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Abstract

Periodic measures are the time-periodic counterpart to invariant meas-
ures for dynamical systems that can characterise the long-term peri-
odic behaviour of stochastic dynamical systems. In this thesis, suffi-
cient conditions are given for the existence, uniqueness and geometric
convergence of periodic measures of time-periodic Markovian systems
on locally compact metric spaces. The results will be applied specific-
ally to time-periodic weakly dissipative stochastic differential equations
(SDEs), gradient SDEs and Langevin equations. We show that the peri-
odic measure density sufficiently and necessarily satisfies a time-periodic
Fokker-Planck equation. We will also rigorously derive that the expec-
ted exit duration of time-periodic SDEs is the time-periodic solution
of a second-order linear parabolic partial differential equation (PDE).
Collectively, this rigorously establishes two novel Feynman-Kac dualit-
ies for time-periodic SDEs. Casting the time-periodic solution of the
PDE as a fixed point problem and a convex optimisation problem, we
give sufficient conditions in which the PDE is well-posed in a weak and
classical sense. With no known closed formulae, we show that these ap-
proaches can be readily implemented to compute the expected exit time
numerically. Periodic measures and expected exit times are novel tools
to understand physical phenomena exhibiting periodicity. Particular

application towards stochastic resonance will be discussed.

Keywords: periodic measures, geometric ergodicity, expected exit time,
stochastic differential equations, time-periodic parabolic partial differential
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1 Introduction and Motivation

The theory of dynamical systems provides insight and understanding of the
evolution of physical systems in time. Indeed many physical systems from
all disciplines of science are modelled and studied as dynamical systems, par-
ticularly difference and differential equations. It is well-known that, in gen-
eral, there are no analytical closed-form solutions to many dynamical systems.
Resultantly, to understand dynamical systems is to identify key features such
as fixed points, stationary solutions and periodic solutions. Intuitively, fixed
points and stationary solutions capture the idea of equilibria of the system
and periodic solutions for periodic behaviour. For many physical systems, its
asymptotic or long time behaviour are fully characterised by these key fea-
tures. This has the interpretation any trajectory of the system “settle” to
these equilibria or periodic equilibria in the long term. Asymptotic behaviour
of dynamical systems is still an active area of research.

Since the dawn of the 20th century, there has been continued interest mod-
elling physical systems as stochastic dynamical systems. Particular atten-
tion was given to Markov chains and Markov processes with much focus on
stochastic differential equations (SDEs). There are two main motivations for
the interest. The first is that deterministic systems do not account for ex-
ternal randomness or “noise” in the realities of physical systems. The second
is that complex deterministic systems can be simplified and better described
when treated as stochastic system rather than a deterministic one. Statist-
ical mechanics, a pillar of modern physics initiated by Boltzmann, takes this
particular viewpoint. In particular, Einstein and Smoluchowski pioneered the
theory of thermodynamics in the context of (now known as) SDEs. Independ-
ently, Bachelier pioneered this viewpoint for the financial markets. In these
fields, the stochasticity typically models the complex interactions between the
large number of particles and market participants respectively.

For stochastic dynamical systems, stationary processes play the stochastic
counterpart of fixed points and stationary solutions in deterministic dynamical
systems. Their existence are well-studied for SDEs as well as stochastic partial
differential equations (SPDEs) e.g. [CKS04, EKMS00, Sch98, Sin96, ZZ07|.
The behaviour of stochastic systems can be better understood via probabil-
ity measures to capture the distribution of the process. Then the equilibria

of stochastic systems can be characterised by invariant (probability) meas-
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ures. In particular, if an invariant measure is limiting i.e. the law of any
trajectory converges to the invariant measure, then the asymptotic behaviour
of stochastic systems is essentially known. Indeed, it is well-known that there
is an “equivalence” (possibly on an enlarged probability space) between sta-
tionary processes and invariant measures [Arn98, O099|. In existing literature,
there are many results on the existence, uniqueness of limiting invariant meas-
ure of time-homogeneous Markovian systems in many cases including Markov
chains and processes of finite and infinite dimensional state spaces see e.g.
[DZ96, MT92, Nor98, MSH02, Has12, Hai06, MT09, Mat03, MT93].

Until recently, due to the delicate interplay between periodicity and stochasti-
city, there was not a rigorous formalism for periodic solution for stochastic
systems. Thus, while asymptotic periodic behaviour of deterministic systems
are well understood, there was no formal definitions nor framework to discuss
asymptotic periodic behaviour of stochastic systems. We briefly discuss the
main difficulty. While it is clear that deterministic periodic solutions returns
to the initial state after multiples of the period, we cannot expect likewise
for stochastic periodic solutions with absolute certainty. Instead, we intuit-
ively expect the stochastic periodic solutions to return to a neighbourhood
of the initial state after period. However, it may also happen that after a
period the process is significantly different from the initial state. To rigorously
grapple with the various possibilities has been difficult. Having the mathem-
atical framework to study periodic solution for stochastic systems is crucial
because many processes in the physical reality possesses both periodicity and
stochasticity. We promptly look at some examples.

Consider for instance daily average temperature of a fixed geographic loc-
ation and season. It is clear that the temperature is a periodic process as
the Earth rotates around the sun. Of course the temperature is a stochastic
process as it is subject to a range of uncertainties including prevailing winds,
cloudiness, reaction within the sun and humidity. Resultantly, the temperat-
ure generally does not return to the exact temperature at the same time on a
daily basis, furthermore it may be substantially different. Another broad ex-
ample are commodity prices in the financial markets. Many commodities have
a seasonal trend e.g. coffee beans, cocoa, wheat, soya bean, corn and rice due
to its natural growth cycle. Many uncertainty factors can affects its supply
and demand including draught, sunlight, soil quality, pollution and geopolitical

factors. It is worth mentioning that while these examples portray periodicity,
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in general, the observed processes of periodic systems may not appear periodic
to the eye. This is particularly true for nonlinear periodic systems and will be
apparent in the forthcoming discussion of stochastic resonance.

In a series of paper [FZZ11, FZ12, 1LZ12, Z709, FZ16], Zhao et al developed
the formal framework to understand periodicity and stochasticity via the rig-
orous definition of random periodic solution. In |ZZ09|, Zhao and Zheng gave a
rigorous definition of random periodic solutions for C'-cocycles in the context
of random dynamical systems (RDS). In [FZZ11| and [FWZ16|, the exist-
ence of random periodic solutions were shown for periodic semilinear SDEs.
Numerical approximations of random periodic paths of SDEs were studied
in [FLZ17]. In [FZ16], Feng and Zhao defined rigorously periodic measures
as the time-periodic counterpart of invariant measures. Furthermore, just as
there is an equivalence between stationary processes and invariant measures, in
[FZ16], the equivalence between random periodic solution and periodic meas-
ures was proved. It was also shown in [FZ16] that an invariant measure can be
obtained by lifting the periodic measure on a cylinder and considering its aver-
age over one period. The concept of periodic measures and ergodicity provides
a rigorous framework and new insight to understanding time-periodic physical
phenomena such as the ones mentioned above.

In this thesis, we look at the key ingredients for the existence and unique-
ness of periodic measures for (time-inhomogeneous) time-periodic Markovian
processes on locally compact state spaces. Furthermore, we show when peri-
odic measure is limiting and have geometric convergence. We apply these
abstract results specifically to time-periodic SDEs where verifiable coefficient
conditions are given. Requiring only locally Lipschitz coefficients and non-
degenerate noise, we show that there exists a unique geometric periodic meas-
ure for a broad range of time-periodic weakly dissipative SDEs, gradient SDEs
and Langevin equations. Since the Markov process is time-inhomogeneous, in
this thesis, we discuss convergence in the conventional sense, along multiples
of the period and in the “pullback” sense. Pullback convergence is where one
takes initial time further and further back in time rather than the forward time
and is typically studied in the theory of non-autonomous dynamical systems
[KR11] and RDS [CH16|. There has been some works in a similar direction for
periodic measure. Invariant measures of the grid process on multiple integrals
of the period were studied in [HL11| for time-periodic SDEs with (globally)

Lipschitz coefficients. Since periodic measures were defined some years after
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[HL11], the authors were not aware of periodic measures nor their ergodicity as
introduced in [FZ16]. Furthermore, it seems that the Lipschitz coefficients are
too restrictive for some applications. In [CLRS17|, the authors obtained the
existence and uniqueness of the periodic measure for stochastic overdamped
Duffing Oscillator in one dimension via the theory of non-autonomous RDS.
To the author’s knowledge, this thesis contains the first proof to deduce further
that this periodic measure is geometric. It is worth noting that the approach
taken in this thesis applies in the multidimensional case and is completely
different to that of |[CLRS17|.

We briefly discuss the approach taken in this thesis. The thesis extend
classical time-homogeneous Markov chains results [MT09, MT92, MT93| to
attain invariant measures to time-periodic Markovian systems to attain peri-
odic measures. The crucial yet simple observation is that time-periodic Markov
chain or process possesses a time-homogeneous subchain. We show that if the
subchain has an invariant measure, one can construct the periodic measure.
The underlying approach is utilising the existence of a Foster-Lyapunov func-
tion and the coupling method [Lin92, Tho00, MT92, MT09, MT93|. Foster-
Lyapunov functions are utilised to ensure stability for the Markov process.

For successful coupling of Markov chains, it is typical to show the Markov
transition probability satisfies the local Doeblin condition. We show that the
local Doeblin condition can be essentially decomposed into irreducibility and
the strong Feller property of the Markov transition probability. Indeed these
two properties are key ingredients for the existence and uniqueness of in-
variant measures, even in the infinite dimensional case see e.g. [DZ96|. In
the context of SDEs, it is well-known that the strong Feller property holds
provided the coefficients are globally Holder and bounded with uniformly el-
liptic diffusion [Fri64, SV06|, however these conditions are too restrictive for
applications from a SDE perspective. The celebrated Hormander’s condition
is a weak condition to deduce the strong Feller property for autonomous SDE
[Hor85, Mal78, Haill, RW00|. In the recent paper [HLT17]|, the authors ex-
tended Hormander’s condition to sufficiently imply the strong Feller property
holds for non-autonomous SDEs. The smooth SDE conditions of this thesis is
to invoke the result of [HLT17| while flexible enough for applications.

Another contribution of this thesis is the rigorous derivation that the dens-
ity of the periodic measure sufficiently and necessarily is the time-periodic solu-

tion of the Fokker-Planck equation. Attaining the periodic measure density



1 Introduction and Motivation

evidently gives another approach to obtain the periodic measure. It is expected
the density would be useful in applications much like stationary distributions
has been in physical applications. As an example, an explicit formula will be
given for the periodic measure and its density of Ornstein-Uhlenbeck processes
with a periodic forcing.

Owing to the physical intuition of the Fokker-Planck equation, time-periodic
solution of the Fokker-Planck has been studied previously [Jun89, CHLY17,
JQSY19|, however its relationship to periodic measure is formally established
here. On a more fundamental level, in this thesis, the periodic measure dens-
ity PDE establishes our first “time-periodic Feynman-Kac” duality. It appears
this viewpoint was not taken in existing literature and was limited to the
Fokker-Planck equation mentioned. Indeed the author expects using meth-
ods in this thesis for instance, further time-periodic Feynman-Kac dualities
can be attained for other quantities associated to time-periodic SDEs. Con-
versely, the author expects this duality provides stochastic insight into existing
time-periodic solutions of parabolic PDEs.

We promptly discuss our second novel time-periodic Feynman-Kac duality;
we provide a rigorous derivation that the expected exit time of time-periodic
SDEs is the time-periodic solution of a second-order linear parabolic PDE.
To the author’s knowledge, the derived PDE and its interpretation is novel
in literature. Expected exit time is another key tool to understanding and
approaching physical phenomena. Indeed in many disciplines of sciences, (ex-
pected) exit time of stochastic processes from domains is an important quant-
ity to model the (expected) time for certain events to occur. For example,
time for chemical reactions to occur |Kra40, Gar09, Zwa01|, biological neur-
ons to fire [RS79, Sat78|, companies to default [BC76, BR04|, ions crossing
cell membranes in molecular biology [Bre04| are all broad applications of exit
times. With the example of daily temperature and commodity price mentioned
earlier, the average time it takes for the temperature or commodity price to
reach particular threshold can be phrased as an expected exit time problem.
For autonomous stochastic differential equations (SDEs), the expected exit
time from a domain has been well-studied in existing literature. In particu-
lar, it is well-known that the expected exit time satisfies a second-order linear
elliptic PDE [Has12, Gar09, Zwa01, Pav14, Ris96|. However, in existing literat-
ure, it appears that the expected exit time PDE is absent for non-autonomous

SDEs and in particular time-periodic SDEs. The current thesis fills in this gap.
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Via the Feynman-Kac duality, we discuss briefly the ill-posedness of the PDE
for the general non-autonomous SDE case and thereby explaining its absence
in literature.

We note that the rigorous derivation of the expected exit time PDE can
be done under conditions even weaker than that needed for the existence and
uniqueness of a limiting or geometric periodic measure. Therefore it applies to
an even wider range of physical systems. We note that the conditions required
to solve the PDE are weaker than that to derive the PDE from the SDE. This is
expected because from a PDE perspective, weak solutions of PDE on bounded
domains can often be attained requiring coefficients to only be LP or Holder,
and classical solutions may be obtained via Sobolev embedding. On the other
hand, as a priori, it is not known if the process would exit the bounded domain
in finite time or indeed have finite expectation. By considering the SDE and
its Markov transition probability on the entire unbounded domain, we show
that if the exit time has finite second moment then the PDE derivation can
be rigorously justified. We show that again irreducibility and the strong Feller
property are the key ingredients to conclude the exit time has finite second
moment. Foster-Lyapunov functions are not necessary in this problem.

We provide two complementary approaches to prove that the parabolic
PDE has a unique solution in a weak and classical sense. In the proofs, we
keep as much generality as convenient to show the main ingredients for the
PDE’s well-posedness and for straightforward application in the future for
similar PDEs. In one approach, we show that the time-periodic solution can
be casted as a fixed point of the parabolic PDE evolution operator after a
period. We prove that if the associated bilinear form is coercive, then the
time-periodic solution exists and is unique by Banach Fixed Point Theorem.
As coercivity can be difficult to verify in practice, we also take a calculus of
variations approach. Specifically, we cast the problem as a convex optimisation
problem by defining a natural cost functional and show that a unique minimiser
exists and satisfies the PDE.

We emphasise that while our core results are theoretical in nature, the
Banach fixed point and convex optimisation approach can be readily imple-
mented by standard numerical schemes. Acquiring the tools to numerically
compute the expected exit time is vital because explicit or even approxim-
ate closed form formulas for the expected time are rarely known, even in the

autonomous case. The known cases include (autonomous) one-dimensional

11



1 Introduction and Motivation

gradient SDEs with additive noise, where the expected exit time can be ex-
pressed as a double integral |Gar09| and has an approximate closed form solu-
tion given by Kramers’ time, when the noise is small [Kra40]. Kramers’ time
has since been extended to higher dimensional gradient SDEs [Ber11]. How-
ever, to our knowledge, there are currently no known exact formulae for the
time-periodic case. Therefore, particularly for applications, there is an imper-
ative to solving the PDE numerically.

It is worth mentioning the clear advantages to numerically computing the
expected exit time by solving the PDE than direct Monte Carlo simulations.
In simulations, one can be concerned with the quantity of simulations needed
for a confident result. This contrasts with solving a PDE where its solution
is deterministic and the result is as accurate as the numerical schemes and
its parameters allow. As the Monte Carlo computational time is undoubtedly
proportional to the exit time, in problems where the exit time are large e.g.
stochastic resonance (see below), computational time can be large. Coupled
with computing large number of simulations, solving the PDE can be signific-
antly faster to compute.

Periodic measures and expected exit times together can provide a deeper in-
sight and understanding of time-periodic systems such as “periodically forced”
stochastic systems. These are systems in which the drift is perturbed by a
periodic term. Periodically forced systems have a wide range of applications
in the sciences, we refer readers to the monograph |Jun93| for examples and
analysis on the such systems. Specifically, we apply the theory developed of
periodic measures and expected exit times toward stochastic resonance, a phys-
ical phenomena typically modelled as a periodically forced system. We briefly
describe this phenomena.

In a series of papers [BPSV81, BPSV82, BPSV83, Nic82|, the paradigm
of stochastic resonance was introduced to explain Earth’s cyclical ice ages.
In particular, the authors proposed a double-well potential SDE with peri-
odic forcing to model scientific observation that Earth’s ice age transitions
from “cold” and “warm” climate occurs abruptly and almost regularly every
10° years. The wells model the two metastable states, states in which the
process generally stays at for relatively large periods of time. We note that
both periodic forcing and the noise are essential to this model in the following
way. It has been observed (see e.g. |[BPSV82|) that in the power spectrum of

paleoclimatic variations in the last 700,000 years, there is a strong peak at a
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periodicity of 10° years and smaller peaks at periods of 2 x 10* and 4 x 102
years. The addition of the periodic forcing reproduced these peaks. From a
physical viewpoint, as suggested by Milankovich [Mil30], the periodic forcing
corresponds to the annual mean variation in insolation due to changes in el-
lipticity of the Earth’s orbit. On the other hand, in the absence of noise (with
or without the periodic forcing), the model does not produce any transitions
between the stable states. The noise stimulates the global effect of relatively
short-term fluctuations in the atmospheric and oceanic circulations on the
long-term temperature behaviour |[Has76|. Thus indeed both periodicity and
noise are essential ingredients for modelling Earth’s ice ages. Furthermore,
it is the delicate balance between periodicity and noise level that collectively
yield transitions between the metastable states to occur regularly in a periodic
manner. Since the seminal papers, stochastic resonance has found applications
in many other physical systems including optics, electronics, neuronal systems,
quantum systems |[GHJM98, JHO7, ZMJ90, Jun93, HIP05|. The unique geo-
metric periodic measures attained in this thesis give a rigorous description of
the asymptotic periodic equilibria as observed by physicists. Furthermore, its
uniqueness is significant in explaining the transition between the two wells;
otherwise there should be two periodic measures instead of one.

It is noted that stochastic resonance occurs for the right set of parameters
in the double well model, as suggested by numerical simulations [GHJM98,
MW89, ANMS99, CLRS17|. Given the model and periodic forcing, noise
intensity is the only free parameter. While there is no standard definition
[JHO7, HIO5], stochastic resonance is said to occur if the expected transition
time between the metastable states is (roughly) half the period [CLRS17|. Typ-
ical approaches to fine tune the noise intensity has been to maximise indicators
such as spectral power amplification (SPA) coefficient and the signal-to-noise
ratio (SNR) |[GHIJM98, HIP05| for an overview. The approach in this thesis
is to solve the expected exit time PDE numerically. By applying the theory
developed in this thesis, we first show that computationally solving the PDE
and stochastic simulation for the expected transition time agrees. We then
fine tune the noise intensity until the double-well stochastic model exhibits
the stochastic resonance phenomena.

In existing stochastic resonance literature, Kramers’ time is often used
for analytic expressions. Note that Kramers’ time applies only to autonom-

ous gradient SDE case and in the small noise limit. For example in [MW89,

13
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CGMO5] reduced the dynamics to "effective dynamics" two-state time-homogeneous
Markov process and invoked a time-perturbed Kramers’ time. More gener-
ally, utilising large deviation and specifically Wentzell-Freidlin theory [FW98|,
stochastic resonance and related estimates can be attained in the small noise
limit. For example, [MS01| attained estimates for escape rates, a closely related
quantity to expected transition time. Similarly, in |[IPO1| and |HI05, HIPO05,
HIPP14], the authors obtained estimates for the noise intensity for stochastic
resonance by reducing to two-state Markov process and time-independent
bounds respectively. In this thesis, we retain the explicit time-dependence of
the coefficients and furthermore, small and large noise are permissible. In fact,

the noise may even be state-dependent and exact exit duration is obtained.
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2 Periodic Measures of Markovian Systems

2.1 Definitions and Preliminaries

In this section, we recall some basic definitions, notation and standard results
of Markovian processes on locally compact separable metric space (E, B) where
B is the natural Borel o-algebra and time indices T = N := {0, 1, ..., } or R™.
By convention, when T = N, the Markov process is referred to as a Markov
chain. The objective of this section is to state important results for time-
homogeneous Markov chains that would be crucial in proving vital results for
T-periodic Markovian systems.

Let P: TxTx E x B — [0,1] be a two-parameter Markov transition

kernel. It is well-known P satisfies
(i) P(s,t,x,-) is a probability measure on (F, B) for all s <t and all z € E.
(ii) P(s,t,-, B) is a B-measurable function for all s <¢ and I" € B.

(iii) (Chapman-Kolmogorov) For all s <r <, one has

P(s,t,z,T) = / P(s,r,z,dy)P(r,t,y,T), ze€ ET€B.
E

(iv) P(s,s,z,B)=1p(z) foralls € T,z € E and I" € B,

where 1p denotes the indicator function.
For s < t, define linear operators P(s,t) acting on By(FE), the space of

bounded measurable functions by
P(s,t)f(x) = / fy)P(s,t,x,dy), [ €By(E) z€E.
E

We say that P(-,-) is Feller if for all s <t, P(s,t)f € Cy(F) when f € Cy(E)
and strong Feller if P(s,t)f € Cy(E) when f € By(E). For s < t, we define
adjoint operator P*(s,t) acting on P(FE), the space of probability measures on
(E,B) by
(P*(s, ) (T) = / P(s,t,,T)u(dz), e P(E),T € B,
E

Where not ambiguous, we write the left hand side as P*(s, t)u(T").

15



2 Periodic Measures of Markovian Systems

It is well-known that P(s,t) and P*(s,t) forms a two-parameter semig-
roup on By(E) and P(FE) respectively and satisfies P(s,t) = P(s,r)P(r,t)
and P*(s,t) = P*(r,t)P*(s,r). We endow on P(FE) the total variation norm
defined by

|m1—uﬂuvﬁ=§gmmr»—uxmu pi1; 2 € P(E).
S

It is easy to compute that the operator P*(s,t) : (P(E), |||lrv) — (P(E), ||||rv)

has unit operator norm. This is clear because for any p € P(FE),

IW@WM=w/
AeB

EP(s,t,x,A)u(d:v) = / P(s,t,z, E)u(dr) =1,

E

and since |||y = 1, it follows that

||P*(S t)” = sup ||P*(S7t)ﬂ||TV

=1. (2.1)
LEP(E) ||M||TV

While many of the convergence results presented here holds in more general
norms than the total variation norm (such as f-norms [MT09]). For clarity
and simplicity, we shall only consider convergence in the total variation norm.
Some results require only weak convergence of measures. Hence we occasionally

consider p € P(FE) as a linear functional on Cy(FE) by

mnzéﬂwmm,fe@w»

And we say p,v € P(E) are equal if u(f) = v(f) for all f € Cy(E). Then for
any u € P(E), f € Cy(F) and s < t, we have the following identity by Fubini’s

theorem,

V@MM%zéﬂMW%MM@w
:éémw@wmwm>

—AP@W@M@) (2.2)
= p(P(s,t)f).

16



2.1 Definitions and Preliminaries

We give the definition of a time-periodic Markov transition kernel. We
also introduce the stronger definition of minimal time-periodic. Note that in
the following definition, time-periodic Markov kernels depends on initial and

terminal time.

Definition 2.1. The two-parameter Markov transition kernel P(-, -, -, -) is said

to be T-periodic for some T" > 0 if
P(s,t,z, )=P(s+T,t+T,z,-), forallze E s <t. (2.3)
Moreover, we say P is minimal T-periodic if for every 6 € (0,7)N'T
P(s,t,z,:) # P(s+6,t+d,z,:), forallz e F s <t (2.4)
Lastly, we say P is time-homogeneous if
P(s,t,z,-) = P(0,t —s,x,-), forallze E s<t.

The definition of T-periodic should be clear and intuitive. Observe that
the minimal T-periodic assumption is stronger than T-periodic. It rules out
the possibility of being time-homogeneous by enforcing non-trivial period for
every state. Equation (2.3) on the other hand allows the possibility for states
to have trivial period. This implies that the results of this thesis assuming
T-periodic P recovers results for the usual time-homogeneous case. We shall
always assume 1" > 0.

