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Abstract  

This paper presents the investigation of the dynamic behaviour of concrete material under 

high strain rate tension using an interface approach in a mesoscale model framework. A rate-

dependent cohesive constitutive description is introduced into the mesoscale framework to 

account for the effects of viscosity occurring in the dynamic fracture process. An algorithm is 

developed to insert cohesive elements throughout the mesoscale mesh grids in a concrete 

specimen, and to identify the cohesive element properties based on the original mesoscale 

structure. After parameter studies in terms of the cohesive element properties, the proposed 

model is validated against representative experimental data. The model is then employed to 
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investigate the dynamic tensile behaviour of concrete under high strain rates.  The underlying 

mechanisms of the dynamic tensile strength increase of concrete, including the influence of 

viscous effect from rate-dependent material description, the inertial effect from cracking and 

the material heterogeneity, are discussed and identified respectively. Results demonstrate that 

the viscous effect should be incorporated into the cohesive constitutive law to account for the 

Stefan effect at low and moderate strain rates and the micro-crack inertial effect only plays a 

significant role at a relatively high strain rate. Material heterogeneity does influence the 

strength enhancement under dynamic loading and the significance of this effect increases 

with the strain rate.   

Keywords: concrete material; dynamic tension; heterogeneity; mesoscale model; 

cohesive element; micro-inertial effect  

1. Introduction  

The dynamic behaviour of concrete has been a subject of continuous research interest over 

the last few decades. In concrete structures, the behaviour under dynamic loads is complex 

due to significant sensitivity of concrete to loading rate. Abundant experimental test data [1–

7] show that there is an apparent increase of the dynamic strength and fracture energy, i.e. the 

so-called dynamic increase factor (DIF), when concrete is subjected to high strain (loading) 

rates both in compression and tension. However as generally recognized, while the DIF in 

compression may largely be attributed to the involvement of inertia-induced radial 

confinement [8–11], the mechanisms behind the increase of the dynamic tensile strength and 

fracture energy are not clear. Due to the sensitivity of stress conditions to the test setup and 

the difficulties in accurately measuring the dynamic tensile behaviour of concrete, 

experimental data under dynamic tensile loading are highly scattered [4,12].  
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Generally, three indirect methods employing the Hopkinson bar have been developed to 

investigate the dynamic tensile behaviour of brittle materials like concrete to suit different 

ranges of the strain rate, namely direct dynamic tensile test, splitting test and spalling test 

[12,13]. Although all the experimental investigations arrive at the conclusion that there is a 

definite link between the loading rate and the exhibited response of the specimen, the 

limitation of the experimental technique itself as well as the composite nature of the concrete 

material make it very difficult to truly understand the behaviour of concrete under dynamic 

tension. On this backdrop, high fidelity numerical simulation provides a potentially powerful 

means to study the influence of individual parameters in great detail.  

Up to date, various numerical models which aim to reproduce the experimental setup have 

been developed to predict the response of concrete under dynamic tensile loading. Cotsovos 

and Pavlović [14] performed a direct dynamic tension simulation on the concrete prism with 

a nonlinear rate-independent constitutive model. Based on their results they suggest that the 

effect of strain rate on the specimen behaviour must be viewed as a structure effect which is 

directly linked to the axial inertial effect of its mass and the boundary conditions instead of 

intrinsic material property. More recently, Ožbolt et al. [14–17] conducted a series of 

numerical simulations to investigate the dynamic fracture of concrete in tension using a 

microplane constitutive model in which rate dependency is considered to be related to 

growing micro-cracks and viscosity. Based on the results they proposed that the apparent 

strength enhancement at relatively high loading rate should consist of two contributions, 

namely the true material strength which is controlled by the rate-dependent constitutive law 

and the inertial structure effect which develops automatically from the dynamic response. 

They also concluded that the results of any indirect tension test such as split Hopkinson bar 

test need careful interpretation since the apparent strength recorded from experiments may 

mix up with true material strength and the inertial effect. 
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On the other hand, Barpi [18] used a viscoplasticity based model, in which a viscosity 

parameter is defined as a function of strain rate, to describe the dynamic mechanical 

properties of concrete under splitting test. Their results suggest that viscosity should be the 

key reason for the increase of DIF in tension. A similar argument has been made by Hentz et 

al. [19] who developed a 3D discrete element method to simulate the dynamic loading under 

both compression and tension with Split Hopkinson Pressure Bar. They argued that while the 

DIF in compression can be largely explained by inertial-based hypothesis (structure effect), 

the DIF in tension cannot be explained by inertia alone and the rate sensitivity in dynamic 

tension is more a material intrinsic effect (a material property). Lu and Li [12] simulated 

three indirect dynamic testing apparatus, direct dynamic tensile test, dynamic splitting test 

and spalling test by numerical modelling with a homogeneous rate-independent concrete 

damage model. It was found that the numerical results from these three types of dynamic 

tensile tests do not show any strain-rate dependency. Hence, they concluded that the strain 

rate enhancement of the tensile strength observed in dynamic tensile tests is a genuine 

material effect. They further conducted a qualitative study on a micro-mechanism model and 

concluded that micro-crack inertia and material property heterogeneity could be the intrinsic 

mechanisms responsible for DIF. A similar conclusion was also drawn in numerical 

investigation with a solid-element based mesoscale model [10,20]. It is worth mentioning at 

this juncture that splitting test has a relatively low valid strain rate limit (1-5 s
-1

) as beyond 

this limit the stress distribution would no longer preserve a split tension condition [20]. 

Mesoscopic numerical simulations on dynamic tension response in concrete were also 

conducted by many researchers. Zhou and Hao [21] performed a mesoscopic analysis of 

dynamic behaviour in Brazilian cylinder under splitting tensile loading condition using a 

simplified mesoscale model. It was found that the mesoscopic features like ITZ properties, 

aggregate positions and aggregate volume fractions can have some influence on the crack 
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pattern and the measured tensile strength. Erzar and Forquin [22] developed a mesoscopic 

approach in which the matrix and the randomly distributed aggregates are differentiated to 

check and validate the accuracy of experimental measurement techniques. Two representative 

dynamic tensile tests, namely a spalling test and an edge-impact test were both reproduced by 

numerical simulations. The mesoscopic computational results show good agreement with 

experimental evidences. Thus, they concluded that the mesoscopic approach can be very 

useful to validate testing techniques and to simulate the dynamic behaviour of concrete. 

However, after conducting a series of numerical simulation with a more comprehensive 

mesoscale concrete model, Lu et al [11,23,24] pointed out that numerical investigation with a 

solid-element based mesoscale model has inherent limitations in representing a realistic 

fracture process in concrete specimens, particularly in dynamic loading where the classical 

mesh-objective treatment of the softening behaviour could cause complications in the 

propagating stress wave. Consequently, the dynamic tensile strength as well as the dynamic 

fracture energy could be incorrectly interpreted from the simulation results in such an FE 

modelling framework.  

