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Abstract Police forces are constantly competing to provide adequate service whilst faced
with major funding cuts. The funding cuts result in limited resources hence methods of
improving resource efficiency are vital to public safety. One area where improving the effi-
ciency could drastically improve service is the planning of patrol routes for incident response
officers. Current methods of patrolling lack direction and do not consider response demand.
Police patrols have the potential to deter crime when directed to the right areas. Patrols also
have the ability to position officers with access to high demand areas by pre-empting where
response demand will arise. The algorithm developed in this work directs patrol routes in
real-time by targeting high crime areas whilst maximising demand coverage. Methods used
include kernel density estimation for hotspot identification and maximum coverage loca-
tion problems for positioning. These methods result in more effective daily patrolling which
reduces response times and accurately targets problem areas. Though applied in this instance
to daily patrol operations, the methodology could help to reduce the need for disaster relief
operations whilst also positioning proactively to allow quick response when disaster relief
operations are required.

Keywords Predictive policing · Data analysis · Kernel density estimation · Resource
allocation

1 Introduction

Resilience to known and unknown future human induced events, such as crime, in a constantly
evolving and changing environment is paramount within the emergency services. Having the
ability to preempt these future crimes and to quickly react to any incidents that occur is
fundamental to the potential impact, and ultimate consequences, on public safety. Being able
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to position resources, such as police officers, in the right place at the right time, given the
information and knowledge available is key to deterring incidents and also enables the timely
arrival at the incidents that do occur.

Having such capabilities is becoming increasingly challenging due to funding cuts being
imposed on the force (Newburn 2015). The efficiency of this service can be improved by
positioning officers in a configuration which is most suited to respond to incidents and by
reducing the number of incidents requiring response. Both of these can be achieved through
using predictive policing to direct patrols.

Police officers allocated to response, response units, are directed to incidents by dispatch-
ers. When the response units are not attending incidents their duty is to patrol to deter crime.
It has previously been proven that the presence of an officer in high crime areas, known as
hotspots, reduces crime levels (Smallwood 2015; Sherman and Weisburd 1995) Alongside
deterring crime officers on patrols should also be positioned in a configuration which allows
them to reach possible demand within response time targets. Currently within police forces
there is limited direction given to where response units should patrol. The current imple-
mented method gives an area of concern with regards to level of incidents and an active
time period of approximately 3h within which response units are asked to patrol the area.
This method does not consider real-time variability or positioning proactively for response,
pre-disaster positioning. Due to the limited, and decreasing, number of resources it is impor-
tant that the time available for officers to patrol is used more efficiently. As the efficiency of
patrols can be measured on howwell they deter crime and how effectively they are positioned
to cope with response demand, post disaster response, a method of directing patrols to target
hotspots and position proactively for response using real-time information is proposed in this
research.

The research documented in this paper provides amethodof directing patrol routes to target
crime hotspots and ensure maximum coverage of demand. Initially in the patrol direction
process, hotspots are identified using historical police data and performing kernel density
estimationmapping.The accuracyof hotspot predictions is increased throughusingweighting
systems. The hotspot areas which provide the highest potential to deter crime are identified.
These are the areas where patrolling will be most effective however due to limited resources
not every hotspot can be patrolled at once. The best combination of hotspots to patrol, with
the available resources at that time, is chosen based on which combination provides the
maximum coverage of predicted demand, hence tackling elements of pre and post incident
response. This is determined using a version of the maximum coverage location problem
(MCLP) designed to solve the police positioning problem. Here the demand coverage of
each combination of hotspots is analysed and the best solution is found within the available
time. The demand coverage is measured by the availability of response units to reach the
predicted demand within the target response times.

Hotspots and demand are continuously changing and hence the problem is dynamic,
for that reason real-time solutions to the positioning problem are sought. Due to the time
constraints applied from solving in real time a heuristic approach, tabu search, is used. The
research has taken place in collaboration with Leicestershire Police in the UK, hence it has
benefited from the use of real data and algorithms have been developed to fit with current
police procedures.