As a convention, we denote by P(t) for the time-homogeneous Markov
semigroup and P*(t) for its adjoint depending only on the elapsed time 0 <
t € T. Specifically for T = N, we denote P := P(1) and P* := P*(1) for the
“one-step” semigroup and adjoint semigroup respectively. We now define our

central objects of study characterising stationary and periodic behaviour.

Definition 2.2. A probability measure m € P(FE) is called an invariant (prob-
ability) measure with respect to P(s,t) if

P*(s,t)r=m forall 0 <s<t{.

When P is time-homogeneous, 7 satisfies P*(t)m = 7 for all ¢ > 0. In particu-

lar, when T = N, 7 need only to satisfy the one-step relation P*m = 7.
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2 Periodic Measures of Markovian Systems

Invariant measures has been well-studied for many decades in many general
settings. For example time-homogeneous Markov chains on finite dimensional
state space [MT92, Nor98, MT09|, and Markov processes on finite state space
[Str05, Nor98]|, on infinite dimensional state spaces [DZ96]. On the other hand,
the formulation of periodic measure below is new and was first formally defined
in |FZ16|.

Definition 2.3. A measure-valued function p : T — P(FE) is called a T-
periodic (probability) measure with respect to P(-,-) if for all 0 < s <t

Ps+T = Ps;

Pt = P*(S7t)ps-

Similarly if P is time-homogeneous, then p satisfies

Ps+T = Ps;

ps+t = P (t)ps.

Note that periodic measures are invariant measures when the period is trivial.
We shall give sufficient conditions to ensure the periodic measure has a minimal

positive period.

In classic literature, see [DZ96, Has12, MT92, MT09, Str05, Nor98]| for in-
stance, appropriate assumptions yields asymptotic convergence of the Markov
kernel towards a unique invariant measure. However, these classical asymptotic
results seems to have neglected the possibility of asymptotically periodic beha-
viour. While conceptually simple, it seems that asymptotic stochastic periodic
behaviour was first rigorously formalised and defined by periodic measures by
Feng and Zhao in [FZ16]. Nonetheless, these limiting invariant measures res-
ults can still be utilised for time-periodic Markovian system. We end this sec-
tion by quoting, without proof, two now-classical results for time-homogeneous
Markov chain result taken as special cases from |[MT92, MT09|. To state the

results, we require the following definitions.

Definition 2.4. Let P be a one-step time-homogeneous Markov transition
kernel. We say that P satisfies the “minorisation” or “local Doeblin” condition

if there exists a non-empty measurable set K € B, constant n € (0,1] and
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probability measure ¢ such that
Pz, ) Zne(), ek (2.5)

Definition 2.5. A function U : E — R™ is said to be norm-like (or coercive)
U(x) — oo as ||z|| — oo ie. the level-sets {z € E|V(s,z) < r} are pre-
compact for each » > 0. A time-dependent function V : T x £ — R is

norm-like (or coercive) if V(s, ) is norm-like for every fixed s € T.

Lemma 2.6. (Theorem 4.6 [MT92]) Let P be a one-step time-homogeneous

Markov transition kernel and assume there exists a norm-like function U :

PU—-U< —e on K°, (2.6)
PU <o on K. (2.7)

Then there exists a unique tnvariant measure ™ with respect to P. Moreover
if P satisfies the local Doeblin condition (2.5) then the invariant measure is

limiting i.e. for any x € F,
|P"(z,) — m||7v — 0, asmn — oo.

In literature, conditions (2.6) and (2.7) are typically referred to as the
Foster-Lyapunov drift criteria and has the interpretation that the process
moves inwards on average when outside the compact set. And U is referred as
(Foster-)Lyapunov function. Lemma 2.6 is a qualitative result and does not
give any rate of convergence. The following result from [MT92, MT09| gives
sufficient condition for a time-homogeneous Markov chain to possess a unique

invariant measure that converges geometrically.

Lemma 2.7. (Theorem 6.3 [MT92], Theorem 15.0.1 [MT09]) Let P be a one-
step time-homogeneous Markovian transition kernel satisfying (2.5). Assume
there exists a norm-like function U : E — RY, a € (0,1) and 8 > 0 such that

PU<aU+pB onkE. (2.8)

Then there exists a unique geometric invariant measure ™ € P(E) i.e. there
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2 Periodic Measures of Markovian Systems

ezist constants 0 < R < oo and r € (0,1) such that

|P"(z,) = 7|lp, < RU(z)+1)r", € E,neN.

2.2 Time-Homogeneous Markovian Systems

In classic literature, results such as Lemma 2.6 and Lemma 2.7 are concerned
with asymptotic convergence of the Markov kernel towards a unique invari-
ant measure. However, these classical asymptotic results are “all-or-nothing”
in that either there exists an limiting invariant measure or not and often neg-
lected the possibility of asymptotically periodic behaviour. While conceptually
simple, it seems that this was only formally pointed by Feng and Zhao in [FZ16]
and formalised under the definition of periodic measures.

In this brief section, we study periodic measures in the context of time-
homogeneous Markovian systems on a locally compact metric space E with
sigma-algebra B. For clarity, we mostly look at the Markov chain case. While
many of the statements in this section are known in the context of RDS, the
purpose is to show the differences with the time-periodic Markovian case. We
shall see that periodic measures are only unique up to cyclic sets or Poincaré
sections |[FZ16]. As these sections are disjoint, the implication is that the sup-
port of the periodic measures at different points in time are disjoint. Also
in the case of time-homogeneous Markovian systems, periodic measures and
invariant measures co-exist. In fact, the time-average of the periodic measure
always yields an invariant measure. We will see the situation differs signific-
antly in the time-periodic case where periodic measures and invariant measures
may be mutually exclusive and furthermore, the supports of periodic measures
at different moments in time are generally not disjoint.

For clarity in portraying the main points of this section, we focus on time-
homogeneous Markov chainsi.e. T = N and assume that the period 1 < T € N.
Analogous statements and proofs for Markov processes can be readily attained
by replacing sums with integrals in many proofs.

We begin with a easy lemma showing that in this time-homogeneous case
the time-average of the periodic measure is an invariant measure. Thus peri-
odic measures and invariant measures always coexist. This is already known
even in the context of Markovian cocycle in the theory of RDS, see Theroem
1.2.6 [FZ16].
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2.2 Time-Homogeneous Markovian Systems

Lemma 2.8. Suppose there exists a T'-periodic measure p with respect to time-
homogeneous Markov transition kernel P. Then the time-average measure m =

T—1 . . . .
%ano Pn 18 an invariant measure with respect to P.

Proof. By the linearity of P* and definition of periodic measure,

= = 1z
P'r = P*(—an) = —ZP*pn = —an =T.
T= T= T

]

For any a = (ag,...,ar_1) € RT and T-periodic measure p, define the

linear combination « - p := Zg;é anpn. With this notation, we have the follow

non-uniquness lemma of periodic measures.

Lemma 2.9. Let P be a time-homogeneous Markov transition kernel. If there
exists a T-periodic measure with respect to P, then there are infinitely many

T-periodic measures with respect to P.

Proof. Let p = (pn)n>0 be a T-periodic measure then for any o € R” with

o, > 0 and Z?zl oy, = 1, define the measure

It is easy to see that py € P(E). Define recursively
ﬁn+1:P*~na n > 1.

Then by the semigroup property,

T T T
pn = P*(n)po = P*(n) Z@zﬂi = Z a; P*(n)p; = Zaiﬂz’+n- (2.9)
=1 =1 =1

We verify that p = (pn)nen is a periodic measure. From (2.9) and the 7-
periodicity of p, we see that

T T
PrtT = E Qi Pipn+T = E QiPign = Pn,
i=1 =1
is also T-periodic. Finally, as p is a T-periodic measure, it is trivial to see for
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2 Periodic Measures of Markovian Systems

any n,m € N

T T T
ﬁn—i-m = Z i Pitnt+m = Z aip*(m)pi-i-n =P (m) Z Qi Pitn = P*(m)ﬁw
=1 =1 1=1

i.e. pis a periodic measure. As there are infinitely many such «, the result
follows. H

It is easy to show that the time-average of a - p is independent of « i.e.
the constructed periodic measures by linear combinations does not yield a new
unique invariant measure. We note that for Markov process, the above lemma
can be done by replacing the sums with integrals and let o be any non-negative
piecewise continuous function such that fOT a(r)dr = 1.

To discuss uniqueness of periodic measure, we define T-cyclic sets or Poin-

caré sections |[FZ16| as follows.

Definition 2.10. The measurable sets {L,}.-} are called T-cyclic sets or
Poincaré sections of T-periodic Markov kernel P if they have the following

properties:
(i) E=U,ZoLn,
(ii) L, = Ly, for all n € N,
(ii}) Ly N Ly = 0 if n # m.
(iv) For any n,m € N, P(m,x, L, \,,) = 1 for any = € L,,.

The nomenclature Poincaré sections is derived from the fact P(T) : L, — L,
for any 0 < n < T — 1 reflecting its classical deterministic counterpart in
dynamical systems. We say that a periodic measure p is supported by Poincaré

sections if

supp(pn) C L, (2.10)

i.e. at any time the periodic measure is supported by exactly one Poincaré
section. Following [FZ16|, P is said to satisfy the kT-irreducibility condition
Poincaré section if for any fixed 0 < n < T —1, there exists k; € N such for any
non-empty relatively open I' € L;, we have that P(k;,z,T') > 0, for z € L;.
Lemma 1.3.10 of [FZ16] showed that periodic measures (if exist) are unique up
to Poincaré sections and time-shift i.e. allowing for the possibility that there

exists a j € N, supp(pn) C Ly

22



2.2 Time-Homogeneous Markovian Systems

For concreteness, we take F to be a finite state space and enumerate its
states. Then we can represent the Markov transition kernel P by a |E| x |E|
matrix. In this finite case, A € P(E) = RI®l is represented by a row vector of
length |E|. Adopting conventional classical Markov chain notation, we have
P*(n)A = AP". We consider Example 1.1.6 from [FZ16|, where there was a
detailed analysis of random periodic path and from which a periodic measure

was constructed.

Example 2.11. Let F' = {1,2,3} and consider Markov transition probability

matrix

0 05 0.5
P=11 0 0
10 0

It is easy to see that P is irreducible and is 2-periodic since T'(i) = ged({n €
N|P} > 0}) =2 for all i € E. It is easy to compute that this example has the
unique cyclic sets Ly = {1} and Ly = {2,3}. It is to verify that p = (p,)n>0
defined by

(1,0,0) n even,

(0,0.5,0.5) n odd,

is a periodic measure for the system. Indeed, identifying by index {0,1}, it
is easy to see poP = p; and p1 P = py holds. Hence p is the unique periodic
measure with the support in the Poincaré sections. Uniqueness follows from
considering the subsystem via classical Markov chain theory taking 7' = 2
steps. Relaxing the support condition, periodic measures are not unique -

indeed for any a € (0, 1), by Lemma 2.9 it is easy to see

pn=oapy+ (1 —a)py n even,
fu=api+(1—a)py n odd,

is another periodic measure. We see that the time-average of the periodic
measure (for any «), 7 = (0.5,0.25,0.25) € P(FE) is the unique invariant
measure with respect to P. Note that 7 is not limiting for any arbitrary initial

distribution.

For time-homogeneous Markov chains, it is well-known that non-uniqueness

of invariant measures may hold if we relax irreducibility. This remains true for
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2 Periodic Measures of Markovian Systems

periodic measures even given Poincaré sections. We demonstrate this with the

following example.

Example 2.12. Let £ = {1,2,3,4,5} and consider the Markov transition
probability matrix

05 05 0 0 0

05 05 0 0 0
P = 0 0 0 05 05

0 0 1 O

0 0 1 O

Observe that {1,2} and {3,4,5} forms a closed subsystem that are disjoint
from each other hence P fails to be irreducible (and kT-irreducible). It is easy
to see that

7' =(0.5,0.5,0,0,0),
72 = (0,0,0.5,0.25,0.25),

are two invariant measures. Hence 7 is also a periodic measure with a trivial

period. Since this example has Example 2.11 as a sub-system, it is clear that

(0,0,1,0,0) n even,
(0,0,0,0.5,0.5) n odd,

Prn =

is a 2-periodic measure for the system. Therefore, indeed we have non-uniqueness

(up to Poincaré sections) of periodic measures.

2.3 Time-Periodic Markovian Systems
2.3.1 Existence and Uniqueness of Periodic Measures

The aim of this section is to give novel results to establish the existence
and uniqueness of a periodic measure in the general setting of time-periodic
Markovian systems on locally compact metric spaces E. We will give suffi-
cient conditions in which a periodic measure to have a minimal positive period
(hence not an invariant measure) for T-periodic Markov processes on Euclidean

space. We start with the following basic existence and uniqueness lemma.
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2.3 Time-Periodic Markovian Systems

Lemma 2.13. Let P be a two-parameter T'-periodic Markov transition kernel.
Assume for some fized s, € T, there exists an invariant measure ps, with
respect to the one-step Markov transition kernel P(sy,s. + T). Then there
exists a T-periodic measure p with respect to P(-,-). If ps, is unique then p is

also unique.

Proof. Given pg_, define the following measures
ps = P*(84,8)ps., > Su. (2.11)

Extend ps by periodicity for 0 < s < s,. Then it is clear that p: T — P(E).
Furthermore, we show p = (ps)ser is a periodic measure with respect to P(-,-).
Since P(-,-) is T-periodic then so is P*(-,-). Due to the periodicity, without
any loss of generality, we prove only for s > s,. By the semigroup property

and the invariance of ps, with respect to P(s., s« +T'), we have

ps+r = P (84,5 +T)ps.
= P*(sx+T,5+T)P" (54,5 +T)ps,
= P"(s:,5)ps.
= ps.

By construction (2.11), for any s > s, and for any ¢t € T

s+t = P (84,8 +1)ps.
= P*(s,s +t)P" (4, S)ps.
= P*(s,s+t)ps.

This concludes p is a periodic measure with respect to P(-,-). If p;, is the unique
invariant measure with respect to P(s., s, + T), we prove p is also unique.
Suppose there are two T-periodic measures p* = (p!) . with respect to P(-,")
for i = 1,2. By definition of periodic measures, p. satisfies p. = P*(s., s)p’.

for any s > s,, hence by the linearity of P* and (2.1)

oy — Pillrv = [|[P*(sy, 8)(ps, — p2)|l1v

< [1P*(se, 9)llllpz, — p.

TV -
The result follows by the assumption of uniqueness i.e. p! = p? . O]
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2 Periodic Measures of Markovian Systems

Recall that, by definition, an invariant measure is always a periodic measure
with a trivial period. For applications, it is important to distinguish periodic
measures of minimal positive period and those of a trivial period. However,
it is not immediate whether the periodic measure constructed in Lemma 2.13
has a trivial period. The distinction can be subtle since T-periodic Markovian
transition kernel (that is not time-homogeneous) does not necessarily yield a
periodic measure with a non-trivial period.

We demonstrate this with a SDE example. In the example, we consider
T-periodic coefficients hence it is straightforward to see that the Markovian
transition kernel is T-periodic. Let W; be a one-dimensional Brownian motion
and S is a continuously differentiable T-periodic function and consider the
following SDE

dX; = (—aX} + S(t)X,)dt + ocdW;, «a > 0,0 # 0.

We will see that the results from Section 3.3 will yield the existence and unique-
ness of a periodic measure with a minimal positive period when S has a min-
imal period 7" > 0. On the other hand, it is clear that the same SDE with

multiplicative linear noise,
dX, = (—aX] 4+ S()X;)dt + X, dW,,  « >0, (2.12)

has dy (Dirac mass at the origin) as its invariant measure and hence is a periodic
measure with a trivial period.

For the time-homogeneous Markovian case, Lemma 2.8 yields that time-
average of a periodic measure always yields an invariant measure. In this
time-inhomogeneous case, it is not necessarily the case that the time-average
yields an invariant measure. W do note however, that one can obtain an
invariant measure by lifting the periodic measure on a cylinder and considering
its average over one period |[FZ16|. We demonstrate that time-average is not

an invariant measure by the following simple example.

Example 2.14. Let £ = {1,2} and P be a Markov transition matrix given
by
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2.3 Time-Periodic Markovian Systems

0.5 0.5
odd n,
0.5 0.5
Pn,n+1)=
0.2 0.8
even 1.
[\ 0.3 0.7

Then the measure (p,), oy defined by

(0.25,0.75) odd n,
(0.5,0.5) even n,

is the unique 2-periodic measure with respect to P. For n € N, it is indeed

easy to verify
P*(n,n+ 1)p, = ppy1, neN.

Hence showing p is a periodic measure with respect to P(-,-). However, there
does not exist an invariant measure with respect to P(-,-). Indeed, if there

was an invariant measure 7 then it must simultaneously satisfy
7=P'nn+1)r and 7=P(n+1,n+2)r.

0.3 —-0.3
Equating implies (P*(n,n+1) — P*(n+1,n+2))m = 7 02 0.9 ) =

0. The only non-negative solution is 7 = 0 ¢ P(FE). Hence there does not
exist an invariant probability measure with respect to P(-,-). In particular,

the time-average of p does not yield an invariant measure.

Summarising briefly, we have demonstrated that in this time-inhomogeneous
T-periodic case, periodic measures may or may not have a trivial period. Un-
like the time-homogeneous case where periodic measure implies the existence
of an invariant measure, periodic measures and invariant measures may be
mutual exclusive. Therefore, since we are interested in asymptotic periodic
behaviour, we wish to ensure this mutually exclusivity. If we exclude the pos-
sibility of invariant measures and deduce that periodic measures (if any) have
a minimal period and is limiting, then we can conclude that the long term be-

haviour can be characterised by strictly periodic behaviour (rather than trivial
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2 Periodic Measures of Markovian Systems

period). The following proposition gives sufficient condition in which an in-
variant measure cannot exist, thus if there exists any periodic measure, it has a
minimal positive period. We only state and prove it for Euclidean state space,

it will be apparent that it can hold in more general topological spaces.

Proposition 2.15. Let T > 0 and E = R? and assume P is minimal T-
periodic and strong Feller. Then periodic measures with respect to P (if exists)

has a minimal positive period.

Proof. We prove by contradiction and assume there exists periodic measure
with a trivial period i.e. there exists an invariant measure = € P(RY). Then
it must be that for all fixed 6 € (0,7)NT

P*(s,t)r =m = P*(s+0,t + d).
By duality, linearity and (2.2), this is equivalent to
m(P(s,t)f — P(s+0,t 4+ 6)f) =0, forall f € Cy(R?). (2.13)
To prove the result, we construct an f € C(R?) such that
7 (P(s,t)f — P(s+0,t+0)f) > 0.

By minimal T-periodic assumption (2.4), for every fixed x € RY, there exists
fe € Cy(R?) such that P(s,t,x,)(f.) # P(s+0,t+0,z,-)(f.). Hence, without

loss of generality, there exists € > 0 such that
P(s,t)fu(x) — P(s+0,t +0) fu(x) > 2e.

For x = (x1,..,74) € RY, define the half-open cube of length r > 0 centred at
x by

d

C(x,r):= H [2; — r,2; + 1) € B(RY),

i=1
where ] denotes the standard Cartestian product of Euclidean space. The
(not necessarily strong) Feller assumption yields that P(s,t)f, € Cy(R%) and
P(s+6,t+0)f, € Cy(RY) hence there exists a 7, > 0 such that

P(s,t)fe(y) — P(s+6,t+9)fo(y) > ¢, forallye C(z,r,).
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2.3 Time-Periodic Markovian Systems

Let 7 := min, r, > 0, a = (ay, ..., ) € Z? and define the half-open cube

Co = H [y, (a; + 1)r) € B(R?).

=1

Clearly {C,}acze is a countable disjoint covering of R%. For every a € Z4,
define z, € R? with components z; = (o +0.5) r for each 1 < i < di.e. the

midpoint of the cube and define the functions

fo = fo., a€Z%

And define the piecewise continuous functions over all possible tuples

(

Ja,0,...0 () ifze Ca.,...0)
foa,..0@) ifxeCoa,. o),

fa(x) if v € C,.

\

By construction, f € By(R?). Let g := P(s,t)f — P(s + 6,t +0)f. Then
g > €. The strong Feller assumption implies that g € C,(R?). Hence for any
7 € P(R?) (hence non-empty support), it follows that 7(g) > 0 contradicting
(2.13). O

2.3.2 Limiting and Geometric Ergodicity of Periodic Measures

We now discuss ergodicity of time-periodic Markovian systems. Classically,
ergodic (time-homogeneous) Markov processes have the property that the
Markov transition kernel converges to an invariant measure as time tends to
infinity. In this sense, the invariant measure characterises the long-time beha-
viour of the system. On the other hand, for periodic measure (with a minimal
positive period) cannot be limiting in the same way because the periodic meas-
ures evolves over time. However, it is possible that the Markov transition ker-
nel can converge along integral multiples for T-periodic Markovian processes.
This captures the idea that the periodic measure describes long-time periodic
behaviour of the system. This shall be apparent and rigorously written in
the forthcoming theorem. We remark that the forthcoming theorem can be

regarded as the time-periodic generalisation of Lemma 2.6.
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2 Periodic Measures of Markovian Systems

Before we state and prove the theorem, we make the following trivial but
important observation. If (X;)er is a T-periodic Markov chain or process, then
(Z2)nen := (XsinT )nen is a time-homogeneous Markov chain. This enables the
usage of classical time-homogeneous Markov chain theory that is already well-
established.

Theorem 2.16. Let P be a T-periodic Markov transition kernel. Assume
there exists s, € T, norm-like function U,, : E — R*, a non-empty compact
set K € B, e>0,ns, €(0,1] and ¢s, € P(E) such that

P(se, 8.+ T)Us, — U, < —€  on K°, (2.14)
P(sy,s. +T)U,, <00 on K, (2.15)
P(se,8s +T,2,-) > ns,0.(+), z€K. (2.16)

i.e. (2.5), (2.6) and (2.7) are satisfied for P(s., s« +T). Then there ezists a

unique T-periodic measure p that satisfies all the convergences below:

(i) For any fited v € E and s € T

|P(s,s+nT,z,-)— psllrv = 0, asn — oco. (2.17)

(ii) For any fired x € E and s € T, the following “moving” convergence holds,

|P(s,t,z,-) = pillpy =0, ast — oo. (2.18)

(111) Allowing for negative initial time, for any fized x € E, s,t € T, the

following pullback convergence holds

|P(s —nT,t,z,-) — pll;yy =0 as n — oo. (2.19)

Proof. Since P(s,s+T,-,-) is a one-step time-homogeneous Markov kernel for
all s € T, by Lemma 2.6, there exists a unique p,, € P(FE) with respect to
P(s4,5.+T). Moreover, by Lemma 2.13, there exists a unique periodic measure
p. To show the convergences, we show that P(s,s + T') satisfies (2.5), (2.6)
and (2.7) for all s € T. By T-periodicity of P and the semigroup properties of
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P, observe that for s < s,

P(3,84)P(Ss, 8+ +T) = P(3,84)P(8s, s + T)P(s + T, 5.+ T)
= P(s,s+T)P(s,54).

Hence applying P(s, s.) to both sides of (2.14) yields
P(s,s+T)P(s,s.)Us, — P(s,5:)Us, < —¢, on K°.

i.e. Us:= P(s,s,)Us, satisfies (2.6) with respect to P(s,s + T'). Analogously,
Us satisfies (2.7). It is easy to verify that U; > 0. We extend U; for all
s € T by periodicity. We claim that for any s > s,, ns := ns, € (0,1] and
s = P*(s4,8)ps, € P(E) satisfies

P(s,s+T,z,-) > nsps(-), z€K. (2.20)

i.e. P(s,s+ T) satisfies (2.5). Should this not be the case, then there exists
some x € K and I' € B such that P(s,s + T, z,I') < nsps(I'). Then

P(s4,8)P(s,s+T,x,T) = P(ss,s+ T,2,T") < ngps(T),

by applying P(s., s) to both sides and Chapman-Kolmogorov equation. How-
ever by assumption (2.16),

Nses(L) > P(se, s + T, 2,1
=P (sx +T,s+T)P(s4,8+ T,z,T)
= Us*P*(S*,S)%*(F)y

which is a contradiction. We again extend by periodicity for all s € T. Thus,
the assumptions of Lemma 2.6 are satisfied to deduce (2.17) for all s € T. By
(2.1), observe that for t > s+ nT,

|P(s,t,x,-) — pellrv = || P*(s + nT,t)P(s,s + nT,x,-) — P*(s +nT,t)psinr|rv
= ||P*($ +nT, t)P(Sa s+nT,x, ) - P*(S +nT, t)psHTV
S HP<S7 s+ nT7$7 ) - psHTV'

Hence (2.18) follows by (2.17), by taking ¢ — oo followed by n — co. Using
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(2.17), convergence (2.19) holds due to

P(s—nT,t,z,-) = P(s,t + nT,x,")
= P*(s+nT,t +nT)P(s,s +nT,x,-)
= P*(s,t)P(s,s +nT,x,-).