More recently, several advanced computational methods have also been used to modelling 

the dynamic fracture in concrete and reinforced concrete, e.g., cracking particles method [25–

28] and phase field method [29]. The advantages of these methods rely on that complex 

fracture patterns including crack branching and coalesence can be easily modelled without 

representation of the crack’s topology and the cracks can be arbitrarily oriented. By 

specifically, a dynamic cohesive law which takes into account the change of fracture energy 

under high dynamic loading condition was successfully incorporated into the cracking 

particle method in [26]. And their results show that the method is capable to represent 

experimental data quite accurately for both quasi-static loading and dynamic loading cases.  
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In summary, despite considerable research effort, questions remain on the various 

mechanisms behind the dynamic strength increase in concrete materials, especially in 

quantitative terms. More specifically, the key questions are directed on (i) the significance of 

different mechanisms in their contribution to the dynamic tensile strength enhancement, and 

(ii) is it necessary to consider the dynamic tensile strength enhancement in the material 

constitutive relationship and to what extent does the modelling scale, i.e. the level of details 

studied, govern the definition of this constitutive relationship? Further exploration of this 

topic from micromechanical processes that combine the effects of the material heterogeneity, 

viscosity and micro-crack initiation and propagation are required.  

This paper presents an investigation of the dynamic behaviour of concrete material under 

high strain rate tension using an interface approach in a mesoscale model framework. A rate-

dependent cohesive constitutive description is introduced into the mesoscale framework to 

account for the effects of viscosity in the dynamic fracture process. The paper is organised as 

follows. In Section 2, a holistic 2D mesoscale model for dynamic fracture is developed, in 

which cohesive elements are incorporated along all mesh grid lines to accommodate free 

development of fractures. The numerical model setup and model verification are given in 

Section 3. In Section 4, the dynamic responses of the concrete specimen and the mechanisms 

behind these responses are investigated and discussed based on the numerical results. 

Concluding remarks are presented in Section 5.  

2. Modelling approach in a mesoscale framework 

2.1 Overview of meso-structure generation  

A number of studies on the generation of random meso-structure in concrete specimen both 

in 2D and 3D can be found in the existing literature [10,11,30]. For the present study on the 



7 

 

dynamic tension of concrete, previous pieces of evidences have pointed out that the dynamic 

inertial confinement, which is of a structure effect nature, has little effect on the DIF in 

tension [12,18]. More importantly, the present study purposely excludes the structure effect 

on the contribution of DIF but mainly focus on discussing the intrinsic mechanisms at the 

material level. Therefore, it is considered rational to use a 2D mesoscale model, while the 

focus is placed on a fuller description of the cohesive features, in addition to the mesoscopic 

structure of concrete. From a mesoscopic perspective the heterogeneity of concrete has three 

distinctive phases, i.e., aggregates, mortar matrix and the ITZ. These three phases are 

explicitly represented in the current mesoscale model. The materials within each phase are 

considered as homogeneous, although in reality these individual phases, especially mortar 

and the associated ITZ, are also heterogeneous. Being a sub-mesoscale feature, the non-

homogeneous properties within individual phases are expected to play a less significant role 

in determining the bulk behaviour of concrete. 

The general steps in generating a basic 2D meso-structure with aggregates and the mortar 

matrix follow exactly the approach used in [31,32]. For the cohesive cracking model, the 

evolved shape of a crack will be dependent upon the initial mesh grids. Although in a 

mesoscale model the overall shape of a crack may always be captured in a reasonable manner 

because of the fine mesh resolution needed for the mesoscale structure, triangular elements 

are preferred so that the detailed crack paths could be simulated more realistically. Figure 1 

gives an example of the meshed elements for aggregate and mortar components. 
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Figure 1  Meso-structure of concrete model (partial region): (a) aggregates; (b) mortar matrix.  

2.2 Algorithm for insertion of cohesive interface elements 

The fracture mechanism of concrete under dynamic tension is more complex than in static 

loading. Previous experimental results reveal that cracking is no longer limited to developing 

in close connection with the ITZ but also runs through mortar matrix and even through the 

aggregate particles under high strain rate loading [4,33]. Thus, to ensure that a mesoscale 

model fully capture all possible cracking routes, it is necessary to develop a model with 

possible discontinuity along all the mesh girds for all three parts, i.e., aggregates, mortar and 

ITZ.  

Depending on the response of the cohesive surface prior to the development into the 

softening stage, two types of cohesive zone approaches may be considered when the cohesive 

elements are inserted, namely intrinsic and extrinsic cohesive zone models [25]. Intrinsic 

cohesive elements are embedded in the discretized structure at the beginning of the 

simulation, and during the whole simulation process the mesh connectivity remains 

unchanged. Extrinsic cohesive models, on the other hand, insert the cohesive elements 

adaptively into the mesh, which means the cohesive elements are inserted only when the 

boundary stresses reach the critical material strength. Generally, the intrinsic cohesive model 

allows easier implementation than the extrinsic model as it does not require a constant mesh 
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topology updating which can be complicated and time-consuming, although it may introduce 

some problem in some cases such as the formation of unexpected crack paths and violation of 

the Cauchy theorem. Moreover, the inserting cohesive element during analysis in the 

extrinsic cohesive model requires that the cohesive strength need to be known a priori, 

however, the strength at specific material point should also be dependent on the real strain 

rate at this point. Therefore, it may also bring additional inconvenience for the extrinsic 

cohesive model at dynamic loading analysis. More sophisticated computational methods e.g., 

cracking particle method [26,27] may be a good candidate to solve this issue, however, this is 

beyond the scope of the present paper.  It is also worth mentioning that potential issues with 

the intrinsic approach can largely diminish provided that a suitable value is set for the initial 

stiffness, which will be discussed in detail later. Therefore, in the present study, we adopt the 

intrinsic cohesive model approach to avoid further complexity in handling the mesoscale 

mesh during the course of analysis.  

In the present mesoscale model with cohesive interface elements, three different types of 

cohesive elements, namely the aggregate-aggregate (intra-aggregate) interface element, the 

mortar-mortar (intra-mortar) interface element and the aggregate-mortar interface element 

can be identified according to the meso-structure of the concrete model. An algorithm is 

developed for the above-mentioned identification and cohesive element insertion. The 

procedure is performed with an in-house program coded with MATLAB. The proposed 

algorithm involves the following steps: 

(1)  Obtain the nodes and elements files; in the present study these are generated using 

ANSYS pre-processor. 