Along with the policing this method of directing patrols can also be used in other security
agencies to direct operations. These agencies face major concerns such as terrorism (Security
Service MI5 2017) and human trafficking (National Crime Agency 2016). Using historical
data these types of crime can be targeted through operations directed using the patrol direction
method detailed here. Security services can proactively direct operations for these types of
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crimes by targeting hotspots for the concerned crime. The action of positioning to deter
crime is pre disaster relief operations (DRO) as this takes preventative action against crimes
occurring. The action of proactively positioning for incident response is to assist with post
DRO by providing quick response.

2 Related studies

Previous research in this area can be broken down into work into pre planning patrols to be
directed to either deter crime (Chawathe 2007; Li and Keskin 2014) or work into positioning
patrolling officers proactively for response (Curtin et al. 2010). This work is discussed below.
We believe that there is a gap in the research for a patrolling method which addresses both
the deterring crime and incident response and does so considering real-time variability in
resources. Before detailing the positioning method proposed related studies which have led
to this method are outlined in this section.

As mentioned previously, crime hotspots are an important factor when determining patrol
routes, as hotspot targeting is a successful method of reducing crime. The locations in which
crimes occur is not stochastic, but is influenced by the geographical layout of an area, as
certain area attributes are attractive to criminals such as repeating house design (Chainey and
Ratcliffe 2005). This means that when the area is disrupted by an officer patrolling crime can
be stopped rather than displaced, hence the overall crime rate falls. Identifying hotspots is
common practice within police forces. This started simply with pins on a board to represent
crimes and picking out dense clusters of pins as high crime areas. Over the year methods
have been enhanced and now include such techniques as spatial ellipses, thematic mapping
and kernel density mapping.

Spatial ellipses find areas of high crime density and plot standard deviation ellipses over
these areas, hence each ellipse is considered as a hotspot. An example of how this method
was utilised to study the effects of school holidays on crime distribution in New York can
be seen in Langworthy and Jefferis (2000). The main advantage of this method is that it is
not affected by boundaries. The disadvantage is that crime does not occur in areas defined
by ellipses.

Thematic mapping requires boundaries such as census areas, police beats or a grid. Each
section is then shaded in a colour based on the density of crime in that section. Hotspots
are identified by setting a threshold crime level value and areas above this crime level are
considered as hotspots. The threshold value is set by the analyst based on the case study. In a
study by Chainey et al. (2008) the threshold value was set at 3% of the total area considered.
The use of census areas or police beats as boundaries has the disadvantage of unequal sec-
tion size, creating a biased representation of crime density. An example application of this
method is given by Chainey (2001) for the analysis and visual depiction of crime patterns
and auditing across partnership administrative regions. The disadvantage caused by using
unequal boundaries is removed by the use of a uniform grid. The grid cell size is also deter-
mined depending on the subject by testing. The study by Chainey and Ratcliffe (2005) uses
a grid cell size of 200m and the study discussed previously by Chainey et al. (2008) uses a
grid cell size of 250m. Thematic mapping with grid cells has been used by Chainey (2001)
to analyse the distribution of emergency calls and violent offences. The use of grids does
have limitations as information is lost across cell boundaries.

The final method of identifying hotspots discussed here is kernel density mapping. This
method is widely used by police forces as shown by Chainey et al. (2008) and LeBeau (2001).
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It is beneficial as it has better spatial analysis and visual properties than the previously dis-
cussed methods. The method has also been proven to have the best predictive properties
(Chainey et al. 2008). This method represents crime as a continuous surface (Hart and Zand-
bergen 2014). Grid cells are used in the analysis but the area surrounding the grid cell is also
considered within a certain bandwidth of the cell centre.

