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Abstract—This paper studies an operation optimization 
problem in a steelmaking process. Shortly before the tapping of 
molten steel from the converter furnace, end-point control 
measures are applied to achieve the required final molten steel 
quality. While it is difficult to build an exact mathematical model 
for this process, the control inputs and the corresponding outputs 
are available by collecting production data. We build a 
data-driven model for the process. To optimize the control 
parameters, an improved estimation of distribution algorithm 
(EDA) is developed using a probabilistic model comprising 
different distributions. A resampling mechanism is incorporated 
into the EDA to guide the new population to a broader and more 
promising area when the search becomes ineffective. To further 
enhance the solution quality, we add a local improvement to 
update the current best individual through simplified 
gravitational search and information learning. Experiments are 
conducted using real data from a converter steelmaking process. 
The results show that the algorithm can help to achieve the 
specified molten steel quality. To evaluate the proposed algorithm 
as a general optimization algorithm, we test it on some complex 
benchmark functions. The results illustrate that it outperforms 
other state-of-the-art algorithms across a wide range of problems. 
 

Index Terms—Steelmaking process, data-driven model, 
estimation of distribution algorithm, resampling, local 
improvement. 

I. INTRODUCTION 
any complex industrial processes are difficult to model 
precisely. However, most such processes can be 

observed, and there are often large amounts of historical data 
from the system operations. These data make it possible to 
optimize or improve the systems using data-driven models 
[1-5]. This paper studies one of such processes, the 
steelmaking process in converter furnaces. Steelmaking is one 
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of the most important stages in steel industry because the 
chemical contents of the steel are finalized at the end of 
steelmaking, while all the later stages can only change the 
physical shape and mechanical properties. A major step of 
steelmaking is performed in converter furnaces. A common 
type of converter furnace is a basic oxygen furnace (BOF). 
Shortly before the production of a charge of molten steel 
completes, the temperature and the carbon content are detected. 
End-point control measures are then applied to achieve the 
required final temperature and molten steel compositions. This 
control operation can be considered as a black-box model and 
the control parameters can then be optimized. 

There has been previous research on modeling the operation 
[6–9]. However, most of these models have focused on 
predicting the end-point temperature and carbon content using 
information obtained just before the end-point control and the 
given control parameters. Tian and Mao [6] developed an 
ensemble extreme learning machine (ELM) based on a 
modified AdaBoost.RT algorithm for the end-point 
temperature prediction problem in a ladle furnace (LF). Xu et 
al. [7] utilized the spectrum distribution of the flame with 
support vector machine (SVM) to predict the end-point carbon 
content in BOF steelmaking. Liu et al. [8] predicted the 
end-point temperature and molten steel quality in BOF 
steelmaking through computer vision and general regression 
neural network. Shao et al. [9] used flame spectral analysis and 
a multi-class classification algorithm to predict the end-point 
carbon content in BOF steelmaking. To solve the end-point 
phosphorus content prediction problem, He and Zhang [10] 
presented a data-driven model based on principal component 
analysis and back propagation neural network. Some physical 
models [11] and data-driven control strategies [12] have been 
proposed for the process control and end-point control 
problems in the steelmaking process. Liu et al. [12] proposed 
an improved estimation of distribution algorithm (EDA) for 
solving end-point control problems in BOF steelmaking. The 
temperature and carbon content are considered in a black-box 
optimization model, but other quality indicators are not 
applied. 

For industrial productions [13–15], the main purpose of 
black-box optimization is to optimize control parameters in the 
model. The main basics of a black-box optimization model are 
control variables, objectives, and constraints (such as 
performance constraints of production equipment, capacity 
constraints of production equipment, and a variety of complex 
function relationships among control variables). The objectives 
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may be to minimize cost, minimize energy consumption, or 
maximize benefit. 

In black-box optimization problems, the black-box model 
[16] is the basis of optimization. It is difficult to build exact 
mathematical models, but some approximate models [17] 
frequently work well enough. Some data analytics methods 
[18–20] have been used to describe the internal structure of 
black-box models, and some global optimization algorithms 
based on statistical models have been used to solve these 
expensive problems under uncertainty [21]. As shown in Fig. 1, 
the structure of a black-box model is based on an input–output 
mapping relationship. If the desired output is known, then the 
black-box optimization may be considered as an adaptive 
feedback process. 

To achieve ideal outputs, many researchers have utilized 
evolutionary algorithms (EAs) to solve black-box optimization 
problems with single or multiple objectives [22–29]. Among 
the various intelligent optimization algorithms, EDAs have the 
advantages on the specific modeling and sampling mechanisms. 
The sampling mechanism generates new solutions using 
probabilistic models that are based on known information from 
previous samples. The specific mechanism reinforces the 
candidature of EDAs as promising black-box optimization 
tools [30]. Thus, EDAs have increasingly been applied and 
improved to solve multiobjective optimization problems by 
capturing the relationship between variables and objectives 
[31]. For the multimodal problems, clustering-based niching 
tactics [32] and maintenance of multiple sub-models [33] are 
skillfully applied to EDAs to explore promising areas. In 
dealing with high-dimension problems, restricted Boltzmann 
machine with clustering strategies [34] and model complexity 
control [35] have been added to EDAs to reduce their 
computational complexity. Kaban et al. [36, 37] conducted 
various studies on the performance of EDAs for 
high-dimension black-box optimization problems. Based on 
the aforementioned work on EDAs, there has been growing 
interest in the model structure and the linkages among 
variables. 

With a single probabilistic model (such as Gaussian 
distribution, Cauchy distribution, or others) [38, 39], most of 
existing continuous EDAs have the disadvantages of 
inefficient local search ability or low convergence speed. Thus, 
alternatives with other single probabilistic models or with 
multiple probabilistic models [32, 40] have been employed to 
solve continuous optimization problems. A few of these have 
been very effective in solving some multimodal problems. A 
few hybrid optimization algorithms have also been 
incorporated into EDAs [41–43]. However, the approaches 
have still not taken full advantage of the varying search area in 
each generation and historic population information. 

In this paper, we build a data-driven operation optimization 
model in BOF steelmaking, based on input and output data, 
which is considered as a black-box optimization problem. An 
EDA with resampling and local improvement (EDA-RL) is 
developed to optimize the end-point control parameters. The 
contributions of this paper to the literature in this field are as 
follows: 

1) For the end-point control in BOF steelmaking, the 
temperature and quality indicators of molten steel are both 
considered as output objectives, and a data-driven operation 
optimization model is established using least-squares SVM 
(LSSVM) with a hybrid kernel function. 

2) To solve the black-box optimization problem, an EDA 
framework with different probabilistic models is considered. 
Sampling from different models increases the diversity of the 
population, while the resampling mechanism enlarges the 
sampled region and helps guide the search to more promising 
areas. The new framework enhances the exploration ability of 
EDA. 

3) An idea of local improvement is proposed to improve the 
exploitation ability of EDA. The current best individual is 
evolved using information from some superior individuals in 
the population through simplified gravitational search and 
information learning. 

The remainder of this paper is organized as follows. Section 
II briefly describes the BOF steelmaking process and a 
data-driven optimization model. Section III presents our 
proposed algorithm in detail. In Section IV, the proposed 
algorithm is applied to a practical problem and is tested as a 
general optimization algorithm on some complex benchmark 
functions. Finally, conclusions are drawn in Section V, and 
future research is discussed. 

II. THE BOF STEELMAKING PROCESS AND A DATA-DRIVEN 
OPERATION OPTIMIZATION MODEL 

Because of the high temperature with fierce physical and 
chemical reactions in the BOF steelmaking process, it is 
difficult to establish a mechanism model and to control the 
temperature and the composition contents of molten steel. 
Consequently, the steelmaking process can be considered as a 
black-box optimization problem. In this paper, we build a 
data-driven optimization model for the end-point control 
problem in BOF steelmaking. 

A. End-Point Control in BOF Steelmaking 
Fig. 2 illustrates the structure of converter furnace. BOF 

steelmaking converts carbon-rich molten pig iron and steel 
scraps to molten steel through blowing oxygen. During the 
process, redundant carbon is burnt and released as gas. Other 
impurities are oxidized into slags on the surface, which can be 
separated. Auxiliary materials are also added to achieve the 
required content. After a series of physical and chemical 
reactions, the smelting process reaches the “end point” at 
which the following requirements need to be satisfied: 1) the 
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Fig. 1. Description of black-box optimization problem. 
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carbon content is within the end-point control range, 2) the 
phosphorus content and sulfur content in molten steel do not 
exceed their specified upper limits, and 3) the tapping 
temperature is appropriate for steel refining and casting. 

The process can be seen as consisting of two main stages, a 
static stage and a dynamic stage, as shown in Fig. 3. Most of 
the smelting time is spent in the static stage, which continues 
until the first sub-lance detection, shortly before the end-point 
at which the second detection is conducted. Between the two 
detections is the dynamic stage, within which end-point control 
is applied, based on the quality status obtained in the first 
detection and the final quality requirements. 

The end-point control of BOF is very important in the late 
stage of steel smelting. Because of the complexity of 
desulphuration and dephosphorization, the removal of sulfur 
and phosphorus should be completed as soon as possible 
before the steelmaking process. To some extent, the carbon 
content and temperature are crucial to end-point control in 
BOF steelmaking. End-point control in the dynamic stage is 
conducted to adjust the carbon content and temperature by 
adding coolants (lime stone, etc.) or further blowing oxygen. 