(2)  Read nodal coordinates, element connectivity arrays and then for each existing 

node 𝑖, identify the number of solid elements, 𝑛𝑖 , which share this node. 
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(3)  Duplicate nodes. For each original node 𝑖, (𝑛𝑖-1) number of nodes are duplicated 

with the same coordinates of the node 𝑖. Create an array Nodes[i][j] to store such 

duplicated nodes and corresponding original node at the same location, with j=1 to 

n. The original node i is stored in Nodes[i][1] while the duplicated nodes are stored 

in Nodes[i][2] to Nodes[i][n]. 

(4)  Discretise solid elements. For each original node i, loop over the number of solid 

elements, n, sharing this node. The first element using node i will keep its nodal 

connectivity unchanged. However, for the second to the nth solid element, the node 

i in the original connectivity will be replaced by the duplicated Nodes[i][2] to 

Nodes[i][n], respectively. This discretising process will be implemented in all the 

original nodes.  

(5) Insert cohesive elements. After updating all the nodal connectivity of the solid 

elements, all individual solid elements become disconnected units. A zero-thickness 

interface element is therefore used to connect two adjacent solid elements. This is 

done using an array Edges[M][K], which stores all the edges of the discrete 

elements, where M, K is the element number and the index of edges of this element, 

respectively. Start with element M, edge K, which has two end nodes I and J. Then 

identify element N which has an edge 𝐾∗ that connects two nodes 𝐼∗ and 𝐽∗ with the 

same locations as nodes I and J, respectively. Insert one interface element between 

the two solid elements M and N with connectivity as [𝐼, 𝐽, 𝐼∗, 𝐽∗]. Move to the next 

edge of element M and repeat the same process to insert a new cohesive element. 

When all edges of element M have been dealt with, move to the next element and 

repeat. Note that if an edge is on the external boundary or  has already been dealt 

with in a previous step, the process will move to the next edge. An example of 
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disconnecting solid elements and inserting a cohesive element between two solid 

elements is schematically shown in Figure 2. 

 

 

Figure 2 Sketch of inserting cohesive elements in the initial mesh: (a) Initial mesh; (b) 

disconnecting solid element; (c) forming cohesive element. 

(6)  Identify material attributions for interface elements. After inserting interface 

elements along each mesh line, the material type for each interface element needs to 

be identified according to the meso-structure of the concrete specimen. Firstly, 

subdivide the element file into three arrays AGG_ELE, MOR_ELE, and INT_ELE, 

which contain aggregate solid elements, mortar solid elements and the inserted 

cohesive elements, respectively. Then loop over the number of interface elements 

stored in the INT_ELE and identify the material type of the cohesive elements one 

by one. If all nodes of an interface element are shared by a solid element in 

AGG_ELE, the cohesive element is given the aggregate-aggregate interface 

properties. Similarly, if all nodes in an interface element are contained by a solid 

element in MOR_ELE, then the interface elements will be treated as a mortar-

mortar interface element.  The remaining interface elements, which share part nodes 

with solid elements in AGG_ELE and part with solid elements in MOR_ELE, will 
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be aggregate-mortar interface elements and will be given the ITZ properties 

accordingly.  

(7)  Create the input file for the analysis solver, herein LS-DYNA. Note that the above 

procedure is implemented based on a 2D plane condition, in which a line with 

duplicated nodes is used to model an interface element. However, the cohesive 

constitutive material model used in LS-DYNA is restricted to 3D solid elements. To 

cater to this situation, the current 2D mesoscale model is analysed in a thin plate 

configuration, with a single layer of elements in the out-of-plane direction. 

Therefore, nodes in this plane are further duplicated to form another plane. The 

nodes in the original plane and the nodes in the duplicated plane will form 3D solid 

elements.  

Figure 3 shows the insertion and identification process and the results for the three material 

types of cohesive element.  

 

Figure 3 Interface elements for three different components: (a) Aggregate-aggregate interface 

elements; (b) Mortar-mortar interface elements; (c) Aggregate-mortar interface elements. 
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2.3 Material models 

2.3.1 Cohesive constitutive description 

In the present study, we postulate that the cracking procedure as well as the nonlinear 

behaviour of concrete only develops through fractures, and thus in the model, they are 

governed by a constitutive relation between traction and opening displacement in the 

cohesive elements. The bulk material outside the cohesive zone remains undamaged and it 

continues to behave linearly elastically. This is to say; a simple linear elastic material model 

is used for brick element while a nonlinear cohesive constitutive model is adopted for the 

zero-thickness interface elements. Whereas such a description is broadly consistent with the 

damage evolution in quasi-brittle material like concrete, it also necessitates a suitable 

selection of the material constitutive model for the cohesive elements to reproduce reliably 

the damage processes. A bilinear cohesive constitutive material model used in [11,34,35] is 

adopted in the present study due to its simple but efficient function. The model considers the 

irreversible damage and allows for independent definitions of the constitutive relations for 

different fracture modes of tension and shear (see Figure 4(a)).  

 

Figure 4 Cohesive constitutive model [30]: (a) in pure mode; (b) in mixed model  
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The linear stiffness of the bilinear cohesive model is defined as 𝜎𝑃 𝛿𝑃⁄  , and this is followed 

by a linear softening during the damage (post-peak). Thus, a simple relationship exists 

between the energy release rate 𝐺𝐶, the peak traction 𝜎𝑃, and the ultimate displacement (at 

zero traction) 𝛿𝐹 as: 

/ 2.C P FG                                                                   (1) 

The cohesive model can also simulate complex fracture behaviour by combining normal and 

shear traction components together. As suggested by Gerlach et al [36], the detailed coupling 

between two independent modes may be described as shown in Figure 4(b). 𝜎𝐼
𝑃 , 𝜎𝐼𝐼

𝑃 and 𝜎𝑀
𝑃  

are the pure mode-I, the pure mode-II and the mixed-mode traction when fracture initiates 

and 𝛿𝐼
𝑃,  𝛿𝐼𝐼

𝑃 ,  𝛿𝑀
𝑃  are their corresponding displacement respectively. The displacement in pure 

mode-I, pure mode-II and mixed-mode when cohesion is completely lost (the interface is 

separated) are denoted by 𝛿𝐼
𝐹 , 𝛿𝐼𝐼

𝐹 , 𝛿𝑀
𝐹  respectively. 𝐺𝐼𝐶 and 𝐺𝐼𝐼𝐶 are the fracture energy release 

rate in mode-I and mode-II respectively. The detailed coupling law between independent 

mode-I and Mode-II fractures can be found in [37]. 

2.3.2 A rate-dependent cohesive law 

A rate-independent cohesive interface model combining with contact-friction approach has 

been successfully incorporated into the mesoscale framework in [11] for the material 

investigation as well as characterisation of the material behaviour in complex loading 

conditions. However, a rate-dependent cohesive constitutive description is required in the 

framework to account for the effects of viscosity occurring during the dynamic fracture 

process of concrete.  