Research on police patrolling has been performed by Reis et al. (2006) and Chawathe
(2007). Reis et al. (2006) developed a program, GAPatrol, to allow patrol routes to be planned
in advance. The program finds hotspots iteratively through the construction of visual maps.
Multiagent-based simulation is then used to design patrol routes which attend these hotspots
more regularly than previous patrols. This work enable patrol routes to be planned that are
beneficial to deterring crimes but it does not consider positioning officers so that they can
respond to incidents efficiently. In Chawathe (2007) patrols are planned based on two factors.
Firstly travelling on roads with higher crime ratings, hence deterring crime, and secondly
keeping the cost of travelling low. This study works for a single officer but does not consider
multiple officers on duty. It also has the same limitation as the work by Reiss et al., in that it
doesn’t consider demand coverage.

Other emergency services such as the ambulance service and fire service have a similar
problem when positioning their resources for demand. There has been extensive research in
this area, some of which is relevant to the police positioning problem. However there is a
major difference between these services and the police as ambulances and fire engines are not
required to be visible. Their positioning relies solely on where their demand originates from,
while police officers must be visible to deter crime and improve the public’s feeling of safety.
Most ambulance position problems are solved as maximum coverage location problems
(MCLP). Research carried out by Daskin and Stern (1981) developed an initial method of
ambulance positioning using the basicMCLPprinciples to position ambulances at fire stations
and service stations. This was solved as a stationary problem with no repositioning when
ambulances were moved. Future studies were developed based on this method, including a
double standard model by Gendreau et al. (1997). The method considers two response time
restrictions; it aims to cover a certain percentage of emergency calls within these response
times and the rest do not meet response times. This method also considers that different levels
of coverage are required, which is important to police positioning, as in areas of high demand
one officer is not enough. Hence aspects of the approach adopted in this work for ambulance
positioning will be used to solve the police positioning problem. The objective function used
by Gendreau for the problem is shown in Eq. 1. The equation represents demand points at a
node i by λi and uses x2i to indicate whether i is covered. x

2
i is a binary number which equals

1 if the demand vertex i in set V is covered a minimum of two times within radius r1 and 0
if it is not covered. Constraints are used to set time restrictions.

Maximise
∑

i∈V

(
λi x2i

)
(1)

The research identified has contributed to the development of the patrollingmodel detailed
in this research.Themethod combines the twoprocesses of identifyinghotspots and allocating
resources to maximise response demand coverage. The following sections will outline the
problem faced by the police and how this problem has been addressed.
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Fig. 1 Flow chart of the main steps in the algorithm developed

3 Police positioning problem formulation

Presently patrols are decided based on officer’s decisions. The algorithm developed here
aims to direct patrols to reduce crimes and be in a better position to react to emergency
calls. The algorithm initially identifies hotspots. It does this by taking historical crime data,
filtering it in order to discard data not relevant to the problem, and performing kernel density
estimation. It then uses these hotspots as possible locations to send officers. Which hotspots
are chosen is determined by finding the configuration with maximum coverage of possible
demand, using historical call data to predict the demand. The method adopted to calculate
the optimal configuration of hotspots to patrol is a version of the MCLP. Performing this
analysis once does not give a long-term solution to the patrolling problem as it is a dynamic
problem. The location of hotspots and demand are time dependant, as is officer availability.
Also once a hotspot has been patrolled the effect of deterring crime in the area has a finite
lifetime and hence the area may need to be visited again. Figure 1 shows the main steps in
the algorithm developed.

In order to demonstrate the steps outlined a case study has been taken. This is based on
Leicestershire though the techniques outlined can be used for any area. The road layout is
based on data from OpenStreetMap and is plotted as a directed graph as shown in Fig. 2.
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Fig. 2 Road map of Leicestershire

4 Data analysis

Police record information on calls made to the force and on crimes which have occurred. This
information can be used to inform future policing activities, this is part of evidence based
policing. Call data can be used to determine where response demand originates from and this
in turn can be used to determine where best to place resources to cope with possible demand.
Crime data can be used to determine where crime levels are high and this information can
be used to target problem areas with patrols.