]

We elaborate on the convergences given in Theorem 2.16. The first con-
vergence (2.17) is clear where the convergence is along integral multiples of
the period towards a fixed measure. That is, ergodicity of the grid chain.
Convergence (2.18) extends (2.17) by allowing the convergence to be taken
continuously in time. Observe that (2.18) captures the idea that long-term be-
haviour is characterised by the periodic measure. Note that (2.18) convergence
is towards a “moving target” as the periodic measure evolves over time. It is
typical in the theory of non-autonomous dynamical systems [KR11] and RDS
(random dynamical systems) [CH16| to study “pullback” convergence. This
is convergence where one takes initial time further and further back in time
rather than the forward time. The advantage is that the convergence will be
to a fixed target rather than a moving one. This is the content of convergence
(2.19). In general, (forward) convergence and pullback convergence do not
coincide (see [KR11, CH16| for examples). In this T-periodic case, we see that

the convergences coincide.

Remark 2.17. In the time-homogeneous case, Lemma 2.9 show existence of
one periodic measure is sufficient to deduce the existence of infinitely many
periodic measures by linear combination; the uniqueness is up to Poincaré
sections and time-shift. This contrasts with Theorem 2.16, where in the time-
inhomogeneous T-periodic case, periodic measures are unique in the entirely
in P(E) and in particular not necessarily supported by Poincaré sections i.e.
(2.10) generally does not hold.

Further to Theorem 2.16, we now provide a theorem for the existence and
uniqueness of a geometric periodic measure. Observe in the theorem that the
geometric convergence intrinsically depends on the initial time and state. This

is akin to the autonomous case where the convergence depends on initial state.

Theorem 2.18. Let P be a T-periodic Markov transition kernel. Assume

there exists s, € T, a norm-like function Uy, : E — R", a non-empty compact
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2.3 Time-Periodic Markovian Systems

set K € B constants o € (0,1) and > 0 such that P(s.,s.+ 1) satisfies the
local Doeblin condition (2.16) and

P(se, 8. +T)U,, <aUs, + on E.

Then there exists a unique geometric periodic measure p (with respect to P).
Specifically, there exists a norm-like function V : T x E — R, constants
Ry < oo and ry € (0,1) such that the following all holds

(i) For any s € T and x € E, we have

|P(s,s,+nT,x, ) — psllpyy < R(V(s,z)+1)ry, nelN (2.21)

(i) For any s <t, x € E, we have

t —
IP(s.t,2,) = pillpy < Ro(V(s,2) + Dty Nam< =),

(i11) Allowing for negative initial time, for any s <t, x € E, we have

t—s

1P(s —nT,t,2,) = pellyy < Bs(V(s,2) + 1)ry, Non<[——].

(iv) The periodic measure is uniformly geometric convergence over initial
time i.e. there exist constants R > 0,7 € (0,1) and a norm-like function
V : E — R* such that

P(s,s+nT,xz,-) — ps < R(V(z)+1)r", forallz € R s e T,ne N.
TV
(2.22)

Proof. Define V(s,z) := P(s,s.)Us, () for all s < s, and extend by period-
icity for all s € T. Then analogous to Theorem 2.16, the function V(s,-)
satisfies (2.8) with respect to P(s,s + T'). Likewise from Theorem 2.16, the
local Doeblin condition holds. Then (2.21) holds immediately by Lemma
2.7. Convergence (2.22) is obvious from (2.21) by defining R = sup,¢(o 1) s,
V(x) = supsepo,ry V(s,2) and r = supyejo 7 7s < 1. The remaining converges

are proven in the way as Theorem 2.16. O]
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2 Periodic Measures of Markovian Systems

2.3.3 Key Ingredients for Periodic Measures

Assuming we have a Foster-Lyapunov function for a T-periodic Markovian ker-
nel, Theorem 2.16 and Theorem 2.18 yields a limiting and geometric periodic
measure respectively, provided the local Doeblin condition (2.16). In this sec-
tion, we show that the local Doeblin condition can be essentially decomposed
into a (local) irreducibility condition and strong Feller condition. A sufficient
condition for the strong Feller condition to hold is the existence of a continuous
density. These are the main indgredients for the periodic measure.

The following two results gives sufficient conditions in which (2.16) holds.

We denote for convenience M(E) to be the space of measures on (£, B).

Proposition 2.19. Let P be a T-periodic Markov transition kernel and assume
there exists some s, € T, a non-empty set K € B, ¢ >0 and A € M(FE) such
that A(K) > 0, P(s,t,x,-) possesses a density p(s,t,x,y) with respect to A
and

inf p(ss,s.+T,2,y) > 0. (2.23)
ryeK

Then the local Doeblin condition (2.16) of Theorem 2.16 holds.

Proof. By Theorem 2.16, it suffices to show P(s.,s. + T) satisfies (2.5) for
some s, € T. By assumption that A(K) > 0,

rzeK

Ns, =/ inf p(s,, s, +T,z,y)dy
FE

> inf WSy + 1T, x,y)d
_/K;ng(Ser x,y)dy

Z/ inf p(ss,s.+T,2,y)dy
K

zyeK

= inf p(s.,s.+ T 2, y)AK
nf p(s., 5.+ T, 2, y) A(K)

> 0.

Clearly, ns, € (0,1]. Define the measure

1
s, () := —/ in}f{p(s*, se +T,z,y)dy, T e€bB.

773* T re
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2.3 Time-Periodic Markovian Systems

It is easy to verify that ¢s, € P(E) and for any 2 € K and any I € B

P(se, 8. +T,2,T) :/p(s*,s*—i—T,J:,y)dy
r

> inf *y Ok T7 5
_/F;ng(s s« + T, 2,y)dy
:ns*QOS*(F)'

Thereby (2.5) holds with constant 7, and probability measure s, . O]

In practice, assumption (2.23) in Proposition 2.19 can be difficult to verify
as well as being stronger than required. By assuming the Markov transition
kernel possesses a continuous density, we can relax (2.23).

For the forthcoming theorem, we define
MH(E)={p e M(E)|u(T) >0, non-empty open I' € B}.

We will make explicit use of the metric d on (F,B) and define B,.(x) := {y €
Eld(x,y) < r} to be the open ball of radius r > 0 centred at z € F.

Theorem 2.20. Let P be a T-periodic Markov transition kernel and assume
there exists some s, € T, a compact set K € B with a non-empty interior,
0<7r<Tand A € MT(E) such that P(s,t,x,-) possesses a (local) density
p(s,t,x,y) with respect to A and is jointly continuous on K x K. Assume

further that for any non-empty open set I'1,I'y C K and x € K
P(s4, 8. +1r,2,11) >0, P(si+rs.+T,xz,T9) >0. (2.24)

Then the local Doeblin condition (2.16) of Theorem 2.16 holds.

Proof. Fix any y € K, by (2.24), then for any non-empty open set I' C K,
P(sy+r,s. +T,y',T) > 0.

By the existence of a density, there exists 2z’ € I such that
p(se + 1, 8.+ Ty, 2") > 2,

for some ¢ > 0. Joint continuity assumption implies there exists rq,7y > 0
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2 Periodic Measures of Markovian Systems

such that
p(se+r,s.+T,y,2)>¢ foralyeB,(y)CK,z€B,,(z) CK.

Hence for any I' € B and y € B, (v/),
P(si+rs.+T,y,I') = /p(s* +r s+ T,y,2)A(dz)
r

> / p(se + 7,80 + T, y, 2)A(d2)
TNB,, (+')

> eA(I'N By, ().
By (2.24), we have
P(se, 8. +1,2,B,,(y)) >0, forall z e K.

As p(s4, S« + 7, x,7y) is a continuous function of z, by dominated convergence
theorem, P(s,, s.+7,z,T') is also continuous function of x. By the compactness
of K,

inf P(S*, 8* + /r.; x’ BTl(y/)) Z ")//’
zeK

for some +' > 0. In particular,

1
. ! > = . ! - .
inf P(s,ss+r,2,B,,(y)) >~ :=min {’V A BL () }

Putting them together via Chapman-Kolmogorov equation, we have for any
re Kand I € B,

P(se, 5. +T,2,T) = / P(se+ 71,50+ T,y,I)p(ss, s« + 1, 2,y)A(dy)
E

> / P(sie+ 1,8+ T,y,D)p(ss, s« + 1, 2,9)A(dy)
Bm (")

> eA(T' N B, (7)) / P54, 85 + 1,2, 9)A(dy)

Brl (y,)
=eAN(' N B, (2")P(54, 8« + 7,2, B, (y))
> eyA(I'N B, (7).
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2.3 Time-Periodic Markovian Systems

Thus, the probability measure

A(-N B, (#'))
S CRE)

and the constant n = eyA(B,,(2’)) € (0, 1] collectively satisfy the local Doeblin
condition (2.16). O

Remark 2.21. Note that in Theorem 2.20, if E is a locally compact metrisable
topological group, then any Haar measure A (for which a local density exist
and jointly continuous) will suffice. Moreover, note that Theorem 2.20 holds
provided the Markov transition kernel is (local) irreducible and possesses the

strong Feller property.
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3 Periodic Measures of Stochastic Differential

Equations

Using the developed theory from Section 2, we apply the results specifically
in the context of T-periodic SDEs evolving on Euclidean state spaces. In this
section, with asymptotic behaviours in mind, we are particularly interested
in results that can be verified to possess a limiting and geometric periodic
measure. It should be clear from Section 2 that non-limiting periodic measures
results hold when the local Doeblin condition fails to hold. We note that
Theorem 2.16 accommodates other types of noise e.g. Lévy noise, in this
thesis, we focus specifically in studying T-periodic SDEs with white noises as
its source of randomness.

We first fix some nomenclature and notation that will be used. We refer to
SDE as non-autonomous when its coefficients depend explicitly on time and
SDE as autonomous when the coefficients are time-independent. We always
denote by (R¢, B(RY)) the Euclidean space where B(R?) denote the standard
Borel o-algebra on R? and let (-,-) and ||| to denote the standard inner-
product and norm on R%. Then we can define B,(y) := {zx € RY| ||z — y|| < r}
for the open ball of radius r > 0 centred at y. And denote for convenience B, :=
B,(0). On R?, we re-use A as the Lebesgue measure. We let GL(R?) denote
the space of invertible d x d matrices and let Ly(R?) := {0 € R¥4|||o]|, < oo},
where ||o||y = 1/Tr(coT) = ,/szzl o7, is the standard Frobenius norm.

We let C12(RT x R?) denote the space of functions which are continuously
differentiable in the first variable and twice differentiable in the spatial vari-
ables. We let Cy°(B,,) denote the space of infinitely differentiable real-valued
bounded functions on B,,. Functions b : Rt xR? — R? and ¢ : R x R¢ — R%*¢
are said to be locally Lipschitz if for any compact set K C B(R?) there exists a
constants L = L(K) and M = M(K) such that ||b(t,z) — b(t,y)|| < L ||z — y||
and [lo(t,z) —o(t,y)ll, < M|z —yl, for z,y € K. They are (globally)
Lipschitz if K = E. Define for ease, ||0lo := Sup( 4)ep+xrallo(t, )|z . For
tuple 8 = (B, B1, ..., Ba) € N+, define the partial derivatives 8% := ——2°

0,091 -0,
where |3] = 3™y B,
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3.1 Limiting Periodic Measures

3.1 Limiting Periodic Measures

We study time-inhomogeneous Markov processes X; = X;* satisfying T-
periodic SDEs of the form

dXt = b(t, Xt)dt -+ O'(t, Xt)th, t 2 S, (3 1)
X, =ux, r € R .
Here b € C(RT x RY,R?) and 0 € C(RT x RY, GL(R?)) are T-periodic i.e.
b(t,")=0bt+T,-), and o(t,:)=0c(t+T,"),

and W is a d-dimensional Brownian motion on the probability space (2, F,P).
To avoid triviality, we assume the coefficients collectively have a minimal period
i.e. at least one of the coefficients have a minimal period. The infinitesimal

generator of (3.1), £(t) is given by

d
Z f(t,x), feCH*(R"xRY).

l\')l»—t

L) f(t,x) = 8tf(t,x)+z (t, )0 f (¢, z)

(3.2)
We use the short hand notation P** and E** for the associated probability
measure and expectation respectively for the process starting at (s,z) € RT x

R?. When a unique solution exists, one can define the Markov transition kernel
P(s,t,x,1") =P (X, el'), s<t I ebB. (3.3)

A unique solution exists when the Markov process X, is regular i.e. for any
(s,7) € RT x R,
P {ne = 00} =1, (3.4)

where
Neo := Hm m,,  n, = inf{||X¢]| > n}, neN.
n— 00 t>s

It is well-known that when b and o are Lipschitz, in a construction a la Picard—
Lindel6f theorem, a unique solution exists. Relaxing the coefficients to be
locally Lipschitz, it is well-known also that if there exists a norm-like function
V' and constant ¢ > 0 such that

LV < eV, (3.5)
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3 Periodic Measures of Stochastic Differential Equations

then a unique solution exists. For completeness, see Appendix A for proof.
Finally, it is easy to prove and intuitively true that the Markov transition
kernel (if it exists) is T-periodic i.e. (2.3) holds when the SDE (3.1) is 7-
periodic.
In our study we require the following set of assumptions also. We say that

o has linear growth if there exists a constant C' > 0 such that

lo(t, 2)ll2 < C(L+lz]*), teR*,zeR™ (3.6)

We say o is bounded with bounded inverse if
max{|[o]|so, [0 |oo} < 00 (3.7)

We say that the functions b : RT x R? — R? and ¢ : R? — R are locally
smooth and bounded if for all n € N

05 € CEO(BH), 1<,y <d, (38)
and
b(t,z) + 0°b(t,z) bounded on RT x B, € N |5]| = d. (3.9)

Note that (3.8) and (3.9) imply the respective functions are locally Lipschitz.
Whenever we assume (3.8), we always demand that o is a function of spatial
variables only.

From Proposition 2.19 and Theorem 2.20, we saw that the main ingredients
for the local Doeblin condition (2.20) is (local) irreducibility and the existence
of a jointly continuous density. For diffusion processes on R?, we shall use the
Lebesgue measure A (a Haar measure, see Remark 2.21). Sufficient conditions
for these two properties to hold will be given.

We note in passing that it is indeed possible to show both properties simul-
taneously. For instance, for non-autonomous SDEs with Hélder and bounded
coefficients with non-degenerate bounded diffusion, Aronson’s heat kernel es-
timates |Aro67| yields

1 llz—y||”

p(S,t,SE,y) 2 Cl (4027T(t _ S))d/26_402(t75) SL’yZ/ < Rd70 S S S t < o0,
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3.1 Limiting Periodic Measures

for some positive constants C7, Cy. So it follows that that p(s, ¢, x,y) is strictly
positive when z,y € K and ¢t — s < co. Hence sufficiently implies the Proposi-
tion 2.19 hold. With typical SDE applications in mind, in this thesis, we study
the two irreducibility and density separately while allowing for the possibility
of unbounded coefficients.

It is well-known that autonomous SDEs satisfying (3.4) and Hérmander’s
condition possesses a smooth density (globally with respect to A) for the
Markov transition kernel [Mal78, Hor85, RW00| (see Appendix B for details).
However it is generally insufficient to yield irreducibility i.e. Hérmander’s con-
dition does not imply the process can reach any given non-empty open set with
positive probability. We refer readers to Remark 2.2 of [Haill| for a counter-
example. This suggests some degree of non-degeneracy is required to imply
irreducibility. We emphasise that in existing literature, Hormander’s condition
is often applied for autonomous SDEs with relatively few existing results for
the non-autonomous case. Observe also that Theorem 2.20 requires density of
the transition kernel to exist locally rather than globally. Recent advances by
Hopfner, Locherbach and Thieullen gave the existence of a smooth local dens-
ity of non-autonomous SDEs under a time-dependent Hormander’s condition
in |[HLT17].

Since the intention of this thesis is to introduce main ideas and approach
to deduce the existence and uniqueness of periodic measures, we shall show
(global) irreducibility under the assumption that the diffusion matrix and its
inverse are bounded and utilise the results of [HLT17] for a local density. It
will be the subject of future works to generalise the results in the direction of
local time-dependent Hormander’s condition and relaxing the non-degeneracy
assumption to attain a local irreducibility.

Consider the following associated control system to (3.1)

dZt = @(t)dt + U(t, Zt)th, t Z S,
s =1,

(3.10)
for some bounded adapted process ¢ : Rt — RY. Inspired by the irreducibility
argument of [DZ96|, we have the following lemma:

Lemma 3.1. Assume b and o are locally Lipschitz and moreover o satisfies
(3.6) and (3.7). Let X, = X;"* and Z, = Z"* satisfy (3.1) and (3.10) respect-

wely. Then the laws of X; and Z; are equivalent.
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3 Periodic Measures of Stochastic Differential Equations

Proof. By Lemma A.1, the locally Lipschitz coefficients and (3.5) yields that
X, exists and is unique. Since ¢ is a bounded adapted process and o is locally

Lipschitz with linear growth, by Theorem 3.1 of [Mao07|, Z; also exists and is

unique. Set
Mo = %QE{HZtH >nt, 2y = Zinga,
and
P"(dw) = P(dw)M]",
where

1 t/\?]n t/\Tln
M = exp (—5/ o (r)dr — / Oé(’l")dWT> ,

and a(r) = o' (r, Z,)[e(r) — b(r, Z,)]. Tt is clear that a(r) is bounded for
s < r < n,, hence Novikov condition is satisfied. Then Girsanov theorem

implies

o t
Wi =W, +/ a(r)dr

is a Brownian motion on R? under the probability measure P". It is clear that
AW = dW, + a(r)dr

and by rearranging
o(t) = o(t, Z;)a(t) + b(t, Zy)

hence
tANn AN,
Z=x+ / o(r)dr + / o(r, Z")dW,
St/\nn ° t/\r]n o
=+ / [o(r, ZM)a(r) + b(r, Z7)] dr +/ o(r, Z") |dW" — a(r)dr
St/\nn tANn NS
=z+ / b(r, Z7)dr + / o(r, Z")dW.

i.e. Z' is a solution of (3.1) on (2, F,P™). As the law of the solution does not
depend on the choice of probability space, we have that

P(X!'el)=P(Z"cl), I cBRY.

As P and P" are equivalent, the laws of X' and Z]' are equivalent. This implies

42
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that
P*(n, > t) =P"(sup || Z.]| <n)
s<r<t
=P"(sup [ X;| <n)
s<r<t
—1, n—oo.
Define
1 t t
M, = exp (—5/ o (r)dr —/ a(r)dWT) :
Then

E[M] > E[M[ I, >5) =P"(n, >t) =1 asn — oo.

Moreover, we can prove that P(n, > t) — 1 as n — oo. This suggests from
Borel-Cantelli Lemma that there is a subsequence n; such that 7, — oo

almost surely where n, — oo as k — oo. Thus
M"™ — M,;, ask — oo

almost surely. Now, by Fatou’s lemma

k—oo

lim E[M™] > E [ Jim Mt”k] — E[M)],
—00

and E[M;"*] = 1 for each k since M, is a martingale. So E[M;] < 1. Thus, we
have that E[M,] = 1. Now we apply Girsanov theorem [DZ92] to yield that

o t
W, =W, +/ a(r)dr

is a Brownian motion on R under the probability measure P ,where ]IB(dw) =
P(dw)M,. As before,

t t
Zt:x+/ gp(r)dr+/ o(r, Z.)dW,

t t N
:x+/ b(r, Zr)dr+/ o(r, Z,.)dW,

is a solution to (3.1) on (€, F,P). As the law of the solution does not depend
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3 Periodic Measures of Stochastic Differential Equations

on the choice of probability space, we have that

P(X,el)=P(Z eT), T eBR.

As P and P are equivalent, the laws of X; and Z; are equivalent. O

Theorem 3.2. Consider SDE (3.1) (not necessarily periodic) and assume the
same conditions as Lemma 3.1. Then the Markov transition kernel P(s,t,-,-)
for s <t < oo is irreducible i.e. P(s,t,z,T') >0 for all x € R% and non-empty
open I € B(R?).

Proof. By Lemma 3.1, P and P are equivalent. Hence it is sufficient to show
that for any 6 > 0 and z,a € R? that

P(|| 2" — al| < §) > 0.
We consider the auxiliary system

dY; = o(t,Y,)dW,,

(3.11)
Y, =x.
Since o is Lipschitz, then (3.11) has a unique solution Y; satisfying
t
Y=z +/ o(r,Y,)dW,. (3.12)

For u € [s,t), R > 0 and a € R? all to be chosen later, pick a bounded function
f:[u,t] x R* — R? such that f is Lipschitz and

0 iflyl > 2R,
Sy it [yl < R

fry) =

T3
<

Define the integral

fl(y)=y+/ f(r,y)dr, yeRY

Observe that if ||y|| < R,

Li(y) =y + ! /t(a —y)dr = a. (3.13)
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Set

0 if r € [s,u),
o(r) = ,
f(r,Y,) ifr € u,t].

Then it is clear that Z5* =Y, for r € [s,u). Hence, by sample-path continuity

of Y;, Z; can be represented as an initial-valued SDE in terms of Y, namely
t t
Z5° =Y, _|_/ f(r,Y,)dr +/ o(r, Z.)dW,.

Let I, = I,(Y,) and I, = [ o(r, Z,)dW,. Then Z;* = I, + I,. Choose any

fixed @ € R such that 5

—all < =,
lo—al < 3

Suppose the events {I; = a} and {||2|| < 2} holds then

1Z5% —al| = ||(Ii —a@) + (o + @ — a) |
< |[2] + [la — al
2

< =4.
-3

Hence

S,T ~ 6
P(| 27" — al <6) > (I, =@ and | L] < 3)

> (=) -7 (|5l > 5) (3.14)

where we used the elementary inequality P(A N B) > P(A) — P(B°) for any
event A, B € F. Thus the proof is complete provided the right hand side of
inequality (3.14) is positive. By Chebyshev’s inequality and 1t6’s isometry,

) 9
(Il > 3) < SElEI

9 [t )
<5 | llotr.Z)lfzdr
9
< St —wlolZ.
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Hence, one can fix a u € [s,t) such that

) 1
P - < -.
(1> 5) <

Similarly, for the fixed u and any R > 0, from (3.12) we have

1
P(IY. ] > R) = Bl

1 S
= (el 1 [ ot van?)

< 5 2l + llolS(u = 5)°]

Hence one can fix a sufficiently large R > 0 such that

3
P(Yul = B) = 7. (3.15)
By (3.13), we have the inclusion {||Y,|| < R} C {I; = a}. Hence by (3.15)

Pl =a) 2 P([[Yu] < R) >

oo

The proof is complete by the following inequality for irreducibility

5,z ~ o
P(IZ — all < 6) = B(Ly = a) = P(| 2] > 3)

>

1
5

PSS
Fg-

In the next theorem, we apply Theorem 1 of |[HLT17| to attain a smooth
density of transition probabilities in extension of classical results by Aronson
[Aro67| for parabolic equations with bounded time-dependent coefficients. We

assume that o is time-independent as in [HLT17]. O

Theorem 3.3. Consider SDE (3.1) and assume the same conditions as Lemma
3.1. Assume further that (3.8) and (3.9) holds that there exists a compact set
K € B(R?) such that (2.14) and (2.15) hold. Then the results of Theorem 2.16
hold.