B. Data-Driven Operation Optimization Model 
The input end-point control parameters include the rate of 

blowing oxygen, the amounts of auxiliary raw materials, and 
the rate of blowing inert gas at the bottom. The main output 
performance indicators are the temperature, the carbon content, 

and the contents of other elements. However, because of the 
complex physical and chemical reactions that occur in the 
furnace at high temperature, it is difficult to build exact 
mechanism models expressing the relationship between the 
inputs and outputs. Operation state data can be sampled using 
multi-source sensors, with the temperature being observed 
using a flame analyzer, some composition contents in the 
molten steel being detected using throwing probe and 
sub-lance sampling, and gas quantity being detected using a 
gas analyzer. In practice, operators usually control the levels of 
input parameters to attain the desired outputs, based on 
experience and knowledge collected from historical data. 

In this paper, a data-driven model is built to accurately 
control the end-point quality of molten steel in BOF 
steelmaking. The modeling method is based mainly on 
LSSVMs, proposed by Suykens and Vandewalle [44]. 
LSSVMs have faster computation speed compared with 
SVMs. Because the analytical formulas can be solved using 
linear equations in LSSVMs, rather than by means of quadratic 
optimization in SVMs. To improve the generalization ability of 
LSSVMs, this paper proposes an LSSVM method with a 
hybrid kernel function (HKLSSVM). The principle is 
introduced below. 

Given a sample set of N data points {xi, yi}, i = 1, 2, …, N, 
where xi ∈ ℜd is the ith input data, d is the number of features, 
and ∈ℜiy  is the corresponding ith output data, the 
input–output relationship is expressed by the following 
equation: 

( ) ( ) ,   1, 2, ,T
i if b i Nϕ= ⋅ + =x w x  ,           (1) 

where ϕ(xi) is a feature map, with which xi can be mapped into 
a high-dimensional feature space. wΤ and b are the regression 
coefficients and the bias, respectively. 

According to the principle of structural risk minimization, 
the LSSVM problem can be written as 
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where γ is a penalty coefficient, which is set to a value in the 
range of [100, 1000], and ei is a slack variable. Using the 
Lagrangian multiplier αi, the above LSSVM problem can be 
expressed as 

1
( , , , ) ( , ) [ ( ) ]

N
T

i i i i i
i

Lag b J b e yα α ϕ
=

= − + + −∑w e w e w x . (3) 

By the Karush–Kuhn–Tucker condition, the following linear 
equations can be obtained: 

1

00 T b
Iγ −

     
=     Ω +     

1
α y1

,                       (4) 

where 1 = (1, …, 1)Τ, α = (α1, …, αN)Τ, y = (y1, …, yN)Τ, and 
{ | , 1, , } ( ) ( )x xϕ ϕΩ = Ω = =

T
ij i ji j N  is a symmetric matrix 

of the kernel function. K(xi, xj) is a Mercer kernel function that 
is defined as follows: 

( , ) ( ) ( ) ,  , 1, 2, ,T
i j i jK i j Nϕ ϕ= ⋅ = x x x x .       (5) 
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Fig. 2. Structure of converter furnace. 
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The LSSVM model can then be presented as 

1
( ) ( , )

N

i i
i

f K bα
=

= +∑x x x .                         (6) 

To describe global and local performances by means of 
different kernel functions, a Gaussian kernel is combined with 
a polynomial kernel in this study to form a hybrid kernel 
function. 

The Gaussian kernel function is defined as 
2

1 2( , ) exp( ),  , 1, 2, ,
2

i j
i jK i j N

σ

−
= − =

x x
x x  ,     (7) 

where σ is the width parameter of the kernel function, and the 
range of the parameter is set to [1, 100].  

The polynomial kernel function is defined as 
Ploy

2 ( , ) ( 1) ,  , 1, 2, ,d
i j i jK i j NΤ= + = x x x x ,   (8) 

where dPloy is the order of the polynomial kernel function and is 
an integer in the range of [1, 10]. The hybrid kernel function 
can be expressed as 

1 2( , ) (1 ) ( , ) ( , ),   1, 2, ,i i iK K K i Nκ κ= − + =x x x x x x  , (9) 
where κ represents a scale coefficient, and it takes a value in the 
range of [0, 0.005]. 

To obtain an accurate operation model, the values of the 
internal parameters (γ, σ, dPloy, and κ) are determined by a 
simple optimization algorithm [17] based on differential 
evolution (DE) [45]. 

Using the above data-driven operation model, we build a 
data-driven operation optimization model. To determine the 
values of the control parameters that would achieve the 
required quality of the molten steel, the final model with 
weight coefficients is transformed into the following form: 

2 2
1 1 1 2 2 2

6
2

1 2
3

min max

ˆmin ( )= ( ( ) ) ( ( ) )

                (1 ) ( ( ) )

. .   ,

j j
j

f f y f y

f y

s t

ω ω

ω ω
=

− + −

+ − − −

≤ ≤

∑

x x x

x

x x x

   (10) 

where ˆ ( )f x  is the objective function, and f1(x), f2(x), f3(x), 
f4(x), f5(x), and f6(x) are operation models for temperature, 
carbon content, manganese content, silicon content, sulfur 
content, and phosphorus content, respectively. Given their 
importance to the molten steel quality, the temperature and 
carbon content have the greatest influences on molten steel. 
Thus, their weight coefficients (ω1 and ω2) are also 
considered as input features. They are both set to vary within 
the range of [0.35, 0.5]. Thus, the weight coefficient of the 
remaining component contents should be 1 21 ω ω− − . In Eq. 
(10), yj is the target value for the corresponding operation 
optimization objective, where j = 1, 2, …, 6. The input control 
parameters x are within the range of min max[ , ]x x . 

In actual applications, the optimized input control 
parameters include the rate of blowing oxygen on the surface 
of molten steel, the rate of blowing argon at the bottom, the rate 
of blowing nitrogen at the bottom, the amounts of added 
supplementary coolants, the height of the oxygen lance, and 
two weight coefficients of the optimized model. The output 

data are the temperature and the contents of carbon, manganese, 
silicon, sulfur, and phosphorus. 

From the final operation optimization model, we can see that 
the objective function is complex: it is composed of six 
sub-functions and seven control parameters. Therefore, to 
optimize operation parameters, an effective operation 
optimization algorithm is necessary. 

III. AN IMPROVED EDA 
In this section, our research focuses on an operation 

optimization algorithm in BOF steelmaking. We first present 
an EDA with a hybrid distribution model, and then elaborate 
on ideas of resampling (R) and local improvement (L) that are 
incorporated in the improved EDA framework. Finally, the 
overall structure of EDA-RL is presented. 

A. EDA with a Hybrid Distribution Model 
Estimation of distribution algorithms [46] are EAs that were 

originally developed to solve combinatorial optimization 
problems. Subsequently, EDAs [47] were extended to 
continuous optimization. Unlike other EAs, EDAs are a type of 
sampling algorithms based on probability distributions, and the 
individuals in the population are generated by sampling rather 
than crossover and mutation operations. The basic idea of an 
EDA is that a promising probabilistic model is constructed by 
extracting relevant distribution information from superior 
individuals in the population. The sampled individuals are then 
derived from the probabilistic models. 

Univariate marginal distribution algorithm (UMDA) [47] 
based on univariate Gaussian model was first proposed in 
1998. This algorithm is based on the assumption that the 
variables are independent, which makes computation fast. 
Based on the assumption of Gaussian distribution with 
continuous variables, an extension of UMDA (UMDAC

G) [47] 
was developed for many real-world continuous optimization 
problems. For Gaussian model with a small number of 
parameters, UMDAC

G is generally considered as a typical EDA. 
However, with the increasing number of generations, Gaussian 
distribution gradually tends toward a small variance and an 
unchanged mean, leading to poor population diversity. In this 
study, to enhance the exploration ability of model sampling, 
Cauchy distribution is applied to the EDA, providing a wider 
sampling space than Gaussian model and avoiding the problem 
of sampled individuals falling into local optima. Thus, the 
hybrid distribution model (univariate Gaussian distribution 
combined with Cauchy distribution) is considered as the 
probabilistic model of the EDA. 

Details of the EDA are described as follows: 
1) Initialization: The overall parameters of the EDA are set 

in the initial stage, with NP denoting the number of individuals 
in the population, D representing the dimension of individuals, 
gmax being the maximum generation number, and g being the 
current generation, which is initialized to 0. According to the 
search range of each individual, Lj and Uj denote the lower 
boundary and the upper boundary in the jth dimension, 
respectively, where 1,2, ,= j D . The initial population is 
generated by sampling a uniform distribution. At each 
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generation g, the ith individual can be regarded as g
iz , i = 1, 2, 

…, NP, and its corresponding objective function value can be 
expressed as ˆ ( )g

if z . The parameter λ represents the selection 
rate of superior individuals, and then the number of superior 
individuals ( )λ=H NP  is obtained. 

2) Selection: Based on the above initialization, the lth most 
superior individual with D-dimension in the current generation 
g is represented as g

lz  = ( ,1
g
lz , ,2

g
lz , …, ,

g
l Dz ), l = 1, 2, …, H, 

which is selected from the superior objective function values in 
the current population. 

3) Modeling: Two different types of distributions are used to 
establish the probabilistic model of the EDA. Based on 
univariate marginal distribution, Gaussian probability density 
function is constructed with superior individuals according to 
Eq. (11): 

2
, ,22

1 1( ) exp( ( ) )
2( )2 ( )

g g g
l j l j jgg

jj

p z z u
δπ δ

= − − ,     (11) 

where l = 1, 2, …, H, j = 1, …, D, g
ju  and g

jδ  are the jth 
dimension mean and the jth dimension variance of superior 
individuals, respectively. 

In addition, Cauchy distribution is also applied to the 
modeling of the EDA, Cauchy probability density function is 
expressed as 

, 2 2
,

ˆ1( )  , 1, , ,   1, ,ˆ ˆ( ( ) )
g
l j g

l j

bp z l H j D
b z aπ

= = … = …
+ −

,    (12) 

where â  (= 0) is a location parameter, and b̂  (= 1) is a scale 
parameter. 