The rate-dependent tractions for tension and shear fracture model of the cohesive element can 

be expressed by a liner logarithmic function [38]:  
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where 0T , 0S are the reference strain rates, T0 and S0, are the tractions at reference loading 

rate for pure mode-I,  pure mode-II respectively. T1 and S1 are material parameters which are 

used to calibrate the rate-dependent model. Angle bracket 〈 〉 in Eq. (2) denotes Dirac delta 

function which has the definition as: 〈𝑓〉 = 𝑓 if f  > 0 and 0 otherwise. The equivalent strain 

rate eq , for mixed-mode fracture,  in the interface element can be evaluated as [38]: 

2 2

,
T S

eq

element

u u

t



                                                                    (3) 

where Tu  and Su  represent the local separation speed of the interface layer in normal and 

tangential direction respectively and elementt  refers to the thickness of the interface. It should 

be noted here elementt , the thickness of the interface, is the current separation distance of the 

initial interfaces and is calculated based on the current nodal coordinates.  

In the present cohesive constitutive law, the fracture energy under dynamic loading can also 

be defined as a function of the equivalent strain rate eq . However, to avoid the complexity, 

we restrained ourselves on studying the DIF for tensile strength only, the fracture energy 

enhancement for the fracture energy is not considered although it was also observed from 

experimental evidences. Moreover, many researchers (e.g.[23,25]) also stated that the fracture 

energy enhancement during dynamic tensile loading should come from multiple cracks and 

the wider region of damage zone (structural effect) instead of from material constitutive 

description. In this circumstance, the fracture energy is set to be rate-independent at material 

constitutive description.  
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3. Model set up and experimental verification  

3.1 Specimen geometry and loading method 

A typical cubic concrete specimen (a square in 2D) with a side length equal to 100 mm is 

considered herein for the basic model verification. The aggregate volume ratio in the 

specimen is approximately 45%, and the maximum aggregate size is 8 mm. To simulate a 

direct tension, the sample specimen is loaded using a linear velocity distribution as shown in 

Figure 5. The lateral boundaries are kept stress-free and no boundary condition is imposed in 

the out-of-plane direction, such that a macroscopic 1D stress state prevails in the structure.  

 

Figure 5 Boundary conditions for dynamic tension  

It should be noted at this juncture that under a high strain rate it is very difficult to achieve a 

homogenous stress distribution in a concrete specimen under dynamic tensile loading. In the 

present study with a numerical simulation, a special treatment is used to avoid stress wave 

reverberation and an early failure near the boundary, such that all nodes in the FE model are 

given velocity in accordance with a prescribed distribution along the specimen length, as 

shown in Figure 5. This approach has been adopted in some previous studies as well [25,35].  

For a linear distribution of velocity, we have:  
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                                                           (4) 

where v0 is the loading velocity applied on the upper and lower boundary of the specimen and 

its value is dependent on the imposed strain rate   

0
2

h
v  .                                                                  (5) 

h and y are the height (length) of the specimen and the vertical coordinate value of the nodes, 

respectively. 

3.2 Mesh size and initial cohesive stiffness 

The mesh size could have a significant influence on the global response of the concrete 

specimen since it monitors the amount, size and orientation of cohesive elements. General 

convergent value has been obtained in quasi-static loading cases (e.g. [11]). However, the 

response of concrete in dynamic loading is more complex due to the involvement of the stress 

wave as well as the crack propagation speed, thus the numerical results may be more 

sensitive to the element size. For these reasons, numerical tests with different mesh sizes 

under various loading rates are performed to investigate the mesh size effect and seek for an 

effective mesh size in the dynamic loading cases. Figure 6(a) and (b) shows the convergence 

results for tensile loadings under two different strain rates, namely, quasi-static loading and 

strain rate 100 s
-1

, in terms of the nominal stress-strain curve. In the present study, the 

nominal stress is calculated as the upper boundary loading force divided by the initial width 

while the nominal strain is determined from the displacement on the upper boundary divided 

by the half height of the specimen due to symmetric loading conditions and the nominal 

strength refers to the peak value of nominal stress.  To eliminate any influence introduced by 

the initial stiffness of the cohesive element while ensuring minimum artificial compliance of 



18 

 

intrinsic cohesive element [39], a constant but sufficiently large stiffness KN = KS = 2×10
7
 

MPa / mm is used for all the cases. From Figure 6(a), using a mesh grid size of 1 mm appears 

to be good enough even for a high strain rate of 100 s
-1

. Therefore, the mesh size 1 mm has 

been used as the final mesh setting thereafter, resulting in around resulting in about 140k 

nodes and 70k elements including 30k bulk elements and 40k interface elements, respectively 

for the mesoscale model. 

 

Figure 6 Effect of mesh size and initial cohesive stiffness: (a) mesh size study at quasi-static 

loading; (b) mesh size study at high strain rate loading 100 s
-1

 ; (c) initial cohesive stiffness at 

quasi-static loading; (d) initial stiffness at high strain rate loading 100 s
-1

. 

The initial stiffness for the intrinsic cohesive element can be a very important parameter 

which may influence the global response of the cohesive zone model [11,39]. While the small 
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value of the initial stiffness may introduce artificial compliance, an extremely large stiffness 

may cause other numerical problems such as spurious oscillations of the traction and increase 

of the computational time.  A general guideline for this parameter may be expressed by the 

following equation [39]:  

 ,
mesh

E
K

h


                                                                            (6) 

where E is Young’s modulus of the bulk material, ℎ𝑚𝑒𝑠ℎ  is the element mesh size in the 

cohesive zone, and 𝛼 is the stiffness parameter which needs to be determined. Eq. (6) also 

implies that the stiffness of the cohesive element may be set appropriately only after the mesh 

size is determined.    

In [11], the suggested value of the parameter 𝛼  is around 50 which is deemed to be a 

sufficient value to reduce the compliance of the intrinsic cohesion in quasi-static loading 

cases. This conclusion is further checked herein for dynamic loading cases. For this purpose, 

the computed results in term of nominal stress and strain in a high strain rate loading 

condition (100 s
-1

), with various values of 𝛼 for the mesh size 1 mm are presented in Figure 

6(b). From Figure 6(b), it can be found that the initial cohesive stiffness not only influences 

the global stiffness of the nominal stress-strain curve but can also affect the dynamic strength 

in the high loading rates. However, the use of a value 𝛼 = 50 for the stiffness parameter 

appears to guarantee a stable and converging result. 