Proof. The invertibility of o implies linear independent columns hence our
collective assumptions satisfy Theorem 1 of [HLT17|. Hence there exists a

smooth density p(s,t,z,y) with respect to A. Then using Theorem 3.2, we
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3.2 Geometric Ergodic Periodic Measures

have that Theorem 2.20 holds. Hence the assumptions of Theorem 2.16 are
satisfied. ]

Remark 3.4. With global irreducibility of P implied by Theorem 3.2, further
to Remark 2.17, it is clear by the convergences given in Theorem 2.16 that
that the unique periodic measure attained in Theorem 3.3 has global support
i.e. supp(ps) = RY for all s € R*. This contrasts significantly to the time-

homogeneous case where (2.10) holds.

3.2 Geometric Ergodic Periodic Measures

In the previous section, we studied limiting periodic measures of SDEs in a
qualitative manner. We extend this for geometrically ergodic periodic meas-
ures. That is, the Markov transition kernel convergence towards the periodic

measure is exponentially fast. We recall the geometric drift condition for SDEs.

Definition 3.5. The SDE (3.1) is said to satisfy the geometric drift condition
if there exists a function V € CH?(R* x R4 R*) and constants C' > 0 and
A > 0 such that

LV <C—AV onRT xRY (3.16)

where L(t) is given by (3.2).

Note that if (3.16) is satisfied then the SDE is regular. Specifically, since
V' >0 and L(t)[const] = 0, it is easy to see that

LOWV+1)S<C-AVSCLSCWV+1),

hence the regularity condition (3.5) is satisfied.

Using the geometric drift condition, we give one of the main results on
the existence, uniqueness and geometric ergodicity of a periodic measure. It
is worth noting that if the SDE coefficients have a trivial period, then the
theorem recovers known results of invariant measures. Hence, the results here
presented can be regarded as time-periodic generalisations of such theorems of

invariant measures for autonomous SDEs.

Theorem 3.6. Assume T-periodic SDE (3.1) coefficients satisfies (3.6), (3.7),
(3.8) and (3.9). Assume further that there ezists a T-periodic norm-like V €
CH2(RT x R4, RY) satisfying the geometric drift condition (3.16). Then The-

orem 2.18 follows.
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Proof. By 1td’s formula and the regularity of V', one has
d(MV(t, X)) = MV + L(E)V)dt + e (VV, adWy),

hence by the geometric drift condition (3.16),

t t
V(t,X;) = e M9V (s, X)) + / e ANV + L(r)V)dr + / e MUYV, gd W)
t

< eIV (s, X,) + % (1—e ) 4 / e MUV, 0dW,).

s

(3.17)

By (3.4) and the regularity of V, [’ eXt=(o" (1, X,)VV (r, X,),dW,)za is a

martingale. Hence

ES* [V (t, X,)] < e M9V (s, 2) + %(1 —e M) s <t (3.18)
Specifically,
S,z —\T ¢ —\T
E¥*[V(s+ T, Xei7)] < e M V(s,z)+ X(l —e ). (3.19)

Define the functions Us(-) := V/(s,-) > 0 for s > 0. Since V' is T-periodic, we
have that (3.19) is equivalent to

P(s, s+ T)Uy(x) < e MU (x) + %(1 — e (3.20)

That is to say (2.8) is satisfied for each s > 0. Subtracting U,(x) from (3.20)
yields

P(s,s +T)Uy(z) — Uy(x) < (1 —e ) (% — US(.CL')) :
Since U, is norm-like assumption, define for ¢ > 0

K = ﬂ K,, where K, := {x c RYU,(z) < §+ ;}

1—e T
s€[0,T7]

For sufficiently large €, K is non-empty compact set. Since the SDE is regular,

the same proof from Theorem 3.3 implies that Theorem 2.20 holds i.e. P(s,s+
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3.3  Weakly Dissipative SDEs

T,x,-) satisfies the local Doeblin condition (2.16) for each s > 0 and the

compact set K. Thus the conditions of Theorem 2.18 are met. L]

3.3 Weakly Dissipative SDEs

Theorem 3.6 depends crucially on finding a suitable Foster-Lyapunov function
V. Dissipative SDEs are special cases where the Euclidean norm is a such
Foster-Lyapunov function. This has the advantage that it is easier to verify
directly than the geometric drift condition, where there may not be a clear
Foster-Lyapunov function to use. Examples of weakly dissipative systems in
physical systems will be given and discussed. The definition of dissipativity in
this thesis coincides with that of Hale [Hall0] when the SDE is deterministic
(0 =0).

Definition 3.7. SDE (3.1) is weakly dissipative if there exists constants ¢, A >
0 such that
2(b(t,x),z) < c—\|z]|> on RT x RY, (3.21)

and dissipative if ¢ = 0.

Corollary 3.8. Assume T-periodic SDE (3.1) coefficients satisfies (3.6), (3.7),
(3.8) and (3.9) and is weakly dissipative. Then Theorem 2.18 holds.

Proof. By Theorem 3.6, it suffices to show V (¢, z) = ||z||* satisfies the geomet-

ric drift condition. We compute that
LO)[lx]* = 2(b(t, x), 2) + Te((o0") (t,2)) < ¢ = Mz]* + [lo]|2

i.e. ||z||? satisfies the geometric drift condition with C' = ¢ + ||o]|%, and same
A from (3.21). O

Theorem 3.9. Consider T-periodic SDE (3.1) with o satisfying (3.6), (3.7)
and (3.8) and drift

2p1—1
o Sk (t)xy
b(t, l’) = ’
2pa—1 Sd(t k
ko Or(t)ag
where {p;}&_, € N\{0}, {Si}1=1 2772 are continuously differentiable T-periodic

functions and constants S5, | <0 . Then Theorem 3.6 holds.
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3 Periodic Measures of Stochastic Differential Equations

Proof. Clearly b satisfies (3.9). Hence by Corollary 3.8, it suffices to show that
the SDE is weakly dissipative. We compute that

2p;
Sk 13:
1 k=1

For each fixed 1 < 7 < d, 22”1 i ,zF is an even degree polynomial with
leading negative coefficient. By assumption, {S;} are all bounded hence, fixing
a A€ (0,-2min; S5, ), define the constants

2p;
G = sup <2 Z Sioak+ /\xfm) <00, ¢ i=ctsup A (27 — 2 < oo,

z, ER,t€[0,T) 1 z; €ER

then we deduce the SDE is weakly dissipative by

d

d
(G — AaP) SZ  — Az?) :Zci—)\HxHQ.
=1

=1

M&

2(b(t,x

i=1
[l

As it would be more apparent in the next section of gradient SDEs, The-
orem 3.9 has many physical applications.

We give two specific examples of Theorem 3.9. First, we consider periodic-
ally forced mean-reverting Ornstein-Uhlenbeck processes. In this example, we
compute the density of the process, periodic measure and its geometric con-
vergence rate explicitly. The periodic measure is of minimal period and will be
clear that the process does not have a limiting invariant measure. While the
computations are straightforward, it appears that the periodic measure and its
geometric convergence for this system has not been previously noted in liter-
ature. Where the classical Ornstein-Uhlenbeck process is mean-reverting, the
periodically forced Ornstein-Uhlenbeck processes a time-periodic mean rever-
sion property. In applications, these properties are desirable for processes with
underlying periodicity or seasonality. For instance, electricity prices in eco-
nomics [BKMO07, LS02| and daily temperature |[BS07| were modelled by peri-
odic Ornstein-Uhlenbeck processes. In neuroscience, the authors of [IDL14|
performed statistical inference of biological neurons modelled by Ornstein-

Uhlenbeck proceses with periodic forcing.
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3.3  Weakly Dissipative SDEs

Example 3.10. Consider the following multidimensional Ornstein-Uhlenbeck
equation

where A = M'DM € R™? for some M € GL(R?) and D = diag(Ay,- - -, \g)
is a diagonal matrix with positive eigenvalues {\,}¢_,, 0 € GL(R?) and S :
R — R? be a T-periodic continuously differentiable function.

By applying Ito’s formula on e X, or by a variation of constants formula,

we have
t t
X, = e 794X, —|—/ e~ IAS(rYdr —|—/ e U AGdW, t>s. (3.23)

Observe that &(?) f e At S(r)dr satisfies 0,(eAT¢) = eA"S(r) and is

continuous and T—perlodlc. Then

J(s,t) 1= /t e~ A () dr = £(t) — e~ T94E(s). (3.24)

By the T-periodicity of &, it is clear lim,_,, J(s,t) does not converge. Instead,
it converges along integral multiples of the period in the following way: let Id

be the identity matrix on R? and define
€u(s) = J(s,8 +nT) = (Id — e ™)¢(s), neN.

Then £(s) = limy, 00 £u(s). We shall see £(s) as the “long term periodic mean”.
From (3.23), it is easy to see that X; is normally distributed. Specifically, we
can compute

(X, = e 9% + J(s,1).

Since A = M~'DM, then e~ ¢4 = NM~le=¢="DAf - Denoting N = Mo,
component-wise, we have (e~(~ T)DNdWT)Z- = ¢t S N dWE. Hence
by independence of Brownian motion and properties of [t6’s inner-product, we

have
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3 Periodic Measures of Stochastic Differential Equations

t t
Cij(s,t) = ES® K / (e(tT)DNdWT)i) ( / (e(t”)DNdWT)j)]
d ¢ t /
= ) NyNpE* K / e_(t_’")Aide) ( / e—“—’“Wde)]

k=1

d t
- Z Nij Nj B> [/ e_(t_r)(’\””\j)dr]

k=1

_ (MO—O—TMT)U (1 . 6—(t—8)()\i+>\j)) )

X+ A

Hence covariance matrix

Cov(Xy| X, = 2) := E¥*[ X, X[ ] — E*“[X,|JE**[X]]
= M'C(s,t)M,

where C(s,t) has entries Cj;(s,t) as defined above. Thus, denoting N for
the multivariate normal distribution, the Markov transition kernel of (3.22) is

given by
P(s,t,x,) =N (e7"9%% 4 J(s,8), M7 C(s,t)M) (-), (3.25)

Since lim; o J(s,t) does not converges (for any fixed s), (3.25) does not
converge. This implies there does not exist a limiting invariant measure for
this periodically forced Ornstein-Uhlenbeck process. This contrasts with the
classical Ornstein-Uhlenbeck process (i.e. S(t) = const), where one often take
t — oo to yield a (unique) limiting invariant measure. On the other hand, for
every fixed s, along integral multiple of the period i.e. ¢t = s 4+ nT, one has
directly from (3.25)

P(s,s+nT,x,) =N (e x4+ &,(s), M C(s,s + nT)M) (-)
- N ({(s), M_lCM) () =: ps(+), (3.26)
. . . . o (MU-UTMT)Z.. .
as n — 0o, where C' is the matrix with entries C;; = - That is to
g J
say that the long-time behaviour is characterised by p, for every fixed s > 0.
Since £ is T-periodic, p is also T-periodic. Moreover, it easy to explicitly verify

that p is periodic measure of the system, see Appendix C for detailed steps.
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3.3  Weakly Dissipative SDEs

We take a brief moment and note that for every s € RT, supp(ps) = R? (see
Remark 3.4) and that the periodic measure (3.26) is unique.

The above calculations gives the existence and uniqueness of a periodic
measure. However, it does not immediately give a convergence rate. For
simplicity, we show the convergence rate for the one-dimensional case. We first
recall that the Kullback-Leibler divergence, Dgr(+||), is pre-metric on P(RY).
Let P,Q € P(R?) with densities p,q € L*(R?) respective, the Kullback-Leibler
divergence can be defined by

Dics(PIIQ) = [ plo)o (%) dr.

For vectors p; € R? and matrices o; € GL(RY) where i = 1,2, we have

specifically the following explicit expression for normal densities.

DKL(N(MhUl)HN(“%U?)) = % <Tr(02_101) + (/~L2 - Ml)TUEI(FQ - M1> —d+In (:252;)) '

Moreover, Pinsker’s inequality gives the following upper bound on the total

variation norm
1P = Qlly < 2DKL(PHQ) P,Q € P(E).

We recall the elementary identity In(1 —y) = —> 77, % for any fixed y €

(—1,1). Hence, the following elementary inequality holds by a geometric sum

Now, since both psy; and P(s, s, +t, z, ) are normally distributed, by Pinsker’s

M8

N)IQQ

—, ye€(0,1).

—(y+In(l —y)) = =

v
ko~

l\.’)l@

B
[|

2
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3 Periodic Measures of Stochastic Differential Equations

inequality and (3.24), for all ¢ > ¢ and for any fixed § > 0, x € R?

Dgr(P(s,s+t,2,°)||pstt)
| em2A (E(s+t) —e ™z — J(s,s+1))>
0?2

( —2tA 2 —2tA
(a1

0?2

—1—1In(1— 6—2“‘))

Deducing indeed the convergence is geometric. We go a little further solely to
align with Theorem 3.6. For every fixed s € [0,7) and for any fixed v > 0,

there exists a constant 7, = r4(y) > 0 such that

(x—&(5))* — (1 +v)2® = =2(s)x + €2(s) — ya® < r,.

2

Hence (x—£&(s))? < (147)z*+7,. Define R, := max {1 +7,7s Z—Al_eﬁ} >
1, then

—2At 2
9 e A _ a R 2
| P(s,s+t,2,) = psyellpy < 751%3 (22 +1) <e ¥ (\/;7> (®+1)7,

where we trivially squared the last two terms. Specifically by letting ¢ = nT',

we have geometric ergodicity of the grid chain

2
[ AR,

|P(s,5 +nT,x,-) — psl|my, < e T4 ( 5—) (* + 1)2, n € N.
o

For computationally inclined readers, we give explicit formula for & in the
one dimensional case. Multidimensional case can be computed similarly. By

Fourier Series, for any S € L?[0,T], S can be represented by

A - 2 2
S(t) = 70 + ZAncos (%t — mr) + B,, sin (%t —mr) ,
n=1
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3.3  Weakly Dissipative SDEs

with the usual Fourier coefficients for n € N\{0}

s
= —/ ) cos (—t — n7r) B, = = ) sin (—t — mr) dt.

It is trivial to see & = +42 satisfies 0,(e*'¢,) = 22e'. Similarly,
1 T2 cos (nm — 222¢) — 2naT sin (nmw — 225¢)

COSt E—
& (1) A 47r n? + T2

satisfies 0, ("€ (t)) = €' cos (22t — nrr) and

1 T?sin (mr — 2"T’rt) + 2nnT cos (mr - Q”T”t)

sin t EE—
& (?) A 4dm2n? + T2

satisfies 0y(e'1&(t)) = e sin (22T — nrr). Clearly £ and &M are both
T-periodic and

§( —fo—i—ZAng(‘m "‘anqm( )

is the desired T-periodic continuous (hence) bounded function satisfying 9;(e!4¢) =

et4s.

Example 3.11. The stochastic overdamped Duffing Oscillator has many phys-
ical applications including being a mathematical model to explain the physical
phenomena of stochastic resonance in climate dynamics modelling of ice age
[BPSV82, Nic82, Jun93| as detailed in the introduction. The Duffing Oscillator
is given by

dX, = [—X] + X, + Acos(wt)] dt + odW,, (3.27)

where A,w € R and o # 0 are (typically small) parameters. In the Benzi-
Parisi-Sutera-Vulpiani climate change stochastic resonance model, w = 27/10°
and the two stable equilibrium climates are distanced by 10K. The stochastic
differential equation (3.27) is a normalised equation of the Benzi-Parisi-Sutera-
Vulpiani model. According to Corollary 3.8, there exists a unique periodic

measure which is geometric ergodic.

Remark 3.12. Through the theory of non-autonomous RDS, [CLRS17| gave the
existence and uniqueness of the periodic measure for (3.27) in one dimension.
Note that Theorem 3.9 goes further than [CLRS17| to deduce that the con-

vergence is actually geometric. Moreover, Theorem 3.9 gives the other types
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3 Periodic Measures of Stochastic Differential Equations

of converges as presented in Theorem 2.18. To our knowledge, this thesis con-
tains the first proof of the geometric ergodicity of the stochastic overdamped
Duffing Oscillator. We note also that the approach we have taken applies to
multidimensional state spaces and is completely different to that of [CLRS17|.
We expect our approach can be extended to the infinite dimensional setting of

SPDEs, this is discussed briefly more in Section 6.

3.4 Gradient SDEs

In this section, we give results for the existence and uniqueness of geometric
b)
periodic measures for stochastic T-periodic gradient systems. These are SDEs

of the form

where V € CL2(RT x R?) is T-periodic, V = (0, -+, 0y) is the spatial gradient
operator, W, denotes a d-dimensional Brownian motion and o : R? — R%*,
Note that the T-periodicity of V implies the T-periodicity of VV', hence the
gradient SDE (3.28) is T-periodic.

Gradient systems arise naturally in physical applications, where V is re-
ferred to as the potential function [Gar09, MSH02, Pav14|. Indeed examples of
T-periodic gradient systems, includes the periodically forced Ornstein-Uhlenbeck
from Example 3.10 derived from V(t,z) = %(m— %)2 and the Duffing
Oscillator from Example 3.11 derived from double-well potential V (¢, x) =
}@4— %:1:2—{—14 cos(wt)z. In fact, it is easy to verify that Theorem 3.9 is a special
case of gradient SDEs derived from potential V (¢, z) = ZZ LS SH(? s
While these examples are weakly dissipative, where the Euclidean norm is
a suitable Foster-Lyapunov function satisfying (3.16). In general, finding a
Foster-Lyapunov function satisfying (3.16) for a given SDE is generally non-
trivial (if at all possible), particularly in higher dimensions. A mathematical
advantage of gradient systems is that V itself is a natural choice of Foster-
Lyapunov function to satisfy (3.16). This is apparent by observing the gener-

ator of (3.28) is given by
d

LV, x) =V (t,a) — |VV(t )|+ % Y (00" (x)),, 2V (t.2), (3.29)

i,j=1
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3.4 Gradient SDEs

and exploiting the normed gradient term.
We contrast briefly with its autonomous counterpart. Let U = U(z) be a

norm-like potential and consider the (autonomous) gradient SDE

where 0 € RT\{0} and W, is a d-dimensional Brownian motion. It is well-
known [MV99, Gar09, Pav14] the invariant measure of this SDE has a partic-

ularly simple form and is given by (upon normalisation)

() = /F exp (—QZ(Qx)) dr, T eB.

On the other hand, due to the intricate interplay between stochasticity and

periodicity, periodic measures (with a minimal positive period) does not have

such simple expression i.e.

061 o (252

o2

in general. Indeed the periodic measure (3.26) from Example 3.10 does not
take this simple form.
The following corollary of Theorem 3.6 is generally simple to verify to yield

gradient SDEs with a geometric periodic measure.

Corollary 3.13. Assume o satisfy (5.6), (3.7) and (3.8). Let V € CY*(R* x
R%) be a norm-like function such that for all n € N

0V bounded on RY x B, € N**! |a| € {1,d + 1},

and (3.16) holds, where L(t) is given by (3.29). Then the results of Theorem
2.18 holds for SDE (3.28).

While Corollary 3.13 covers all the examples considered thus far, it applies
to a wider class of SDEs than that of weakly dissipative systems. In the next
proposition, we use Corollary 3.13 to extend the case of Theorem 3.9 when
p; = const for all ¢ and allowing for products of the spatial variables. It does
not aim to be most general however suffices a range of applications. We shall
employ more multi-index notation: for spatial variables z = (z1,- - -, z4) and

multi-index o € N? | define 2% := z{' - - - 25%. For o, € N¢ we have the
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3 Periodic Measures of Stochastic Differential Equations

partial ordering o« > 3 if a; > ; for each 1 <17 < d. We define the standard
tuple basis e; = (0,---,1,---,0) where the 1 appears on the i’th index. For
fixed 3 € N?, we define Zgzﬁ C, = Z‘g%N C\,. Recall standard asymptotic

notation where for functions fi, fo,g : R? — R, we write max{fi, fo} = o(g)

max{|f1(z)],|f2(z)
g(z)

if limy, - = 0. This implies that for any € > 0, there exists

R > 0 such that

max{|fi(z)l, |f2(2)[} < elg(x)], € Bg. (3.31)

Proposition 3.14. Assume o satisfy (3.6), (3.7) and (3.8). Let {Sa(t)},cna
be continuously differentiable T-periodic functions and {S;}¢_, are strictly pos-

itive constants. Then the gradient system (3.28) with potential

ZSQZ +ZS 2, pe2N:={2,4, .},

|a|=0
satisfies Corollary 3.13 hence the results of Theorem 2.18 holds.

Proof. We compute

atv Z|o¢| 0 a
O,V = Sipat™ Ly a>e
aQV p(p — 1)Six?p 24 Za>26 i 1)Sax(a_26i)a

2 _ p—1 a—e;—e; - .
\aZ]V - azeﬂrej Saala]x ‘ ]7 Z # j

—€;

Q; S,

So

d d p— 1 2
IVVIP =) @0V)? =D | S 2 +28p Y a;Suat e (ZazS z° >

i=1 i=1 a>e; a>e;

Note that V,8,V, 92V and <||VV||2 — 3 SR 2) has maximum or-
der p, p — 1, p — 3 and 2p — 3 respectively. Our assumptions ensures that
max,end (Sup;er|Sa(t)]) < 0o and max; ; sup,cga(oo?);;(x) < oo. Since higher

. : d
even powers dominates lower powers i.e. 2% = o(> 7 | ¢;z7") where ¢; > 0 and
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3.5 Periodically Forced SDEs

la| < 2n where n € N, we have for any A > 0

d d
max {)\V, 0V, 0%V, <||VV||2 - sfpzx?’—Q) } = (Z S?p%fp—2> . 2<pe?2N.
=1 =1

Then for 2 < p € 2N, by (3.31), for any € € (0, }1), there exists R > 0 such that
L)V + AV

d d
]' - C
<|oV|—|VV|?+ 5| > agVI+ AV < (46— 1) <§ SEpPa? 2) <0, x¢€B5.

ij=1 i=1

By continuity, £(t)V + AV is bounded on Bg. Hence (3.16) is satisfied. For
p = 2 where V and Zle Sprxip_Q are of the same order, the same calculations
holds provided one restricts 0 < A\ < 4 min; S2. [

3.5 Periodically Forced SDEs

In physics literature, “periodically forced” or “periodically driven” generally
refers to the addition of a periodic term on the drift which otherwise be
autonomous i.e. b(t,z) = by(x) + S(t) for some periodic function S and
drift by independent of t. Particular instances of Proposition 3.14 include
periodically-forced systems such Example 3.10 and Example 3.11. Periodic-
ally forced gradient SDEs have a wide range of physical applications including
the examples already considered. More generally, periodically forced systems
have been applied to modulated Josephson-junctions systems, superionic con-
ductors, excited chicken hearts to the dithered ring lasers as well as other
laser systems |ZMJ90, Jun93|. For further discussions on periodically forced
stochastic systems, we refer readers to the monograph [Jun93| for theory and
applications.

Examples so far are systems with polynomial potentials. While polyno-
mial approximation of potentials (by Weierstrass approximation theorem for
instance) can be effective for practical reasons, we consider periodically forced
gradient systems that need not be derived from a polynomial potential.

Consider again the autonomous gradient SDE on R? (3.30),where o satisfy
(3.6), (3.7) and (3.8) and U € C*(R?, R*) satisfies the (autonomous) geometric
drift condition

LU <C— AU onRY (3.32)
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3 Periodic Measures of Stochastic Differential Equations

where C' > 0, A > 0 are constants and L is the infinitesimal generator of (3.30)

given by
Lf(z) = =(VU(x), Vf(z)) + % Z(UUT(m))ijaizjf(w)7 f e C*(RY).

This classical geometric drift condition yields the existence, uniqueness and
ergodicity of an invariant measure. The context of the next lemma sufficiently
yields a geometric periodic measure when the autonomous gradient system is
periodically forced. Essentially, the autonomous system retains its stability
up to replacing its invariant measure for a periodic measure with a minimal
positive period. Note that we do not impose any particular form imposed
on the potential, hence more general than polynomials. We note that the

assumptions are easily satisfied for many practical systems.

Proposition 3.15. Let U € C?(R% RT) be a norm-like potential satisfying
(3.32) and that for any ci,ce > 0, there exists a compact set K = K(c1,¢2) €
B(R?) such that

allz|| < eU(z) xe K°.

Then for any T-periodic (T > 0) continuously differentiable function S : RT —
R?, the periodically forced gradient SDE

dX, = — [VU(X,) + S(t)] dt + o(X,)dW,

possesses a unique geometric periodic measure with a minimal positive period.