4) Sampling: To achieve a trade-off between the exploration 
and exploitation search ability of the EDA, sampling strategies 

[32, 38] are used to generate new individuals. The sampling 
process is described as follows: 

Ga ,  1, , ,

Ca ,  , , ,

g g g
pg

p g g g
p

p num

p num NP H
η

 + = …← 
+ = … −

u δ

u δ
      (13) 

where g
pη  denotes a sampled individual. Ga g

p  and Ca g
p  are a 

standard normal random number and a standard Cauchy 
random number, respectively. The number of individuals 
sampled from Gaussian distribution num(= ρ(NP – H)) is 
obtained by a sampling rate ρ, where 0 < ρ < 1. For the hybrid 
sampling mechanism, gu  and gδ  are the mean vector and the 
variance vector of superior individuals in the gth generation, 
respectively. 

5) Repairing: If the sampled individual is beyond the search 
range, a repairing strategy is carried out. Infeasible individuals 
are regenerated randomly within the search range. The 
objective function values of sampled individuals are then 
calculated, and the current best individual is updated. 

6) Replacement: The offspring population consists of the 
sampled individuals and the previous superior individuals. 

7) Stopping condition: If the algorithm satisfies the stopping 
criteria (the given maximum evaluation number S or the 
maximum generation number gmax), the algorithm is 
terminated, and the overall best individual is acquired. 
Otherwise, the algorithm continues to the next generation. 

The main flow of the EDA with a hybrid distribution model 
is outlined in Algorithm 1. 

B. Resampling Strategy 
In general, the objective functions behind complex 

black-box optimization problems are multimodal, and so there 
exist a large number of local optima. The aforementioned 
approach mainly emphases on the model structure. Although 
the hybrid distribution model can solve multimodal problems 
to a certain degree, it may take a long time to reach promising 
areas. 

In this paper, with the increasing number of generations, the 
sampled individuals will concentrate gradually. In order to 
enlarge its sampling region, as well as to improve the global 
search ability of the population, we introduce a resampling 
strategy that can help guide the population sampling. The 
resampling strategy is executed when the following two 
conditions are satisfied. One condition is that the best objective 
function value in the current population is unchanged for 
certain generations. The other one is that eva < r_eva, where 
eva is the current evaluation number, and r_eva is given by θ × 
S, where θ represents a resampling rate, and S is a given 
maximum number of evaluations. The following shows the 
specific steps of resampling. 

1) Enlarge the sampling region: Based on the current 
superior individuals’ location information, the initial 
resampling region can be identified as follows: 

, ,11
max  ,   min  ,   1, ,g g

j l j j l jl Hl H
z z j Dτ υ

≤ ≤≤ ≤
= = = … .          (14) 

The hyper cube [ jυ , jτ ], j = 1, 2, …, D, contains all current 
superior individuals and represents the current sampling region. 

Algorithm 1 EDA with a hybrid distribution model 

Input: the overall parameters of the EDA, and set the 
proportions of individuals to be sampled from different 
distributions in the probability model. 
1: Randomly generate an initial population by uniform 

distribution, and compute the objective function values of 
the individuals. The current best individual is set as the 
overall best one so far. 

2: While the stopping criteria is not satisfied do 
3: Select superior individuals from the current population; 
4: Build a hybrid distribution probabilistic model based on 

the selected individuals; 
5: Sample new individuals using the hybrid distribution 

model; 
6: Repair the new individuals if necessary. Compute the 

objective function values of the sampled individuals, and 
update the current best individual; 

7: Combine the selected individuals with the sampled 
individuals to form the new population; 

8: Increase the generation number; 
End while 

Output: the overall best individual. 
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In order to avoid falling into the local optima, the sampling 
region needs to be enlarged. The region for resampling is 
determined by the following: 
If g

jδ ζ>  
* *,   ,   1, ,j j j jU L j Dτ υ= = = … ,                     (15) 

Otherwise, 
*

*

(0, 1)( ),  1, , ,

(0, 1)( ),  1, , ,
j j j j

j j j j

U rand U j D

L rand L j D

τ τ

υ υ

= + − = …

= − − = …
           (16) 

where ζ is a threshold value of variance, *
jU  and *

jL  are the 
upper and lower boundaries of the resampling region, 
respectively. rand(0, 1) denotes a random number from 0 to 1. 

2) Resampling: W(= 2NP) individuals are generated from 
uniform distribution over the resampling region. The jth 
dimension of the oth resampled individual, ,ˆo jz , o = 1, 2, …, W, 
j = 1, …, D, is obtained as follows: 

* * *
,ˆ (0,  1)( )o j j j jz L rand U L= + − .                (17) 

The Euclidean distance s0 between each of the resampled 
individuals ˆoz  and the overall best individual bestz  is 
calculated as 

2
ˆ ,  1, 2, ,o o bests o W= − = …z z .                 (18) 

After that, NP smallest distances are selected. The 
corresponding individuals are used to replace the current 

population and their objective function values are calculated. 
Superior individuals from this population are then selected, and 
used to re-calculate ug and δg. 

To retain the overall best objective function value and the 
overall best individual, the current best individual cbestz  and 
the current best objective function value are stored to an 
external archive before each resampling. The main flow of the 
resampling strategy is shown in Algorithm 2. 

Note that resampling may be performed only when 
_<eva r eva . For the first generation after eva = r_eva (and 

only for this one generation), the overall best individual in the 
external archive is used to replace the current best individual. 

C. Local Improvement 
Because the distinctive sampling mechanism of the EDA 

lacks the local search ability, in order to make full use of 
superior information between sampled individuals, a local 
improvement step based on the simplified gravitational search 
[48] and information learning is introduced. In this step, the 
current best individual cbestz  is updated by simplified 
gravitational search, evolving with information from some 
superior individuals in the current population. Moreover, 

cbestz  learns from the current best sampled individual, as well 
as the evolved best individuals. This local improvement 
enhances the local search ability of the algorithm. It applies 
only to the recorded cbestz  and so does not affect the current 
sampling. 

1) Evolution with superior individuals: In the evolution, 
simplified gravitational search is applied to cbestz  using 
information from some superior individuals in the current 
population. First, the np (= βNP) individuals in the current 
population are selected and sequenced, here β is a proportion of 
superior individuals. These are denoted as 1

gϑ , 2
gϑ , …, g

npϑ  
in ascending order of their objective function values. 

Using each of the selected individuals g
kϑ , 

1, 2, , 1= −k np , an acceleration ak is computed and applied 
to cbestz . To do so, the gravitational mass Mk, Euclidean 
distance to another individual 

1,k kR , and the gravitational force 

Fk are first calculated in the following steps. 
Gravitational mass: 

1

1

,   1, 2, , 1k
k np

t
t

m
M k np

m
−

=

= = … −

∑
,                  (19) 

where 
ˆ ˆ( ) ( )

,   1, 2, , 1ˆ ˆ( ) ( )

g g
k np

k g
cbest np

f f
m k np

f f

−
= = … −

−z

ϑ ϑ

ϑ
.    (20) 

g
npϑ  is the worst individual among the selected superior 

individuals. 
Euclidean distance: 

1 1, 2
,   1, 2, , 1g g

k k k kR k np= − = … −ϑ ϑ .            (21) 

k1 is an integer number randomly chosen from 1, …, np − 1, 

Algorithm 2 Resampling strategy 

Input: the initialization parameters of resampling. 
1: Enlarge the sampling region: 

For j = 1 : D 

, ,11
max  ,  min  g g

j l j j l jl Ll L
z zτ υ

≤ ≤≤ ≤
= = . 

If  g
jδ ζ>  
* *,  j j j jU Lτ υ= = . 

Else 
*

*

(0, 1)( ).

(0, 1)( ).
j j j j

j j j j

U rand U

L rand L

τ τ

υ υ

= + −

= − −
 

End if 
End for 

2: Resampling: 
For o = 1 : 2NP 

For j = 1 : D 
* * *

,ˆ (0, 1)( )o j j j jz L rand U L= + − . 
End for 

2
ˆo o bests = −z z . 

End for 
3: Select NP resampled individuals with the smallest so to form 

a population. Evaluate the individuals in the population and 
select superior individuals from this population, and 
recalculate ug and δg based on this set of superior 
individuals. 

Output: the resampled population. 
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and 
1

g g
k k≠ϑ ϑ . 

Gravitational force: 

1

1

1,

( ),   1, 2, , 1k k g g
k k k

k k

M M
G k np

R
×

= − = … −F ϑ ϑ ,   (22) 

where G is a function with the initial value G0, we define it as 
2

0 exp( ( ) )evaG G
S

ε= − ,                        (23) 

where eva is the current number of evaluations in the algorithm, 
S is the total number of evaluations, and ε is a decreasing 
coefficient. 

The acceleration ak can then be calculated: 

,   1, 2, , 1k
k

k

k np
M

= = … −
F

a .                   (24) 

Adding ak to cbestz , an evolved individual is obtained by 

1

1

1,

    ( ),   1, 2, , 1.

k cbest k

k g g
cbest k k

k k

M
G k np

R

= +

= + − = … −

q z a

z ϑ ϑ
   (25) 

For each k = 1, 2, …, np − 1, there is an evolved individual 
kq . Let bestq  be the best among them. If bestq  is better than 

cbestz , zcbest  is updated. 
As can be seen from the above description, this gravitational 

search is much simplified from its original version in [48]. It 
applies the gravitational forces individually to only cbestz , 
rather than using their combination to every solution. 
Moreover, as the best individual in the current population, 

cbestz  is assumed not to change unless being improved. 
Therefore, each evolved solution is obtained by changing 

cbestz  with the acceleration for the current generation only, and 
the velocity is assumed always gets back to 0 then. This is why 
velocity variables are not used. 

If the differences between the superior individuals are very 
small, the resulting acceleration would not cause any obvious 
evolution. Therefore, the evolutionary strategy based on 
superior individuals will not be executed when the variance of 
the samples is below a certain value. 