3.3 Model calibration and verification 

The meso-mechanical approach requires defining the material properties for every constituent 

material component. As described earlier, the bulk elements in the concrete specimen should 

resemble the continuum properties before cracking, while the cohesive elements 

accommodate the fracture (damage) process. Therefore, the bulk elements are modelled only 
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with a simple linear elastic material model while the zero-thickness cohesive element is 

assigned with a bilinear cohesive constitutive relation in terms of traction and opening 

displacement. The basic material properties for the aggregates and the mortar matrix are 

summarised in Table 1. These values are generic and suitable for a normal concrete with a 

static tensile strength on the order of 3.5 MPa [40].  

Table 1 Properties for the bulk element 

Component Density 𝝆 (kg/mm
3
) Young’s modulus E (GPa) Poisson’s ratio v 

Aggregate 2600 60 0.2 

Mortar 2300 30 0.2 

 

The setting of the material parameters in the bilinear cohesive constitutive model can be very 

simple and straightforward. Only a few key parameters, including the initial stiffness KN, KS, 

the peak traction 𝜎𝐼
𝑃, 𝜎𝐼𝐼

𝑃 , and the fracture energy release rate 𝐺𝐼𝐶  and 𝐺𝐼𝐼𝐶  in mode-I and 

mode-II respectively, need to be identified. While the peak traction 𝜎𝐼
𝑃  and the fracture 

energy GIC in Mode-I can be directly obtained from representative experiments for most 

engineering materials, the corresponding values in the shear direction may need extensive 

parameter studies for a specialised material due to a lack of the relative experimental data. In 

the present study, the material properties in tension for the three independent interface 

components are directly determined on the basis of experimental data (e.g. [41,42]) taking 

into consideration of the suggested values from previous numerical work (e.g. [40]). The 

shear properties for the three independent interfaces are set according to the studies in [11] 

where the shear strength and the shear fracture energy are reported to be 4 times of tensile 

strength and 10 times of the tensile fracture energy respectively. According to their report, 

with such a setting for the two factors, the numerical model can give good agreement with the 
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experimental evidences for both global stress-strain curve and local damage patterns. In order 

to keep a consistent description of the rate-dependent responses of the three components 

(aggregate-aggregate, mortar-mortar and aggregate-mortar), the rate-dependent parameters T1 

and S1 are set directly related to their counterparts in quasi-static loading. Then Eq. (2) can be 

written as:  

   0 1 0 0 1

0 0

In  and In .
eq eq

T S

T T k T S S k
 

 
 

                                    (7) 

Notice that the same k1 is used in both mode-I and mode-II because of the proportional 

relation between the tensile and shear description in quasi-static loading case. Taking 

consideration of the DIF values for tensile strength from experimental observation for 

concrete, several simulations were then conducted to calibrate the value of k1. The results 

show that a value around 1 appears to give very satisfying results for all the loading rates. 

Therefore, Eq. (2) can be transformed to: 

   

0 0 0 0

1 In  and 1 In .
eq eq

T T

T S

T S

  

 
                                               (8) 

This rate-dependent cohesive law is then adopted, hereafter, for all the cohesive models.  

The properties of the ITZ layer are difficult to determine precisely. Past research has found 

that the thickness associated with the ITZ in concrete is generally in the range of 20-50 µm 

[43,44]. An exact incorporation of such a thin layer of material in the mesoscale FE model is 

impractical. Therefore, it is reasonable to use zero-thickness cohesive elements to represent 

the interface as we actually did in the present study. 

Similar to a interphase zone in the polymeric composites [45], the ITZ in concrete plays a 

crucial role in determining the macroscopic failure behaviour of concrete. An adequate 

representation of the ITZ is an important subject in the mesoscale model. Lots of work have 

been conducted on investigating the effect of ITZ mechanical properties on the fracture 
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behaviour of concrete-like materials [11,34,44]. And it is generally accepted that the ITZ is 

weaker and is about 50% of the strength of the mortar matrix. All the mechanical properties 

for ITZ including the strength and fracture energy are determined based on data collected 

from relevant literature [25,46] and our previous sufficient work [11,31].   

The detail material parameter values used for the three different interfaces are summarised in 

Table 2.  One may also note that the properties of ITZ in the present study are set at 50% of 

the mortar properties as generally accepted. 

Table 2 Properties for the three interface components 

Component 

Tensile strength 

𝝈𝑰
𝑷 (MPa) 

Fracture energy  

𝑮𝑰𝑪 (N/mm) 

Shear strength      

𝝈𝑰𝑰
𝑷  (MPa) 

Fracture energy  

𝑮𝑰𝑰𝑪 (N/mm) 

Aggregate-aggregate 16 0.08 64 0.8 

Mortar-mortar 4.7 0.06 18.8 0.6 

Aggregate-mortar 2.3 0.03 9.2 0.3 
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Figure 7 Model verification with experimental results: (a) stress-strain curves verified with 

[47]; (b) DIF with strain rate towards experimental evidences collected from [48] 
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As can be seen from Figure 7(a), the results from the mesoscale cohesive element model 

show very good overall agreement with the experimental data in terms of stress-strain curves 

under three different strain rates, namely, 10
-3

 s
-1

, 1 s
-1

 and 10 s
-1

. Furthermore, more 

simulations are conducted at various loading rates ranging from 10
-3

 s
-1

 to 100 s
-1

 to extract 

the dynamic increase factor (DIF). As can be seen from Figure 7(b), a reasonable correlation 

between the experimental DIF with strain rate curves and the numerical predictions for all the 

loading rates is achieved. From these comparisons, it is reasonable to say that the mesoscale 

cohesive element model has the capability to predict the response of concrete under dynamic 

tensile loadings with acceptable accuracy. Therefore, the model is further applied in the 

analysis of intrinsic mechanisms governing the dynamic strength enhancement in dynamic 

tension, which will be given in Section 4.  

4. Numerical investigation of mesoscale mechanisms influencing tensile 

behaviour of concrete  

4.1 General dynamic response in concrete 

As stated earlier, concrete materials are very sensitive to the strain rate, especially in tension. 

However, the mechanisms behind its global dynamic behaviour are not clear, and debates are 

still ongoing as to whether it is a material effect or a structure effect, and if both what is the 

relative significance between these effects. Some researchers [16] also stated that the results 

of any indirect tension test, such as split Hopkinson bar test, may mix up with structure effect 

and material effect, thus need a more careful interpretation. However, it should be noted that 

the structural inertial effect described above is purposely excluded from the present analysis 

by introducing a specified loading condition as described in Section 3.1. Examination of the 

response is focused within the mesoscale parts of the model.  
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To facilitate the evaluation of the stress distribution, the mesoscale region is fictitiously 

divided into seven equal strips along with the loading (axial) direction, with a width around 

14 mm for each strip. This way, the thin direction of the strip is aligned with the loading 

direction, as depicted in Figure 8.  