Initial filtering of the police data removes repeat crimes and those not recorded properly
such as those mapping to a default location instead of where the incident actually occurred.
Further filtering narrows down the data set to that which is appropriate to analyse. In the case
of call data, each call recorded by the police is given a grading depending on the severity of the
incident. The two highest priorities are grade 1 and grade 2. These require a timely response;
hence they contribute to the demand placed on response officers. Therefore the only call data
considered when predicting demand will be from grade 2 and grade 1 incidents. Similarly
the crime data is filtered to pick out the relevant information to determine the crime hotspots.
Only certain crimes can be deterred by the presence of an officer on the street, these include
anti-social behaviour, burglary, theft and theft from cars. Hence those crimes not deterred by
an officer’s presence were removed from the data.

An analysis of the data shows that crime levels vary with the day of the week and time
of the day. An example of this is shown in Fig. 3 where the levels of anti-social behaviour
(ASB) throughout the day, for the different days of the week, are shown. It can be seen from
the graph that the highest levels of ASB are experienced between 1800 and 2000h. Hence,
this is the main time that ASB problem areas should be targeted. It can also be seen that
the levels of the crime were particularly high on Wednesdays, Fridays and Sundays. Hence
demand and hotspots are time dependent and will be varied within the algorithm developed
here, based on the day and time. The hotspots for each time period are found using kernel
density estimation (KDE).
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Fig. 3 Variation in ASB depending on time and day

5 Kernel density estimation

Out of the many methods of hotspot identification, KDE has been adopted here as it has been
proven to be the method with the best predictive abilities (Chainey et al. 2008). This method
of analysis reduces the effect of boundaries on the results by taking into account crimes in
the surrounding area.

KDE is performed using a grid overlaid on top of the street map and crime data. In this
study the grid consists of 0.001◦ by 0.001◦ cells. The effect of the grid is reduced, for each
grid cell, by considering the crimeswithin a circle whose centre is at the cell centre andwhose
diameter (bandwidth) is larger than the grid cell size. All the crimes within this bandwidth
are assumed to contribute to the intensity of crimes within the cell. The bandwidth radius
used for this study is 0.001◦. The grid cell size and bandwidth have been determined through
considering the area of interest and testing the effects of using different sizes. The decision is
made based on a compromise between accurate identification of hotspot and computational
time. The KDE calculation is then performed on each of the grid cells using Eq. 2 taken from
Gatrell et al. (1996). This equation finds the intensity of crimes (λ̂τ (s))within the bandwidth
radius (τ ) as a function of the distance from the cell centre (S). di is the distance between
the grid centre (S) and the point being investigated Si . Figure 4 shows the parameters more
clearly. The further the crime from the centre of the grid cell the less it adds to the intensity.

λ̂τ (s) =
∑

di≤τ

3

πτ 2

(
1 − d2i

τ 2

)2

(2)

Once the crime intensity in the region is known the hotspots are identified as the areas
with the highest n% intensity, where n is dependent on the situation. These hotspots can be
used as possible patrol locations. This will target problem areas and help to reduce crime.
However, not all of the hotspots can be constantly visited, certain hotspots will be chosen
based on what configuration provides the best demand coverage.
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Fig. 4 Kernel density estimation

6 Maximum demand coverage

Having determined the hotspots the next stage is to determine the best configuration of these
hotspots to allocate resources to, in order to meet possible demand within the emergency
response time targets. Demand is calculated from the historical data through overlaying a
grid onto the street map and determining the demand level within the grid cells from the call
data. This demand is also time dependant, and will change depending on the day of the week
and the time of day. Demand is considered covered if an officer can reach the area, containing
the demand, within the recommended response time for emergency, grade 1, incidents. In
Leicestershire this is 15min for populated areas such as cities and town centres and 20min
for less populated areas such as rural areas. In the algorithm detailed the two response time
targets are labelled as tc for cities and towns and tr for rural areas.