2) Information learning: Sometimes the quality of cbestz  
may be impaired because of the information in a few 
dimensions while the information in the corresponding 
dimensions of other individuals may be better. To make use of 
the potentially useful information of the superior individuals, 
we perform a learning operation for each dimension of cbestz . If 
the resulting individual is better, cbestz  is updated. As shown in 
Fig. 4, information of cbestz  learns from that of the current best 
sampled individual sbestz  and bestq . The corresponding learning 
operation is skipped if cbestz  is the same to any of sbestz  and bestq
. 

The main flow of local improvement is shown in Algorithm 
3. In later generations, it is expected that the search has reached 
the most promising region and the focus should be mainly on 
exploitation. Therefore, for the generations after eva = r_eva, if 

( ) ( )cbest bestf f>z z , then bestz  will be used as cbestz  in the local 
improvement. 

D. The Proposed EDA-RL 
This paper makes full use of the sampled information, 

incorporating a resampling (R) strategy and a local 
improvement (L) strategy into the EDA. The overall structure 
of the proposed algorithm (EDA-RL) is described in Fig. 5. 

1 2 3 ... D 1 2 3 ... D

1 2 3 ... D 1 2 3 ... D

1 2 3 ... D
 

Fig. 4. Sketch of information learning. 
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N
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N

Start

End
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Fig. 5. Overall structure of the proposed algorithm. 

Algorithm 3 Local improvement 

Input: the initialization parameters of local improvement. 
1: Evolution with superior individuals: Apply an evolutionary 

strategy to cbestz  using information of randomly chosen 
superior individuals from the current population. Update 

cbestz  if bestq  is better than cbestz . 
2: Information learning: For each dimension of cbestz , replace 

it with that of another solution if this leads to improvement. 
Update cbestz  if the result is better.  This learning operation 

may be performed for two rounds using sbestz  and bestq  as 
“another solution”. If any of them is the same as cbestz , that 
round is skipped. 

Output: the current best individual and its function value. 
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The hybrid distribution function in modeling can help 
strengthen the diversity of the population. The resampling 
strategy enlarges the search scale of the EDA, which enhances 
the exploration ability of EDA-RL. Furthermore, the local 
improvement based on simplified gravitational search and 
information learning is added to improve the exploitation 
search ability of EDA-RL. 

IV. EXPERIMENTS 
The effectiveness of EDA-RL is verified in this section by 

its application to a practical end-point control problem in BOF 
steelmaking. To further demonstrate the generalization ability 
of our proposed algorithm, we compare it with other 
state-of-the-art black-box optimization algorithms through 
experiments on some complex benchmark problems. 
A. Experimental Setting 

1) Experimental platform: The experiments are conducted 
on a personal computer with an Intel Core i7-6700 3.40-GHz 
CPU, 16-GB RAM, and a 64-bit Windows 7 system. The 
algorithms are implemented in C++ on the Microsoft Visual 
Studio 2008 platform. 

2) Parameter setup: The main parameters of EDA-RL are 
listed in TABLE I. The population size is set based on the 
problem dimension D. The selection rate λ is set to 30% so that 
the number of selected individuals is sufficient for modeling. 
In general, the resampling rate θ should be set larger for 
problems with a larger number of local optima. For our 
problem, the effects of θ and the decreasing coefficient ε are 
analyzed in the next subsection. To reduce the effect of 
randomness on the experimental results, 30 independent runs 
are conducted for the practical application problem. The 
stopping criterion is set to 1000 × D maximum function 
evaluations (MaxFEs). 

B. Results and Discussions 
To verify the practicability of EDA-RL, we test it on an 

actual application problem. Based on real-world data from a 
Chinese steel plant, we solve the operation optimization 
problem in BOF steelmaking. The end-point control problem is 
formulated using the data-driven operation model that is based 
on one month of historical data. The problem is then solved 
with EDA-RL. The performance is analyzed by comparing the 
results of different strategies. 

1) Data processing: Practical production data for one month 
are collected from the steelmaking process. Each charge of 
steel production has an end-point control problem and 
generates a set of operation data. A total of more than 300 data 
sets are collected in the month. Some of the data sets are 
abnormal. They are identified by means of clustering and then 
are removed. Some incomplete data sets are complemented 
using standard statistical method. After the preprocessing, 218 

valid data sets are obtained and used in the experiment, 198 for 
building the black-box operation model and 20 for testing the 
operation optimization algorithm. In the optimization problem, 
the values of control variables vary within the following 
ranges. The rate of blowing oxygen in the reaction process 
varies from 0 to 1500 m3/min, the height of the oxygen lance 
varies from 8 to 20 m, the rate of blowing nitrogen varies from 
0 to 50 m3/min, the rate of blowing argon at the bottom varies 
from 0 to 50 m3/min, the range of supplementary coolants 
varies from 0 to 1 ton, and two weight coefficients of operation 
optimization model vary between 0.35 and 0.5. Considering 
the large differences in the values of different variables, they 
are normalized in the operation optimization model. 

2) Comparisons with different kernel functions: To verify 
the effectiveness of operation models (such as temperature [T], 
carbon content [C], manganese content [Mn], silicon content 
[Si], sulfur content [S], and phosphorus content [P]), the 
data-driven operation models are tested using different kernel 
functions. Three performance indices, including the root mean 
square error (RMSE), mean absolute error (MAE), and 
maximum absolute error (MAXAE), are used to evaluate the 
performance of operation models. The results are listed in 
TABLE II. We can find that the hybrid kernel function obtains 
16 best results and yields better results than Gaussian kernel 
function and polynomial kernel function. It follows that the 
hybrid kernel function can be used to build accurate operation 
optimization model. 

3) Parameter analysis: The parameters selection may 
sometimes have a great influence on the performance of the 

TABLE I 

THE SETTING OF MAIN PARAMETERS FOR EDA-RL 

Parameter NP λ ρ ζ β θ ε G0 
Value 100 30% 90% 10 20% 60% 10 100 

 

 
 
 
 
 
 
 
 

TABLE II 

COMPARISONS WITH DIFFERENT KERNEL FUNTIONS IN MODELS 

Model Index 
Different Kernel Functions 

Polynomial 
kernel 

Gaussian 
kernel 

Hybrid 
kernel 

T 
RMSE 6.20E+00 3.52E+00 3.44E+00 

MAE (°C) 4.77E+00 2.83E+00 2.80E+00 
MAXAE(°C) 1.71E+01 7.78E+00 7.56E+00 

C 
RMSE 9.35E−03 5.42E−03 5.41E−03 

MAE (%) 6.63E−03 4.34E−03 4.34E−03 
MAXAE(%) 2.36E−02 1.52E−02 1.52E−02 

Mn 
RMSE 4.72E−02 3.12E−02 3.14E−02 

MAE (%) 3.92E−02 2.56E−02 2.58E−02 
MAXAE(%) 1.02E−01 7.62E−02 7.60E−02 

Si 
RMSE 4.00E−04 3.75E−04 3.72E−04 

MAE (%) 1.65E−04 1.16E−04 1.12E−04 
MAXAE(%) 2.06E−03 2.05E−03 2.05E−03 

S 
RMSE 1.31E−02 1.23E−02 1.23E−02 

MAE (%) 8.30E−03 6.60E−03 6.60E−03 
MAXAE(%) 4.62E−02 4.07E−02 4.07E−02 

P 
RMSE 2.61E−03 1.90E−03 1.85E−03 

MAE (%) 1.99E−03 1.35E−03 1.29E−03 
MAXAE(%) 6.54E−03 5.85E−03 5.77E−03 

No. of Best 0 8 16 
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algorithm. We analyze this by considering two key parameters, 
the resampling rate θ and the decreasing coefficient ε, as shown 
in TABLE A-I and TABLE A-II in the Appendix. When θ is 
set to 60%, EDA-RL yields better results than others. For the 
local improvement, EDA-RL with ε = 10 is better than 
EDA-RL with other parameter settings. Based on these results, 
we infer that if the resampling rate θ is too small, the 
individuals in the current population will concentrate fast, and 
the diversity will also be reduced. Conversely, if θ is too large, 
EDA-RL will have a powerful exploration ability but poor 
exploitation ability. We also infer that, to a certain extent, a 
smaller ε yields better performance than a large ε. However, if 
the ε is too small, the speed will decrease more rapidly, and the 
search scope will be trapped into a local optimum solution. 
These findings illustrate why appropriate parameter values can 
maintain a balance between the global search and local search 
of the algorithm. 

4) Comparison results: The results of 20 real-time test 
instances obtained after normalizing are listed in TABLE A-III 
in the Appendix. The mean error and the corresponding 
standard deviation are the main evaluation indices, and the best 
results are shown in bold font. If the results are smaller than 
1.0E−08, we regard them as zero (all results in the subsequent 
tables are interpreted in the same way). Standard deviations are 
indicated using the symbol “±”. Clearly, EDA-RL yields the 
best results for 16 of the 20 instances, outperforming the other 
comparison strategies tested. 

The average performance index values for the 20 real-time 
test instances are shown in TABLE III, where MINAE and 
STD denote the minimum absolute error and standard 
deviation, respectively. Taking into consideration the main 
expectation indices, we define the expectation output of 
temperature from 1640°C to 1680°C, and the expectation 
output of carbon content is set between 0.02% and 0.04%. We 
can see that EDA-RL yields better performance according to 
MAE. The results illustrate that EDA-RL can provide better 
solutions for various production furnaces. In addition, 
EDA-RL also generates ideal outputs for the temperature and 
contents of molten steel components and provides a reliable 
control scheme for operators. For the four practical instances 

listed in TABLE A-III in the Appendix, the convergence 
curves of EDA, EDA-R, and EDA-RL are shown in Fig. 6. The 
diagrams show that EDA-RL not only has a faster convergence 
than EDA-R and EDA, but also obtains better solutions than 
the other strategies. 