Proof. By Theorem 3.6, we verify V(t,z) = U(x) — (S(t), z) satisfies (3.16).
By the assumptions on U and S, it is clear that V € C1?(R* x R?) is a T-
periodic norm-like potential satisfying the regularity assumptions of Corollary

3.13. Since 03,V = 0;;U, we compute that

d

LV = —(S,z) = (VU(X,) + S(t), VU(X,) = S@t) + Y (00" (2)) 505V

i
1,j=1

d
= —(S,z) = [IVUI* + ISI* + Y _ (00" (2));;05U

1,j=1

=|1S||* = (S, z) + LU.
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3.6 Langevin Dynamics

As U satisfies the geometric drift condition, by picking any fixed A~ € (0, \),

we have

LV <||S||? = (S,2) +C - \U
=S|I = (S, )+ C = A=A)WU =AU+ (A=A )S,z) — (A= A7)(S,z)
=|ISIP=(S+A=A)S,z)+C - A=AV =\TU
<SP+ 1S + (A= A7)Slsollzll + C = (A= A7)V = AT,

where [|S + (A = A7) 5|0 := supse[O,T]HS(s) +(A=X7)S(s)]| <ocas S and S
are bounded. Then, by assumption with ¢; = ||S 4 (A= A7)S||o and ¢; = A~

we have a compact set B(R?) such that

¢ = sup (HS + (= A8l - xU) < o0

reK
Hence L(6)V < (C'+c+||S|*) — (A= A7) V i.e. the geometric drift condition
(3.16) is satisfied. Since S has a minimal positive period T' > 0, by Proposition

2.15 the periodic measure will have a minimal positive period. O

3.6 Langevin Dynamics

Langevin equations originated to model noisy molecular systems and many
other physical phenomena. As such, we expect applications to the physical sci-
ences. In fact, we shall see it extends easily from stochastic gradient systems in
an “overdamped” limit and applies immediately to the stochastic periodically-
forced harmonic oscillator. We refer the reader to [Zwa0l, Pav14] for further
applications, details and derivations of Langevin equations. Akin to earlier
sections, we give sufficient conditions for the existence, uniqueness and geo-
metric convergence of a periodic measure for T-periodic Langevin equations.

We study Langevin equations of the form
mdq; = (F(t,q:) — vqe) dt + adW;, (3.33)

with position ¢, € R? | velocity ¢, € R?, acceleration ¢, € R?, constant mass
m > 0, time-dependent force F : RT x R? — R? d-dimensional Brownian
motion W; and constant matrix o € GL(R?). For v > 0, v¢; is understood as
the frictional force of the system. The proportional constant v is referred as

the damping constant. Without loss of generality, we take mass to be unit i.e.
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m = 1.
Denote momentum p; = ¢, then (3.33) can be rewritten as a system of first
order SDEs

dqr = pdt,
dpy = (—ype + F(t, q)) dt + odW,.

(3.34)

To avoid possible confusion, we say Langevin equation (3.34) is T-periodic if
I is T-periodic in time.

In phase space coordinates X; = (¢;,p;) € R?? this can be rewritten as

where
00 0
b(t,x) = b(t.q.p) = g eR¥ T= € R W, — .
—yp + F(t,q) 0 o W,
(3.36)

On a physical level, observe that the noise is degenerate in that the noise
affects ¢, only through p,. Formally, Langevin SDE (3.35) is degenerate since
Y ¢ GL(R*). Resultantly, Theorem 3.2 is not immediately applicable. In
this thesis, we study Langevin dynamics with additive noise and leave the
multiplicative noise case for future works.

Written in phase space coordinates, by classical arguments, (3.33) has
unique solution provided b and o are Lipschitz or locally Lipschitz and a Lya-
punov function satisfying the regualrity condition (3.5). Labelling z = (¢,p) =

(21, .., T24), the infinitesimal generator is given by

d

LOF(2) = 0f + (0. Vo) + (=0 + FV,f) 3 S (00" )58, . [ € O2(RT x B

1,7=1

(3.37)

where V, := (9,,, -+, 0,,)" and similarly V,, := (9,,," - -, 0,,)".

Remark 3.16. We remark that in physical applications concerning small particles,
the mass is typically small. This suggest the inertia term mg; can be neglected.

Hence, informally, the dynamics (3.33) can be well-approximated by
0=F(t,q) — VG4 + odW;.
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3.6 Langevin Dynamics

i.e. reduced to SDEs studied earlier in this section. Suggesting that Langevin
equations may be studied with multiplicative noise in the context of small
particles. A particular source of interesting dynamics and applications is the
case when F(t,q) = —V,V(t,q) for some potential V (¢, ¢) and so the Langevin
equations are gradient systems (provided v > 0). Such systems without inertia

are called overdamped Langevin dynamics.

With the inapplicability of Theorem 3.2, we instead use the following lemma
for the irreducibility of non-autonomous Langevin equation with additive noise.
The lemma can be seen as the non-autonomous counterpart to the one seen
in [MSHO02|, we provide a proof for completeness. We shall be explicit with

norms for the proof for clarity.

Lemma 3.17. Consider T-periodic Langevin equation (3.34) with locally Lipschitz
F. Assume there erxists a norm-like function V satisfying (3.5). Then the
Markov transition kernel satisfies P(s,t,z,T') > 0 for any s <t < oo,z € R??
and non-empty open I' € B(R?).

Proof. Tt suffices to show P(s,t,z, Bs(y)) > 0 for any z,y € R?*? and any § > 0.
This is clear because one can take y € I' and choose sufficiently small § > 0

such that Bs(y) C I'. We begin by choosing any smooth function £ such that

Many such §,§:’ exists e.g. linear function between the two points or more
generally, a polynomial interpolation. By the invertibility of ¢ and the second
order ODE to define w

w 1 [ de?
%201<T2+7%_F(ta§t)>a
w, = 0.

Observe that w is as smooth as F' (since o~ commutes with the time-derivatives
and ¢ is smooth). Hence w solves the associated control problem
2
G =G T E( &) ol
(&(5),6()" = =,
(1), €)" = .
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3 Periodic Measures of Stochastic Differential Equations

Let ¢, = (§S,£S)T and w; = (0,w;)T, then in terms of phase space coordinates,

we have

X, =x+ [Tb(r, X,)dr + SW;,
Q———$'+![ b C} dT%—Ekuh

where b as given by (3.36). By Lemma A.1 (of Appendix A), X, is bounded
on any bounded interval. Hence by the locally Lipschitz of F, using Cauchy-

Schwartz and denoting we have for x; = (¢, p;) ,

||b(r, x1) — b(r, Iz)Hde
2

P1— D2

H( v(p1 — p2)+F(T,QI>_F(TaQQ)> o

+1) [p1 — pallga + 1F(r, 1) — F(r,q2) 3 — 27(p1 — po. F(r,q1) = F(r, ¢2)) e
( +1) [lpr — pallpe + Ll — qallze + 27 11 — p2llpe 1F (r, @) — F(r, ¢2) ||
= (’7 + ) P2 _pQH]?&d + L a1 — %H%d +27vL |py _pQHRd g1 — Q2HRd
< |lp1 = pellga + (v [Ip1 = p2llpa + L [la1 — ¢2llga)’
< (c+ 1) lpr — p2lle + clla — ol
< M? ||y — s 32a

where it was used that there exists a constant ¢ = ¢(vy, L) > max{~y, L} such
that (yx + Ly)? < c¢(2? +y?) for all x,y € R. Hence b is locally Lipschitz with
constant M := +/c+ 1. Thus by Gronwall’s inequality,

t
H&—MWS/HWKJ%WMMMWWWNW—Mmd

t
< [ MUK = Gl + ol Wi = el

< lolly [We = wellza ™.

Now, by (a generalised) Lévy’s forgery theorem [Fre83| or see [MSH02| and
Theorem 4.20 of [Str82|, we have for any fixed € > 0

P ( sup ||W, — wy||ga < e) > 0.

s<r<t

i.e. the Brownian motion approximates any continuous function under the

uniform norm with positive probability. Hence, for sufficiently small € = €(¢),
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3.7 Density of Periodic Measures

one has that P (|| X; — &[gea < ) > 0 hence P(s,t,x, Bs(y)) > 0. O

We now state and prove the following Langevin counterpart of Theorem
3.6.

Theorem 3.18. Consider T-periodic Langevin equation (3.35) with F sat-
isfying (3.9) (in place of b). Assume there exists a norm-like function V €
CH2(R* x R* R*) satisfying (3.16) where L is given by (3.37). Then there
erists a unique geometric periodic measure p : Rt — P(RM) satisfying the

convergences from Theorem 2.18.

Proof. Let o; denote the i’th column of o then 3; = (0,0;)” denote the i’th
column of 3. Denoting Id € R%*? to be the identity matrix, observe that Lie
bracket

camem( iy 5)()-(5)
—d*F(t,q) —vId o —v0;

Since ¢ € GL(RY), the columns o; are linear independent. Hence the Lie
algebra generated by ¥; and b spans R??. By the assumptions on F, b satisfies
(3.9). Hence together with Foster-Lyapunov function V, there exists a smooth
density p(s,t,x,y) with respect to A by Theorem 1 of [HLT17| is satisfied. F’
is locally Lipschitz hence with Lemma 3.17, Theorem 2.20 holds. Hence the

assumptions of Theorem 2.18 are satisfied. m

3.7 Density of Periodic Measures

The Fokker-Planck equation is a well-known second-order linear parabolic PDE
that describes the time evolution of the probability density function associated
to SDEs and moreover the stationary solution to the Fokker-Planck equa-
tion is the density of invariant measures see e.g. |BKRS15, Ris96, Hasl2,
Pavl4, Gar09, Zwa0l|. The existence and uniqueness of Fokker-Planck equa-
tion have been studied in many settings including irregular coefficients and
time-dependent coefficients |LL08, BKRS15, RZ10, DR12|.

In the context of periodic measures of SDEs, like invariant measure densit-
ies, it is interesting and important to know when periodic measures possess a
density with respect to Lebesgue measure. In this section, we show also that
the periodic measure density is the time-periodic solution of the Fokker-Planck

PDE. We show that this is a necessarily and sufficient relation. Evidently then,
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3 Periodic Measures of Stochastic Differential Equations

solving the Fokker-Planck for time-periodic solutions opens another door to
attain periodic measures and its density as well as their properties via PDE
methods. For concreteness, we provide an explicit example for the periodically
forced Ornstein-Uhlenbeck process where its periodic measure density is given
and shown to satisfy the Fokker-Planck equation.

Owing to the physical intuition of the Fokker-Planck equation, we note
that time-periodic solution of the Fokker-Planck has been studied previously
[Jun89, CHLY17, JQSY19|, however its relationship to periodic measure is
formally established here. Furthermore, on a more fundamental level, since
the Fokker-Planck is a parabolic PDE, this result establishes our first time-
periodic Feynman-Kac duality for time-periodic SDEs. The Feynman-Kac
duality presented in this thesis differs to the one in classical literature where
one seeks a time-periodic solution of a parabolic PDE rather than a terminal-
valued problem.

In previous sections, we have predominantly been focused on initial state,
here we change our perspective to the forward spatial variable. As such, at
the risk of confusion, we interchange the roles of = and y i.e. we take y € R?
to be the initial state and 2 € R? to be the forward spatial variable.

We first show that for time-periodic SDEs, if the periodic measure Markov
transition density exists, then the periodic measure density exists and provide
a relation for it. It was seen in Theorem3.3 the sufficient conditions to imply
the existence of the density p(s,t,y, x) of the two-parameter Markov transition
kernel, P(s,t,y,-) and the existence of a periodic measure. Let (p;)icr+ be a
family of probability measures satisfying p, = P*(s,t)ps for s < t, then by

Fubini’s theorem yields

pt(r) = /]Rd P(‘Svt?yar)ps(dy)

— /F (/de(s,t,y,a:)ps(dy)> dr, T eB(RY),s<t. (3.38)

If p is a periodic measure, then

D) = pr(0) = |

T

(/de(t,t—i—T,y,:L‘)pt(dy)) dr,

that is to say q(t, ) = [gap(t.t+T,y, z)p(dy) is the periodic measure density
of p; as observed in |[FLZ19].
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3.7 Density of Periodic Measures

Given the existence of ¢, it is clear by (3.38) that ¢ satisfies

q(t,z) = /dp(s,ty,w)Q(s,y)dy, s <t, (3.39)
R

indeed this property holds for any family of measures with densities. It is

well-known that ¢ satisfies the following Fokker-Planck equation

8tq = L*(t)qv

liIntis Q<t7 ) = Q(Sa )
where L*(t) is the Fokker-Planck operator given by

d

L=~ 300t o)) + 5 3 0, (007 (2) ) (340

i=1 ij=1

In this section, we will always assume b; are continuously z-differentiable, o;;
are twice continuously z-differentiable and the operator L*(¢) is uniformly
elliptic i.e. there exists A > 0 such that (£, 00 (¢, 2)€) > M|[£||? for all (t,z) €
R* x R? and ¢ € R

In the following, we shall use the notation X ~ ¢ to denote that the random
variable X is distributed by probability density ¢ € L'(RY). For random
variables X? and X!, we write X° ~ X! if they have the same distribution.

We state and prove the following useful lemma.

Lemma 3.19. Assume (X)), (X}),s,.p are two processes satisfying the T-
periodic SDE (3.1). If X ~ X!, then X2\, ~ X! 1., for all t > 0.

Proof. For concreteness, let X? ~ X! ;. ~ ¢ € L'(R?) and p°(s + ¢, ) denote
the distribution of X?,, and similarly p'(s + T + ¢,-) for X} ;. ,. Then p*
satisfies the Fokker-Planck equation i.e. for k=0,1and ¢t > 0

Ot (t + kT, x) = L*(t + KT)p*(t + kT, ),
PH(s+kT,) =q.

It is clear that L*(t) = L*(¢t+T) by the T-periodic coefficients. By the linearity
of the Fokker-Planck operator, it is easy to see that p(t,-) := p°(s+t, ) —p'(s+
t+T,-) satisfies
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3 Periodic Measures of Stochastic Differential Equations

p(0,-) = 0.

Then an application of parabolic maximum principle or otherwise yields that

~

p(t,-) =0 for all t > 0 is the only physical solution. Hence concluding p°(s +
t,)=p'(s+T+t,-) forall t > 0. O

With Lemma 3.19, we are now ready to state the main result of this section.
Theorem 3.20. Consider T-periodic SDE (3.1) with b; € CYH (R x RY) and
o; € CYHRT x RY). For ¢ € CH?(RT x RY) N LY(R?) define p : RT — P(R?)
by

p() = ! /q(t, z)dr, t>0,T € B(R?. (3.41)

Hq(tv')HLl(Rd) r
Then p is a T-periodic measure if and only if

atq = L*< )
q(0,-) = (T, ).

(3.42)

Hence, if there exists a unique solution to (3.42), then there is a unique periodic

measure with density q.

Proof. For notational convenience and without loss of generality, we let ¢(¢,x)
be normalised. Assume p is a T-periodic measure with density ¢, then by

definition, p; = pyp for all ¢ > 0 i.e.
/q(t,x)dx = p(T) = ppap(T) = /q(t +T,z)dr, T € BR?.
r r

As this holds for any I' € B(RY), it follows that q(¢,-) = q(t+7, ). On the other
hand, it is well known that p(s,t,y, z) satisfies the Fokker-Planck equation

Oip(s,t,y,x) = L*(t)p(s,t,y,x).
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3.7 Density of Periodic Measures

Hence taking derivative with respect to ¢ on both sides of (3.39), we have

atQ(t7I> - atp(87t>y7m>Q(S7y)dy

Rd

- /Rd L*(t)p(s, t,y,2)q(s, y)dy

8961
=1
/ Z m] T(t,x), p(s,t,y,x)) q(s,y)dy
Rd i,7=1
A+ B

(t,2)p(s,t,y,7))q(s,y)dy

For the first term, we have

A = =3 [0t 0) + il 210 )] s

d

== _Zarl /IRL (S t y Y, T ) (Svy)dy_zbz(twr)axz /dp(sat>y7x)Q<37y)dy

i=1 R
d

= - Z azz(bz(ta x))Q<t7 {L‘) - Z bi(t’ x)f)xiq(t, CL’)
— —Zﬁxi(bi(t,x)q(t,m)).

Similarly, for the second term, we have

Z . ( Tt x) q(t,x)).

zyl

Therefore, the density function ¢(-,-) satisfies

dq = L*(t)q,

q(t,") =q(t+T,-) forallt>0.
By Lemma 3.19, it suffices that this PDE holds specifically for ¢ = 0 hence we
have (3.42).

To prove the converse, suppose (3.42) holds. Then Lemma 3.19 yields
that ¢(t,-) = q(t + T,-) for all ¢t > 0. Thus by the construction (3.41), p is
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3 Periodic Measures of Stochastic Differential Equations

T-periodic. By (3.39) and Fubini’s theorem, it is clear that for any I' € B(R?)

P (s, t)ps(T /de(”y’ ps(dy)
:/Rd /Fpsty, )d}Q(Sy)dy
= [ q(t,x)dx
ZpF(F

concluding that p is a T-periodic measure. O]

There is an “alternative” way to arrive the PDE of Theorem 3.20 as seen in
[Jun89|. By considering lifted coordinates (¢, X;), one can consider stationary

solutions of the lifted Fokker-Planck operator £* i.e. ¢(t, x) satisfying
L*(t)q := —0q(t,x) + L*(t)q(t,x) = 0. (3.43)

This is equivalent to (3.42) upon rearranging. However, this approach does not
naturally imposes any boundary conditions, hence is not sufficient for ¢ to be
the density of the periodic measure. Theorem 3.20 shows that the (periodic)
boundary conditions is necessary. While [Jun89| imposes the periodic bound-
aries, the reasoning does not seem apparent. We shall show in the example
below that, despite L*(t) is T-periodic, a solution to the PDE need not be
periodic. In fact, relaxing the boundary condition can lead to infinitely many

solutions.

Example 3.21. The one-dimensional periodically-forced Ornstein-Uhlenbeck
process of Example 3.10 has its Fokker-Planck operator given explicitly by

£(0)a =~ — 0.((S(0) ~ ax)a) + T 0%

2
= —0,q — S(t)0,q + aq + axd,q + %aiq

and the periodic measure is p; = N <§(t), 2a> where £(t) = e~ f e S(r

Here, the density of the periodic measure is given by

oxp (S,
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3.7 Density of Periodic Measures

We compute

E=—af+S(t), Ag=28@— e Gq=-2 (.

and

02 = =255 [0u(xq) — £0,q) = =25 [1 -2 55 (= 9] ¢

Hence, substituting directly into (3.43),

L* . 2
qu = —2%5@ —&) + Q%S(t)(x - +a— Q%x@ —¢) -« [1 — 2%@ —¢)?
2 2 2
=256 — ) - 250(w — ) + 255 (¢ — £

=0.

Thus indeed the ¢ satisfies (3.42).
We show that the periodic condition of (3.42) cannot simply be dropped

because of periodic coefficients. From (3.25), the transition density

1 T — e—a(t—s)y —J s, t
p(37t7 y7$) = exXp <_( 0_2(1 — e—2a(t—8)() >>
Ve )

«

satisfies
—Op(t,x) + L*(t)p(t,x) =0,

for every fixed initial time s and point y. However, p is not periodic as J is
not periodic. Since there is a non-periodic solution for every y € R, there
are, in fact, infinite number of solutions to the PDE if one relaxes the demand
of periodicity. As a consequence of Theorem 2.18, it is expected that the
transition density converges geometrically to a periodic solution. Indeed in

general, we do not expect this convergence.
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4 Expected Exit Time and Duration

4.1 Definitions and Notations

As motivated in the introduction, we now turn our attention studying the ex-
pected exit time. Consider a stochastic process (X;);>s on R¢ with continuous
sample-paths and an open non-empty (possibly unbounded) domain D C R4
with boundary 0D. Without loss of generality, we assume throughout this
thesis that D is connected. Indeed if D is disconnected, one can solve separ-
ately on each connected subset. We define the first exit time from the domain

D (or first passage time or first hitting time to the boundary) by
np(s, ) = %gf{Xt ¢ D|X;=uz}= ;lfI>1f{Xt € 0D| X =z}, (4.1)

where x € D and the equality holds by sample-path continuity. We let
np(s,x) = oo if X; never exits D. While the absolute time in (4.1) is import-
ant, it is mathematically convenient and practically useful to study instead the

exit duration
Tp(s,z) :=np(s,x) — s (4.2)

directly. As D is generally fixed, where unambiguous, we omit the subscript
D ie. n(s,z) = np(s,x) and 7(s,x) = 7p(s,x). By Début theorem, n(s,x) is
both a hitting time and a stopping time. In general, 7(s, x) is not. Thus some
proofs and computations will be first done for (s, z), then related to 7(s, z) via
(4.2). To avoid possible confusion, we note that in the current section, Section
4, n will always refer to exit time rather than the local Doeblin constant of
(2.5).

In this thesis, we are interested in expectations of these quantities i.e.
ii(s,7) == Eln(s,2)], 7(s,2) = E[r(s, )] (4.3)

In conventional notation, one typically writes 7 = E**[n] and 7 = E**[r].
For subsequent proofs, it is often more convenient that we keep the explicit
dependence on the random variables.

In this thesis, we are specifically interested in the expected exit and dura-
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tion time for T-periodic non-degenerate SDEs on R? of the form

dXt = b(t, Xt)dt + U(t, Xt)th7 t Z S,
X, = z, VIS D>

(4.4)

where akin to again W, is a d-dimensional Brownian motion on a probability
space (Q, F,P), b € C(R x RY RY) and o € C(R x R% R¥?) are T-periodic
such that a unique solution X; = X;** exist. Unlike (3.1), note that x € D i.e.
the process is required to start inside the domain D.

It is well-known that for autonomous SDEs, the expected exit time and ex-
pected duration coincide [Gar09, Pavl4, Zwa0l]. Denoting both the expected
exit and duration time by 7(z), it is moreover known that 7(z) satisfies the
following second-order elliptic PDE with vanishing boundaries [Has12, Gar09,
Pav14, Zwa01, Ris96|

h

7T=-1, inD,

(4.5)
7=0 on 0D,
where
d 1 d
Lf =D b@)d (@) +35 ) (00 )@ (@), [ e CGRY),  (16)

is the usual infinitesimal stochastic generator. For non-autonomous SDEs how-
ever, due to the explicit dependence on time, expected exit time and expected
duration no longer coincide. That is, 7(s, x) generally depends on both initial
time and initial state. Let us consider the stochastic infinitesimal generator of
(4.4) for any fixed time s € R* by

l\DI»—

Zb’sxaf

Z (s,2)0% f(x), fe€CHRY. (4.7)

For our discussion of expected duration in this non-autonomous case, for inter-
pretability, it is preferred to consider L(s) rather than £(s) given by (3.2). It
is important to note that for non-autonomous SDEs, 7(s, z) does not satisfies
(4.5) even if L is replaced by L(s).
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4 Expected Exit Time and Duration

4.2 Derivation of the Expected Duration PDE

In this section, we give the rigorous derivation for the expected duration PDE.
It appears that in numerous existing literature, the expected exit time is im-
plicitly assumed to be almost surely finite. Particularly for degenerate noise,
it may well be that the exit time is infinite with positive probability or indeed
almost surely. Utilising asymptotic stability of diffusion processes, it is easy
to construct examples where the process never leaves a point or domain. In-
deed (2.12) in one such example, where if the process starting at the origin, it
does not leave. For initial condition outside the origin, it is easy to show that
the process tends towards the origin hence not leave when it enters. We refer
readers to [Mao07| for similar examples and the wider theory. In the following
lemma, we give verifiable conditions to imply irreducibility and show further

that n is almost surely finite with finite first and second moments.

Lemma 4.1. Let D C R? be a non-empty open bounded set. Assume that
the T-periodic SDE (4.4) satisfies (3.5), (3.9), (3.6), (3.8) and (3.7). Then
n(s,x) is finite almost surely for all (s,x) € RY x D. Moreover, n(s,x) has

finite first and second moments.

Proof. By Theorem 3.2, conditions (3.5), (3.6) and (3.7) implies P is irredu-
cible i.e. P(s,t,2,I') > 0 for all z € R%, 0 < s < t < 0o and non-empty open
set I' € B(R?). Then for any fixed s € RT, for all z € R?, it follows that there
exists an €(z) = €(s,z, D) € (0,1) such that

e(x) = Ps,s+T,x,D).

