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Abstract 1 

Models of endurance performance now recognise input from the brain, including an 2 

athlete’s ability to cope with various non-pleasurable perceptions during exercise, such 3 

as pain and temperature. Exercise training can reduce perceptions of both pain and 4 

temperature over time, partly explaining why athletes generally have a higher pain 5 

tolerance, despite a similar pain threshold, compared to active controls. Several 6 

strategies with varying efficacy may ameliorate the perceptions of pain (e.g. 7 

acetaminophen, transcranial direct current stimulation and transcutaneous electrical 8 

stimulation) and temperature (e.g. menthol beverages, topical menthol products and 9 

other cooling strategies, especially those targeting the head) during exercise to improve 10 

athletic performance. This review describes both the theory and practical applications 11 

of these interventions in the endurance sport setting, as well as the potentially harmful 12 

health consequences of their use. 13 

 14 

Key Points 15 

*Athletes generally have a higher pain tolerance, despite a similar pain threshold, 16 

compared to active controls. 17 

*Acetaminophen ingestion and transcutaneous electrical stimulation have been 18 

demonstrated to significantly decrease pain and improve endurance 19 

performance/capacity, but no data exist in elite populations. 20 

*Endurance performance can be influenced by thermal perceptions independently of 21 

any changes in physical body temperature. 22 

*Cooling strategies that induce large perceptual cooling effects and have practical 23 

application in endurance competition are ergogenic for athletes competing in the heat. 24 
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*Practitioners and athletes should deliberate on the ethical and safety considerations of 25 

strategies that override homeostatic controls before implementing them in competition.   26 

 27 

1.0 Introduction 28 

The mechanisms underpinning endurance capacity and performance have largely been 29 

defined in the exercise sciences with physiological concepts: a high maximal oxygen 30 

uptake, lactate threshold and exercise economy [1]. Recently, models of endurance 31 

performance have attributed greater value to the brain within exercise regulation [2-5], 32 

and specifically how athletes interpret what they ‘feel’ during exercise (hereafter 33 

referred to as ‘perceptions’). Some describe the rating of perceived exertion (RPE) as 34 

the ultimate limiting factor to exercise tolerance [2], as it may be responsible for pacing, 35 

fatigue and exhaustion [3]. However, precisely what the RPE measures has been 36 

debated [6, 7]. Regardless, RPE likely incorporates aspects of effort, exertion and 37 

afferent sensory feedback, including the perceptions of pain and temperature [6].  38 

 39 

Perceptions of pain and temperature during exercise have recently received increased 40 

research attention. They appear to be attenuated with normal exercise training [8, 9], 41 

and strategies manipulating these perceptions to improve endurance performance have 42 

also been investigated [10, 11]. While such research may drive advancements in 43 

knowledge around the relationship between psychology and physiology for endurance 44 

athletes, some aspects of the topic have been at the centre of intense international debate 45 

about the ethical and health considerations of manipulating the senses to override 46 

homeostatic controls during exercise. Therefore, the purpose of the current review is to 47 

summarise recent advancements in research surrounding the influences of pain and 48 
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temperature perceptions during exercise, while also reiterating the message of athlete 49 

safety in relation to their applications. 50 

 51 

2.0 Literature Search Methods 52 

Searching was carried out within a range of databases including Web of Science, 53 

Scopus and MEDLINE, up to 9th October, 2017. Searching was conducted in English 54 

and included the terms: perception, sensation, pain, temperature, heat, exercise, 55 

endurance and performance. Various combinations of search clusters were used, and 56 

search results were limited to peer-reviewed content. Additional works from key 57 

authors were also included in the study. Inclusion criteria stipulated that investigations 58 

must have been peer reviewed and measured perceptions of pain and/or temperature. 59 

This review was focussed on endurance exercise, which reflects the majority of the 60 

literature available. Participants of all abilities were included within both the sport and 61 

occupational health settings. 62 

 63 

3.0 Perceptions of Pain and Endurance Performance 64 

3.1 Theory 65 

Pain is defined by the International Association for the Study of Pain as “an unpleasant 66 

sensory and emotional experience that is associated with actual or potential tissue 67 

damage or described in such terms” [12]. The meaning and implications of pain are 68 

learnt in the early years of life, where the sensation is related to injury or tissue damage 69 

[13]. However, pain is always subjective and the perception of the sensation is not 70 

always proportional to the size of the nociceptive signal and given pain is always 71 

unpleasant, the perception of pain will also partly be an emotional experience [13]. 72 
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These sensory and subjective principles are critical for understanding the role of pain 73 

in exercise and athletic performance [14]. 74 

 75 

During exercise, pain arises as a natural consequence of intramuscular pressure, muscle 76 

distortion and a build-up of deleterious metabolites in the muscle [15]. This ‘exercise-77 

induced pain’ (EIP) starts as a localised perception in the primary exercising muscle or 78 

muscles, but spreads to other locations over time, with significantly increased levels of 79 

pain experienced in areas as central as the chest at the end of exhaustive running [16]. 80 