5) Practicability comparisons: Under normal operating 
environment conditions, operators can adjust control 
parameters by combining their expert knowledge (EK) and 
experience with the mechanism model. However, smart 
industries often need reliable controls for quality and safety, 
and if the furnace state exhibits abnormal fluctuations, EK 
controls may lead to unreasonable or inaccurate operation 
results. The results obtained with EDA-RL and EK are 
presented in TABLE A-IV in the Appendix and in Fig. 7, 
where the expectation value is the given objective value. From 
these results, we can observe that EDA-RL obtains smaller 
absolute error values than EK and that the practical outputs of 

TABLE III 

PERFORMANCE COMPARISONS OF EDA, EDA-R AND EDA-RL 

Algorithm 
Average Minimum Objective Function Value 

MAXAE MINAE MAE STD 
EDA 3.69E−01 1.11E−02 1.22E−01 1.05E−01 

EDA-R 3.55E−01 8.76E−03 1.19E−01 1.03E−01 
EDA-RL 3.59E−01 8.28E−03 1.16E−01 1.01E−01 
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Fig. 6. The convergence curves of EDA, EDA-R and EDA-RL for four 
practical problems: (a) Instance 4, (b) Instance 6, (c) Instance 10, and (d) 
Instance 20. 
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Fig. 7. Control graphs by EK and EDA-RL: (a) T, and (b) C. 

TABLE IV 

PERFORMANCE COMPARISONS BETWEEN EK AND EDA-RL 

Objective 
EK  EDA-RL 

MAXAE(℃/%) MINAE(℃/%) MAE STD MAXAE(℃/%) MINAE(℃/%) MAE STD 
T 2.70E+01 1.00E+00 1.19E+01 6.78E+00 4.11E+00 6.22E−03 1.05E+00 1.21E+00 
C 1.60E−02 1.00E−03 6.30E−03 3.63E−03 8.58E−03 4.00E−06 2.10E−03 2.46E−03 
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temperature and carbon content are also closer to the 
expectation values. 

TABLE IV shows the results of performance comparisons 
between EK and EDA-RL. From the comparison results, we 
can see that EDA-RL performs better than EK and that the 
calculated error results are consistent with the practical 
production requirements. 

6) Computational complexity analysis of EDA-RL: Based on 
[35], some analysis of modeling, sampling, and improvement 

strategies are conducted in this study. In UMDAC
G, the 

computational complexity of modeling is O(DA) in each 
generation, where A = λNP, 0 1λ< < . The sampling process 
requires O(DQ), where Q = NP – A. In EDA with a hybrid 
distribution model, the overall computational complexity 
requires O(DA) in the modeling. The overall computational 
complexity of sampling requires O(DY1 + DY2), where we note 
that Y1 = ρ(NP − A), 2 (1 )( )ρ= − −Y NP A , and 0 < ρ < 1. Thus, 
the overall complexity of the sampling strategy has the same 
computational complexity as UMDAC

G. For the resampling 
strategy, the modeling requires O(DA), and the resampling 
requires O(DW), where A = λNP, 0 1λ< < , and W = 2NP. 
Thus, the computational complexity of resampling is O(DNP). 
For the local improvement, the evolutionary search based on 
superior individuals requires O(DβNP), and the information 
learning requires O(D2). Because 0 1β< < , the overall 
computational complexity of local improvement is between 
O(D2) and O(DC), where we note that 0 < <C NP . We 
conclude from the aforementioned comparisons and 
corresponding analysis that, the increase in computation cost is 
not significant. It is obvious that EDA-RL solves the operation 
optimization problem in BOF steelmaking efficiently. 

C. Further Test of EDA-RL as a General Optimization 
Algorithm 

To further verify the performance of EDA-RL, we carry out 
some numerical experiments described in this section. Some 
complex functions based on black-box optimization [49] are 
considered as benchmark problems. To ensure the fairness of 
comparisons, 51 independent runs are conducted for the 
black-box optimization benchmark problems, and the MaxFEs 
is set to 10000 × D. 

1) Benchmark functions: The benchmark problems belong to 
the class of real-parameter single objective minimum 
optimization problems without knowledge of the exact 
equations. These problems consist of several basic functions, 
and their landscapes may have contained multiple 
non-separable local optima. Furthermore, these black-box 
optimization functions have different properties as a result of 
variable shift and variable rotation operations (such as rotated 
high conditioned elliptic function, shifted and rotated Ackley 
function, shifted and rotated Schwefel function, etc.). As far as 
we know, a successful algorithm for the solution of these 
problems should not be influenced by shifting the position of 
the optimum and slightly changing the rotation matrix. 

The selected benchmark problems are based on complex 
composition functions described in [49], which consist of 
unimodal functions, simple multimodal functions, and hybrid 
functions. These functions can match many data-driven 
operation optimization models in practical application 
problems. Fun1–Fun8 represent the composition functions 
from No. 21 to No. 28, respectively, in [49]. The search ranges 
of all the functions are set to [−100, 100]. More details on the 
numerical results can be found in the Appendix of this paper. 
The best result obtained for each benchmark function, as 
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indicated by the mean and standard deviation, is highlighted in 
bold font. 

2) Parameter analysis: To further confirm the sensitivity of 
EDA-RL, parameter comparisons for some representative 
functions on 10/30/50-dimension problems are conducted. The 
results are shown in TABLE B-I and TABLE B-II in the 
Appendix. The final results are consistent with those obtained 
previously for the practical problem. The best results are also 
obtained at θ = 60% and ε = 10. This suggests that the current 
parameter settings for EDA-RL are effective for solving 
different black-box optimization problems. 

3) Strategy comparisons: The results obtained for different 
strategies are listed in TABLE B-III to TABLE B-V in the 
Appendix, respectively, where EDA-RL is compared to EDA 
and EDA-R on 10/30/50-dimension problems. To test the 
accuracy of each strategy, its solution for each instance is 
compared to the known optimal solution. Based on the 
calculated values of the mean error and standard deviation, the 
best results are shown in bold font. . We can see from the 
results that the performance of EDA-RL is superior to that of 
EDA and EDA-R for most of the problems. The number of best 
results for each strategy is plotted in Fig. 8, which shows that 
EDA-RL has a prominent effect on 10/30-dimension problems. 

To investigate the interaction between “R” and “L” in terms 
of the performance of EDA-RL for different problem 
structures, we conduct the analysis of different strategies. 
Based on the above results, we find that the “R” strategy is 
increasingly effective when the dimension increases. In 
dealing with low dimension problems, EDA-R exhibits no 
obvious effect. Although EDA converges faster than EDA-R in 
a few unimodal black-box optimization problems, the latter 
performs better in terms of its exploration ability for 

multimodal problems. Moreover, with the “L” strategy, 
EDA-RL selects the superior individuals to yield the best 
individual in the current population, and employs operators 
with information learning. Thus, EDA-RL can take full 
advantage of population information in the later stage of the 
process to enhance the exploitation ability of the algorithm and 
can yield some better solutions than EDA and EDA-R. 

4) Comparisons with state-of-the-art algorithms: To further 
demonstrate the competitiveness of our proposed algorithm, 
we compare EDA-RL to some state-of-the-art algorithms, 
using their reported results, such as differential evolution with 
an individual-dependent (IDE) [22], comprehensive learning 
particle swarm optimizer (CLPSO) [50], DE with an adaptive 
strategy (SaDE) [51], and restart covariance matrix adaptation 
evolution strategy with increasing population size 
(IPOP-CMA-ES) [52]. These state-of-the-art algorithms have 
been shown to be successful in solving black-box optimization 
problems, and have yielded better test results for some 
benchmark functions than some basic optimization algorithms 
such as DE, PSO, and CMA-ES. 

Fig. 9 shows the number of best results obtained with 
EDA-RL and the state-of-the-art algorithms. Statistical results 
concerning significant differences are shown in TABLE 
B-VI–VIII in the Appendix. In comparing statistically 
significant differences, the two-sided Wilcoxon rank sum test 
[22] is conducted to evaluate performance differences at the 
0.05 significance level. The symbol “+” indicates that the 
compared algorithm performs better than EDA-RL, the symbol 
“−” indicates that EDA-RL performs better, and the symbol “=” 
indicates no significant difference between the performance of 
EDA-RL and the compared algorithm. 
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As is evident from the aforementioned comparison results, it 
is notable that for 10/30/50-dimension problems, in most 
functions, EDA-RL is able to find solutions of the same or 
better quality, because “R” can identify multi-modal and 
different local optima for multiple variables effectively, and “L” 
can improve the local search ability to make convergence faster 
in the later search process. This implies that EDA-RL can 
address larger complex functions with large number of local 
optima more effectively. On the other hand, EDA-RL fails to 
perform the best for Fun2, Fun3, and Fun4, but it still remains 
competitive with other state-of-the-art algorithms. Therefore, 
as the results obtained show, our proposed algorithm can 
effectively solve some complex black-box optimization 
problems and exhibit a powerful generalization ability. 

5) Analysis of performance: In order to investigate the 
convergence and stability of EDA-RL, we present the 
convergence curves for EDA, EDA-R, and EDA-RL for four 
10-dimension problems in Fig. 10. The figures show that 
EDA-RL requires fewer evaluations to reach a steady state than 
the other strategies. As with the previous comparison results, 
EDA-RL obtains better objective function values than EDA 
and EDA-R. To graphically illustrate the best results obtained 
with each algorithm for the 51 independent runs, box plots of 
the minimum objective function values obtained by the 
different algorithms on 10/30/50-D problems for Fun3 and 
Fun6 are shown in Fig. 11. Each box illustrates lower quartile, 
median, and upper quartile values. From the box plots, we can 
see that EDA-RL performs more consistently than the other 
state-of-the-art algorithms and that EDA-RL performs better 
than the other algorithms in terms of the average minimum 
objective function value. As a whole, EDA-RL is competitive 
with the other algorithms for problems of different dimensions. 

