. The complexity of
compromise-dominance is O(m ·N2 +m ·N2

p +m ·N2
n).

Proof: Our compromise-dominance can be discussed
in three sequential sorts: pareto-dominance sort, nash-
dominance sort and distance sort. We realized the pareto-
dominance sort in the same way as the sort in NSGA-II,
which has been proved to have a complexity of O(m · N2)
[19]. The nash-dominance sort is similar to the pareto-
dominance sort, with an equal or smaller number of de-
cisions, resulting a complexity of O(m · N2

p). Finally, the
distance sort is based on Quick Sort and it has a bound of
O(m ·N2

n). Overall, we have O(m ·N2 +m ·N2
p +m ·N2

n).
The scalability of MOACO-CD is related only to the

number of dependent objectives, thus it can work in large
number of services because (i) increasing the number of
services may not influence the approach, as our prior work
[20] [21] [22] cluster the independent objectives of these
services into different decision making processes, which
run independently. In other words, a large number of
services may not affect the decision making as long as
the number of dependent objectives in a process does not
change significantly. (ii) If it is known that the number
of dependent objective will be largely increased, there are
additional mechanisms to improve scalability, e.g., by using
admission control to restrict the number of service on a
VM and the VMs on a PM, which will limit the number
of dependent objectives in one process. (iii) In case the
additional mechanisms are not applicable, the MOACO-CD
can still be tuned using the configurations in Table 5. This
can be achieved by profiling with respect to the possible
number of dependent objectives, as we have done in this
work. It is worth noting that since we consider the trade-
offs caused by QoS interference, we have evaluated up to
30 objectives in one decision making process, which itself is
a significantly larger scale as when compared to the small
scale (i.e., 2 to 4 objectives) in existing work

7 RELATED WORK

7.1 Rule-based Control
In the most classic rule-based autoscaling decision making,
one or more conditions are manually specified and mapped
to an autoscaling decision, e.g., increase CPU and memory
by x if the throughput is lower than y. Brandic et al.
[9] propose a layered framework for autoscaling hardware
resources in the cloud, in which dependency are specified
between the SLA violations and the horizontal scaling deci-
sions. Similarly, Han et al. [10] apply multiple combination
of utilizations and SLA violations to reach a decision. [19]
reports on a rule-based state machine approach for au-
toscaling. They consider QoS interference but only focus on
software control primitives. Unlike our approach, the static
nature of the rules in their work requires to assume all the
possible conditions/decisions and the effects of these deci-
sions. Thus, they are limited in dealing with the dynamics
and uncertainties in cloud, and resolving trade-offs.

7.2 Control Theoretic Approaches
Advanced control theory has also been used for autoscaling
decision making in cloud because of their low latency.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 13

Among the others, [34] present a P-control approach to scale
the number of PM for optimizing QoS in cloud based on
the changes in utilization. [35] propose to use PI-controller
for scaling CPU and memory. This controller calculates
”error” values as the difference between hardware control
primitives and throughput. [4] present another classical
controller that is specifically designed to handle VM-level
QoS interference in cloud. More sophisticated controller also
exist, for instance, Fuzzilized control [36] has been studied
for autoscaling hardware resources in cloud. However, the
major drawback of control theoretic approaches is that they
require to make many actuations on the physical system,
in order to collect the ”error” for stabilizing itself. In con-
trast, our approach uses search-based optimization via QoS
models, and thus it permits to do extensive reasoning before
the actual actuations are taken placed. In addition, control
theory is difficult to be adapted for effectively reasoning and
resolving trade-offs at runtime.

7.3 Search-based Optimization
The proposed approach also belongs to the broad category
of search-based optimization, in which the decisions are
extensively reasoned in a finite, and possibly large search
space. Search-based optimization for autoscaling decision
making in the cloud can be either explicit or implicit. The
former performs optimization as guided by explicit system
models; while this process is not required for the later. As
examples of the implicit approaches, [5] and [1] use model-
free reinforcement learning algorithm to make autoscaling
decision with respect to the hardware control primitives.
In particular, [1] have considered software control prim-
itives and the QoS interference. Approaches that rely on
demand prediction are also belong to this category, e.g.,
the CloudScale [37]. Nevertheless, the implicit approaches
cannot explicitly handle the trade-offs.