In cycling, EIP has been shown to increase linearly with both power output and 81 

physiological intensity [17], whilst in self-paced exercise EIP appears to increase 82 

linearly as a function of distance completed or time elapsed, with near maximal levels 83 

experienced at the end of exercise [10]. Consequently, an individual exerting an intense 84 

and sustained physiological intensity will experience a level of pain and discomfort that 85 

is extremely unpleasant [17]. This is important because pain is ultimately a protective 86 

function that serves as a warning of actual or impending tissue damage and therefore a 87 

stimulus to disengage with the action or behaviour that is causing it [18]. Therefore, the 88 

drive to disengage with the exercise task, or reduce intensity to reduce the level of pain, 89 

will become increasingly stronger as the exercise continues [14, 19]. 90 

 91 

This association between pain and exercise no doubt provides the basis of long-held 92 

beliefs that pain tolerance is an important pre-requisite for athletic performance (i.e. no 93 

pain, no gain). It is important to note that pain tolerance (i.e. the maximum level of 94 

perceived pain that someone is able to tolerate, or the duration someone is willing to be 95 

exposed to a given pain intensity) is very different to pain threshold (the level at which 96 

a stimulus is initially perceived as pain), and the distinction between these should be 97 
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emphasised and assessed with appropriate methods so that the role of pain in exercise 98 

performance is better understood. However, even when this distinction is made, the 99 

impact of pain on exercise performance can be difficult to empirically test, so that 100 

despite the clear reference to its significance by competitors [19, 20], the experimental 101 

evidence supporting this notion is surprisingly limited and often inconsistent. A meta-102 

analysis examining pain perception differences between athletes and active controls 103 

showed that in most well-controlled studies, athletes exhibited a higher pain tolerance, 104 

despite similar pain thresholds [21]. This is logical, given that EIP tends to reach only 105 

moderate or strong levels, but must be tolerated for the duration of the exercise. A recent 106 

investigation demonstrated that specific tolerance to EIP was not only strongly 107 

correlated with endurance performance, but could also predict the completion time of 108 

a 10 mile cycling time trial [22]. Even when EIP tolerance was combined with 109 

traditional measures of endurance performance (maximal oxygen uptake, gas exchange 110 

threshold and peak power output), it was still able to explain some of the variance (7.5% 111 

variance, p=0.002) in time trial completion time [22]. It is likely that this increased 112 

tolerance of pain arises from particular physiological or psychological adaptations that 113 

occur as a result of exercise training [8, 21]. Indeed, an improvement in pain tolerance 114 

has been an outcome of aerobic training programs in previously untrained individuals 115 

[23-25], which the authors attributed predominantly to psychological adaptations to 116 

training (although this was not measured). The increased pain tolerance could have 117 

arisen as a result of diminished signalling in response to the noxious stimulus [26-28], 118 

but this desensitisation of the nociceptors is hard to measure and unlikely given that 119 

these studies also observed no change in pain threshold. A more likely explanation is 120 

that exposure to frequent and unpleasant sensory experiences during aerobic training 121 

permits the participants to develop a means of coping and a tolerance to these 122 
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sensations. Indeed, coping skills can increase pain control [29] and the attitude of 123 

athletes towards pain has been shown to differ from that of normally active controls 124 

[30]. Recent evidence suggests that highly trained individuals (>10 h per week training 125 

and competing at, or above the top tier of their local competition) demonstrate 126 

significantly enhanced conditioned pain modulation compared with non-athletic 127 

controls [8]. This suggests that highly trained athletes have a higher endogenous pain 128 

inhibition ability, and that this may reduce the level of pain experienced at a given 129 

exercise intensity. However, it is not clear whether this is something that develops in 130 

response to training, or is an inherent characteristic that naturally predisposes these 131 

individuals to engaging in competitive sport. 132 

 133 

Whilst the relationship between perception of pain and athletic performance is 134 

undoubtedly complex, the general consensus is that EIP forms an important part of 135 

endurance exercise [14]. At the very least, EIP likely provides important information 136 

for the exerciser regarding the current level of fatigue, and this information can 137 

subsequently be used to effectively pace an exercise bout [20]. Thoughts of pain and 138 

discomfort were shown to be prominent at the start of a 10 mile TT, but reduced towards 139 

the final sections of the race [20]. A similar observation was shown for thoughts relating 140 

to the monitoring or altering of pace, which may be indicative of the riders using the 141 

conscious feeling of pain and discomfort as a means to guide decisions on the 142 

appropriateness of their pacing strategy. This suggestion is supported by studies that 143 

have examined the effect of analgesia during exercise [10, 31, 32], where a decreased 144 

sensation of pain usually results in an increased power output being sustained and a 145 

significantly improved endurance performance (i.e. pacing strategy is adjusted when 146 

pain perception is moderated). When pain was completely blocked during exercise 147 
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through the injection of intrathecal fentanyl, participants adopted an extremely positive 148 

pacing strategy, which resulted in very high levels of peripheral fatigue and a sub-149 

optimal performance [33]. Whilst the purpose of this study was not to examine the 150 

effect of pain during exercise, it does support the notion that EIP is an important 151 

sensation in determining beneficial pacing during self-paced exercise.  152 

 153 

3.2. Applications 154 

Use of analgesics and/or their abuse in pursuit of athletic performance enhancement, or 155 

to mask injury to facilitate participation/competition, is not uncommon. The ethics and 156 

motivation for their use by athletes is beyond the scope of this review and has been 157 

discussed elsewhere [34-38], however their use and abuse appears rife within elite and 158 

recreational sport [39-43].  159 

 160 

Although analgesia use appears widespread, empirical evidence supporting their use to 161 

augment athletic performance is sparse, particularly in elite populations (i.e. maximal 162 

aerobic power of 350-500 W and maximal aerobic capacity of 72-80 mL·kg-1·min-1 163 