To determine which layout of hotspots, when covered by the patrol routes, has the optimal
demand coverage the problem can be modelled as a maximum coverage location problem
(MCLP) such as used in ambulance dispatch. In this case the hotspots are the possible
locations where officer’s patrol, represented by W = {w1, w2, . . . , wm} where each of these
are a grid cell and m is the total number of hotspots found during the kernel density analysis.
The demand points are the centres of each of the grid cells and are represented by V =
{v1, v2, . . . , vn}where n is the total number of cells. These points are then used in a variation
of the MCLP based on that used for the ambulance positioning problem by Gendreau et al.
The variation considers the two response time standards using the following rules for demand
point vi:

1. If vi is in a city, or town, centre it is only considered covered if a unit can reach the point
within the time period tc. In this case it is assumed that a response unit can cover the
distance r1 within the time tc.

2. If vi is in a rural area it is considered covered if a unit can reach it within the time period
tr . In this case it is assumed that a response officer can cover the distance r2 within the
time tr .

3. r1 < r2.
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In the case study considered here the maximum average speed which an officer can travel
to reach an incident is 50 miles per hour. This results in r1 = 20km and r2 = 27km being the
maximum distance an officer can be from a demand point, in city and rural areas respectively,
for it to be considered covered.

The objective function devised for this problem is shown in Eq. 3. It looks at each demand
point, vi , determines which region it’s in, city or rural, and whether the demand at that point
is covered. C and R, denoting city and rural, are binary values where 1 signifies the point
is within that classification and 0 signifies that it is outside. In Eq. (3) j xki is a binary value
which equals 1 if the demand point vi is covered a minimum of k times within the radius r j
and λi is the demand at that point.

Maximise
∑

i∈V

(
λi 1x

k
i C + λi 2x

k
i R

)
(3)

The objective function is subject to the constraints shown in Eqs. (4)–(9).
∑

j∈W
y j = p (4)

1,2x
k+1
i ≤ 1,2x

k
i (vi ∈ V ) (5)

1x
k
i , 2x

k
i ∈ {0, 1} (vi ∈ V ) (6)

C, R ∈ {0, 1} (7)

C + R = 1 (8)

rw ≤ rs (9)

In these equations y j represents the number of resources located at hotspot w j . The total
number of units available is taken to be p, constraint (4), and this is determined by the number
of officers on shift with an available status at that time, and whether they are single or double
crewed. Constraint (5) states that node vi can only be covered k + 1 times if it is covered at
least k times. Constraint (6) and (7) ensures 1xki , 2x

k
i ,C and R are binary numbers. Constraint

(8) states that demand is either in a city or rural area but never both at the same time. Each
police officer has a station which they are based from. When allocating patrol activities to
officers they cannot be allocated a region too far from their base station. This is represented
by constraint (9) where rw is the distance from a units base police station to the possible
patrol location for the unit and rs is the maximum distance the unit is allowed to be assigned
from their base station, determined by the police force. When solving the MCLP there are
other constraints laid out by the police, these are;

• a unit can only be repositioned if their status is available,
• a unit whose status is unavailable because they are attending to non-emergency inci-

dents can still contribute to demand coverage. However they cannot be moved for other
purposes.

7 Searching for solutions

In determining the hotspots to be patrolled that give maximum demand coverage there are
many possible combinations to consider. To find the optimal solution an exhaustive search can
be performed and the solution with the highest demand coverage chosen. This search method
has high computational costs. For the application being considered here the demand and
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hotspots are continually changing and hence the problem has to be solved many times. This
makes exhaustive search infeasible and hence other methods have been investigated. One of
these, tabu search, allows the search area to be narrowed resulting in a lowered computational
time to obtain a solution than exhaustive search. This method does not guarantee finding the
optimum solution but it has been shown to be an efficient and accurate way of solving similar
problems (Gendreau et al. 1997).