As for the explicit ones, [11] [12] [13] attempt to scale
control primitives in the cloud with a single objective in
mind (e.g., the cost). The optimization algorithms include,
e.g., force-directed optimization [11], lagrange algorithm
[12] and integer optimization [13]. However, they tend to be
limited in making trade-offs, because the search is restricted
to favor a single objective only. Many other researches have
been conducted using a weighted-sum of objectives. The
optimization algorithms range from simple techniques, e.g.,
Exhaustive Search [14] and Decision Tree Search [15], to
complex ones, e.g., Hill-climbing Search [16] and Genetic Al-
gorithm [2] [6]. In particular, [23] propose to use Ant Colony
for autoscaling hardware resources based on weighted-
sum of objectives. Nevertheless, weighted-sum of objectives
tends to restrict the search and has limited diversity in the
produced decisions. In addition, they do not consider the
trade-offs caused by QoS interference.

There is a limited amount of work that uses multi-
objective optimization in cloud autoscaling and they have
assumed no more than 4 objectives. [8] have used MOGA
that derived from NSGA-II for trade-off decisions in au-
toscaling. Similarly, [7] have also leveraged on NSGA-II
but they have additionally considered the reduction of
harmonic QoS objectives. [17] is another example that use
NSGA-II, but the authors apply a weaker form of pareto-
dominance, namely epsilon dominance, where it requires a

static epsilon value as the minimum number of better objec-
tives that a non-dominated decision needs to achieve. How-
ever, all these approaches apply pure pareto-dominance to
evaluate the overall quality of decisions for all the objectives
during the optimization, which will lead to a large set of
non-pareto-dominated decisions. Such fact can limit NSGA-
II when the number of objectives increases [25]. Moreover,
they cannot guarantee well-compromised trade-offs and
thus can lead to imbalanced trade-offs. They have also
ignored software control primitives and the trade-offs that
caused by QoS interference. In contrast, we have explic-
itly considered QoS interference, and by using aggregative
heuristics and different pheromone structures for the objec-
tives, we design MOACO in a way that similar to conduct
many single objective optimizations in one run. Therefore,
instead of evaluating the overall quality of decision for
all objective during the optimization (as in MOGA), each
ant assess the decision against single objective, and this
avoids the use of pareto-dominance in optimization. The
overall quality of decisions are evaluated using compromise-
dominance upon completion of the optimization, and this
ensure well-compromised trade-offs. Such design aims to
optimize and to make trade-offs for large number of ob-
jectives while ensuring good diversity. [24] is a related
work to our approach as they also applied MOACO in
cloud. However, their focus is on the trade-offs for VM
to PM mapping problem, whereas ours is on the trade-
off decision making problem in autoscaling. In addition,
they have assumed only two objectives; while our approach
does not assume such limit and we have used up to 30
objectives in the experiments. They update pheromone by
using pareto-dominance to evaluate decisions against all
objectives during the optimization; whereas we conduct the
update by assessing the decisions for each objective. After
the optimization completes, we explicitly search for well-
compromised trade-offs using compromise-dominance.

8 CONCLUSION AND FUTURE WORK

In this paper, we present a self-adaptive approach for
autoscaling decision making in the cloud. In particular,
it adaptively resolves the trade-offs without human inter-
vention. By leveraging on MOACO, the approach dynam-
ically searches and optimizes for possible trade-offs with
high diversity. Further, we propose compromise-dominance
for adaptively selecting the decision that leads to well-
compromised trade-offs. The experiments show that, in
contrast to the rule-based, heuristic based, randomized and
MOGA based autoscaling approaches, our approach pro-
duces better trade-offs quality in terms of the numbers of
favorable objectives and the the extents to which they are
optimized; and much smaller violations of the requirements
with large number of objectives. Moreover, it results in
acceptable overhead and has balanced elasticity in terms of
the over-/under-provision.

In future work, we plan to investigate how the latency of
scaling actions (e.g., replication and migration) can affect the
decision making process. Extending the work for managing
energy in cloud is also in our ongoing agenda.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. X, XXXXX 2015 14

REFERENCES

[1] X. Bu, J. Rao, and C. zhong Xu, “Coordinated self-configuration
of virtual machines and appliances using a model-free learning
approach,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 24, no. 4, pp. 681–690, April 2013.