[44]). Trained but non-elite cyclists improved their 10 mile (16.1 km) time-trial 164 

completion time when ingesting 1.5 g of acetaminophen (paracetamol) compared to 165 

placebo [10]. Faster completion time was accompanied by elevated heart rate and blood 166 

lactate (increased intensity), yet perceived pain and exertion were not different to the 167 

placebo condition [10]. Indeed, augmented mean power output was seen across 168 

repeated anaerobic Wingate tests in response to the same dose of acetaminophen within 169 

a recreationally active population, again attributed to reduced EIP [32]. However, data 170 

from elite populations regarding analgesia use and their effects on exercise performance 171 

is lacking, despite their widespread use in sport [34, 35, 40-42]. 172 
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 173 

Transcranial direct current stimulation (tDCS) has shown some efficacy to reduce 174 

perceived pain (without the reliance on pharmacological analgesia), albeit in a cold 175 

pressor test within healthy recreationally active individuals [45]. This reduction in 176 

perceived pain was not seen in subsequent time to exhaustion (TTE) cycling exercise, 177 

i.e. EIP was unchanged as were performance metrics [45]. Similar findings of increased 178 

pain inhibitory capacity from high definition tDCS without enhancement of subsequent 179 

force production or attenuation of muscular fatigue have been reported elsewhere [46]. 180 

Indeed, the efficacy of tDCS to augment exercise performance, whether through 181 

favourable EIP modulation or otherwise, across various exercise modalities is currently 182 

ambiguous and the available evidence is often limited by poor ecological validity and 183 

experimental design [47-50]. Transcutaneous electrical nerve stimulation (TENS) has 184 

shown greater promise, whereby reduced EIP translated to increased TTE during 185 

isometric muscular contractions in healthy recreationally active participants [31]. 186 

However, the evidence pertaining to tDCS/TENS and EIP outlined above, relative to 187 

exercise performance, should be interpreted with caution. This is particularly the case 188 

when considering implementation of these findings in elite athletes (which the evidence 189 

above does not examine), given that such athletes have altered pain perception 190 

compared to their non-elite or recreational counterparts [8]. Indeed, evidence from such 191 

elite populations is required to inform practice, as is further discussion of any 192 

ethical/doping issues by germane authorities and medical support staff relative to 193 

tDCS/TENS use in an attempt to enhance athletic performance. 194 

 195 

Although limited and from unfit [23] or healthy but relatively untrained populations [8, 196 

25], evidence suggests that pain tolerance can be favourably enhanced by aerobic 197 
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exercise training, whereas pain threshold remains unchanged. Triathletes have been 198 

shown to have greater tolerance and more efficient pain modulation than non-athletic 199 

controls [51]. But whether practitioners can evoke performance improvements in well-200 

trained individuals by increasing their pain tolerance, in lieu of physiological 201 

adaptations, requires further evidence from studies with robust experimental designs. 202 

Practitioners should also be aware that acute psychological stress might remove such 203 

advantages in pain modulation [52]. Indeed, a dose response was seen between athlete 204 

susceptibility to psychological stress, magnitude of perceived stress and any reduction 205 

in their advantageous pain modulation capacity [52]. Practitioners may therefore wish 206 

to deploy psychological skills training to develop robust stress resilience and coping 207 

strategies in their athletes; this will in turn help them retain optimal pain 208 

modulation/resilience capacity [29], which has been shown to be conducive to optimal 209 

exercise performance [22, 31]. The research determining the effects of interventions 210 

acting on pain perception and exercise performance is summarised in Table 1. 211 

 212 

**Insert Table 1 near here** 213 

 214 

While there is evidence of acetaminophen being beneficial during exercise, this is 215 

within a well-controlled research setting where interactions with other medications and 216 

supplements (anti-inflammatory drugs, caffeine, etc.), other common conditions 217 

(redistribution of blood flow, hydration status, diet, etc.) and the intensity of exercise 218 

are explicitly controlled to ensure the safety of participants. Acetaminophen use during 219 

exercise where such robust controls are not in place must not be advocated; the risk of 220 

interaction with any of the stated factors is not known and may increase the danger of 221 

injury/damage to an individual. 222 
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 223 

4.0. Perceptions of Temperature and Endurance Performance 224 

4.1 Theory 225 

The perception of temperature (as measured by ratings of ‘thermal sensation’) and the 226 

perception of comfort associated with that temperature (as measured by ratings of 227 

‘thermal comfort’) have been studied in exercising humans through psychometric 228 

scales since the late 1960s [53]. Warm and uncomfortable perceptions of temperature 229 

develop during prolonged exercise [54], and become exacerbated when exercise is 230 

completed in hot compared to cool environments [53, 55]. Thermal sensation and 231 

thermal comfort ratings should be treated separately however, as they are measured 232 

with separate scales, and do not always act in unison [56]. Original investigations 233 

demonstrated that at the onset of exercise, the increasingly hotter thermal sensation and 234 

thermal discomfort ratings are both associated with changes in the mean body 235 

temperature [53]. During steady state exercise of 30-40 minutes duration however, 236 

thermal sensation ratings can be attributed to skin and ambient air temperatures, while 237 

the thermal discomfort ratings can be attributed to the skin blood flow and the sweating 238 

response [53]. Thus, the psychophysiological basis of thermal sensation and discomfort 239 

ratings are likely governed by sensory and effector mechanisms, respectively. Detailed 240 

molecular, neuroanatomical, and neurophysiological mechanisms that allow humans to 241 

sense temperature have been described recently [57] and therefore this section will 242 

focus on relationships between ratings of thermal sensation, thermal discomfort and 243 

exercise performance. Lastly, it should be noted that the term ‘sensation’ (i.e. the 244 

process of a sensory receptor being stimulated) has been used incorrectly in this context, 245 

and this has become ingrained within the thermoregulation literature. The term thermal 246 