7.1 Tabu search

TheTabu search process initially choses a random feasible combination of hotspots, S, and the
objective function, Eq. (3), is then obtained to find the demand coverage of that combination,
f ∗. The search for a better solution continues using neighbourhood search. Hence the next
combinations to be investigated are the neighbours, N(S), of the previous solution, where a
neighbour is one move away from the previous solution. In this case, one move is classed as
changing one hotspot in the combination. Out of the neighbouring solutions, the best, S∗, is
chosen to continue the rest of the search, even if this is worse than the previous combination.
Allowing a worse solution to be chosen stops the search getting stuck at a local optima. The
best, S∗, is classified as the solution which maximises the objective function, argmax[ f (S)],
i.e. the solution which results in the highest demand coverage. S∗ is set to the current solution
S and its neighbours are now considered. The search stopswhen one of the following stopping
criteria are met:

• No improvement solution has been obtained for a set number of iterations
• The maximum number of iterations has been reached
• The optimal solution is found, where all points are covered.

Tabu lists are used to stop the process revisiting the same solutions. This is achieved by
adding visited hotspot combinations to a tabu list for a set number of iterations ensuring that
they are not revisited in that time.Another tabu listwith a longermemory is also formed,which
contains hotspots that have been visited by a unit. This is because the effect of a unit patrolling
a hotspot lasts for some time after they have left the area, hence revisiting immediately is not
effective. Also other hotspots which haven’t recently been patrolled should be visited before
repeat visits are made. The hotspot is removed from the tabu list when revisiting is required.
How the algorithm deals with revisiting hotspots is described below.

7.2 Hotspot revisiting

A study by Chen et al. (2015) looked at how ant colony algorithms can be used to plan
patrol routes. Their study developed a patrolling strategy using Bayesian methods and ant
colony algorithms. The paths patrolled by units were marked by virtual pheromone with an
exponential decay, and which hotspot to patrol next was determined by the pheromone levels.
This is a good method of stopping repeat hotspot visiting within short spaces of time whilst
also tracking when another visit is required. It also enables the effect a unit patrolling leaves
on an area once they have moved on, to be tracked. The same approach has been adopted
in this paper. When pheromone level is high the hotspot is placed on the tabu list and hence
is not revisited in a short space of time. Once the level drops below the threshold value the
hotspot is removed from the tabu list. The threshold level is determined by the intensity of
the hotspot.
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Fig. 5 KDE map for all crimes

8 Results

To assess the effects of the algorithm developed on criminal activity agent based simulation
has been used. The agents within the simulation are response units; each agent has tasks
to perform during their shift. The number of agents within the simulation is based on shift
patterns by Leicestershire police. These agents have different states depending on what tasks
they are performing, they are classed into two states, available and unavailable. Available
means they can be allocated a region to patrol. Unavailable means they are performing other
tasks such as attending an incident or on a break. In this work the amount of time that units
are available is based on the proportion of a shift that the force perceives units are available
to patrol. For this example this is taken to be 5% of the shift. The time period which the
simulation is run over is based on a one month historical period in time.

The first outcomes of the algorithm are the kernel density estimation graphs formed from
the historical crime and call data. These are what are used when the system is running in real
time. The KDE map produced for overall crime is shown in Fig. 5 for all of Leicestershire.
Figure 6a, b show the maps for Leicester city centre and Loughborough town centre, where
Loughborough is the largest town in the county outside Leicester city. The colours which the
areas are shaded in these figures represent the intensity of crime within that area and the scale
is shown on the right of the diagrams. Areas with no shading had no significant crimes within
that period. Themap of the entire county shows that the crime density increases around towns
and cities as expected. The map of Leicester city centre and Loughborough town shows the
difference in crime density on a more granular level. Figures 7, 8 and 9 are KDE maps for
the crime types; burglary, criminal damage and assault. These show the differences in crime
trends for different types of crime. The hotspots appear in different areas in each graphs and
therefore analysing the crimes separately will allow certain types of crimes to be targeted.
Sexual assault trends, which have not been shown within these results for sensitivity reasons,
demonstrate a more spread out dispersion of crime compared to burglary, criminal damage
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Fig. 6 KDE map for a Leicester city centre, b Loughborough town

and assault. Of the intensities calculated the highest 3% are taken to be hotspot regions and
used within the MCLP. This means 3% of the total region being set to hot.