In particular, P(s,s+T,z, D) > 0 for any x € D. Recall that when conditions
(3.7), (3.8), (3.9) and (3.5) hold, then the results of [HLT17| implies P possesses
a smooth density. This implies that P is strong Feller i.e. P(s,t,-,T') is
continuous for all s < ¢t and I' € B(R?). Then it follows from the boundedness
of D that the probability of staying within D in one period is at most

€ :=supe(x) > 0.
x€D

Since D C R%is bounded, € < 1. By (2.3), Z5% = (Z5%) := (Xs T )nen is time-

homogeneous Markov chain with one-step Markovian transition P(s,s+7,x,-).
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4.2 Derivation of the Expected Duration PDE

Define the exit time
nz =nz(s,z) :=min{n € N: Z>* ¢ D}.

By sample-path continuity of Xj, it is clear that X, ¢ D for at least one
tels+(nz—1)T,s+nzT]. Hence n(s,z) < s+nz(s,z)- T, in particular, we
have

{nz(s,x) >n} C {n(s,x) > s+nT}.

Hence if P(nz < oo) = 1 then P(n < oo0) = 1 ie. if Z% leaves D in almost

surely finite time then X, does also. For any n € N, it is easy to see that

n—1

{nz =n} = {Z; € D} n ({2}, € D).

m=1

Since Z; =z € D, by elementary time-homogeneous Markov chain properties,

n—1
P(nz =n) =P(Z; € D°| ({Z;, € D})P ﬂ {73 € D})
m=0
n—1
=P(Z; € D°|Z;_, € D) [[ (2, € D|Z;,_, € D)
m=1
< el (4.8)

This concludes that 7 is almost surely finite. Via (4.8), it is elementary to

show that 7 has finite first and second moments:

1 T

E[r(s,z)] < TE[nz(s, )] TZnIP’ Nz =n) STZ%E = d61_€:(1_€>2<oo.
Similarly,
[ a2 d T2(1+¢)
2 2 2 o 2 n+1 n| __
E[r*(s,2)] < T°Elny(s,2)] =T ; [@6 e 1 T &%
It follows that n has finite first and second moments. O

Remark 4.2. Observe that Lemma 4.1 holds more generally provided that P

is irreducible and strong Feller.

Remark 4.3. Tt should be clear that Lemma 4.1 can be adapted to hold in the
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4 Expected Exit Time and Duration

more general (not-necessarily 7T-periodic) non-autonomous case. Namely by
picking any fixed 7" > 0, define €, := sup,.p P(s + (n — 1)T,s + nT,z, D),

then the same calculations via properties of the two-parameter Markov kernel

yields P(nz = n) < €, where € := max,ey €.

To study the exit problem, we study the evolution of the probability density
of the process evolving in the domain D and impose absorbing boundaries
[Ris96, Gar09, Pav14|. Specifically, let pp(s,t,z,y) denote the probability
density of the process starting at x at time s to y at time ¢ that gets absorbed

on JD. Then the density pp satisfies the following Fokker-Planck equation

Oipp(s,t,x,y) = L*(t)pp(s,t,z,y),
pD(Svsa:L‘7y) :5$(y)7 fL’GD, (49)
pp(s,t,z,y) =0, ify e dD,t > s,

where we recall that L*(t) is given by (3.40) and acts on forward variable y.
To discuss the solvability of (4.9) and subsequent PDEs, we lay out typical
PDE notations and conditions.

We fix some standard nomenclature and notation. For the open domain
D C R? and open interval I C R*. We define their Cartesian product by
Dy :=1x D. When I = (0,7), we define Dy := (0,7) x D. To discuss
regularity of the coefficients, we say a function f : RY — R is said to be locally
0,-Holder for some 6, € (0,1] if for any compact set K C B(RY) there exists a
constant C' = C'(K) such that

1f(z) = fy)| < Cllz —yl|, z,yeK.

If 0, = 1, then f is said to be locally Lipschitz. If K = R then f is said
to be (globally) 6,-Holder and Lipschitz if 6, = 1. The collection of all such
functions is denoted C?% (D). Similarly, for 0,0, € (0,1], C%% (I x D) contains

all functions f such that there exists a constant C'
1f(t,x) — f(s,9)| < O]z —y||® + [t —s|*), z,y€D,stel

Let ki, k, € N, we denote by C**=(I x D) to be the space of continuously
k;-differentiable functions in ¢ and continuously k,-differentiable function in x.
For 0,0, € (0,1], we let CktH00kat0:([ 5 D) denote the space of C**= (I x D)
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4.2 Derivation of the Expected Duration PDE

functions in which the k,’th t-derivative and k,’th z-derivatives are 6; and 6,
are Holder respectively.

We can now write the main conditions required for the well-posedness for
the expected duration PDE. Observe that the conditions are weaker than the

conditions required by Lemma 4.1.

Condition A1: For some 6 € (0, 1],
(i) Domain D € B(R?) is non-empty and open with boundary 0D € CY(R?1).
(ii) The coefficients a®,bi € C3:%(Dr).

(iii) The matrix a(s,x) = (a"(s,x)) is uniformly elliptic i.e. there exists
a > 0 such that

<a<87 ‘r)&g)Rd 2 o ||§||]?%d ) (87 JI) S DT’ge Rd' (4'10)

Particularly for adjoint operator L*(¢) where more differentiability is required,

we consider further

Condition A2: For some 6 € (0,1], Condition Al holds and moreover
a bt € CH92(Dy) and 9D € C?*HO(R4).

It is well-known that if Condition A2 holds, then there exists a unique
solution pp(s,-,x,-) € CY*(Dr) to (4.9). Moreover, pp(s,t,z,y) is jointly
continuous in (z,y). For details, we refer readers to Section 7, Chapter 3 in
[Fri64]. The following lemma and its proof are similar to the one presented in
|Gar09, Pav14, Ris96| when the coefficients are time-independent. We prove
for the time-dependent coefficients case. For clarity of the key ingredients of
the following lemma, we assume 7 to have finite second moment rather than

the conditions assumed in Lemma 4.1.

Lemma 4.4. Assume that Condition A2 holds for SDE (4.4). Assume further

that 1 has finite second moment. Then

T(s,a:):/ /pp(s,t,:v,y)dydt, (4.11)
s D

where pp(s, -, x,-) is the unique solution to (4.9).

Proof. Let G(s,t,x) be the probability that the process starting at = at time

s is still within D at time ¢t > s. In the derivation below, we treat (s,x) as
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4 Expected Exit Time and Duration

fixed parameters so that GG is only a function of . By the absorbing boundary

conditions of pp, we have

Gs.t.2) = [ pols.t.z.0)dy. (412)
D
On the other hand,
G(S,t,l‘) = P(W(Sal’) > t) =1- ]P(n(sax) < t)

Then, since pp is t-differentiable, by (4.12), it is clear that a density p,(s,t,x)

exists for n(s,z) given by
py(s,t,x) = —0,G(s,t, 7). (4.13)

Note that if x € D then G(s,s,z) = 1. Note further that by Chebyshev’s

inequality,
1 2
G(s,t,z) =P(n(s,z) > t) < t_2]E (s, x)], t>0.

Since G > 0, it follows that lim; . tG(s,t,z) = 0, hence the following holds
by an integration by parts

ﬁ(s,x):/ tpy(s,t,x)dt
= —/ t0,G(s,t,x)dt

= —tG(s,t, )2, +/ G(s,t,z)dt

o0

=5+ G(s,t,z)dt.
Hence o
7(s,x) :/ G(s,t,x)dt. (4.14)
The result follows by (4.12). O

While finite first moment of 7 was not explicitly used in Lemma 4.4, we
note that it is of course finite since it has finite second moment and applying
Hoélder’s inequality. It is then obvious then that (4.14) is finite.

For T-periodic SDEs, we show in the next lemma, that the expected dura-
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4.2 Derivation of the Expected Duration PDE

tion T is also T-periodic. While this holds in expectation, the same cannot be
said of the sample-path realisations of 7. This is essentially because the noise
realisation is not periodic! In the context of random dynamical systems, this
can be proven rigorously. Indeed, if w denotes the noise realisation and 6, to
be the Wiener shift, then one has 7(s,z,w) = 7(s + T, z, O7w), see |FZ16| for
further details.

Lemma 4.5. Assume that Condition A2 holds for T-periodic SDE (4.4). As-

sume further that n has finite second moment. Then T s also T-periodic.

Proof. By Lemma 3.19 and (4.11), we have

strxydydr

I
\\\

p(s+T,r z,y)dydr

/ (s+T,r+ T, x,y)dydr

I
\n

For the following theorem, we recall Kolmogorov’s backward equation
Isp(s, t,x,y) + L(s)p(s,t,,y) = 0, (4.15)

where L(s) acts on x variable. O

We are now ready to derive the PDE in which 7(s,z) satisfies. When the
SDE is T-periodic, we show 7(s,x) is the T-periodic solution of a second-
order linear parabolic PDE. This contrasts with the autonomous case where
the expected exit time satisfies the second-order linear elliptic PDE (4.5). To
our knowledge the derived PDE and particularly its interpretation is new in
literature. We note further that the following theorem establishes a Feynman-

Kac duality for time-periodic SDEs for the expected duration.

Theorem 4.6. Assume T-periodic SDE (4.4) satisfies the same conditions
as Lemma 4.1. Then the expected duration T is the periodic solution of the

following parabolic partial differential equation of backward type
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4 Expected Exit Time and Duration

0 7"(3 x)+ L(s)7(s,x) = =1, in Dr,
= on [0,T] x 0D, (4.16)
7(0, ) (T, ). on D.

Proof. By Lemma 4.1, n has finite second moment and Condition A2 holds.
Hence Lemma 4.4 holds. Thus, by (4.14), observe that for any § > 0,

T(s+0,2) — T(s,x)

:/ G(s+0,t,x)dt /Gstx
540

:/ G(s+0,t,x)dt /Gst:z:dt—i—/ G(s,t,x)dt—/ G(s,t,x)dt

s5+4 +6 +6

_ /Oo (G5 + 6.4, 2) — G(s,t,2)) dt — Gls + ),

s+4

where for clarity, G(r) := [ G(s,t,z)dt. It follows by the fundamental theorem
of calculus that

OsT(s,x) = / ;G (s, t,x)dt — G'(s)
/ /aspp s, t,x,y)dydt — G(s, s, )

:/ /aspD(87t7x7y>dydt_17
s D

where recall that G is expressed by (4.12) and G(s,s,x) = 1 since x € D.
Acting L(s) on 7 by (4.11) and (4.15), we have

7(s,x) / / s)pp(s,t,x,y)dydt = / / Ospp(s,t, x,y)dydt.

Summing these quantities yields

(0s + L(s))7(s,x) = —1. (4.17)

For T-periodic systems, Lemma 4.5 requires that 7(s,-) = 7(s + T, -) for all
s € R hence by Lemma 4.5, this is sufficient by imposing 7(0,-) = 7(7, -) and
the result follows that 7 satisfies (4.16). O

Remark 4.7. In the proof of Theorem 4.6, note that T-periodicity was not
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4.2 Derivation of the Expected Duration PDE

assumed until (4.17). This suggests that for general non-autonomous (not
necessarily periodic) SDEs, 7 will still satisfy (4.17). However, as (4.17) is a
parabolic PDE, in the absence of initial (or terminal) conditions, PDE (4.17)
alone is generally ill-posed. It is clear that the initial condition is a part of
the unknown. Indeed, if 7(0,-) is known, then this implies we already know
the expected exit time when the system starts at time s = 0. This issue is
partially resolved for time periodic SDEs as the initial and terminal conditions

coincide, albeit unknown, by Lemma 4.5.

Remark 4.8. Tt should be clear that for coefficients with non-trivial time-
dependence, the parabolic PDE (4.16) would generally imply that 7(s,z) —
T(s',x) # (s — &) for s # §'. That is, the difference in initial starting time
does not imply the same difference in expected time. This reinforce that initial

time generally plays a non-trivial role in the expected duration.

Remark 4.9. In the forthcoming section, we will discuss the well-posedness of
(4.16) under typical PDE conditions. We will see however the PDE condi-
tions are generally too weak for the formal derivation of (4.16) i.e. does not
generally satisfy the conditions listed in Theorem 4.6. This is expected since
weak solutions of parabolic PDEs on bounded domains can be often attained
with relatively weak conditions. On the other hand, from a SDE perspect-
ive, it is not known as a priori whether the process would exit in finite time
(almost surely) let alone finite expectation. Therefore with the stronger SDE
conditions, Lemma 4.4 considered the process on the entire R? and proves the

expected exit time has finite expectation.

As mentioned in the introduction, numerically solving PDE (4.16) can be an
appealing alternative to stochastic simulations of the expected hitting time.
We note further that solving (4.16) solves the expected hitting time for all
initial starting point. On the other hand, direct simulation would (naively)
require many simulations for each starting point and time.

Assuming a priori that the expected exit time is finite, then we can derive a
simpler alternative proof of Theorem 4.6 via Dynkin’s formula. This reassures

that Theorem 4.6 is correct.

Proposition 4.10. Assume n associated to T-periodic (4.4) has finite expect-
ation. Then Theorem 4.6 holds.

Proof. Since 7 is a stopping time and has finite expectation, by Ito’s and
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4 Expected Exit Time and Duration

Dynkin’s formula, then
"
E** [p(n, Xy)] = ¢(s,2)+E* U (8 + L(t)p(t, Xe)dt |, o € Cy*(RTxRY).

Remark 4.7 implies that there does not generally exist a u € C1?(D) such that
(0s + L(s))u(s,x) = —1 and vanishes on 9D until we impose T-periodicity of
u. Furthermore and subtly, it is straightforward to show that, due to the T-
periodic coefficients of (4.4), u cannot be T"-periodic for 0 < 7" < T'. Therefore

if such a u exists, we have by (4.2)

0=E>"[u(n, X,)] = u(s,z) + E>* [/877 —1dt} =u(s,z) — 7(s,x).

i.e. u(s,x) = 7(s,x) and so the results follows. ]

4.3 'Well-Posedness of the Expected Duration PDE
4.3.1 Fixed Point of an Initial Value Problem

In this section, utilising classical results for the well-posedness of initial-valued
parabolic PDEs, we will show the existence of a unique solution to the ex-
pected duration PDE (4.16) for the associated T-periodic SDE. As mentioned
in Remark 4.9, we solve (4.16) with typical PDE conditions rather than the
stronger conditions required for the SDE to justify the rigorous derivation of
the PDE. This has the advantage of a clearer exposition and key elements to
solve the PDE.

In this subsection, we associate (4.16) with an initial-value boundary PDE
problem and show that (4.16) can be rewritten as a fixed point problem. We
note however that (4.16), as an initial valued problem, is a backward parabolic
equation. Such equations are known to be generally ill-posed in typical PDE
spaces. By reversing the time, we introduce a minus sign thus PDE is uniformly
elliptic and hence more readily solvable in typical function spaces.

We give a general uniqueness and existence result via a spectral result
of [Hes91| in LP(D). Specifically on L?*(D), we show that if the associated
bilinear form is coercive then one can apply a Banach fixed point argument to
deduce the existence and uniqueness. This yields a practical way to numerically
compute the desired solution.

To discuss the well-posedness of (4.16), we recall some standard function
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4.3  Well-Posedness of the Expected Duration PDE

spaces. For any 1 < p < oo, we denote the Banach space LP(D) to be the space
of functions f : D — R such that its norm || f|z»p) := (fD|f(:v)|pd;B)l/p <
co. For tuple § = (B1,- - - Ba) € N% define || = Y27, 3 then for suf-
ficiently regular function f, define 9°f := 8151 . 35df. Then for k € N,
we define as usual the Sobolev space W*?(D) to contain all functions f in
which its norm || f||yrr(py == <Z|B§k”aﬁf||ﬁpw)>1/p < 0o. We let WE*(D) =
{f € WEP(D)|f =0 ondD}. For p = 2, L*(D) and H’“(D) Wy (D)
are Hilbert spaces with inner-product (f, g)r2(py : (fD dx)l/ and
(£ 9 upmy = 2oip1<k S (0%, 9°g)12(p) respectively. Occasmnally, we let
(H, ||-||z) denote a generic Hilbert space. To avoid any possible confusion, we
will be verbose with the norms and inner-products.

We begin by fixing 1 < p < oo and define the time-reversed uniformly
elliptic operator associated to (4.7) by

1\3 I

d
Z (T —s,2)05, s€0,T],

(4.18)
on LP(D). Note that D(Lg(s)) = W?P(D) N WyP(D) C LP(D) for all s €
(0,7). As mentioned, the initial boundary value problem (IBVP) associated
0 (4.16) is a backward hence ill-posed in LP(D). Suppose that u satisfies

(4.16), consider the the time-reversed solution v(s,x) = u(T — s,x). Then v

Lg(s):=L(T —s) = Zbl( —s5,2)0

satisfies
Osv — Lg(s)v = f, in Dr,

v=0 on [0, 7] x 0D, (4.19)

where f = 1. Clearly the solvability of (4.16) is equivalent to (4.19) up to
time-reversal. Hence, for the rest of the thesis we focus on showing existence
and uniqueness of a solution to (4.19).

Due to the general applicability of the methods presented in this thesis,
where possible, we retain a general inhomogeneous function f : [0,7] — LP(D).
We expect that this generality benefits some readers for solving similar prob-

lems.
We the following IBVP associated to (4.19),
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(0s = Lr(s))v = f, in Dr,

v =0, on [0,T|x0D, (4.20)

v(0,-) = vy on D,
is a “forward” parabolic equation and is readily solvable. We say that v is a
generalised solution of (4.20) if v € C([0,T], W??(D) N W, " (D), its derivative
¢ C((0,T),LP(D)) exists and v satisfies (4.20) in LP(D) [Paz92, Ama95,
DM92]. Consider also ¢(s, z) satisfying the homogeneous PDE of (4.20) i.e.

(0s — Lg(s))¢p =0, in (r,T) x D,
¢=0 on [r,T] x 0D, (4.21)
¢(T7 ) - ¢r> in D.

Given ¢, € LP(D), (4.21) is well-posed, we can define the evolution operator
®(r,s) : LP(D) = W*P(D)NWyP(D), r<s<T, (4.22)

by

O(r, s)p, 1= ¢(s). (4.23)
It is known that ®(s,r) satisfies the semigroup property ®(r,r) = Id and
O(r,s) = O(s,t)P(r, s) for r < s < t. We refer readers to |Paz92| for regularity
properties of ®. When (4.20) is well-posed, it is well-known that by a variation
of constants or Duhamel’s formula [Ama95, DM92, Paz92|, the solution to

inhomogeneous problem (4.20) satisfies
v(s) = ®(r,s)v. + / O(r',s) f(r)dr'. (4.24)
It is well-known that if Condition A1 and f € C7(0,T; L?(D)) for some v €

(0,1), then (4.20) is well-posed [Paz92, Ama95|. Furthermore, we can define
the solution operator after one period A : LP(D) — W2?(D) N W, " (D) by

Ap = 0(0,T)e —I—/O O(r, T) f(r)dr. (4.25)

We discuss further conditions for regular solutions. Theorem 24.2 of [DM92]
employed Schauder estimates and Sobolev embedding to show that if p > d/2,
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4.3  Well-Posedness of the Expected Duration PDE

0D € C?(R%1) then the solution to IBVP (4.20) with initial condition vy €
Wg’p(D) satisfies the following regularity

v e C(Dy) N CY*E29((0,T] x D). (4.26)

Furthermore, if d < p < 0o, by Sobolev embedding, then v € C%’Hf(DT) N
CYe2H0((0,T] x D) for some ¢ € (0,1), see [Hes91]. This write our first

existence and uniqueness result.

Proposition 4.11. Assume Condition A1 holds. Assume that d < p < oo,
oD € C*(R*1Y) and f € CV(0,T; LP(D)) for some v € (0,1). Then there
erists a unique reqular solution satisfying (4.19). Moreover, if f # 0 then the

solution is non-trivial.

Proof. Since f € C7(0,T; LP(D)), by Condition A1, IBVP (4.20) is well-posed
for any vy € LP(D). Hence the evolution operator ® defined by (4.23) is well-
defined. To solve T-periodic PDE (4.19), by Duhamel’s formula (4.24), one

wishes to find existence and uniqueness of a vy € LP(D) such that
Vo = A?Jo. (427)

For initial conditions in WZ?(D), by rearranging (4.25), this is equivalent to

T
(1= 20T = [ 2. T)f(r)ir (4.28)

0
where ®(0,5) : WeP(D) — WZP(D) and I : WJP(D) — WgP(D) is the
identity operator. With the current conditions, via Krein-Rutman theorem, it
was shown in [Hes91] that A = p(®(0,7")) € (0,1), where A denotes the spectral

radius of ®(0,7"). This implies that 1 is in the resolvent i.e. (I — ®(0,7)) :
WP (D) — WP(D) is invertible. It follows that

T
vy = (I — ®(0, T))—l/ O(r,T) f(r)dr, (4.29)
0
uniquely solves (4.27). By Sobolev embedding,
o(s,-) = B(0, 5)vo +/ (r.s)f(r)dr. s € (0,T), (4.30)
0

is a regular solution to (4.19). Tt is easy to see that (4.19) does not admit
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trivial solutions since (D is non-empty and) v = 0 cannot satisfy (4.19) for

F#0. 0

As noted in [DM92|, via the semigroup property, one can approximate
®(0,7) ~ [ ®(tn, tysr) for 0 =ty < t; < ... < ty = T. Hence one can
approximate the inverse in (4.29) by

N—-1

(I=20,7) "~ (I =[] ®(tn, tasr)) ™" (4.31)

n=0

We note however computing (4.31) is generally computationally expensive.
We can gain more from (4.29). We recall the weak maximum principle: if

the solution is regular and f > 0, then

min  v(s,r) = minv,(x 4.32

(s,2)€DT ( ) x€D ( ) ( )

holds. We have seen that, by (4.28), the existence and uniqueness of vy €
L*(D) satisfying (4.27) requires the invertibility of I — ®(0, 7). By von Neu-

mann series, we have
(I —®(0,7)) Zcbk (0,7),

where ®%(0,T) denotes the composition of the operator ®(0, 7).

It is well-known that parabolic PDEs experience parabolic smoothing (see
e.g. |[Paz92, Eval0]) i.e. the solution of parabolic equations are as smooth as
the coefficients and initial data. For example if p > d/2 and f € C7(0,T; W*P(D)),
then ®(s,t)f is a regular solution by (4.26). Moreover, if f > 0, by the
maximum principle, ®(s,t)f > 0 for all 0 < s < ¢t < T. Tt follows that
T:= fOT O(r,T)f(r)dr > 0 and ®*(0,T)Z > 0 for all k € N. Moreover, it
follows from (4.29) that

=> @0,T)I >0, (4.33)
k=0

i.e. the solution to (4.27) is non-negative. Furthermore, if the coefficients and
f are smooth then condition p > d/2 can be dropped and the same conclusion
holds with a smooth solution [Paz92|. In particular, since 1 € C*°((0,T) x D)
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is non-negative, this aligns with physical reality that expected duration time
7(0,-) = vp indeed is non-negative.

To gain further insight into solving (4.19) from both a theoretically and
computational viewpoint, we progress our study with Hilbert spaces i.e. p = 2
and forego some of the regularity gained from Sobolev embedding e.g. (4.26).

We start with a standard framework to deduce the existence and uniqueness
of (4.19) on the Hilbert space L?*(D). For convenience, we define the bilinear
form Bg: H}(D) x H3(D) — R associated to —Lg defined by

Brlip, ;5] Z/bl — s, 2)Bip(x)(x)dr,

A3 [ smaewonme

’le

where b (s, z) = b'(s, x) + Z;l:l d;a" (s, z) for each 1 < i < d. We recall that a
bilinear form B : H x H — R is coercive if there exists a constant a > 0 such

that
Bl > alely, @€ H. (4.35)

Assuming coercivity, we give the following existence and uniqueness the-
orem to (4.19).

Theorem 4.12. Assume that ", b° € L>°(D7) and a(-,-) satisfies uniformly
elliptic condition (4.10) and furthermore (4.34) is coercive for s € [0, T|. Then
forany f € L*(0,T; L*(D)), there exists a unique solution v € C([0,T], Hy(D))to
(4.19). If f # 0, then the solution is non-trivial.