‘sensation’ as it is described across the literature, is in fact a ‘perception’ (i.e. how one 247 
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interprets how they feel). Considering that the term ‘thermal sensation’ is used as a 248 

measure of thermal perception (i.e. thermal sensation ratings) frequently in the current 249 

literature, we will continue to use it throughout this review (albeit erroneously) when 250 

discussing research that has measured these ratings of thermal sensation. 251 

          252 

The exercise, heat stress, and cooling literature has demonstrated associations between 253 

thermal perceptions, body temperatures and endurance exercise capacity or 254 

performance [56, 58-62]. However, reviews and models based on early 255 

thermoregulation research predominately implicated an elevated core body temperature 256 

as the direct cause of fatigue and impaired performance in the heat [63-66], while the 257 

role of thermal perceptions in pacing, fatigue and performance received little attention 258 

in comparison. However, Cheung [67] presented three forms of evidence to describe a 259 

possible relationship between thermal perceptions and exercise performance. Evidence 260 

included: a) alterations in pacing during exercise with heating and cooling interventions 261 

[68, 69]; b) the observation of reduced thermal perceptions following aerobic 262 

conditioning [9] and; c) the capacity for psychological skills training to improve 263 

running performance in the heat [70]. Nevertheless, the clarity of any relationship 264 

between thermal perception and exercise performance was still limited by the inability 265 

to separate thermal perception from thermal state (i.e. body temperatures) during 266 

exercise. Recently however, the use of the cooling compound menthol (which acts on 267 

cutaneous thermoreceptors to induce perceptions of coolness) has allowed the 268 

separation of thermal perceptions and thermal state within research, although the core 269 

temperature can be altered by menthol in some instances where it is applied to a large 270 

body surface area [71, 72]. Pre-cooling (i.e. cold water immersion, ice slurry ingestion, 271 

etc.) cannot reduce thermal perceptions without simultaneously reducing the thermal 272 
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state (reductions in physical body temperatures e.g. various tissue temperatures). 273 

Hence, placebo controlled research that shows performance improvement with menthol 274 

application alone can be attributed to thermal perception only, as body temperatures 275 

generally remain unchanged [73-75].  276 

 277 

In the first study to use menthol to separate thermal perceptions and thermal state, 278 

Schlader et al. [60] demonstrated that under heat stress, cooling of the face via both 279 

thermal (forced convection) and non-thermal (menthol gel) methods significantly 280 

increased power output in a RPE-clamp cycling protocol compared to a control. Hence, 281 

both the facial temperature and the perception of that temperature were demonstrated 282 

to be involved in the regulation of exercise (via alterations in the RPE). Another 283 

comparison between a menthol mouth rinse (that lowered thermal sensation ratings) 284 

and an ice slurry beverage (that lowered core body temperature) revealed that only the 285 

menthol intervention significantly improved running performance in the heat [76]. 286 

Hence, not only does thermal perception play a role in endurance pacing and 287 

performance, but this role may in fact be more influential than the physical temperature 288 

of the body in some circumstances of mild-moderate heat stress.  289 

 290 

Thermal perceptions are strongly influenced by the temperature of the face and head 291 

[77, 78], especially during heat exposure, where facial warming is most uncomfortable 292 

and facial cooling is most comfortable compared to other body segments [78]. As such, 293 

focused cooling of the face and/or head during exercise has significantly increased 294 

cycling time to exhaustion [79], cycling work rate at a fixed RPE [60] and 5 km running 295 

performance time [80], all alongside a significantly cooler thermal sensation and/or 296 

increased thermal comfort rating. In an alternative model that required cyclists to 297 
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control their work rate to maintain thermal comfort in cold conditions, facial warming 298 

and cooling significantly decreased and increased work rate, respectively [81]. Such 299 

changes may be explained by the combination of a greater density of thermal afferents 300 

in the face along with processing mechanisms in the central nervous system [77, 78]. 301 

Considering these interventions did not influence core body temperature, it is evidence 302 

for peripheral temperatures modulating endurance exercise performance, likely via 303 

mechanisms involving thermal perception [82].  304 

 305 

Adjustments in pacing during exercise in the heat have also been observed prior to a 306 

physical change in the core body temperature [69, 83, 84], which suggests the 307 

involvement of afferent feedback and psychological factors in the regulation of 308 

endurance exercise performance in the heat. Thermal perception is not the ultimate 309 

afferent modulator of exercise performance however, since when the skin temperature 310 

was altered from cold to hot and vice-versa during a 60 minute cycling time trial, 311 

changes in the work-rate did not mirror changes in thermal perception across the trial 312 