V. CONCLUSION 
This paper has studied a control parameter optimization 

problem in the steelmaking process. Based on historical data, a 
black-box model was built to describe the endpoint control 
operation of the steelmaking process. This model was then 
used to formulate an optimization problem to set the control 
parameters for the required temperature and molten steel 
quality. To solve the problem, a new framework based on EDA 
with a resampling strategy and a local improvement (EDA-RL) 
was developed. In the EDA, we designed a hybrid distribution 
model to strengthen the diversity of population. A resampling 
strategy was proposed to enlarge the sampling region and to 
guide the new population to a more promising area. This new 
sampling model with resampling has good exploration ability. 
To enhance its exploitation ability, we incorporated local 
improvement, based on simplified gravitational search and 
information learning, to identify the current best individual. 
The EDA-RL was tested on practical operation data. The 
results illustrate that our proposed approach can optimize the 
control parameters of the steelmaking process to obtain the 
specified output accurately. To further test the performance of 
EDA-RL as a general optimization algorithm, an experiment 
was conducted on some complex black-box optimization 
benchmark problems. The results indicate that EDA-RL 

outperforms other state-of-the-art algorithms across a wide 
range of problems. 

In process industries, there are problems that involve 
optimizing the dynamic processes of operations instead of the 
final outputs. These problems can be considered as dynamic 
operation optimization problems. In further research, we will 
apply our proposed algorithm to solve dynamic operation 
optimization problems in practice. 
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A. Numerical Results on the Practical Problem 

APPENDIX 

TABLE A-I 

PARAMETER COMPARISONS FOR RESAMPLING ON THE PRACTICAL PROBLEM 

Instance θ = 20% 
Mean/Std. 

θ = 40% 
Mean/Std. 

θ = 60% 
Mean/Std. 

θ = 80% 
Mean/Std. 

1 1.46E−01 ± 4.61E−03 1.45E−01 ± 3.44E−03 1.44E−01 ± 2.32E−03 1.43E−01 ± 4.04E−03 
2 3.55E−01 ± 1.98E−02 3.59E−01 ± 1.94E−02 3.59E−01 ± 1.45E−02 3.59E−01 ± 1.54E−02 
3 2.62E−01 ± 2.63E−02 2.64E−01 ± 1.87E−02 2.57E−01 ± 1.63E−02 2.58E−01 ± 1.63E−02 
4 2.13E−02 ± 7.59E−03 2.15E−02 ± 8.30E−03 1.89E−02 ± 5.66E−03 2.40E−02 ± 8.04E−03 
5 1.80E−02 ± 8.58E−03 2.09E−02 ± 9.43E−03 1.69E−02 ± 8.06E−03 1.75E−02 ± 6.96E−03 
6 8.50E−02 ± 3.22E−03 8.34E−02 ± 2.61E−03 8.29E−02 ± 2.18E−03 8.32E−02 ± 2.48E−03 
7 1.48E−01 ± 1.96E−03 1.48E−01 ± 2.26E−03 1.47E−01 ± 1.43E−03 1.48E−01 ± 2.16E−03 
8 1.26E−01 ± 7.80E−03 1.25E−01 ± 6.55E−03 1.25E−01 ± 7.77E−03 1.28E−01 ± 7.11E−03 
9 8.67E−02 ± 2.00E−02 7.54E−02 ± 1.28E−02 8.00E−02 ± 1.41E−02 7.55E−02 ± 1.21E−02 

10 9.69E−03 ± 4.61E−03 9.43E−03 ± 3.67E−03 8.28E−03 ± 2.93E−03 8.77E−03 ± 3.81E−03 
11 5.55E−02 ± 4.36E−03 5.37E−02 ± 4.05E−03 5.27E−02 ± 3.65E−03 5.22E−02 ± 3.34E−03 
12 1.02E−01 ± 2.09E−03 1.01E−01 ± 2.17E−03 1.00E−01 ± 1.96E−03 1.00E−01 ± 1.61E−03 
13 9.69E−02 ± 3.06E−03 9.59E−02 ± 2.59E−03 9.51E−02 ± 1.97E−03 9.53E−02 ± 2.65E−03 
14 1.51E−02 ± 3.87E−03 1.49E−02 ± 3.50E−03 1.24E−02 ± 2.09E−03 1.33E−02 ± 3.45E−03 
15 6.47E−02 ± 7.06E−03 6.17E−02 ± 3.89E−03 6.07E−02 ± 2.92E−03 6.01E−02 ± 3.26E−03 
16 3.63E−02 ± 9.78E−03 3.23E−02 ± 8.04E−03 2.85E−02 ± 7.47E−03 2.92E−02 ± 5.95E−03 
17 1.61E−01 ± 1.09E−02 1.54E−01 ± 7.41E−03 1.55E−01 ± 8.81E−03 1.52E−01 ± 8.35E−03 
18 6.10E−02 ± 4.02E−03 5.89E−02 ± 2.20E−03 5.85E−02 ± 2.19E−03 5.88E−02 ± 1.79E−03 
19 2.20E−01 ± 1.47E−02 2.14E−01 ± 1.02E−02 2.12E−01 ± 1.03E−02 2.14E−01 ± 9.87E−03 
20 3.43E−01 ± 6.81E−02 3.45E−01 ± 5.81E−02 3.12E−01 ± 9.11E−02 2.94E−01 ± 9.77E−02 

No. of Best 1 2 13 6 

TABLE A−II 

PARAMETER COMPARISONS FOR LOCAL IMPROVEMENT ON THE PRACTICAL PROBLEM 

Instance ε = 1 
Mean/Std. 

ε = 10 
Mean/Std. 

ε = 50 
Mean/Std. 

ε = 100 
Mean/Std. 

1 1.43E−01 ± 2.92E−03 1.44E−01 ± 2.32E−03 1.44E−01 ± 4.19E−03 1.44E−01 ± 3.46E−03 
2 3.58E−01 ± 1.53E−02 3.59E−01 ± 1.45E−02 3.59E−01 ± 1.53E−02 3.56E−01 ± 1.75E−02 
3 2.54E−01 ± 1.63E−02 2.57E−01 ± 1.63E−02 2.58E−01 ± 1.51E−02 2.59E−01 ± 1.98E−02 
4 2.11E−02 ± 6.98E−03 1.89E−02 ± 5.66E−03 1.91E−02 ± 7.60E−03 2.25E−02 ± 8.31E−03 
5 1.75E−02 ± 7.06E−03 1.69E−02 ± 8.06E−03 1.69E−02 ± 6.18E−03 1.73E−02 ± 7.00E−03 
6 8.28E−02 ± 2.11E−03 8.29E−02 ± 2.18E−03 8.27E−02 ± 1.86E−03 8.30E−02 ± 2.44E−03 
7 1.48E−01 ± 2.19E−03 1.47E−01 ± 1.43E−03 1.47E−01 ± 1.96E−03 1.47E−01 ± 2.30E−03 
8 1.27E−01 ± 5.53E−03 1.25E−01 ± 7.77E−03 1.29E−01 ± 4.61E−03 1.27E−01 ± 6.65E−03 
9 7.31E−02 ± 1.13E−02 8.00E−02 ± 1.41E−02 7.66E−02 ± 1.62E−02 7.66E−02 ± 1.30E−02 

10 8.50E−03 ± 4.00E−03 8.28E−03 ± 2.93E−03 7.55E−03 ± 3.58E−03 9.21E−03 ± 3.07E−03 
11 5.18E−02 ± 4.85E−03 5.27E−02 ± 3.65E−03 5.16E−02 ± 4.43E−03 5.14E−02 ± 4.43E−03 
12 1.01E−01 ± 1.76E−03 1.00E−01 ± 1.96E−03 1.01E−01 ± 1.74E−03 9.99E−02 ± 1.74E−03 
13 9.55E−02 ± 2.16E−03 9.51E−02 ± 1.97E−03 9.57E−02 ± 2.94E−03 9.45E−02 ± 1.71E−03 
14 1.27E−02 ± 2.51E−03 1.24E−02 ± 2.09E−03 1.28E−02 ± 1.96E−03 1.26E−02 ± 2.11E−03 
15 6.14E−02 ± 3.84E−03 6.07E−02 ± 2.92E−03 6.33E−02 ± 5.14E−03 6.15E−02 ± 5.60E−03 
16 2.93E−02 ± 6.80E−03 2.85E−02 ± 7.47E−03 3.16E−02 ± 7.75E−03 2.96E−02 ± 7.01E−03 
17 1.57E−01 ± 1.01E−02 1.55E−01 ± 8.81E−03 1.56E−01 ± 8.73E−03 1.54E−01 ± 8.52E−03 
18 5.93E−02 ± 2.40E−03 5.85E−02 ± 2.19E−03 5.86E−02 ± 2.03E−03 5.95E−02 ± 2.42E−03 
19 2.13E−01 ± 1.10E−02 2.12E−01 ± 1.03E−02 2.12E−01 ± 7.25E−03 2.13E−01 ± 1.07E−02 
20 3.14E−01 ± 8.71E−02 3.12E−01 ± 9.11E−02 3.31E−01 ± 7.48E−02 3.17E−01 ± 8.20E−02 

No. of Best 3 11 4 6 
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TABLE A-III 

COMPARISON RESULTS OF MINIMUM OBJECTIVE FUNCTION VALUES 

Instance EDA EDA-R EDA-RL 
1 1.47E−01 ± 4.66E−03 1.45E−01 ± 3.95E−03 1.44E−01 ± 2.32E−03 