 

Figure 8 Strips to evaluate the stress distribution in the specimen 

Figure 9 shows the development of (average) axial stress in the seven strips for the above 

three strain rates respectively along with the corresponding final cracking patterns. The 

stresses in all the strips show almost the same response under each strain rate. This tends to 

confirm that a relatively uniform stress state could be achieved for all the loading rates under 

the artificial loading condition, thus precluding the structural inertial effect from the 

numerical analysis. Hence, if there exhibits any strength enhancement with the increase of 

strain rate, the mechanism should come from the material effect in terms of the rate 

sensitivity of the cohesive behaviour rather than the structural effect. Actually, as shown in 

Figure 9, the dynamic strengths obtained from the present numerical simulations show a 

significant increase when higher strain rates are imposed. Since the structural inertial effect 
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has been effectively excluded, the observed dynamic strength enhancement is attributable 

only to the intrinsic material response. Other structural effects that may influence the 

dynamic strength of concrete, like the structural size of the specimen, are also purposely 

avoided. The numerical specimen size used in the present study is at the same level with 

typical experimental tests and is exactly the same in all the simulations. Moreover, according 

to the recent study in [49], the dynamic tensile strength will be independent on the structural 

size of the specimen when the imposed strain rate is above the critical strain rate 1 s
-1

. Since 

the present study mainly focuses on investigating the dynamic tensile behaviour at relatively 

high strain rate (above 1 s
-1

), it is reasonable to believe that the effect of structural size on our 

results is very tiny and can be neglected. 

Three mechanisms at the material level, namely material heterogeneity, material viscosity and 

the micro-crack inertial effects, are included in the current mesoscale cohesive numerical 

model. Therefore, the observed dynamic tensile strength enhancement (i.e. the DIF) from the 

numerical results is a result of their combined action. To further demonstrate the individual 

contribution to the DIF from each of the above three mechanisms, more specific 

investigations are carried out in the following sub-sections.  
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Figure 9 Strip stresses and crack patterns under different loading rates: (a) at strain rate 10
-3

 s
-

1
; (b) at strain rate 10 s

-1
; (c) at strain rate 100 s

-1
 

4.2 Effect of rate-dependent material response  

To examine the effect of rate sensitivity at the material constitutive property level, numerical 

simulations in this section are performed using both a rate-independent cohesive model and 

the proposed rate-dependent cohesive model. In the rate-independent cohesive model, the 
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cohesive strength and the fracture energy for both tension and shear model are set as 

constants regardless of the strain rate. All other aspects of the models remain identical.  
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Figure 10 Comparison of DIF with strain rate between rate-independent cohesive and rate-

dependent cohesive models  

The corresponding results are compared in Figure 10 in terms of DIF with strain rate curves. 

As can be clearly observed, at the range of low and intermediate strain rates (up to 10 s
-1

), 

nearly no strength enhancement can be observed from the rate-independent cohesive model, 

which is contrary to the experimental evidences. The discrepancy could come from the 

‘Stefan effect’ which is not incorporated in the rate-independent cohesive model. The ‘Stefan 

effect’ refers to a viscous phenomenon which takes place in the capillary pores [50,51]. This 

phenomenon can be simply interpreted by pulling apart two plates separated by a thin water 

film. The force necessary to pull the plates apart increases with the increase of the loading 

speed. Apparently, explicit modelling of the ‘Stefan effect’ would require a representation of 

free water content and reflection of complex physical interaction between moisture and 

micro-structural solid skeleton [51,52], which are not within the remit of current mesoscale 

concrete model. In addition, for all the loading rates, the mesoscale rate-independent cohesive 

model generally lacks the ability to reproduce the dynamic responses observed from 

experimental evidences. Therefore, it is reasonable to conclude that it is necessary to 
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incorporate the rate-dependent constitutive law at the material level to account for the ‘Stefan 

effect’ and its interaction with other mechanisms.  

However, results of DIF at higher strain rates (above 10 s
-1

) demonstrate that rate- 

independent cohesive model can also predict remarkable dynamic strength enhancements, 

especially for the very high strain rate range (above 100 s
-1

), even no rate effect is considered 

at the material level. And this strength enhancement should come from other micro-

mechanisms, such as material heterogeneity and micro-crack inertial effect, which will be 

discussed in the following sub-sections.  

4.3 Effect of material heterogeneity  

To investigate the effect of heterogeneity on the DIF, a comparative homogenous FE model 

i.e. homogeneous cohesive elements (HC model) is analysed in this section, along with the 

mesoscale model. For the homogeneous model, the bulk elements (mortar and aggregates) are 

homogenised with uniform material properties, whereas the zero-thickness interface element 

with homogenized properties is inserted between each pair of bulk elements. Similar to the 

original mesoscale cohesive element model (MC model), only a simple linear elastic material 

model is employed for the bulk elements, and the nonlinear and cracking behaviours are 

represented by the cohesive constitutive material model. The homogenization process is 

conducted at quasi-static loading case only and it is expected that the HC model can predict 

the same results with the MC model in terms of the stress-strain curve at quasi-static loading 

case. For bulk element in the HC model, the material parameter needed to be homogenized is 

just Young’s modulus HoE  since a simple linear elastic material model is used. For cohesive 

element, the parameters used for homogenization are the tensile strength p

I and the fracture 

energy IG , while other properties including the shear properties and the rate-dependent 
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parameters can be set directly related to these two values. The methodology used for 

homogenization can be referred to [53,54]. After homogenization, the values of 
HoE , p

I  and 

IG  in HC model are 43.5 GPa, 3.2 MPa, 0.05 N/mm, respectively.  

 

Figure 11 Effect of material heterogeneity: (a) nominal stress-strain curves; (b) DIF with 

strain rate 

The results in terms of the stress-strain curve and the DIF with strain rate curves from the two 

models are shown in Figure 11. As can be seen, the stress-strain response in quasi-static (i.e. 

10
-3

 s
-1

) is very similar in HC and MC model, which also indicates that the successful 

homogenisation of the MC model to the HC model. However, when the loading rate increases 

to a moderate strain rate of 10 s
-1

, the nominal strengths in the mesoscale cohesive model 

(MC) show larger increases in the dynamic strength as compared with its counterpart in the 

homogeneous model (HC). As the loading rate further increases, much larger differences of 

nominal strengths between MC and HC models can be observed (e.g. at a strain rate of 100 s
-

1
). This suggests that the material heterogeneity of concrete plays a more significant role 

under high strain rate loading.  
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Figure 12 Final cracked patterns for HC (left)  and MC (right) models: (a) at quasi-static test; 

(b) at strain rate 10 s
-1

; (c) at strain rate 100 s
-1
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The final crack patterns for HC and MC models under various loading rates are compared in 

Figure 12. Due to the special loading methodology used in current simulations, it may be 

very difficult to make a direct comparison with the experimental evidences. However, typical 

characteristics of crack patterns of concrete are successfully captured by our current 

mesoscale cohesive model. It can be seen clearly that the cracks in the mesoscale cohesive 

model exhibit more wavy paths compared with the corresponding homogeneous model.  