[85]. Instead, the exercise intensity was more closely associated with the RPE, which 313 

is likely influenced by thermal perception [86, 87], but to a greater extent by the 314 

combination of whole-body feedback [88], exercise end-point [89] and feed-forward 315 

processes in the brain (corollary discharge) [7]. Hence, a previous review of the this 316 

evidence [82] proposed that during exercise in the heat, elevated skin temperature and 317 

the associated thermal perceptions are responsible for a self-selected reduction in work-318 

rate in order to maintain the RPE and allow the completion of an exercise task without 319 

hyperthermia. 320 

 321 
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Studies whereby exercise performance was altered following application of menthol 322 

interventions allow confirmation that exercise performance is influenced by 323 

temperature perception [60, 76]. Such influence is maximised when cooling or heating 324 

interventions are targeted to the face and/or head [60, 79-81, 85], due to the high 325 

alliesthesial thermosensitivity of these areas [77]. Such afferent feedback is but one 326 

piece of the puzzle with an influence on the overall RPE, pacing and endurance 327 

performance, particularly relevant during exercise heat-stress. Lastly, it should be noted 328 

that this cooling research is limited by both the dominance of research participants 329 

being male (data on females are needed), as well as the difficulty in implementing a 330 

robust placebo condition relative to the experimental designs, and hence, future 331 

researchers should address these limitations. Another interesting avenue for future 332 

research would be to discriminate the relative contributions of thermal sensation and 333 

comfort ratings to endurance performance.  334 

 335 

4.2 Applications 336 

Thermal perception and comfort, as outlined above, can be important relative to 337 

exercise pacing and performance [60, 69, 80]. Heat adaptation (HA) through 338 

acclimation/acclimatisation, provides robust protection [90] to thermally mediated 339 

reductions in endurance [91] and repeated sprint [92] exercise performance, and against 340 

heat illnesses [93]. Relevant to thermal perception and this review article, appropriate 341 

HA has efficacy to improve ratings of thermal sensation/comfort in team sport and 342 

endurance athletes during subsequent training and competition in the heat [90, 94-96]. 343 

However, these HA-mediated thermal sensation rating changes are not seen in resting 344 

values but rather at comparative time-points or as a mean value across an 345 

exercise/training bout, when comparisons are made pre- to post-HA [90]. An 346 
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empirically rationalised [90] attainment of a heat acclimated phenotype may be 347 

practically challenging however, as only 13% of long distance athletes at the 2015 348 

World Athletics Championships (where hot conditions were expected) followed a HA 349 

regime [97]. Therefore, while HA is recommended to favourably alter thermal 350 

sensation ratings during heat-strain, it may not be practically viable for all athletes. 351 

Exercise training per se and increasing ‘fitness’ has been shown to dissociate 352 

physiological and perceptual (i.e. thermal sensation ratings) exercise heat-stress, 353 

specifically a dampening of perceptual relative to physiological heat-strain [67]. Thus 354 

attainment of high-levels of fitness appears an important counter-measure to reduce 355 

perceived temperature during exercise. However, practitioners should exercise caution 356 

with highly-trained athletes given their dampened interpretation of thermal perception 357 

and ability to produce sustained highly elevated core temperatures [67]; this potentially 358 

places these populations at heat illness risk, especially when appropriate HA has not 359 

been performed [91]. Moreover, high body mass-index with low running ability also 360 

predisposed Marine Corps recruits to heat illness [98], indicating that practitioners 361 

should adopt individualised practice across populations of all fitness levels engaging in 362 

exercise heat-stress. 363 

Aside from increasing ‘fitness’ and procurement of a HA phenotype, there are acute 364 

strategies which can positively alter ratings of thermal sensation/comfort prior to [99] 365 

and during exercise [11, 100] with subsequent ergogenic performance effects. 366 

Challenges whereby delineation of changes in thermal sensation rating without 367 

concomitant core body temperature rise have been overcome, demonstrating that a pre-368 

exercise change in the rating of thermal sensation alone (no change in core temperature, 369 

only skin temperature) can beneficially alter subsequent athletic performance [101]. A 370 
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pre-exercise cooling strategy with efficacy to reduce body temperatures can create a 371 

‘heat-sink’ [102], i.e. a larger heat storage capacity [99] which delays the attainment of 372 

an individualised high body temperature at which performance decrements begin to 373 

occur. Similarly, a mid-exercise alteration in the rating of thermal sensation via facial 374 

water spraying (without change in core body temperature) has been demonstrated to be 375 

equally as ergogenic to running performance as pre-cooling by cold water immersion 376 

[80]. Therefore, evidence for strategies that reduce the rating of thermal sensation, 377 

rather than the core body temperature only, to enhance endurance performance may 378 

drive their use by practitioners and athletes [11, 76, 80, 99, 100, 102].  379 

Practitioners should employ evidence-based practice regarding their choice of thermal 380 

perception orientated mid-cooling strategies and the tissue to be targeted, relative to 381 

attempts to improve exercise performance. This evidence must be considered carefully, 382 

given that few laboratory investigations have applied realistic facing wind speeds, 383 

without which, artificially high body temperatures are seen along with over-estimates 384 

of the beneficial effects of a cooling intervention (thermal perception or body 385 

temperature orientated), thus translation from the laboratory to the ‘field’ may be 386 

lacking [100]. The following recommendations are therefore based on the criteria that 387 

an appropriate facing winding speed was employed, a time-trial rather than time-to-388 

exhaustion performance measure was used and the mid-cooling strategy employed was 389 

highly practical (i.e. frozen items were not consumed or applied to the body). Menthol 390 

mouth rinse and/or facial water spray mid-cooling has proven ergogenic to 5 km 391 

running time trial performance at ~33oC and ~46 % relative humidity [76, 80]. Indeed, 392 

lowering rating of thermal sensation via menthol mouth rinse during exercise improved 393 

running performance whereas pre-cooling via ice slurry (which lowered core 394 

temperature) did not [76]. Even when pre-cooling was administered through cold water 395 
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immersion (which lowered core temperature), its ergogenic performance effect was 396 

matched by mid-cooling (which lowered rating of thermal sensation rather than core 397 

temperature) via facial water spray [80]. Practitioners should therefore seek to either 398 

utilise menthol mouth rinse and/or facial water spray in an attempt to improve 399 