2 3.69E−01 ± 1.99E−02 3.55E−01 ± 1.82E−02 3.59E−01 ± 1.45E−02 

3 2.62E−01 ± 2.16E−02 2.60E−01 ± 1.57E−02 2.57E−01 ± 1.63E−02 
4 2.79E−02 ± 8.99E−03 2.59E−02 ± 9.56E−03 1.89E−02 ± 5.66E−03 
5 2.58E−02 ± 1.26E−02 1.92E−02 ± 7.99E−03 1.69E−02 ± 8.06E−03 

6 8.61E−02 ± 3.53E−03 8.46E−02 ± 2.65E−03 8.29E−02 ± 2.18E−03 

7 1.50E−01 ± 2.81E−03 1.49E−01 ± 2.97E−03 1.47E−01 ± 1.43E−03 

8 1.21E−01 ± 8.51E−03 1.24E−01 ± 7.94E−03 1.25E−01 ± 7.77E−03 

9 8.09E−02 ± 2.00E−02 8.22E−02 ± 1.49E−02 8.00E−02 ± 1.41E−02 
10 1.11E−02 ± 4.17E−03 8.76E−03 ± 3.33E−03 8.28E−03 ± 2.93E−03 
11 5.34E−02 ± 5.36E−03 5.48E−02 ± 3.53E−03 5.27E−02 ± 3.65E−03 

12 1.03E−01 ± 3.64E−03 1.02E−01 ± 2.07E−03 1.00E−01 ± 1.96E−03 

13 9.57E−02 ± 2.20E−03 9.49E−02 ± 2.09E−03 9.51E−02 ± 1.97E−03 

14 1.53E−02 ± 3.80E−03 1.32E−02 ± 2.07E−03 1.24E−02 ± 2.09E−03 

15 6.54E−02 ± 7.01E−03 6.19E−02 ± 3.34E−03 6.07E−02 ± 2.92E−03 

16 3.52E−02 ± 1.08E−02 3.03E−02 ± 6.37E−03 2.85E−02 ± 7.47E−03 

17 1.62E−01 ± 1.31E−02 1.60E−01 ± 9.79E−03 1.55E−01 ± 8.81E−03 

18 6.02E−02 ± 2.79E−03 5.88E−02 ± 2.42E−03 5.85E−02 ± 2.19E−03 

19 2.20E−01 ± 9.84E−03 2.13E−01 ± 9.65E−03 2.12E−01 ± 1.03E−02 

20 3.51E−01 ± 6.52E−02 3.46E−01 ± 5.76E−02 3.12E−01 ± 9.11E−02 
No. of Best 1 2 17 

TABLE A-IV 

COMPARISON RESULTS FOR THE PRACTICAL PROBLEM 

Instance 
T (℃) C (%) 

Expectation 
Value 

Absolute Error Expectation 
Value 

Absolute Error 
EK  EDA-RL EK EDA-RL 

1 1.644E+03 1.50E+01 2.73E+00 2.30E−02 6.00E−03 4.40E−05 

2 1.641E+03 7.00E+00 4.11E+00 3.50E−02 1.60E−02 5.44E−03 

3 1.650E+03 1.00E+01 3.41E−01 3.30E−02 1.20E−02 8.58E−03 
4 1.645E+03 7.00E+00 2.54E−01 2.90E−02 5.00E−03 1.80E−05 
5 1.648E+03 1.10E+01 4.87E−02 2.50E−02 2.00E−03 6.90E−05 

6 1.651E+03 9.00E+00 2.40E−01 2.80E−02 4.00E−03 3.14E−03 

7 1.655E+03 2.70E+01 2.23E−02 2.10E−02 9.00E−03 6.02E−03 

8 1.658E+03 6.00E+00 1.96E+00 2.70E−02 5.00E−03 1.53E−03 

9 1.656E+03 1.80E+01 1.02E−01 3.10E−02 1.00E−02 2.53E−03 
10 1.653E+03 1.90E+01 6.22E−03 2.60E−02 6.00E−03 6.50E−05 
11 1.655E+03 1.00E+01 5.97E−01 2.50E−02 2.00E−03 1.71E−03 

12 1.654E+03 1.00E+00 1.18E−02 3.10E−02 8.00E−03 3.86E−03 

13 1.662E+03 1.20E+01 1.83E+00 2.60E−02 2.00E−03 3.00E−05 

14 1.664E+03 3.00E+00 1.65E−01 2.60E−02 8.00E−03 2.70E−05 

15 1.665E+03 1.40E+01 1.09E+00 2.70E−02 6.00E−03 4.00E−06 

16 1.664E+03 1.90E+01 3.55E−01 2.30E−02 5.00E−03 2.12E−04 

17 1.662E+03 6.00E+00 1.98E+00 3.00E−02 7.00E−03 2.07E−03 

18 1.665E+03 1.20E+01 1.09E+00 2.70E−02 1.00E−03 1.50E−05 

19 1.676E+03 8.00E+00 8.80E−01 3.20E−02 7.00E−03 3.79E−03 

20 1.671E+03 2.40E+01 3.22E+00 2.30E−02 5.00E−03 2.95E−03 
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B. Numerical Results on Benchmark Problems 

TABLE B-I 

PARAMETER COMPARISONS FOR RESAMPLING ON BENCHMARK PROBLEMS 

Fun. D θ = 20% 
Mean/std. 

θ = 40% 
Mean/std. 

θ = 60% 
Mean/std. 

θ = 80% 
Mean/std. 

Fun2 
10 4.10E+01 ± 3.69E+01 3.85E+01 ± 4.58E+01 2.23E+01 ± 1.91E+01 2.70E+01 ± 2.51E+01 
30 2.52E+02 ± 1.16E+02 2.49E+02 ± 1.08E+02 2.16E+02 ± 5.63E+01 2.50E+02 ± 9.29E+01 
50 4.09E+02 ± 2.32E+02 3.99E+02 ± 2.57E+02 3.67E+02 ± 1.96E+02 4.17E+02 ± 1.95E+02 

Fun3 
10 3.42E+02 ± 2.36E+02 2.34E+02 ± 2.13E+02 2.34E+02 ± 1.86E+02 2.49E+02 ± 1.85E+02 
30 3.70E+03 ± 7.12E+02 3.32E+03 ± 6.12E+02 3.06E+03 ± 5.06E+02 2.93E+03 ± 4.04E+02 
50 7.65E+03 ± 9.64E+02 6.98E+03 ± 8.73E+02 6.37E+03 ± 6.43E+02 6.58E+03 ± 6.92E+02 

Fun8 
10 3.06E+02 ± 8.78E+01 3.46E+02 ± 1.28E+02 2.45E+02 ± 9.01E+01 3.23E+02 ± 8.80E+01 
30 2.96E+02 ± 2.80E+01 3.42E+02 ± 2.10E+02 2.84E+02 ± 5.43E+01 3.00E+02 ± 0.00E+00 
50 4.60E+02 ± 4.25E+02 5.19E+02 ± 5.95E+02 4.00E+02 ± 0.00E+00 5.19E+02 ± 5.95E+02 

No. of Best 0 1 8 1 

TABLE B-II 

PARAMETER COMPARISONS FOR LOCAL IMPROVEMENT ON BENCHMARK PROBLEMS 

Fun. D ε = 1 
Mean/std. 

ε = 10 
Mean/std. 

ε = 50 
Mean/std. 

ε = 100 
Mean/std. 

Fun2 
10 3.52E+01 ± 3.95E+01 2.23E+01 ± 1.91E+01 5.37E+01 ± 5.54E+01 4.65E+01 ± 5.18E+01 
30 2.48E+02 ± 9.76E+01 2.16E+02 ± 5.63E+01 2.90E+02 ± 1.02E+02 3.18E+02 ± 1.33E+02 
50 3.07E+02 ± 1.85E+02 3.67E+02 ± 1.96E+02 5.87E+02 ± 2.58E+02 6.24E+02 ± 3.21E+02 

Fun3 
10 2.47E+02 ± 2.04E+02 2.34E+02 ± 1.86E+02 4.03E+02 ± 2.44E+02 4.39E+02 ± 2.56E+02 
30 2.81E+03 ± 8.07E+02 3.06E+03 ± 5.06E+02 3.36E+03 ± 1.03E+03 3.08E+03 ± 1.15E+03 
50 6.48E+03 ± 7.09E+02 6.37E+03 ± 6.43E+02 8.03E+03 ± 9.56E+02 8.85E+03 ± 1.23E+03 

Fun8 
10 3.52E+02 ± 1.24E+02 2.45E+02 ± 9.01E+01 3.61E+02 ± 1.38E+02 3.78E+02 ± 1.50E+02 
30 5.70E+02 ± 6.56E+02 2.84E+02 ± 5.43E+01 6.11E+02 ± 7.66E+02 8.19E+02 ± 8.21E+02 
50 6.96E+02 ± 9.07E+02 4.00E+02 ± 0.00E+00 5.21E+02 ± 6.03E+02 5.81E+02 ± 7.30E+02 

No. of Best 2 7 0 0 

TABLE B-III 

EXPERIMENTAL RESULTS OF STRATEGY COMPARISONS ON 10-D BENCHMARK PROBLEMS 

10-D EDA EDA-R EDA-RL 
Fun1 4.00E+02 ± 0.00E+00 4.00E+02 ± 0.00E+00 3.88E+02 ± 4.32E+01 

Fun2 5.46E+02 ± 3.08E+02 4.74E+02 ± 3.31E+02 2.00E+01 ± 1.47E+01 
Fun3 6.51E+02 ± 3.42E+02 5.29E+02 ± 2.89E+02 1.28E+02 ± 1.17E+02 
Fun4 2.06E+02 ± 4.49E+00 2.00E+02 ± 4.42E−02 1.98E+02 ± 9.09E+00 