Aswell as the use ofmultiple hotspots considering different types of crime it is necessary to
use different hotspots at different times of day. Figure 3 has previously shown the variation of
crime throughout a day. Figure 10 shows that the location of crimes also changes throughout
the day. In this figure the KDE maps for criminal damage are shown for 3 different time
periods over all days. The movement in crime hotspots throughout the day can be explained
by the attractiveness of an area at different times of day due to the lighting, number of people
and amenities open.

As this is a historical period in time the crime and call data for that period is available
and hence the effect of placing patrol units in hotspots can be assessed. This is achieved by
the use of Eq. (10), which was used in the study by Chainey et al. (2008) to determine the
predictive performance of different hotspot identification methods. It is used in this study
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Fig. 7 Burglary KDE map for Leicester city centre

Fig. 8 Criminal damage KDE map for Leicester city centre

to determine the level of crime the directed patrol routes have the ability to deter. In the
equation n represents the number of crimes which occur within the hotspots targeted by
patrolling, whilst N is the total number of crimes which occur, a is the total area of all the
hotspots targeted, whilst A is the total area of the region studied. The results obtained from
the simulation shows a potential to decrease street crime by 22% when the simulation is run
over a month.

n
N × 100
a
A × 100

= Hit Rate

Area Percentage
= Targetting Accuracy Index (10)

An example of a typical spatial demand layout for a section of Leicestershire is shown in
Fig. 11. The demand profile is shown in Eq. 11 as a matrix. Each element in the matrix repre-
sents the number of incidents which required a timely response within the related historical
period in the related grid cell. This method is used to analysis the demand profile for the
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Fig. 9 Assault KDE map for Leicester city centre

Fig. 10 Time dependant criminal damage hotspots

entirety of Leicestershire and the results are used in the simulation when determining the
response demand coverage each configuration of officers results in.

D =

⎡

⎢⎢⎢⎢⎣

3 1 2 0 2 0
1 4 1 0 0 0
0 0 2 1 0 2
1 2 1 1 2 0
0 1 1 0 0 1

⎤

⎥⎥⎥⎥⎦
(11)

Discrete event simulation is used to test the ability of the maximum coverage algorithm
to position officers, using the tabu search method as described above. Solving MCLP for
one set of positions takes on average 74.38 s each time the problem was solved. Initially
all hotspots are considered as visited and as time passes they each require revisiting. The
demand coverage results can be seen in Table 1. This shows the minimum coverage achieved,
the average coverage achieved, the maximum coverage achieved and the average change in
coverage from the original positions of officers to the directed positons. The minimum case
was due to limited resources. The maximum case was a low crime level time resulting in
most officers being available to patrol. The average change shows that using the positioning
algorithm can result in a 2.13 change in response demand coverage which is almost a 50%
increase from the original officer positions.
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Fig. 11 Response demand analysis

Table 1 Results of demand
coverage Demand coverage (km−2)

Minimum 0.26

Average achieved 4.42

Maximum 6.72

Average change 2.13

The increase in demand coverage will allow response times to be reduced when it is
implemented. The decrease in response times allows officers to be more effective, provide
a better service for the public which improves the public’s perception of the police. The
decrease also results in higher availability of officers.

9 Conclusion

This research addresses the issue currently faced by police forces of inefficient patrolling.
Improving these patrols by directing them to problem areas could have major benefits on
policing including reducing crime levels. The real time aspect of the algorithm allows officers
to be positioned efficiently to respond to possible emergency incidents through demand
modelling. This reduces the response times. The study falls in line with the push towards
evidence based policing over biased policingwhich can occur in some regions due to people’s
opinions. Other uses of the algorithm also include testing the effect of changing officer
numbers on demand coverage.

Futurework in this area includes testingwith a police response department. Initially testing
is required to verify the hotspot analysis by targeting the hotspot areas. Further testing will
use the algorithm to allocate response units to hotspots. Also development of the algorithm
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into a user friendly program which is compatible with software currently in use by police
forces is required. This will allow the methods of directing patrols to be used within any
police force. Once this is developed further criteria can be added to patrols such as visiting
people of interest on route to patrols.
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