endurance performance via thermal perception. Practitioners should avoid the 400 

temptation to use menthol as a gel or spray to the skin/clothing, as exercise performance 401 

is not enhanced concomitantly alongside ratings of thermal sensation [73, 103, 104], 402 

likely due to the capacity of menthol to reduce sweat rate and vasoconstrict blood 403 

vessels, ultimately promoting heat storage when applied to a large surface area of the 404 

body [11]. Alterations of thermal sensation rating through menthol use during exercise 405 

appear most beneficial to performance when applied internally via a beverage 406 

containing menthol or through mouth rinsing [11]. Relative to mid-cooling via facial 407 

water spray, it is important for practitioners to consider that the skin on the torso 408 

demonstrates lower alliesthesial thermosensitivity compared to the face [57]. Indeed, 409 

cooling of the face can be up to five times more effective than cooling of other body 410 

surfaces relative to maintenance of thermal comfort [77]. However, it must be noted 411 

that further research is required in this regard, for example, currently there is no 412 

evidence whether menthol mouth rinse can be combined with facial water spray to elicit 413 

an additive performance effect. Furthermore, optimised and field compatible mid-414 

cooling strategies will evidently be discipline specific according to what might be 415 

practical and within the rules of the different sports. 416 

A high variance in the efficacy of psychological skills training has been demonstrated 417 

relative to several interrelated agendas appropriate to exercise performance 418 

optimisation, including tolerance to environmental extremes and pain [70, 105, 106]. 419 

However, there is evidence [70] that psychological skills training (including goal 420 
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setting, arousal regulation, mental imagery and positive self-talk) can augment distance 421 

covered during a 90-min treadmill run in the heat (30°C; 40% relative humidity). 422 

Recently, a specific form of psychological skills training, motivational self-talk, also 423 

enhanced endurance and cognitive function during cycling based exercise heat stress 424 

[105]. Positive performance effects were attributable to the two week motivational self-425 

talk intervention allowing participants to tolerate a longer duration near or at a maximal 426 

intensity (i.e. ≥ RPE 19) and a higher terminating core temperature without difference 427 

in heart rate or oxygen uptake (i.e. greater psychological tolerance to 428 

thermophysiological strain) compared to the control group without motivational self-429 

talk, demonstrating that even in well-trained individuals, enhanced psychological 430 

tolerance to thermal or exercise discomfort is trainable and pliable via motivational 431 

self-talk [105]. Practitioners may consider adding appropriate exercise heat-stress 432 

orientated psychological skills training to their athlete’s training regime, but whether 433 

or not such psychological skills training could provide an additive effect to the above 434 

outlined ergogenic thermal perception orientated interventions/approaches requires 435 

further research. The research determining the effects of interventions acting on 436 

temperature perception and exercise performance is summarised in Table 2. 437 

 438 

**Insert Table 2 near here** 439 

 440 

5.0. Interconnections Between Pain and Temperature Perception 441 

While acetaminophen is best known as a pain reliever, it can also be used to treat fever 442 

[107] and hence, it may play a role in thermoregulation and temperature perception. In 443 

athletes, an acute dose of acetaminophen can delay the increase in body temperature 444 

during exercise in the heat [108, 109] and has also been demonstrated to significantly 445 
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lower thermal sensation rating and improve cycling time to exhaustion in the heat [109]. 446 

However, no such changes were observed following ingestion of acetaminophen when 447 

cycling at a fixed rate of metabolic heat production [110]. 448 

 449 

Another interconnection between pain and temperature perception is evident when 450 

considering the use of a cold stimulus as a widespread treatment for pain [111]. 451 

Research on menthol application may also allow separation between the physical and 452 

perceptual effects of a cold stimulus when considering pain responses. Menthol has 453 

been added to commercially available medical creams targeting musculoskeletal pain 454 

as it may have an analgesic effect for sports injuries, delayed onset muscle soreness and 455 

arthritis [112, 113]. Menthol has been demonstrated to cool not only through the 456 

transient receptor potential cation channel subfamily M member 8 (TRPM8), but also 457 

to inhibit the transient receptor potential cation channel, subfamily A, member 1 458 

(TRPA1), which is a mediator of inflammatory pain [114]. While topical application of 459 

menthol decreased perceived pain and improved physical function in patients with knee 460 

osteoarthritis [115], research to date has not investigated the analgesic effects of 461 

menthol during exercise in athletes.  462 

 463 

6.0. Safety Considerations 464 

Athletes who attempt to override the perceptions of pain during intense endurance 465 

exercise may be at risk of serious injury. Given that pain serves as a protective function 466 

for the body, it could be suggested that moderating the naturally occurring EIP signals 467 

during exercise poses a danger to the individual. While no participants suffered long-468 

term damage as a result of a complete afferent (and consequently pain) block [33], 469 

suggesting any regulation of intensity arising from EIP is likely minimal, the risks of 470 
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such methods in all athletic situations are largely unexplored. It should also be noted 471 

that harmful side effects have been reported with analgesic use during and relative to 472 

sport, including gastrointestinal damage, as well as liver and kidney failure [39, 116-473 

118]. Therefore, this article does not condone the use of analgesics to mask the pain 474 

from injury during competition, nor in the pursuit of performance enhancement. Use of 475 

analgesic strategies must be considered carefully by the athlete and under guidance 476 

from their medical support team/physician.   477 

 478 

The perception of temperature may also be a protective mechanism to preserve against 479 

exertional heat illness and hyperthermia. The ability to perceive the temperature of the 480 

environment and adjust behaviour accordingly is undoubtedly a vital attribute in 481 

humans that has ensured long-lasting survival [57]. These perceptions may also play a 482 

similar role during endurance exercise (especially in the heat) to encourage the 483 

exerciser to slow down or stop when it may be otherwise dangerous to continue [82, 484 