Fun5 2.01E+02 ± 1.98E+00 2.00E+02 ± 1.59E−01 1.98E+02 ± 9.92E+00 

Fun6 1.32E+02 ± 3.26E+01 1.47E+02 ± 3.72E+01 1.08E+02 ± 1.24E+01 

Fun7 3.02E+02 ± 4.31E+00 3.00E+02 ± 2.31E−01 3.00E+02 ± 6.09E−01 

Fun8 3.00E+02 ± 0.00E+00 3.00E+02 ± 0.00E+00 2.45E+02 ± 9.01E+01 
No. of Best 0 1 8 
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TABLE B-IV 

EXPERIMENTAL RESULTS OF STRATEGY COMPARISONS ON 30-D BENCHMARK PROBLEMS 

30-D EDA EDA-R EDA-RL 
Fun1 3.45E+02 ± 7.73E+01 3.30E+02 ± 7.67E+01 2.52E+02 ± 6.04E+01 

Fun2 5.37E+03 ± 1.41E+03 4.95E+03 ± 1.75E+03 2.01E+02 ± 6.06E+01 
Fun3 6.59E+03 ± 3.59E+02 6.25E+03 ± 1.21E+03 2.55E+03 ± 8.10E+02 
Fun4 2.18E+02 ±5.92E+00 2.05E+02 ± 3.23E+00 2.10E+02 ± 4.47E+00 

Fun5 2.65E+02 ± 7.83E+00 2.44E+02 ± 1.86E+01 2.10E+02 ± 1.65E+01 

Fun6 2.00E+02 ± 8.27E−05 2.00E+02 ± 1.47E−04 2.00E+02 ± 1.79E−04 

Fun7 4.50E+02 ± 5.98E+01 3.40E+02 ± 1.83E+01 3.91E+02 ± 4.79E+01 

Fun8 3.00E+02 ± 0.00E+00 3.00E+02 ± 0.00E+00 2.88E+02 ± 4.75E+01 
No. of Best 1 3 6 

TABLE B-V 

EXPERIMENTAL RESULTS OF STRATEGY COMPARISONS ON 50-D BENCHMARK PROBLEMS 

50-D EDA EDA-R EDA-RL 
Fun1 8.26E+02 ± 3.86E+02 7.34E+02 ± 4.27E+02 4.97E+02 ± 4.14E+02 

Fun2 6.78E+03 ± 5.09E+03 6.21E+03 ± 5.28E+03 2.87E+02 ± 1.50E+02 
Fun3 1.29E+04 ± 4.58E+02 1.25E+04 ± 1.59E+03 6.41E+03 ± 6.96E+02 
Fun4 2.47E+02 ± 9.71E+00 2.12E+02 ± 4.42E+00 2.20E+02 ± 6.67E+00 

Fun5 3.26E+02 ± 9.00E+00 2.99E+02 ± 7.78E+00 3.02E+02 ± 7.99E+00 

Fun6 2.00E+02 ± 1.82E−04 2.00E+02 ± 1.71E−04 2.00E+02 ± 2.66E−05 

Fun7 8.92E+02 ± 1.20E+02 4.13E+02 ± 4.94E+01 5.47E+02 ± 1.14E+02 

Fun8 4.00E+02 ± 0.00E+00 4.00E+02 ± 0.00E+00 4.00E+02 ± 0.00E+00 
No. of Best 2 5 5 

TABLE B-VI 

COMPARISON RESULTS BETWEEN EDA-RL AND STATE-OF-THE-ART ALGORITHMS ON 10-D BENCHMARK PROBLEMS 

10-D IDE CLPSO IPOP-CMA-ES SaDE EDA-RL 

Fun1 3.96E+02 
2.80E+01 = 2.88E+02 

1.21E+02 + 3.75E+02 
7.17E+01 = 4.00E+02 

0.00E+00 = 3.88E+02 
4.32E+01 

Fun2 9.15E+00 
5.82E+00 = 4.46E+01 

5.04E+01 − 
7.33E+01 
4.94E+01 − 

2.65E+01 
2.63E+01 = 2.00E+01 

1.47E+01 

Fun3 4.03E+02 
1.87E+02 − 

7.42E+02 
1.94E+02 − 

8.62E+01 
6.61E+01 + 6.74E+02 

3.19E+02 − 
1.28E+02 
1.17E+02 

Fun4 1.98E+02 
1.34E+01 = 1.42E+02 

3.46E+01 + 2.09E+02 
7.02E+00 − 

1.94E+02 
2.17E+01 = 1.98E+02 

9.09E+00 

Fun5 2.00E+02 
2.02E−05 = 1.92E+02 

3.19E+01 = 2.06E+02 
6.71E+00 − 

1.99E+02 
1.12E+01 = 1.98E+02 

9.92E+00 

Fun6 1.20E+02 
3.48E+01 − 

1.22E+02 
2.16E+01 − 

2.04E+02 
1.51E+01 − 

1.11E+02 
1.93E+01 = 1.08E+02 

1.24E+01 

Fun7 3.02E+02 
1.40E+01 = 3.25E+02 

3.53E+01 − 
4.55E+02 
7.92E+01 − 

3.04E+02 
1.96E+01 = 3.00E+02 

6.09E−01 

Fun8 2.88E+02 
4.75E+01 − 

2.50E+02 
8.60E+01 = 3.00E+02 

0.00E+00 − 
2.92E+02 
3.92E+01 − 

2.45E+02 
9.01E+01 

No. of Best 1  3  1  0  3 

−  3  4  6  2  

=  5  2  1  6  

+  0  2  1  0  
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TABLE B-VII 

COMPARISON RESULTS BETWEEN EDA-RL AND STATE-OF-THE-ART ALGORITHMS ON 30-D BENCHMARK PROBLEMS 

30-D IDE CLPSO IPOP-CMA-ES SaDE EDA-RL 

Fun1 3.17E+02 
6.01E+01 − 

2.87E+02 
2.78E+01 − 

2.55E+02 
5.03E+01 = 3.26E+02 

8.06E+01 − 
2.52E+02 
6.04E+01 

Fun2 1.21E+02 
4.39E+00 + 1.43E+02 

2.69E+01 + 5.02E+02 
3.09E+02 − 

1.14E+02 
1.42E+01 + 2.01E+02 

6.06E+01 

Fun3 3.28E+03 
3.80E+02 − 

5.44E+03 
4.14E+02 − 

5.76E+02 
3.50E+02 + 5.03E+03 

9.93E+02 − 
2.55E+03 
8.10E+02 

Fun4 2.00E+02 
3.60E−01 + 2.72E+02 

6.57E+00 − 
2.86E+02 
3.02E+01 − 

2.26E+02 
7.25E+00 − 

2.10E+02 
4.47E+00 

Fun5 2.14E+02 
2.09E+01 − 

2.96E+02 
5.43E+00 − 

2.87E+02 
2.85E+01 − 

2.66E+02 
1.23E+01 − 

2.10E+02 
1.65E+01 

Fun6 2.00E+02 
6.39E−03 = 2.02E+02 

6.19E−01 − 
3.15E+02 
8.14E+01 − 

2.00E+02 
8.77E−03 − 

2.00E+02 
1.79E−04 

Fun7 3.06E+02 
5.37E+00 + 7.77E+02 

3.14E+02 − 
1.14E+03 
2.90E+02 − 

6.18E+02 
7.16E+01 − 

3.91E+02 
4.79E+01 

Fun8 3.00E+02 
0.00E+00 = 3.00E+02 

3.10E−05 = 3.00E+02 
0.00E+00 = 3.00E+02 

0.00E+00 = 2.88E+02 
4.75E+01 

No. of Best 3  0  1  2  4 

−  3  6  5  6  

=  2  1  2  1  
+  3  1  1  1  

TABLE B-VIII 

COMPARISON RESULTS BETWEEN EDA-RL AND STATE-OF-THE-ART ALGORITHMS ON 50-D BENCHMARK PROBLEMS 

50-D IDE CLPSO IPOP-CMA-ES SaDE EDA-RL 

Fun1 7.32E+03 
3.82E+02 − 

5.31E+02 
2.39e+02 = 5.17E+02 

4.08E+02 = 9.18E+02 
2.96E+02 − 

4.97E+02 
4.14E+02 

Fun2 6.88E+01 
2.03E+01 + 3.68E+02 

1.58E+02 − 
1.83E+03 
2.86E+03 − 

2.21E+01 
4.87E+00 + 2.87E+02 

1.50E+02 

Fun3 7.32E+03 
6.92E+02 − 

1.21E+04 
6.60E+02 − 

2.99E+03 
4.19E+03 + 8.75E+03 

2.15E+03 − 
6.41E+03 
6.96E+02 

Fun4 2.02E+02 
1.14E+00 + 3.51E+02 

7.23E+00 − 
3.75E+02 
3.34E+01 − 

2.78E+02 
9.38E+00 − 

2.20E+02 
6.67E+00 

Fun5 3.03E+02 
1.09E+01 = 3.92E+02 

6.74E+00 − 
3.74E+02 
3.35E+01 − 

3.44E+02 
1.13E+01 − 

3.02E+02 
7.99E+00 

Fun6 2.23E+02 
4.46E+01 − 

2.06E+02 
9.17E−01 − 

3.82E+02 
1.29E+02 − 

2.61E+02 
8.73E+01 − 

2.00E+02 
2.66E−05 

Fun7 3.58E+02 
3.30E+01 + 1.50E+03 

5.59E+02 − 
1.94E+03 
4.55E+02 − 

1.17E+03 
9.89E+01 − 

5.47E+02 
1.14E+02 

Fun8 4.00E+02 
0.00E+00 = 4.00E+02 

1.63E−02 − 
1.03E+03 
1.22E+03 − 

5.35E+02 
6.75E+02 − 

4.00E+02 
0.00E+00 

No. of Best 3  1  1  1  4 

−  3  7  6  7  

=  2  1  1  0  

+  3  0  1  1  
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