[2] Y. Zhang, G. Huang, X. Liu, and H. Mei, “Integrating resource con-
sumption and allocation for infrastructure resources on-demand,”
in Cloud Computing (CLOUD), 2010 IEEE 3rd International Confer-
ence on, July 2010, pp. 75–82.

[3] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigating
interference in cloud services by middleware reconfiguration,” in
Proceedings of the 15th International Middleware Conference. New
York, NY, USA: ACM, 2014, pp. 277–288.

[4] N. Ripal, K. Aman, and G. Alireza, “Q-clouds: Managing perfor-
mance interference effects for qos-aware clouds,” in Proceedings of
the 5th European Conference on Computer Systems. New York, NY,
USA: ACM, 2010, pp. 237–250.

[5] L. Yazdanov and C. Fetzer, “Vscaler: Autonomic virtual machine
scaling,” in Proceedings of the 2013 IEEE Sixth International Confer-
ence on Cloud Computing. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 212–219.

[6] R. florian Antonescu, P. Robinson, and T. Braun, “Dynamic sla
management with forecasting using multi-objective optimiza-
tions,” in Integrated Network Management, IEEE Symposium on, 2013.

[7] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, “Evolutionary de-
ployment optimization for service-oriented clouds,” Softw. Pract.
Exper., vol. 41, no. 5, pp. 469–493, Apr. 2011.

[8] S. Frey, F. Fittkau, and W. Hasselbring, “Search-based genetic
optimization for deployment and reconfiguration of software in
the cloud,” in Proceedings of the 2013 International Conference on
Software Engineering, 2013, pp. 512–521.

[9] I. Brandic, V. Emeakaroha, M. Maurer, S. Dustdar, S. Acs,
A. Kertesz, and G. Kecskemeti, “Laysi: A layered approach for sla-
violation propagation in self-manageable cloud infrastructures,”
in Computer Software and Applications Conference Workshops (COMP-
SACW), 2010 IEEE 34th Annual, July 2010, pp. 365–370.

[10] R. Han, L. Guo, M. Ghanem, and Y. Guo, “Lightweight resource
scaling for cloud applications,” in Cluster, Cloud and Grid Comput-
ing (CCGrid), 2012 12th IEEE/ACM International Symposium on, May
2012, pp. 644–651.

[11] H. Goudarzi and M. Pedram, “Multi-dimensional sla-based re-
source allocation for multi-tier cloud computing systems,” in
Cloud Computing (CLOUD), 2011 IEEE International Conference on,
July 2011, pp. 324–331.

[12] R. C. Chiang, J. Hwang, H. H. Huang, and T. Wood, “Ma-
trix: Achieving predictable virtual machine performance in the
clouds,” in 11th International Conference on Autonomic Computing,
2014.

[13] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth, “A virtual
machine re-packing approach to the horizontal vs. vertical elastic-
ity trade-off for cloud autoscaling,” in Proceedings of the 2013 ACM
Cloud and Autonomic Computing Conference, 2013, pp. 1–10.

[14] F. Kabir and D. Chiu, “Reconciling cost and performance objec-
tives for elastic web caches,” in Cloud and Service Computing (CSC),
2012 International Conference on, Nov 2012, pp. 88–95.

[15] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling web
applications in heterogeneous cloud infrastructures,” in Cloud
Engineering (IC2E), 2014 IEEE International Conference on, March
2014, pp. 195–204.

[16] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang, “A smart
hill-climbing algorithm for application server configuration,” in
Proceedings of the 13th International Conference on World Wide Web.
New York, NY, USA: ACM, 2004, pp. 287–296.

[17] D. El Kateb, F. Fouquet, G. Nain, J. A. Meira, M. Ackerman, and
Y. Le Traon, “Generic cloud platform multi-objective optimization
leveraging models@run.time,” in Proceedings of the 29th Annual
ACM Symposium on Applied Computing, 2014, pp. 343–350.

[18] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, 1st ed. Addison-Wesley Longman., 1989.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” Trans. Evol. Comp,
vol. 6, no. 2, pp. 182–197, April 2002.