119]. Therefore, application of menthol or cooling methods that target perception 485 

should be avoided close to the onset of hyperthermia, to allow perception of symptoms 486 

associated with high levels of heat stress, adjustment to self-selected exercise intensity 487 

and the prevention of heat injury. 488 

 489 

While no specific evidence of serious health complications from the use of these 490 

strategies has been described within the literature to date, it is wise to exercise the 491 

cautions described above. Indeed, the absence of such evidence is likely due to a lack 492 

of specific designs to test such hypotheses, which would be mostly unethical in humans. 493 

 494 

7.0. Conclusion 495 
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New research developments have demonstrated that the perceptions of pain and 496 

temperature can both influence endurance exercise performance. These findings 497 

highlight the importance of the brain in the development of endurance training 498 

adaptations, and in the development of fatigue during acute exercise. While 499 

interventions are available to modify the perceptions of pain and temperature to 500 

improve performance in endurance-trained populations, these interventions may have 501 

serious health consequences when used during intense exercise and/or in thermally 502 

challenging environments and as such, a medical practitioner should supervise any use 503 

of such interventions closely to ensure the safety of the athlete.  504 

 505 
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Table 1: Research determining the effects of interventions acting on pain perception and exercise performance. 825 

 826 
u = no change, BLa = blood lactate concentration, BF = biceps femoris, CPT = cold pressor test, EIP = exercise induced pain, HR = heart rate, MVC = maximal voluntary 827 
contraction, PO = power output, RH = relative humidity, RPE = rating of perceived exertion, tDCS = transcranial direct current stimulation, TENS = transcutaneous electrical 828 
nerve stimulation, TT = time trial, TTE = time to exhaustion, VE = volume of expired air, VL = vastus lateralis, VO2max = maximal oxygen uptake. 829 
 830 

 831 

 832 

Table 2: Research determining the effects of interventions acting on temperature perception and exercise performance. 833 

 834 

  835 

Study Participants Intervention Testing Protocol 
Testing 
Conditions 

Outcomes 

Mauger et al. 2010 
[10] 

13 males, VO2max =  
65 ± 5 mL·kg-1·min-1 

Oral ingestion of 1.5 g acetaminophen, 
60 min prior to TT 

16.1 km cycling TT Not stated 
t TT time by 30 s (2%) 
r Mean PO by 10 W (4%) 
u EIP, u RPE, r HR, r BLa 

Astokorki and 
Mauger, 2017 [31] 

Part 1: 11 males, 7 
females. 
Part 2: 14 males, 8 
females, VO2max =  
53 ± 7 mL·kg-1·min-1 

Biphasic TENS applied unilaterally to 
BF muscle (Part 1) or bilaterally to VL 
muscle (Part 2) in a continuous pattern 
with pulse width of 300 たs and frequency 
of 100 Hz 

Part 1: 20% MVC of biceps 
flexion held at 90° isometrically 
until exhaustion.   
Part 2: 16.1 km cycling TT 

Not stated 

Part 1: r TTE by 3 min (38%) 
t EIP, u RPE 
Part 2: t TT time by 33 s (2%) 
t EIP, u RPE, r HR, r BLa 

Foster et al. 2014 
[32] 

9 males, VO2max =  
47 ± 6 mL·kg-1·min-1 

Oral ingestion of 1.5 g acetaminophen, 
30 min prior to test 

8 x 30 s Wingate tests, with 2 
min active rest intervals 

Not stated 
r Mean PO by 19 W (5%) 
u EIP, u Peak PO, u HR  

Angius et al. 2015 
[45] 

Part A: 9 males, 
VO2max =  
48 ± 7 mL·kg-1·min-1 

Part B: 7 males 

tDCS applied to the left motor cortex at 
an intensity of 2 mA for a period of 10 
min.  

Part A: Cycling TTE at 70% peak 
PO 
Part B: CPT with right hand 
submerged in iced water (0-1°C) 

20°C, 50% 
RH 

Part A: u TTE, u EIP 
u RPE, u HR, u VO2, u VE 
u BLa 
Part B: u pain tolerance, t pain 
intensity 

Flood et al. 2017 
[46] 

12 males, 
recreationally active 

High definition tDCS applied to the hand 
motor cortex at an intensity of 2 mA for 
a period of 20 min. 

30% MVC of knee extensor 
flexion held at 90° isometrically 
until exhaustion 

Not stated 
u TTE or maximal force 
production 
r conditioned pain modulation 
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Study Participants Intervention Testing Protocol 
Testing 

Conditions 
Outcomes 

Schulze et al. 2015 

[56] 

7 males, VO2max =  

62 ± 3 mL·kg-1·min-1 

Ingestion of 15 g·kgク1 ice slurry + ice 

towels on legs and torso in 30 min + 

ad-libitum ingestion of ice slurry 

during TT 

20 km cycling TT 
34°C, 

80% RH 

嘩 Mean power during TT 菓 Mean power by ひ W ゅなガょ 
during pre-load 課 TS┸ 菓 TC┸ 課 TCORE┸ 課 TMS 

Schlader et al. 