Proof. Tt is well-known (e.g. [Eval0]) that there exists a unique weak solution
v to the IBVP (4.20) i.e. v € C([r,T]; L*(D)) N L*(r,T; H}(D)) such that
v(r) = v,, v € L*(r,T; H ' (D)) and for almost every s € [r,T],

<asv(3)>80>H—1(D)ng(D) + Brlv, ¢; s] = (f(s), @)H—l(D)ng(D) p € Hy(D),
(4.36)
where (-,-) y-1(pyxmi(py : H (D) x Hg(D) — R denotes the duality pairing
between H~!(D) and H}(D). To prove our result, it is sufficient to assume
f € L*(D). To cast (4.27) in terms of a self-mapping, consider ®(0,7) :
L*(D) — L*(D) as the operator ®(0,T) with its range enlarged to L*(D) and
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define A : L?*(D) — L?*(D) by

Ap == 8(0,T)p + /0 ®(r, T)f(r)dr. (4.37)

We show there exists a unique fixed point of operator A. By Banach fixed
point theorem, it suffices to show A is a contraction on L?(D). Observe that

this is sufficient provided ®(0,7) is a contraction mapping on L?(D) since

| Ap = A6 o ) = 1B T) e = )| oy < 19O Dl = ©ll oy, 000 € LAD).

In fact, we show that ®(0,s) is a contraction for any s > 0. Let ¢(s) be the

homogeneous solution of (4.21), then from (4.36), one has by coercivity

0 = (0s¢, #(s)) + Br[d(s), ¢(s); s]
1d 2 2
2 2ds ||¢(3)||L2(D) ta ||¢(3)||H3(D)
1d 2 2
2 575 1922y + @ llé(s)lz2p) -
Gronwall’s inequality then yields

—2as 2
16 ey < €2 0ll2apy s 5 2 0.

Hence indeed

e <1, s>0. (4.38)

(0, =
Rl N P Fx

i.e. ®(0,s) is a contraction on L*(D). Therefore there exists a unique vy €
L*(D) satisfying (4.37). Since A:L*(D) — Hj(D) € L*(D), then by the
right hand side of (4.27), it is easy to deduce that vy € HJ(D). Define v by
(4.30), then v € C([0,T], Hy(D)) is the unique solution to (4.19). Lastly, if
0 # f € L*(D) then v is non-trivial. O

We make three comments on Theorem 4.12. Theorem 4.12 offers not only
a theoretical existence and uniqueness result on the solution to (4.19), by
Banach fixed point, Theorem 4.12 immediately offers an iterative numerical
approach to the solution. To numerically computing the next Banach fixed

point iterate, one only requires to solve a IBVP for the parabolic PDE. Com-
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pared to (4.31), there are well-established numerical schemes for parabolic
PDEs with known order of convergences. Observe that coercivity is actually
stronger than required. In the proof of Theorem 4.12, it is sufficient that
Blp, ;8] > a\|<p||%2(D). Finally, by Sobolev embedding, one can deduce the
weak solution of Corollary 4.13 is a strong solution if d = 1.

In light of Remark 4.9, we apply Theorem 4.12 specifically to expected
duration 7 of SDEs.

Corollary 4.13. Let D C R? be a non-empty open bounded set. Assume that
the T-periodic SDE (4.4) satisfies (3.5), (3.9), (3.6), (3.8) and (3.7). Assume
further that (4.84) is coercive. Then there exists a unique non-negative non-
trivial T € C([0,T), HY (D)) satisfying (4.16).

Proof. The current conditions and 1 = f € L*(0,T; L*(D)) satisfy the assump-
tions of Theorem 4.12. Hence there exists a unique non-negative non-trivial
solution v € C([0,T], Hi(D)) to (4.19). Since (4.16) is equivalent to (4.19) by
time-reversal, by (4.24), it follows that

T—s
7(s,:):==v(T —s,-) =P(0,T — s)vg +/ O(r, T — s)ldr, se€0,T],
0

satisfies (4.16). O

We give an example where coercivity is shown. We consider the example

of a one-dimensional Brownian motion with periodic drift.

Example 4.14. Let S € C'(R") be a T-periodic function and o # 0 and

consider the one-dimensional T-periodic SDE
dXt = S(t)dt + O'th,

on some bounded interval D. Clearly Condition A2 is satisfied. By Corollary

4.13, it is sufficient to show the associated (time-reversed) bilinear form

2

Bglp,1; s] = —/L)S(T—S)axso(x)w(x)dﬂgZ}@xw(x)ﬁxw(x)dx> ¢, v € Hy(D),

is coercive. This is obvious by an integration by parts with vanishing bound-
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aries and applying the Poincaré inequality

S(T —s o?
Brlp.gis) === [ o)) + T ol
S(T —s 0_2

v

) 0"
-2 @lon + T 1050y + 305 Il

= O‘“@H?{é(D)y

where C'p denotes the Poincaré constant for the domain D such that ||g0||2LQ(D) <
2

Cb ||3T,g0||iz(D) and a = min (-, %) > (. Hence by Theorem 4.12, there exists

a unique solution to (4.16).

4.3.2 Convex Optimisation

In Section 4.3.1, we showed that if the bilinear form associated to the PDE is
coercive, then Theorem 4.12 yields a unique weak solution to (4.19). However,
in general, coercivity of the associated bilinear form can be difficult to verify.
Furthermore, it is not immediate whether the weak solution is indeed a classical
solution. In this section, we now seek to solve (4.19) by casting it as an convex
optimisation problem with a natural cost functional. Convex optimisation has
been a standard method to study solutions of elliptic PDEs.

In this convex optimisation framework, we show that the unique minimiser
of the cost functional is a solution to (4.19). In this approach, coercivity of
the functional is holds almost immediately, provided the maximum principle
holds. Since the maximum principle holds, it follows that the solution is a
classical /strong solution as opposed to the weak solution given in Theorem
4.12.

Casting the optimisation problem on a Hilbert space, we will derive equa-
tions for the gradient of the cost functional. Therefore, one can readily compute
the minimiser numerically by standard gradient methods.

We begin with a standard convex optimisation result on Hilbert spaces. Let
(H, ||-||z) be a Hilbert space, ¢ C H be a closed convex subset and F': H — R

be a functional. The functional F' is said to be coercive over € if
F(p) = 00, as |l¢||lpg = o0, peF.

The functional F' is Gateaux differentiable at ¢ € H if for any ¢g € H, the
directional derivative of F' at ¢ in the direction ¢g, denoted by DF(y)(¢o)

’
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4.3  Well-Posedness of the Expected Duration PDE

given by
DF(5)(éy) = lim 1T €00) = F(¥)

e—0 €

(4.39)

exists. The gradient % is obtained by Riesz representation theorem such that

<‘;—Z,¢o> — DF(2)(60), o0 € H. (4.40)

We shall use the following standard result from convex optimisation theory
(see e.g. |[ET99, Trol0]).

Lemma 4.15. Let H be a Hilbert space and € C H be a closed convex set.

Assume further that F is a (lower semi)continuous and bounded from below.
Then there exists at least one vy € € such that F(vy) = infoeq F(p). If F is
Gateauz differentiable, then for any such vy, DF(vy)(-) = 0. If F is strictly

convex then vy 1S unique.

We now focus specifically on using Lemma 4.15 to solve (4.19). Recall that
if Condition A1 holds then (4.20) is well-posed. We then associate to (4.20)
the natural cost functional F': L?(D) — R defined by

1

Fip) =5 [ (49)(0) - pla)fde. (1.41)

where A is given by (4.25). This functional is natural to our periodic problem
because if there exists vy € L*(D) which minimises the functional to zero, it

is a solution to (4.19) i.e.
F(’U()) =0 <~ AUO = 1,

i.e. vy solves (4.27) and therefore is a (possibly weak) solution to (4.19).

Optimisation briefly aside, we recommend using the cost functional F' to
quantify the convergence of the Banach iterates of Theorem 4.12.

In order to apply Lemma 4.15 on F, we recall some properties associ-
ated to linear parabolic PDEs. Suppose that (4.20) is well-posed. Since PDE
(4.20) is linear, by the superposition principle, ®(-,-) is a linear operator i.e.
D (s, 1) A1 + Aapa] = M P(s, )1 + AP (s, ). However, due to the inhomo-

geneous term, observe that A is not linear. Instead, if A\;, Ao > 0 such that
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)\1 + )\2 =1 then

A + A) = (0, T) A + Aath] + (A1 + >\2)/0 O(r,T) f(r)dr

= M Ap + A AY. (4.42)
Since T is non-negative, we consider
€(D) == {p € Hy(D)|p = 0}.

It is easy to verify that €’(D) is a closed convex Hilbert subspace of L?(D).

Theorem 4.16. Let Condition Al hold, f € CV(0,T;L*(D)) for some v €
(0,1), f >0 and d < 3. Let F: €(D) C L*(D) — R be defined by (4.41) .

Then there exists a unique vy € € (D) minimising F.

Proof. Since Condition A1 holds, the IBVP (4.20) is well-posed. Hence the
operators A and ®(s,t) and thus F are all well-defined. We show that F
satisfies the assumptions of Lemma 4.15. Obviously F' > 0 and hence bounded
from below. By the well-posedness of (4.20), it is clear that ¢ — Ay and
moreover p — Ap — ¢ are continuous from L*(D) to L*(D). By the L?*-norm
continuity, it follows that F' is continuous. Utilising the strong convexity of
the quadratic function and (4.42), we show the strong convexity of F: for any
A€ (0,1) and ¢, € € (D), we have that

Fp+ (1= A)) = ¢ /D A+ (L= A)) — (g + (1 — A)b)da

=5 e =)+ (1= N (A — o)
<3 [ Do =9+ (1= N0 - )] da

= F(p) + (1 = ) F(@).

Since d < 3, by Sobolev embedding and Schauder estimates, it follows from
(4.26) that for any ¢ € (D) C H*(D) and f > 0, the solution to (4.20)
with initial condition ¢ is regular. Therefore, the maximum principle (4.32)
applies. Hence together with the homogeneous Dirichlet boundary conditions,
it follows that Ap > 0. Therefore, for any 2 € D and € € (0,1), Young’s

92



4.3  Well-Posedness of the Expected Duration PDE

inequality yields that

1

Flo) =5 [ (Ao —2(40)p + o

> %/D((l — )" + (1 — e ) (Ap)*)dz
1—c¢

=3 ||90||%2(D)+

1 —
2

et 9
||A<P||L2(D)-

Hence it follows that F'(¢) — 0o as ||¢||2(py — 0o. Then Lemma 4.15 yields

a unique solution vy € € (D) minimising F. O

In the following proposition, we derive an expression for the directional
derivative DF(p)(¢o). While it is then straightforward to apply the maximum
principle to show that DF(p)(-) is a linear continuous operator to deduce
existence and uniqueness of the gradient (via Riesz representation), we employ
numerical analysts’ adjoint state method (see e.g. |[GP00, CLPS03, SFP14,
Ple06]) to attain an expression for the gradient directly. From a numerical
perspective, the gradient allows us to apply gradient methods to iteratively
minimise F'. Numerically, we note that it is not necessary to use adjoint state
method to compute the gradient. However, it is well-known that adjoint state
method is (generally) computationally efficient see e.g. [SFP14|. However,
compared to Banch fixed point iterates of Theorem 4.12, the adjoint state
method is computationally less efficient because a pair of IBVP, rather than
one, is required to be solved .

To employ the adjoint state method, we recall that L*(s) is the Fokker-
Planck operator given by (3.40). If Condition A2 holds, then

Osw = L*(s)w in Dr,
w =0 on [0,7] x 9D , (4.43)

w(0,-) =wy, on D.

is well-posed for any wy € L?(D). Hence, akin to (4.21) and (4.22), we define
the evolution operator W for (4.43) i.e.

w(s, ) = W(0,s)wy, s>0, (4.44)

where W (0, s) : L?(D) — H*(D) N H}(D).
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The following proposition was inspired by [AW10, BGP98| in employing the
adjoint state method for periodic solutions of the Benjamin-Ono and autonom-

ous evolution equations respectively.

Proposition 4.17. Let Condition A2 hold and F be defined by (4.41). Then

for any o € L*(D), we have the expressions for the directional derivative

DF@X%)=/¥A¢—w@mum%—¢@wa b€ (D), (4.45)

D

and the gradient

oF
2 W T~ (1.46)

with initial condition wo = Ap — ©.

Proof. Utilising the linearity properties of A and ®, from (4.25) and (4.39),

we have

DE(p)(¢o) = lim 5 ;

1 / (Alp + edo) = (9 + €00))* = (Ap —9)*
1 [ ((Ap+€®(0,T)¢o) — (¢ + €¢p))?* — (Ap — )

= lim — dx
e—0 2 D €

i L [ (Ae = 9) +e(2(0, 7)o — 60))* = (Ap — 9)*
e—0 2 D €

_ nnéé 2(Ap — 9)(D(0,T)do — bo) + €(B(0, T) o — o)’
€E— D

Hence (4.45) follows in the limit. We now wish to find ‘;—Z € L*(D) such that

oF
p 0¥
To compute the gradient, consider wg(s, x) satisfying the adjoint equation of
PDE (4.21)

Dﬂmmzégmz (2)do(x)dr. o € L3(D).

—0swr = L(s)wg in Dr,
wg = 0, on [0, 7] x 0D, (4.47)
wr(T,-) = wr, on D.

for some terminal condition wr € L*(D). Note that (4.47) is a backward

equation. However, as terminal conditions are provided, (4.47) is well-posed

provided Condition A2 are satisfied. This contrasts to the backward equation
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associated to (4.16) as a IBVP with initial conditions. For clarity, we introduce
w(s, ) = wr(T—s,-). Then it is clear that w satisfies (4.43), since L5(T—s) =
LT — (T — s)) = L*(s) by (4.18). In this form, it is clear that (4.43) and
equivalently (4.47) are well-posed provided Condition A2 is satisfied. With
the repeated time-reversal, w(s,x) is understood to solve the Fokker-Planck
equation forward in time.

Let ¢ be the homogeneous solution satisfying (4.21) with initial conditions
#(0,:) = ¢o. We multiply ¢ by wg and integrating over Dp. Integrating by
parts in time for the first integrand and space for the second integrand, we
have by (4.47) and its Dirichlet boundary conditions

T
= Osp(s,x) — L , . ,x)dxd
0 /0 /D( o(s,x) r(s)o(s,2)) - wg(s, x)drds
T T
:/D[gb(s,x)wR(s,x)]z:de—/o /D¢(s,a:)8sw3(s,:c)d:cds—/0 /ng(s,:c)L}‘{(s)wR(s,x)dxds
:/ gb(T,x)wR(T,a:)dx—/ oo(z)wgr(0,x)dz.
D D
That is, in terms of w and @,
/ (0, T)do(x) - w(0, x)dz / 60(2)00(T, 2)dz. (4.48)
D D
Impose the initial condition,
w(0,-) = wr = Ap — ¢. (4.49)

Then it follows from (4.45), (4.48) and (4.49) that

DF(g)(d0) = / wo(2)®(0, T) o x)dx — / wo()o(z)dz

D D
:/ [w(T, z) — wo(x)] po(x)dx. (4.50)
D
Since ¢ was arbitrary, we attain (4.46). O

We note that while Lemma 4.15 yields a unique minimiser, it was not
immediate whether F' was minimised to zero. In the following theorem, we

show indeed that the unique minimiser of F' indeed minimises F' to zero.

Theorem 4.18. Let Condition A2 hold and d < 3, f € C7(0,T; H*(D)) for
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some v € (0,1) and f > 0. Then vy € € (D) obtained in Theorem 4.16 is
the unique function in L*(D) satisfying (4.27). Moreover there exists a unique
v € C(Dy) N CY2(Dy) satisfying (4.19)

Proof. By Theorem 4.16, the functional F' has a unique minimiser vy € €' (D).
By Lemma 4.15 and (4.50), it follows that

DF(vy)(¢) = / (w(T, z) — wo(x))po(z)dr =0, ¢o € L*(D).

D

By the fundamental lemma of calculus of variations, we have by (4.44)
0=w(T,-)—wy(-) =W(0,T)wy — wy,

i.e. wy is a fixed point of W (0,7"). Clearly wy = 0 is a fixed point of W (0, 7).
Let wy € H*(D) be another fixed point solution to W (0,7T) and define w(s, -)
by (4.44). With d < 3, by (4.26), it follows that w € C(Dy)NCH2:2+0((0, T x
D). In fact, since D is bounded, w(s,-) € L>(D) for s € [0, T]. Note that pp
of (4.9) is a fundamental solution of (4.43), hence since wy is a fixed point of

W(0,T), it follows that
wn(z) = [ po0.Txy)unl)dy. @€ D.
D
Due to the absorbing boundaries of (4.43), note that for any T' € B(R?),

PD(SathaF) ::/ pD(S7tax>y)dy

Dnr

P{X;* e DNT}N h{Xﬁ*x € D})

=S8

IN

P{X;™" e DNT})
P(s,t,z, D).

Hence with € € (0,1) from Lemma 4.1, it follows that

nmmzwmu/p@ﬂ%w@sdmm.
D

Thereby deducing 0 € H?(D) is the only fixed point of W (0, T'). herefore, from
(4.49), vy € € (D) is the unique minimiser such that.Avy = vy and F(vg) = 0.
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It follows then from (4.26) that
v(s,x) := @0, s)v(x) +/ (r,s)f(r)dr € C(Dy) N C’l+g’2+0((0,T] x D)
0

satisfies (4.19). We show that vy is the unique fixed point of A in the entire
L*(D). Indeed suppose there exists another solution 9y € L*(D)\% (D) to
(4.27) such that ¥y = A%. By (4.26), Aty € C**%(D) C H?(D) and satisfies
the boundary conditions i.e. 0y € Hi(D). Since H*(D) > f > 0, it follows
from (4.33) that 0y > 0 i.e. 99 € €(D). Since uniqueness already holds in

%(D), we conclude the uniqueness of v, satisfying (4.27) extends to L?(D). [
Akin to Corollary 4.13, we apply Theorem 4.18 specifically to (4.16).

Corollary 4.19. Let d < 3 and D C R? be a non-empty open bounded set. As-
sume that the T-periodic SDE (4.4) satisfies (3.5), (3.9), (3.6), (3.8) and (3.7).

Then there exists a unique non-negative non-trivial 7 € C'(Dp)NC™2?(Dr) sat-

isfying (4.16).

Proof. Since D is bounded, obviously 1 = f € C7(0,T; H*(D)) is non-negative.
Then by Theorem 4.18, there exists a unique non-trivial non-negative solution
v € C(Dr) N CY%(Dy) satisfying (4.19). Then by time-reversal 7(s,-) =
v(T — s, -) satisfies (4.16). O

We end this section by drawing some differences Theorem 4.12 and The-
orem 4.18. While the conditions of Theorem 4.18 is straightforward to verify,
the dimensionality is capped to d < 3. This contrasts with Theorem 4.12,
where coercivity may be difficult to verify however applies to any (finite) di-
mensions. The dimension difference between the theorem has regularity im-
plications. Indeed Theorem 4.18 yields classical solutions, while on the other
hand, Theorem 4.12 yields weak solutions which are indeed strong provided

= 1. We comment that Theorem 4.18 has d < 3 rather than d < 1 because
the convex subset (of initial conditions) of the cost functional is a subset of
H?(D) hence sufficiently regular for (4.26) to hold. On the other hand, for
Theorem 4.12, we can only deduce H}(D). Tt is worth noting that Theorem
4.18 can be extended to d > 3 by demanding more regularity of ¢’ (D) and
applying Sobolev embedding, however, this comes at the cost that we cannot
conclude uniqueness in the entire L?(D) as previously demonstrated. From a

numerical perspective, computing Banach iterates for Theorem 4.12 is faster
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than gradient descent methods given by Theorem 4.18, this is because one has
to solve the IBVP (4.43) also in order to attain (4.46).
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5.1 Weakly Dissipative Systems

As discussed in the introduction, expected exit times have a range of applic-
ations to model certain events to occur. Depending on context, the problem
are typically phrased as the stochastic process hitting a barrier or a threshold.
While many physical problems have naturally bounded domains, many ap-
plications have naturally unbounded domains. For example, D = (0,00) is a
typical unbounded domain for the population of a species or a wealth process
and exit from D implies extinction and bankruptcy respectively. Unbounded
domain brings technical difficulties to the derivation of the expected duration
PDE and indeed its solution via PDE methods both theoretically and numer-
ically.

However, unbounded domain brings various technical difficulties for the
expected duration PDE. Particularly from a computational viewpoint, any
numerical PDE scheme requires a finite domain. In the following remark, we
show that the recurrency condition (5.1) below is sufficient to approximate the

expectation duration by a finite domain rather than the unbounded domain.

Remark 5.1. Suppose that there exists a radius r, > 0 and € > 0 such that the
coefficients of SDE (4.4) satisfies

2(b(t,z),z) + ||o]|5 < —e on RT x BS . (5.1)

Note that if b is continuous, then there exists a constant M > —e such that
2(b(t,z),x) + ||o||]2 < M. Let D be an unbounded domain that is bounded
in at least one direction hence rp := inf,cspl|y|| is finite. We suppose initial
condition z € B,, N D for some fixed r; > 0.

For any fixed R, > max{r.,rp,rr}, define D := DN Bg.. Note that D
is an open bounded domain with boundary 8D = dD; U dD,, where D; :=
0D N B, and 9Dy := D N OBk, are the subset of original boundary and
“artificial” boundary to “close up” the original boundaries respectively. Observe
that ||z|| € (rp, R,) for z € dD; and |z|| = R, for = € dD,.

For np as defined by (4.1) for the domain D, by It&’s formula, we have
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2 2 D 2 1
X 2 =l + [ (2000 X) + JolB) dr + [ (X, aats)

Under the assumption (5.1), Corollary 3.2 of [Has12] implies that E**(ns—s) <
@. Since X, is bounded for r € [s,#], it follows that

S, S,T 1
B[ Xinn |I° < [l)* + ME** [, — ] < (14 )|

By Markov’s inequality, it follows that P(||X,_[|> > RZ) < R*(1+ 1)[|z* <
R2(1+ 1)r} — 0 as R, — oo. This implies that for sufficiently large R,, the
process is exits D via dD; rather than 9Ds, thus

7_-D’B(Sv ) = _[)(57 ')’
where 7p| 5 denotes 7p restricted to D. In practice, R, = 2max{r,,rp,rr} is
sufficient for weakly dissipative SDEs. We consider two examples and assume

for simplicity that r; = r,.

It was shown in [FZZ19| that the periodic Ornstein-Uhlenbeck process pos-
sesses a geometric periodic measure [FZ16], furthermore it has a periodic mean
reversion property akin to its classical counterpart. In applications, these prop-
erties are desirable for processes with underlying periodicity or seasonality.
Indeed electricity prices in economics [BKMO07, L.S02] and daily temperature
[BS07| were modelled by periodic Ornstein-Uhlenbeck processes. In [IDL14],
the authors performed statistical inference of biological neurons modelled by
Ornstein-Uhlenbeck proceses with periodic forcing. In such models, one may
be interested in the expected time in which a threshold is reached. For model

parameter estimation, we refer readers to [DFK10].

Example 5.2. Consider the periodically forced multi-dimensional Ornstein-
Uhlenbeck process
dXt = (S(t) - AXt) dt + O'th,

where S € C(R™,RY) is T-periodic and o, A € R¥*? with A positive definite
i.e. there exists a constant o > 0 such that (Az,z) > af|z|? for all z € R%

Denote ||S][ec= sup,ejonl|S(t)[|. By Cauchy-Schwarz inequality and Young’s
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inequality, it follows that

S|
2(S(0) — Az, ) < 20|l 20 < Il ooy,

i.e. weakly dissipative with coefficients ¢ = % and A = a. Then

LIS
=t (B o).
o (6]

Remark 5.1 suggests one can reasonably approximate the unbounded domain
D = (0,00)% by the bounded domain D = (0, 2r,)".