Furthermore, from the failure patterns in the mesoscale cohesive model, cracks mostly 

propagate around the aggregate particles and following the interface between the mortar and 

aggregate particles at lower strain rate loading; however, under high strain rates (e.g. 100 s
-1

) 

some cracks penetrate through the aggregates, as can be seen from Figure 12(c). The fracture 

of aggregate particles thus contributes to the increase of the tensile strength as well as 

fracture energy, especially under high strain rate loading. This statement echoes well relevant 

experimental evidences (e.g.[48,55]).  

Having clarified the general contribution of the material heterogeneity in the dynamic tensile 

behaviour of concrete, further analysis is performed to examine the relative importance of the 

rate sensitivity of the three constituent materials, i.e. ITZ, mortar, and aggregates, 

respectively. For this purpose, three variant models are created, and in each model, only one 

set of the cohesive elements, representing (a) ITZ, (b) mortar, and (c) aggregate, respectively, 

are made rate dependent. To assess the individual contribution to the DIF from each 

component in a mesostructured concrete, a variable called relative contribution is defined and 

calculated as:  

 
 

  
  

,

I

d s sI

I

d s s

f f f
RC

f f f





                                                            (9) 
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where sf  is the static tensile strength of the studied concrete, 
 I

df  refers to the predicted 

dynamic strength when rate effect cohesive constitutive law is considered only in one 

component and the superscript I represents an individual component in the mesoscale 

concrete i.e., aggregate, mortar and ITZ respectively.  

It should be noted here there is no physical meaning for the variable RC
(I)

; it is defined and 

used only for characterisation of the relative role of each component in a mesostructured 

concrete.  

The relative contribution of DIF for all three components are quantified at three strain rates, 

namely, 1 s
-1

, 10 s
-1

 and 100 s
-1

, represents low strain rate, moderate strain rate and high 

strain rate loading, respectively. The corresponding results are shown in Figure 13. It is 

interesting to find that the relative effect of the mesostructured component varies with the 

increase of the loading rate. Generally, ITZ plays a significant role in the strength 

enhancement while the aggregate nearly contributes nothing to the strength enhancement at 

low strain rate. This phenomenon is very similar to the quasi-static loading test where the 

load-carrying capacity of concrete is largely controlled by the weaker ITZ [10,11]. However, 

with the increase of the strain rate, aggregate particles tend to play an increasingly more 

important role in the strength enhancement. When the strain rate increases to the order of 100 

s
-1

, a remarkable contribution from aggregate particles can be observed. This echoes the 

observation in Figure 12(c), where several aggregate particles were fractured by cracks, thus 

contributing to the strength enhancement. In contrast, mortar always has a high contribution 

to the DIF at any strain rate in the range of loading. This may be because mortar is more 

compliant than aggregate and fracture and damage in concrete mainly occurs in the mortar 

component for both quasi-static and dynamic loadings.  
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Figure 13 Relative contributions of mesoscale components under different strain rates 

4.4 Effect of micro-crack inertia  

In Section 4.2, it was observed that under high strain rates (100 s
-1

 and above), marked 

strength enhancement occur even in the rate in-dependent cohesive model. This phenomenon 

could be attributable to the micro-inertial effect. A further discussion of this micro-crack 

inertial effect is presented in this section. The investigation is based on the comparison of the 

numerical results between the mesoscale finite element model with cohesive interface 

elements (MC model) and a mesoscale model with only solid elements (i.e. without cohesive 

interface elements). The latter model is denoted as mesoscale solid element model (MS 

model), and as it does not involve an explicit fracture, the micro-inertia is considered to be 

minimal.  

To make a direct comparison, the MS and MC models use exactly the same meso-structure 

and mesh size. Furthermore, no DIF is pre-imposed at the material constitutive level for both 

models to exclude the viscous effect. In the model with the cohesive elements (MC model), 

the nonlinear response is represented only by the cohesive constitutive model (MAT_138 in 

LS-DYNA) while the bulk elements are modelled by simple linear elastic properties. In the 
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solid element model (MS model), the K&C concrete damage model (MAT_72R3 in LS-

DYNA) is employed which simulates the macroscopic response of concrete. This K&C 

concrete damage model is capable of describing the material failure due to tension, shear, as 

well as compression under various stress conditions. The detailed technical information about 

this material model can be found in [10,56]. The material model has been tested extensively 

and is found to be a suitable candidate for quasi-static as well as dynamic applications of 

concrete-like materials [31]. The implementation of this material model is very easy as only 

the uniaxial compressive strength is required to input and other parameters have been already 

calibrated well to give standard stress-strain curve for target class of concrete. The MC and 

MS models are considered to be equivalent at quasi-static loading case as they predict very 

similar results in terms of the stress-strain curve. To avoid any bias parameterization, the 

material properties setting including the tensile strength and fracture energy for the three 

individual components are at the same level for the two models. The input compressive 

strength in the MS model for the three components, namely the aggregate, mortar and ITZ, 

are 150 MPa, 45 MPa and 23 MPa, respectively. These give the three components have the 

value of tensile strength and fracture energy in mode-I, around 16 MPa, 0.08 N/mm, 4.7 

MPa, 0.06 N/mm, and 2.3 MPa, 0.03 N/mm [31,56], respectively.  

Figure 14(a) shows the dynamic tensile strength enhancement for the above models. Very 

little dynamic strength enhancement can be observed from the MS model for all the loading 

rates. On the other hand, for the MC model, although the strength enhancement is very 

limited at the strain rate up to 100 s
-1

, the DIFs show a very steep increase when the loading 

rate further increases; and as can be observed from Figure 14(a), the DIF value reaches 

around 5 at a strain rate of 1000 s
-1

 for the MC model.  
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The underlying difference between the cohesive element model and the solid element models 

is that the cohesive element model can explicitly simulate the initiation and propagation of 

cracks through the time-dependent cohesive interfaces (see Figure 14(b)). The damage of the 

cohesive element model initiates when the traction reaches a criterion established in term of 

the traction but the fracture process is usually controlled by the fracture toughness which is a 

measure of the energy required for a crack to grow. This means a crack can only propagate 

when the fracture energy release rate reaches a critical value Gc. Therefore, the cohesive 

constitutive law incorporating with the critical energy release rate introduces a length scale, 

named cohesive zone length 𝑙𝑐𝑧 into the material description [25,57]. The cohesive theories, 

in addition to building a characteristic cohesive zone length into the material description, 

endow the cohesive constitutive behaviour with an intrinsic time scale in terms of the 

longitudinal wave speed and the cohesive material parameters. The cohesive model exhibits 

different mechanic response when subjected to fast and slow loading rates due to this intrinsic 

time scale. This gives the cohesive model an ability to predict rate-dependent crack initiation 

time and crack propagation speed in brittle solids, so that the dynamic strength enhancement 

on strain rate can be accounted for. Therefore, it is reasonable to postulate that the dynamic 

resistance increase obtained from the cohesive element models is mainly due to the micro-

crack inertial effect on initiation and propagation from the micro-mechanic mechanism. 