2011 [60] 
12 males, untrained 

Topical application of menthol gel on 

the face (0.5 g·100 cm2 at 8% prior to 

protocol) 

Cycling TTE RPE clamp protocol at なは ╅hard-very hard╆ in a WPS to 菓 heat stress 

20°C, 48% 

RH 

菓 Total work by ぬひ kJ ゅになガょ 課 TS┸ 菓 TC 

Kenny et al. 2011 

[61] 
10 males, untrained Ice vest worn under NBC 

Walking TTE (or 120 min) at 

3 mi·h-1 in NBC 

35°C, 65% 

RH 

菓 TTE by なに min ゅなにガょ 課 TS┸ 課 TCORE┸ 課 TMS┸ 課 (R┸ 課 
RPE 

Luomala et al. 

2012 [62] 

7 males, VO2max = 

56 ± 3 mL·kg-1·min-1 
Ice vest worn after 30 min of cycling 

Cycling TTE (9 min at 60%, 1 

min at 80% VO2max) 

30°C, 40% 

RH 

菓 TTE by なぬ min ゅににガょ 課 TS┸ 菓 TC┸ 課 TCH┸ 課 TUB 

Booth et al. 1997 

[68] 

5 males, 3 females, 

VO2peak = 63 mL·kg-

1·min-1 

Cold-water immersion for 30 min at 

24-29°C 
30 min running TT 

32°C, 60% 

RH 

菓 TT distance by ぬどね m 
(4.2%) 菓 TC┸ 課 TCORE┸ 課 TMS┸ 課 (R 

Barwood et al. 

2008 [70] 
18 males, untrained 

Psychological skills training involving 

goal setting, arousal regulation, mental 

imagery and positive self talk 

90 min running TT 
30°C, 40% 

RH 

菓 TT distance by な┻に km 
(8%) 嘩 TAU┸ 嘩 TMS┸ 嘩 SR┸ 嘩 )L-6, 嘩 PRL 

Barwood et al., 

2015 [71] 
8 males, untrained 

Menthol sprayed on the cycling jersey 

(100 mL at 0.2% after 10 km of TT) 
16.1 km cycling TT 

34°C, 33% 

RH 

嘩 TT time 課 TS┸ 菓 TC┸ 課 RPE 

Flood et al. 2017 

[72] 

8 males, VO2peak = 

55.4 mL·kg-1·min-1 

Menthol mouth rinse (25 mL at 0.01% 

every 10 min) 

Cycling TTE RPE clamp protocol at なは ╅hard-very hard╆ 35°C, 48% 

RH 

菓 TTE by ひひ s ゅば┻はガょ and 菓 
Power by 6 W (3.6%) 課 TS┸ 嘩 TC┸ 嘩 TCORE┸ 嘩 TMS, 嘩 SR 

Stevens et al. 

2016 [75] 

11 males, 5 km run 

time of 18-22 min 

Menthol mouth rinse (25 mL at 0.01% 

every 1 km) 
5 km running TT 

33°C, 46% 

RH 

課 TT time by ど┻ば min ゅぬガょ 課 TS┸ 菓 VE┸ 菓 PRL┸ 嘩 SR 

Stevens et al. 

2016 [79] 

9 males, 5 km run 

time of 18-22 min 
Facial water spray (every 1 km) 5 km running TT 

33°C, 46% 

RH 

課 TT time by ど┻は min ゅぬガょ 課TS┸ 課 TF┸ 菓 iEMG┸ 嘩 SR 

Sunderland et al. 

2008 [93] 

17 females, trained 

in team sports 

4x30-45 running training sessions 

(30°C, 27% RH) 

Loughborough Intermittent 

Shuttle Test 

 

30°C, 27% 

RH 

菓 distance by に┻の km ゅぬぬガょ 菓 TC┸ 課 TCORE┸ 嘩 
progesterone, 嘩 
aldosterone, 嘩 cortisol 
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 836 
u = no change, AF = Australian Football, BLa = blood lactate concentration, HR = heart rate, iEMG = integrated electromyography, IL = interleukin, NBC = nuclear biological 837 
chemical suit, PRL = blood prolactin concentration, RH = relative humidity, RPE = rating of perceived exertion, SR = sweat rate, TAU = aural temperature, TC = thermal 838 
comfort, TCORE = core temperature, TCH = chest skin temperature, TF = forehead skin temperature, TMS = mean skin temperature, TUB = upper back skin temperature, TS = 839 
thermal sensation, TT = time trial, TTE = time to exhaustion, VE = volume of expired air, VO2max = maximal oxygen uptake, VO2peak = peak oxygen uptake, WPS = water 840 
perfused suit. 841 

 842 

Kelly et al. 2016 

[94] 

14 males, 

professional AF 

players 

5x27 min cycling training sessions 

(39°C, 34% RH) 

30 min cycling at 60% 

VO2peak 

38°C, 29% 

RH 

菓 TC┸ 課 RPE┸ 課 BLa 嘩 VO2┸ 嘩 TCORE┸ 嘩 TMS 

James et al. 2017 

[95] 

17 males, mean 5 km 

perf time 20:51 

5x90 min running training sessions 

(36.6°C, 59% RH) to target TCORE 

38.5°C 

5 km running TT 
32°C, 60% 

RH 

課 TT time by ひぱ s ゅは┻にガょ 課 TS┸ 課 TCORE 

Wallace et al. 

2017 [104] 

14 males and 4 

females, trained 

2-weeks of motivational self-talk 

training 

30 min cycling at 60%, then 

TTE at 80% peak power 

output 

35°C, 50% 

RH 

菓 TTE by なひに s ゅねどガょ 菓 executive function 嘩 (R┸ 嘩 VO2┸ 嘩 RPE 