Example 5.3. Counsider the stochastic overdamped Duffing oscillator (3.27).
Theorem 3.9 shows that (3.27) satisfies the weakly dissipative condition with
any A € (0,2) and

c= sup f(t,x) + Asup(z® — ),

(t,2)ER+ xR 2eR
where
f(t,x) =2(b(t,x),x) + \x*
= 22% — (2 — \)z* + 2A cos(wt)x.
By eclementary calculus, we compute sup,cp (2> —2*) = 1 and sup,cp (3, 7) =

55 Hence for z € [—1,1],
1
flt,x) <a? — (1= Naz* +2|A| < ﬁ+2|A\. (5.2)
For simplicity, let A = 1, then for € > 0, observe that

Duf(t,1+€) <4(l+e€) —4(1+¢€)’ + 2|4
< —4€(2 + 3¢ + €%)
< =8¢+ 2|Al.

Hence it follows that if € > % then 0,f(t,14¢) < 0. If A is small, then it
follows that (5.2) is in a small neighbourhood of the maximum of f. Therefore,
(3.27) satisfies the weakly dissipative condition for any fixed A € (0,2) and
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¢ = 575 + 2|A| + 4 for small A, hence

1 1 1
2o (—+42|4 —.
=3 (5o 2+ olk) + 5

For concreteness, suppose that A = 0.12, ¢ = 2.85 and A\ = 1, then r, =
V1.57 = 1.25 (2 dp). The heuristic suggests that the process exiting D =
(—1,00) can be approximated by the bounded domain D = (—1,2r,).

Via Monte Carlo simulations, we numerically demonstrate the Remark 5.1
for (3.27) to estimate 75(0, z) for different bounded domains D. We partition
D into Nsde = 100 uniform initial conditions. For each fixed initial condition
z € D, we employ Euler-Maruyama method with time intervals of At = 5-1073
to generate 1000 sample-paths of X, until it exits D. We record and average
the sample-path exit time to yield an estimate for 75(0,x). Figure 1 shows
that the estimation of 75 are “stable” for bounded domain D = (—1,2) and
larger. Where the differences between these curves can be explained by the
randomness of Monte Carlo simulations and sample size. On the other hand,
the estimation of 7 differs significantly for D = (—1,1.5). Physically, this
is interpreted as the artificially boundary R, = 1.5 set too low and many

sample-paths leaves via this artificial boundary rather than via —1.

gt gt agRd- 4 A e
@ 2000 &
= ¥
‘= Il
= 1750 3
o i
S 1500 /
[%}] ]
[ I
m I
= 1250
5 ¥
o ]
c ’
= 1000 i
£ ;
=
5 70 r* .
@ » — 13(0.x),D=(-1,1.5)
ﬁ I
4 500 L, u 150, x).D=(-1,2)
% y T3(0, x) ( )

== Tp(0,x),D=(-1,3
W 2sp ! -]
I ¢ T80,x).D=(-1,10)
-1.0 05 0.0 05 10 15 20 25 30
x (initial condition)

Figure 1: Monte Carlo estimation of 75(0,x) with different D, plotted for

z e (-1,3)NnD.
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Finally, for subsequent analysis, while D = (—1,2) is sufficient, we shall
will reduce D to D = (—1,3). We pick this larger domain to accommodate

when we use 0 = 1 where r, = 1.58 (2 dp).

5.2 Stochastic Resonance
5.2.1 Background

In this section we apply the theory developed for both the periodic meas-
ures and expected exit time to specifically study the physical phenomena of
stochastic resonance. As described in the introduction, stochastic resonance is
the physical phenomena to explain the periodic transitions between metastable
states and is typically modelled by a double-well potential SDE with periodic
forcing.

Section 3.3 shown that time-periodic weakly dissipative SDEs, which in-
cludes double-well potential SDEs, possesses a unique geometric periodic meas-
ure. The existence and uniqueness of geometric periodic measure of double-well
potential SDEs implies that transitions between the metastable states occurs
as well as asymptotic periodic behaviour. Note however this does not neces-
sarily imply that the transitions between the wells is periodic.

In the absence of the periodic forcing i.e. the autonomous case, transitions
between the wells occurs when the noise is sufficiently large for the process
to surmount the well and reach the other well. In this autonomous case,
the double well potential does not evolve in time. With periodic forcing, the
double-well is no longer static. The wells move asymmetrically that is, when
one well goes up, the other goes down. In contrast to the static double well,
transitions are much more likely to occur when the well is at or near the highest
position and the other well is near or is at its lowest position.

Although the double well potential oscillates, as noted, this does not im-
mediately imply the transitions occur periodically. This is a reflection that
despite the well being at its peak, transition is relatively more likely, it is not
guaranteed. If the noise intensity is too small, transition well’s peak may not
occur with large enough probability. On the other hand, if the noise intensity
is too large, transitions may occur even when the process at the well’s trough
rather than peak. Hence, the system is said to exhibit the phenomena of
stochastic resonance when the noise intensity is fine tuned so that transition

occur at the well’s peaks and does not occur at the well’s trough with large
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t=0 t=(1/4)T

t=(2/4)T t=(3/4)T

Figure 2: Visual portrayal of a double well SDE exhibiting stochastic
resonance, where depicts transitions between the wells after a half
period at the well’s peak.

probability. From a transition time perspective, the system exhibits stochastic
resonance when the expected transition time between the metastable states
is (roughly) half the period [CLRS17]. We portray this heuristic visually in
Figure 2.

For concreteness, we consider specifically the stochastic overdamped Duff-
ing Oscillator (3.27) as our model of stochastic resonance. This is a typical
model in literature [BPSV82, BPSV81, BPSV83, CLRS17, GHJM98, HI05,
HIPO05]. As noted (3.27) is a gradient SDE

dXt = —@CV(t, Xt)dt + Uth,

derived from the time-periodic double-well potential V € C1?(R x R) given
by

1 1
V(t,x) = —§x2 + Zfl — Az cos(wt).

In the absence of the periodic forcing (A = 0), V has two local minima at

x = +1 which are the metastable states and has a local maximum at x = 0, the
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unstable state. We consider the left and right well to be the intervals (—oo, 0)
and (0, 00) respectively. Although the local minima change over time, by the
nature of the problem, we shall normalise the problem to have x = —1,+1 as
the bottom of the left and right well respectively.

Currently, there does not appear to be a standard nor rigorous definition
of stochastic resonance [HI05, JHO7|. In the context of this thesis, a working
definition is that the stochastic system is in stochastic resonance if the noise
intensity is tuned optimally such that the expected transition time between
the metastable states is (approximately) half the period [CLRS17]. For the

stochastic resonance problem, let D = (—1, 00) and consider
T,(s,2) = itr>1f{Xt =—-1X;=a}—s= gf{Xt €0D|Xy;=2}—s, xe€D.

For convenience, let 7,(x) := 7(0, x), then 7,(z) is interpreted as the sample-
path exit time from initial point z to the bottom of the left-well. In the context
of stochastic resonance, we keep the explicit o dependence and refer to the exit

time as transition time (between the metastable states).

5.2.2 Estimating by Monte Carlo and PDE

We first demonstrate the validity of solving (4.19) for the expected duration
for the Duffing Oscillator (3.27). Following Example 5.3, we choose the same
parameters A = 0.12, w = 1072 and o = 0.285. The same parameters was
considered in [CLRS17]. As Example 5.3 and Figure 1 demonstrated, we reduce
the unbounded domain to the bounded domain D = (—1,3). We then estimate
Tooss by three approaches. In this demonstration, we let 759 fé’_g‘;g) and
78 t0 respectively represent the Monte Carlo simulation from Example 5.3,
Banach fixed point iteration (Theorem 4.12) and gradient descent iteration via
convex optimisation (Theorem 4.18) approximations to 7 s5. Figure 3 shows
these approximations.

For Figure 3, we re-use 75% from Example 5.3 for the domain D = (-1, 3).
To compute 705, and 7820 via PDE methods, we partition D and the time
interval [0, 7] into NP9 = 500 and NP = |27'| uniform points respectively.
We implement a backward Euler finite different method to evolve IBVPs (4.21)
and (4.43). This yields the gradient (4.46) to compute the gradient descent
iterates v,41 = v, — 'yn(%. Due to the strict convexity of F', the rate of

descent 7, can be chosen adaptively and large provided F' decreases. We
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Figure 3: Numerical approximation of the expected transition time 7y og5()
by 788 (), 7% () and 7'%%%( ) to SDE (3.27) with parameters A = 0.12,
w=0.001, 0=0.285,5=0,D=(-1,3).

continue both the Banach fixed point and gradient iterates schemes until (the
numerical approximation of) F(v,) < 107°.

Figure 3 shows that 702 and 7824 are closely approximate each other and

in turn both visually approximate 7555 well, particularly for initial conditions

starting in the right well. In the absence of an analytic formulae of 7 285, We as-

sume 78‘12685 is the “true” solution and numerically estimated the relative error by

=sd
178555 — T0.285||L2(D)

= 0.57% (2 dp). In particular, since our interest lies in expec-

H7'0.285||L2([)) ’
178%855 —Tormss |l .2

T0.285 0285L(03)_01%

lI75¢ 280”L2(0 3)

ted transition time between the wells, we compute also

(2 dp). The relative errors are very similar for 785%e. The small relative er-

ror validates approximating 7y 2s5 by numerically solving PDE (4.19) by either
7o or 7824 for the Duffing Oscillator. Tt may be particularly remarkable that
the Banach fixed point iterates converges because it is not immediate whether

the associated bilinear form is coercive.

5.2.3 Noise Intensity Fine Tuning

Following Section 5.2.2 where we demonstrated the validity of estimating the

expected transition time by solving the PDE (4.19), in this section, we fine
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tune o until the stochastic system exhibits stochastic resonance.
For completeness in discussing stochastic resonance, we consider also the

transition from the left well to the right well. Specifically, consider the SDE

dY; = [Y; — Y2 + Acos(wt)] dt + odW;, t> T,
YI =Y,

2

and define

T
ER(y) = inf {Y, € (9D|Yg =y} — 3 Y€ Dy,

o
T
t>5

where D = (—o0, 1) and noting that s = 2. Clearly, by a change of variables,

Y, = —Y, z and since cos(w(t + T)) = — cos(wt), we have that

dY, = |V, = Y + Acos(wt)| dt — adW,,
Y/b =Y,

where W, = WH% — W%. It follows then that 727 (y) = inf;5o{Y; € dD|Y; =
—y}. Note that W and W have the same distribution, hence

To(w) =77 "(=x), weD. (5:3)

g

Indeed the same computation holds provided the drift is an odd function when
A=0.

Specifically for SDE (3.27) where w = 0.001, 7" = 20007 is the period.
Given (5.3), it is sufficient to cast the stochastic resonance problem as finding
o, # 0 such that the transition time from the right well to the left i.e.

T
7. (1) = 5 = 1000m. (5.4)

i.e. the expected transition time between the wells is half the period.

To fine tune for stochastic resonance, we repeat the same PDE compu-
tations with the same numerical parameters and methods (as for Figure 3),
changing only o and considering the expected transition time 78%4(1) is as a
function of 0. We vary o in the o-domain [0.2,1]. We partition this o-domain

into two subintervals [0.2,0.3] and [0.3, 1] and uniformly partition them into 50
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Figure 4: Plot of 78%(1) for o € [0.2,1] for SDE (3.27) with parameters

A=0.12 and w = 0.001, s =0 and D = (-1, 3).

o 0.245

0.2455

0.246

0.2465

0.247

79d(1) | 3388

3346

3306

3267

3230

o 0.2475

0.248

0.2485

0.249

0.2495

0.25

7erad (1) 3194

3159

3125

3093

3061

3030

Table 1: Computation of 7874 (1) (4sf) on a finer partition of o € [0.245,0.25].

and 100 points respectively. As a function of o, we plot the expected transition

time 78™4(1) in Figure 4.

It can be seen from Figure 4 that (5.4) is satisfied for some o, € [0.245,0.25].
We compute further 7824(1) on a finer partition of the interval [0.245,0.25]

further and tabulate its numerical values in Table 1. Numerically, from Table

—grad

1, it can be seen that 7gog5 =~ 5
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6 Future works

Generalisation to SPDEs Via Foster-Lyapunov functions and a coupling
approach, Section 3 attained the existence and uniqueness of a periodic meas-
ure for SDEs with verifiable conditions. We expect the approach carrier for-
ward to SPDEs. This expectation derives from the existing literature where
invariant measures for SPDEs were attained via a coupling method similar akin
to the one used in this thesis. For instance, in [Mat02, EMS01, KS01, KPS02],
the respective authors utilised the coupling method to attain an invariant
measure for the 2D SNS (two-dimensional stochastic Navier-Stokes equation).
In fact, it is shown that the convergence of invariant measure for the 2D SNS
equation is geometric in [HMO08|. Other examples includes [Hai06] for a class
of degenerate parabolic SPDEs including the complex Ginzburg-Landau equa-
tion and [Mat02] for dissipative SPDEs. We refer readers to [Mat03| where key
aspects to attain invariant measures via the coupling method in the infinite
dimensional setting was discussed. Moreover, in [DZ96], the authors deduced
invariant measures for autonomous SPDEs via irreducibility and strong Feller

property of the Markov semigroup without utilising coupling.

Noise non-degeneracy It was shown in Theorem 2.20 that the local Doeblin
condition holds when the Markov transition probability is irreducible and has
the strong Feller property. Theorem 3.2 was used to deduce irreducibility. In its
proof, the diffusion matrix was assumed to have linear growth (3.6) and along-
side its inverse to have bounded Frobenius norm. While this non-degenerate
case studied in this thesis is already applicable in many physical problems
such as the stochastic periodic double well potential problem in stochastic res-
onance, it is believed that this is a technical requirement. Specifically, the
author believes that the diffusion condition can be relaxed to being just loc-
ally non-degenerate condition locally to the compact set that the local Doeblin
condition is supposed to hold for. Since Hormander’s condition does not ne-
cessarily imply irreducibility (see Remark 2.2 of |Haill|), (time-dependent)
Hormander’s condition is generally insufficient. However, recall that Langevin
equations of Section 3.6 posses a geometric periodic measure although the dif-
fusion are degenerate and satisfying Hormander’s condition. This suggests the
the general conditions is a balance between the inherent SDE structure and

its degeneracy.
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Markov Transition Density Conditions In results where the Markov
transition density was required, it was noted that Hormander’s classical con-
dition was insufficient in the time-periodic case that we have studied. To get
the existence of the density, we relied upon Theorem 1 of [HLT17|. This the-
orem required that the SDE coefficients to be locally smooth and the diffusion
coefficient to be time-independent - specifically (3.9) and (3.8). While these
assumptions are sufficient for applications, they are likely to be a technical as-
sumption that may be relaxed. In particular, it would be of interest to extend
this to case where ¢ is T-periodic. Indeed we expect a range of physical sys-
tems the noise amplitude changes in time. For example the financial markets
are generally quieter in the summer months as fewer market participants are
available (due to the summer holidays) and retail markets experiences periodic

sales for seasonal goods.

Subgeometric rates of convergence Another direction of generalisation is
towards different rates of convergence (e.g. polynomial) for the periodic meas-
ure and possibly in different norm (e.g. f-norms). Indeed, it can be expected
that in some physical applications, the rate of convergence is sub-geometric.
For invariant measures, there are some works in polynomial convergence rates
e.g.[Ver97, Ver00] for (autonomous) SDEs and [JR02]| for (time-homogeneous)

Markov chains.

Time-Periodic Feynman-Kac Duality Theorem 4.6 and Theorem 3.20
rigorously shown that the expected duration and the periodic measure density
of a time-periodic SDE is the time-periodic solution of their respective second-
order linear parabolic PDE. These are instance of time-periodic Feynman-Kac
duality. The author anticipates other important quantities, or indeed a family
of quantities, can related to time-periodic SDEs are time-periodic solutions to

appropriate parabolic PDEs.

Equivalence of Expected Duration PDE and SDE In the derivation
of the expected duration PDE of Section 4, it was shown rigorously that if
expected exit time has finite moments then the PDE can be formally justified
i.e. starting from the SDE perspective, a PDE is derived. One can ask the
converse question akin to a priori estimates and weak solutions. Suppose the

expected duration PDE (4.16) is well-posed, does that necessarily imply the
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expected duration of the SDE problem has finite first moment?

Lévy Processes In Section 3, we applied the abstract results of Section 2
to time-periodic SDEs with the influence of Brownian motion. An area of
future research to extend apply results of Section 2 in the direction of time-
periodic Lévy processes. We mention that Hépfner and Lécherbach studied
ergodic properties of periodically forced Ornstein-Uhlenbeck process under the
influence of Lévy noise [HL11|. Time-periodic financial models with jumps

should see some benefits in this line of further research.

Convex Optimisation of Expected Duration PDE TLemma 4.15 applies
not only to Hilbert spaces but also for reflexive Banach spaces such as LP(D),
1 < p < o0. The author expects reasonably straightforward to define a relevant
cost functional to (4.19) in LP(D) and furthermore use Lemma 4.15 to show
existence of a unique minimiser. However, since LP(D) is no longer Hilbert for
p # 2, the gradient of the functional can only be defined on the dual space.
Establishing a fruitful gradient method on the dual space is generally more
difficult, particularly on infinite dimensional spaces. If the analogous results
can be shown for L”(D), due to Sobolev embedding, the advantage is that it

would then apply to higher dimensional systems.
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Appendix

A Regular Solutions of SDEs

We note the following lemma for the existence of regular solution holds more

generally on locally compact metric spaces with a similar construction [MT93|.

Lemma A.1. (Theorem 3.5 [Has12]) Assume that b and o are locally Lipschitz
and the reqularity condition holds i.e. there exrists a norm-like function V &
CH2(R* x R?) and a constant ¢ > 0 such that

L(t)V < cV.

Then there exists a unique (up to equivalence) solution X, to (3.1) which is an
almost surely continuous stochastic process and regular. Moreover, this process

satisfies the inequality
EV(t, X,)] < e MEV(r, X,)], s<r<t (A1)

iof the expectation on the right exists.

Proof. Asband o are locally Lipschitz assumption, one can construct Lipschitz

functions b,, and g, on RT x R? such that

by(t,x) =b(t,z) on RT x B,,
on(t,x) =0o(t,z) on RT x B,.

Then standard uniqueness and existence theorem, the SDE

dX7 = by (t, X])dt + o, (t, X7")dW,,
X' =u.

has a unique solution X" for s <t < ¢ for some ¢ > s and each n € N. For
m € N, define

"= gf{XZﬂ > n}.
>s

It is intuitively clear (and provable see e.g. [Doo055|) that {7/ },,>, are identical.

Hence we simply denote 7,. Similarly,
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A Regular Solutions of SDEs

IP’{ sup ||X[ — X7l >0}:O, m > n.

s<t<Tp

We define the process
X} =X, t<T1,

and show that it exists, unique (up to equivalence) and regular. By the regu-

larity condition, we see that
W(t,z) = e tIV(t, x)

satisfies
LW = e U=)(LV — V) < 0.

Hence, for stopping time 7,,(¢) = 7, At , Dynkin’s formula yields

E [B_C(t_S)V(Tn(t)7 Xm(t))} - E[V<S7 Xs)] =E

7n ()
/ LW (u, Xu)du] <0.

(A.2)
Since 7,(t) <t and V > 0, we have that

E [V(ra(t), Xro0)] < eCIEV (s, X)) (A.3)

Let I4 be the indicator function, then we also have

E |V (7(t), Xru0)| 2 E [IruzV (70 Xr)| = inf - Vi(w,2)P(r, < 1)

—us)[z)>n

From (A.2),
eCU=IRE[V (s, X,)]
infuss o) >n V(u, )

P(r, <t) <

Since V' is norm-like, by taking n — oo yields X, is regular i.e. X, is a solution
to (3.1) for all t > s. This solution is unique up to equivalence: it follows from
the definition of X, and from the uniqueness of (3.1) in the domain B, that

for every pair of solution X; and Y,

IP’{ sup || X: — Yi| >O} = 0.

s<t<tp

Since the solutions are regular, existence and uniqueness follows by letting
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B Hormander’s Condition

n — oco. The inequality (A.1) follows from (A.3) via Fatou’s lemma. O

B Hormander’s Condition

In this brief section, we remind ourselves of Hormander’s condition and its
consequence to autonomous SDEs. We first recall that for two C! vector fields
V,W on RY we define their Lie bracket by

[V, W](z) = DV ()W (x) — DW (z)V (z),

where DV denotes the Jacobian of V ie. (DV);; = 0,V;.
Let {A;}™, be (time-independent) vector fields on R? and consider the

autonomous SDE written in Stratonovich form with o

dXt == Ao(Xt)dt + Z;il AZ(Xt) O thi, t Z 0
XO =X.

(B.1)

Let A be a matrix with A; as its columns, then to convert (B.1) to Itd form,
define

1K o4
Ai Al ]
Aj(x) = Ap(z) + 5 Z > o A,
Jj=1 k=1
Then (B.1) in Tto form reads dX; = Ag(X;)dt + 327" Ay(X;)dWy.
We say that the SDE satisfies the parabolic Hérmander condition if for

every € R%, the vectors

[Aio (ZE)], [Aio (l’), Ail (ZE)], [[Aio (ZL’), Ail ((L‘)], Ai2 ((L‘)], 2

for 1 < iy < dand 0 < iy,...,3, < d span R%. We note this condition is
significantly weaker than demanding (AAT)(z) is invertible for all z € R

Lemma B.1. (/Mal78, Hor85, RW00]) If the SDE (B.1) satisfies the parabolic
Hérmander condition and possesses a reqular solution (see Appendiz A), then
the solutions to (B.1) admits a smooth density with respect to the Lebesgue

measure i.e. the Markov transition kernel exists and possess a smooth density.
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C Verifying Ornstein-Uhlenbeck Periodic Measure

C Verifying Ornstein-Uhlenbeck Periodic Meas-

ure

For simplicity, we verify that the periodic measure of the Ornstein-Uhlenbeck
process in 1-dimension. Specifically, we consider the 1-dimensional (3.22) from
Example 3.10. Then it was claimed that p, = N (f(s), %)v where £(t) =
ffoo e‘A(t_T)S(T)dr, is the periodic measure. We explicitly verify this. The

Markov transition kernel P in this example was computed as

0.2

P(S,t, x, ) = N(E_A(t_s)x + J(Sat)a ﬂ(l

-,

where

J(s,t) = /t e AN S (1Y dr = £(t) — e AYe(s).

Since £ is T-periodic then p is also T-periodic. Hence to verify p is the periodic
measure, it suffices to verify P*(s,t)ps = p; for s < t. Indeed for any I' €
B(R%), by Fubini’s theorem, we have

P*(S, t)ps(r)
:/RP(S,t,x, ) ps(da)

AN(B—A(t—s)$+ J<S’t)’20_A(1 — e 2A0-9) () exp (_%) i

1
_\/7r02/A
1

/02 JA\/7 (03] A) (1 — e 2AT-9))

ly — (e + J(s,1))] > + (1 — e 220 (z — £(s))?
X /F/Rexp <— (02 /24) (1 — ¢ 2A0—) > dzxdy.

With J(s,t) = £(t) — e AE=)¢(s), we calculate that

[y — (e_A(t_s)x + J(s, t))} 2
=[y— &) +e (@~ £(5))] 7
—(y — &)+ 2(y — @) (@ = £(s)) + e (@ — ¢(s))%.
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C Verifying Ornstein-Uhlenbeck Periodic Measure

Hence
[y — (A0 4+ J(s,1)] 2 + (1 — e 2409 (2 — £(5))?
=(y — £(1)) + 20y — €(t))e ) (2 — £(5)) + (x — £(5))?
=(y — £(1)2(1 — e 2AC9) 1 [(w — &(5)) + e A (y — (1)),

where in the last line we added and subtracted (y—&(t))%e~24¢=%) and grouped
appropriately. Then by the standard Gaussian integral identity fR exp (—( 52 ) dz =
V2ma? for any fixed p,

Pr(s, t)ps(T)
1

\/7TO’2/2A\/7T (02/A) (1 — e—2A0- s))

= f 21 = e PN0) ¢ [(a = () +e Ay — (0]
/ / eXp( (02/2A)( — e 2A-9)) )dwdy

\/71'0'2/214\/71' 02/A ) (1 — e2A(=9))
(y = &) [(z = &(s)) + e 409y — @)
8 /FeXp (‘ (02/24) ) / exp (_ (02/24) (1 — e—2AGE9)) ) drdy

e o (e )

=:p(I)
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