[20] T. Chen and R. Bahsoon, “Self-adaptive and sensitivity-aware qos
modeling for the cloud,” in Proceedings of the 8th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, 2013, pp. 43–52.

[21] T. Chen, R. Bahsoon, and X. Yao, “Online qos modeling in the
cloud: A hybrid and adaptive multi-learners approach,” in Pro-
ceedings of the IEEE/ACM 7th International Conference on Utility and
Cloud Computing, 2014, pp. 327–336.

[22] T. Chen and R. Bahsoon, “Symbiotic and sensitivity-aware archi-
tecture for globally-optimal benefit in self-adaptive cloud,” in Pro-
ceedings of the 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, 2014, pp. 85–94.

[23] X. Chang, B. Wang, J. Liu, W. Wang, and J. Muppala, “Green cloud
virtual network provisioning based ant colony optimization,” in
Proceedings of the 15th Annual Conference Companion on Genetic and
Evolutionary Computation, 2013, pp. 1553–1560.

[24] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant
colony system algorithm for virtual machine placement in cloud
computing,” J. Comput. Syst. Sci., vol. 79, no. 8, pp. 1230–1242,
2013.

[25] K. Praditwong and X. Yao, “How well do multi-objective evo-
lutionary algorithms scale to large problems,” in Evolutionary
Computation, 2007. IEEE Congress on, Sept 2007, pp. 3959–3966.

[26] I. Alaya, C. Solnon, and K. Ghedira, “Ant colony optimization
for multi-objective optimization problems,” in Tools with Artificial
Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference on,
vol. 1, Oct 2007, pp. 450–457.

[27] N. Pavlidis, K. Parsopoulos, and M. Vrahatis, “Computing nash
equilibria through computational intelligence methods,” Journal of
Computational and Applied Mathematics, vol. 175, no. 1, pp. 113 –
136, 2005.

[28] “Rice university bidding systems,” http://rubis.ow2.org/.
[29] M. Arlitt and T. Jin, “A workload characterization study of the

1998 world cup web site,” Netwrk. Mag. of Global Internetwkg.,
vol. 14, no. 3, pp. 30–37, May 2000.

[30] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition. Morgan Kaufmann, 2005.

[31] “Xen: a virtual machine monitor,” http://xen.xensource.com/.
[32] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:

a comparative case study and the strength pareto approach,”
Evolutionary Computation, IEEE Transactions on, vol. 3, no. 4, pp.
257–271, Nov 1999.

[33] D. A. V. Veldhuizen and G. B. Lamont, “Multiobjective evolution-
ary algorithm research: A history and analysis,” 1998.

[34] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated
control in cloud computing: Challenges and opportunities,” in
Proceedings of the 1st Workshop on Automated Control for Datacenters
and Clouds, 2009, pp. 13–18.

[35] Q. Zhu and G. Agrawal, “Resource provisioning with budget con-
straints for adaptive applications in cloud environments,” Services
Computing, IEEE Transactions on, vol. 5, no. 4, pp. 497–511, 2012.

[36] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, “Dynaqos: Model-free self-
tuning fuzzy control of virtualized resources for qos provision-
ing,” in Quality of Service (IWQoS), 2011 IEEE 19th International
Workshop on, June 2011, pp. 1–9.

[37] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic
resource scaling for multi-tenant cloud systems,” in Proceedings of
the 2nd ACM Symposium on Cloud Computing, 2011, pp. 1–14.

Tao Chen is a Research Fellow at the School
of Computer Science, University of Birming-
ham, UK. His research interests include perfor-
mance/QoS modeling and tuning, self-adaptive
systems, software engineering, cloud comput-
ing, services computing and distributed comput-
ing. His work has been published in SEAMS,
UCC, INS, Computer, IEEE Cloud and ICCS.

Rami Bahsoon is a Senior Lecturer in Soft-
ware Engineering and founder of the Software
Engineering for/in the Cloud interest groups
at the School of Computer Science, University
of Birmingham, UK, working in areas related
to cloud software engineering and economics-
driven software engineering and architecture. He
is currently acting as the workshop chair for IEEE
Services 2014, the Doctoral Symposium chair of
IEEE/ACM UCC Conference 2014, and chair for
the visionary track of IEEE Services 2015.