It is worth mentioning here that a qualitative analysis conducted in [59], suggested that the 

micro-crack inertial effect on dynamic strength enhancement can only occur beyond a 

loading rate �̇� = 5000 GPa/s  ( 휀̇ ≈ 150 /s)  in a concrete material with the maximum 

aggregate size 𝑑𝑎𝑔𝑔𝑟 = 10 mm and tensile strength 𝑓𝑡 = 3 MPa when a longitudinal wave 

speed 𝐶𝑟 = 1800 m/s is considered. Lu and Li [12] conducted a similar qualitative analysis 

based on the micro-mechanism model and demonstrated that micro-crack inertia is one of the 

mechanisms responsible for the increase of the dynamic tensile strength with strain-rate 
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observed in the dynamic tensile tests on concrete-like materials. From their results, the DIF 

curves as a function of strain rate can be separated into two parts. For strain rate up to the 

order of 100 s
-1

, the DIF grows slowly with the increase of the strain rate. But, when the 

strain rate is beyond 100 s
-1

, the DIF increases rapidly. This is consistent with the conclusion 

in [59] that the micro-crack inertial effect can only dominate the apparent rate dependency of 

the tensile strength at a relatively high strain rate. The numerical results in the present study 

well reproduce this tendency with the cohesive element models. As shown in Figure 14, the 

DIFs curves calculated from our mesoscale rate-independent cohesive model agree very well 

with the theoretic predictions and steep increments of the DIFs can only be observed at 

relative higher strain rate, i.e. above 100 s
-1

.  

 

Figure 14 Comparisons between MS model and MC model: (a) DIF with strain rate towards 

data collected from [12,58]; (b) damage (crack) pattern 

Other micro mechanisms behind the dynamic strength enhancement phenomenon could come 

from the multiple micro-cracks interaction and coalescence in the concrete specimen [34,35]. 

It can be observed from the cracking patterns in Figure 12 that the number of cracks increases 

when the loading rate increases. A single major crack can be observed at the quasi-static 
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loading test, whereas multiple cracks in a distributed manner occur in the specimen at a 

higher strain rate of the order of 100 s
-1

. The transition from a single crack to distributed 

cracks has a strong influence on the macroscopic behaviour of the concrete. The local stress 

state is modified around these micro-cracks by a stress-relief wave propagating on both sides 

of a crack. The rapid release of microscopic tensile stress in the vicinity of the existing micro-

cracks acts to delay the coalescence of the cracks in the interaction zone, resulting in an 

increase of the peak strength.  

 

Figure 15. Evolution of dissipated fracture energy under different strain rate loading. 

Figure 15 shows the dissipated fracture energy time histories for the MC model under various 

strain rate loading. the dissipated fracture energy strongly depends on the loading rate even 

with a rate-independent local fracture energy at the material level. This may also support our 

hypothesis that unlike the tensile strength enhancement, the higher fracture energy during 

dynamic tensile loading is purely a structural effect, which comes from diffuse micro-

cracking and wider regions of the damage zone.  

One may also notice that crack branching, which is a typical crack pattern of concrete under 

dynamic loading, is not captured in current simulations. The reason may result from the 
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special loading methodology used in the mesoscale cohesive models. As can be seen from the 

crack patterns in Figure 12, the model with such a loading methodology has already predicted 

multiple cracks under high strain rate loading. The initiation, propagation and their 

interactions of the multiple cracks will significantly release the stress filed and fracture 

energy in front of each crack-tip. Therefore, the crack branching is largely prohibited in 

current simulations.  

5. Conclusions  

In this paper, a holistic 2D mesoscale cohesive element model is developed, in which 

cohesive elements are incorporated between all interfaces between the bulk elements. This 

approach enables an explicit simulation of the crack initiation and propagation in the concrete 

specimen along the ITZ as well through the bulk elements. Moreover, the model allows the 

use of simple constitutive description of the bulk materials while nonlinear behaviour is 

achieved by the cohesive and cracking behaviour through the cohesive elements. As such, the 

classical mesh-related problems in a continuum-based model for cracking are largely 

reduced, making the model highly suitable for investigation of cracking behaviour for both 

quasi-static and dynamic applications. It should be noted the mesh-dependency cannot be 

fully eliminated since cracks necessarily have to follow the mesh edges, but can be drastically 

reduced if the mesh is very fine.  

An algorithm has been developed to insert cohesive element throughout the mesh grids in a 

concrete specimen and to identify the cohesive element properties based on the original 

mesoscale structure.  

The validated model is employed to investigate the dynamic tensile behaviour under high 

strain rates and the influences of key parameters including the viscous effect from rate-
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dependent cohesive constitutive law, material heterogeneity and micro-inertia effects. Based 

on the parametric results, the following specific conclusions may be drawn: 

1. The dynamic increase of the tensile strength of concrete is found to be attributable to 

several important factors, and these include cracking through the cohesive mechanism 

and the micro-inertia effect associated with cracking; viscous effect from rate-

dependent constitutive law; and the material heterogeneity.  

2. It is necessary to incorporate the rate-dependent cohesive constitutive law at the 

material level to account for the ‘Stefan effect’ and its interaction with other 

mechanisms, especially at low and moderate strain rates loading.   

3. The material heterogeneity does influence the dynamic response of the concrete, and 

this influence becomes increasingly significant with the increase of the strain rate. 

4. The intrinsic time scale, which is incorporated in the cohesive constitutive model, 

enables the cohesive model to simulate the micro-crack inertial effect on the crack 

initiation and propagation, which manifests as a rate enhancement of the dynamic 

strength on the strain rate. Such a rate-sensitive mechanism tends to be activated in 

the present mesoscale cohesive model at a relatively high strain rate in the order of 

100 /s. This observation supports the general argument from past studies that there 

exists a transition of rate-sensitivity which divides the DIF curve into two distinctive 

segments. 

At present, the numerical platform has been realised in a 2D mesoscale model. In principle, 

the algorithm can be easily extended to 3D, and by doing so both realistic 3D stress 

environment and explicit representation of the fracture processes can be accommodated in a 

unified framework, allowing for numerical investigation in a further broadened spectrum of 
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problems with concrete structures. Of course, such a complete 3D mesoscale with explicit 

fracture process capabilities will pose much more increasing demands on the computational 

cost, and in this respect enhancement in the computational efficiency will require dedicated 

research. 
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