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Abstract 
The power plant and aerospace industries have been facing a huge loss, due to structural 

failure. The structural failure occurs due to the presence of the crack in it. Hence, it 

becomes necessary to monitor the structural health under operating condition. Most of the 

techniques, for structural health monitoring are used for a specific purpose. Some of these 

techniques require structure dismantling, which is very much expensive and time 

consuming. So the vibration based structural health monitoring is advantageous, compared 

to other techniques. Most of the vibration based Structural Health Monitoring (SHM) 

approaches, use linear vibration theory. But, these linear vibration based procedures, have 

inherently low sensitivity to crack. Since crack introduces nonlinearities in the system, their 

merits in damage detection need to be investigated for SHM.  

In this thesis, the problem is focused on studying nonlinear dynamics of cracked structures 

for Structural Health Monitoring. For this, simulations and experiments are performed. The 

new procedure for the simulation is developed using Matlab-Simulink. It uses the numerical 

approximation for dynamic compliance operators and a nonlinear model of cracks contact 

faces interaction to study the dynamic behaviour of the cracked bar. Furthermore, the finite 

element model of the cracked cantilever bar with crack- tip plasticity is developed and the 

dynamic behaviour of the elasto-plastic bar is studied. Additionally, numerous experiments 

are performed to study the dynamics of cantilever bar with the fatigue crack in it.  

The results from Matlab-Simulink simulation shows the distribution of higher harmonics 

generated along the bar length, as a function of distance from the crack. In finite element 

simulation, comparison is made between the resonance frequency of cracked cantilever bar 

with and without crack-tip plasticity. It is found that, there is decrease in resonance 

frequency of the cracked bar with cracked tip plasticity, when compared with the resonance 

frequency of cracked bar without crack-tip plasticity. This reduction in resonance frequency 

is due to the crack-induced plasticity near the crack tip which affects the overall stiffness of 

bar. In experiments, the response is measured at four different points on the cracked 

cantilever bar at a given resonant frequency of excitation at lower and higher vibration 

amplitude. For lower vibration amplitude, it is found that the response obtained near the 

vicinity of the crack shows the presence of higher harmonics of resonant frequency, which 

disappears in the response obtained far away from the crack. For higher vibration 

amplitude, it is found that the response obtained near the vicinity of the crack shows the 

presence of higher harmonics along with the low frequency component. This low frequency 

component causes modulation, which leads to the generation of side band frequencies near 

the resonant frequency. The occurrence of low frequency component and side band 

frequencies is due to the vibro-impact behaviour of crack. The amplitude of these side band 

frequencies and higher harmonics are reduced in the response obtained far away from the 

crack. This indicates that crack-induced nonlinearity has a localized effect on the dynamics 

of bar. It is also observed that the magnitude of low frequency component is proportional to 

the magnitude of resonant frequency of excitation. This indicates that crack behaves like a 

signal modulator, detector of low frequency component and amplifier as the magnitude of 

low frequency component is proportional to the magnitude of resonant frequency excitation. 

From the Matlab-Simulink simulation and experimental results, it is concluded that crack-

induced nonlinearity affects the dynamic behaviour of the cracked bar significantly, which 

will be effective in structural health monitoring. 

Keywords: vibro-impact, crack, dynamic compliance, harmonics, modulator, detector, 

amplifier, crack-tip plasticity, resonance frequency, structural health monitoring. 
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Symbols  Meaning 

   Harmonic Force 

   Modulus of Elasticity 

   Area of Cross Section 

   Strain 

   Density of Material 

   Wave Velocity 

b  Linearised Coefficient of Force of Internal Damping 

   Absorption Coefficient 

   Frequency of Excitation 

s  Complex Variable 

        Vibrational Displacement 

         Receptance Coupling Between Force and Displacement 

    Displacement of a Cross Section of Rod 

      Static Deflection 

             Load Intensity 

    Concentrated Force 

     Static Factors of Influence 

      Mass or Moment of Inertia of Unit Length of Rod 

     ,      Amplitude or Modal function 

   Eigenvalues 

         Contact Force 

NDE  Non-Destructive Evaluation 

FEM  Finite Element Method 

SHM  Structural Health Monitoring 
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Chapter 1 Introduction 

1.1 General Introduction 

Structural Health Monitoring (SHM) is receiving much attention due to the possible 

failure occurring in structures under operating conditions. In most of the cases, failure is 

caused by the growth of crack present in the structure. In order to prevent the failure due 

to the crack, structures need to be designed with higher safety margins. But due to the 

increasing demands for the energy and material conservation structures have to be 

designed with smaller safety margins. At these conditions, it becomes necessary to have 

the accurate quantitative estimates of flaw tolerance of structure in load bearing 

components of all kinds. Hence, it becomes necessary to design a structure which will 

avoid large stress concentration coupled with Non-Destructive Evaluation (NDE) 

techniques to find the defects in structures under working condition. 

Presence of crack in structure does not mean that it is at the end of its useful service life. 

Hence the repair and replacement of damaged components can be balanced for the 

optimum utilization of the structure under working conditions with the help of NDE 

techniques. These techniques can help minimize the risk of failure, but problem exists 

due to poor design, deterioration, over loading, inadequate or nonexistent maintenance 

and the low bid syndrome. Identifying and rectifying all the problems which can cause 

structural failure is an impossible task but through the effective use of NDE techniques, 

failures can be reduced. Hence, there is a need for new NDE techniques to monitor the 

crack in the structures, so that structure can be optimally utilized. In recent years, there 

has been an increase in crack detection methodologies and online techniques. Some of 

the crack detection methodologies includes visual inspection, ultrasonic technique, eddy 

current technique, acoustic emission technique, X-rays etc. However these methods are 

inoperative and unsuitable for some particular cases, since they require minutely 

detailed periodic inspections, which are very costly. In order to avoid this cost, new 

methods have been developed for online SHM based on the vibration characteristics of 

the structure. These vibration characteristics of structure can help to monitor the 

structural health globally when compared with other NDE techniques. These vibration 

characteristics of the structures are dependent on physical parameters such as mass, 

stiffness or damping. The presence of cracks in a structure affects these parameters 

which results in change in vibration characteristics of the structure such as natural 
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frequency and mode shapes. But these linear vibration based procedures do not always 

come up with practical results because of its inherently low sensitivity to defects. Since 

cracks introduce nonlinearities in the system, their merits in damage detection need to 

be investigated for SHM. 

1.2 Aim and Objectives 

1.2.1 Aim 

The aim of this project is to study the effect of crack-induced nonlinearity on the 

dynamics of the structure for SHM.  

1.2.2 Objectives 

The objectives of this research are: 

1) To investigate the effect of material nonlinearity on the dynamic response of the 

structure. 

2) To study the nonlinear resonant phenomena due to vibro-impact interaction 

within a cracked bar. 

3) To make recommendations on structural health monitoring of cracked bar due to 

the presence of contact nonlinearity. 

1.3 Outline of Thesis 

The work incorporates six chapters, summary of which is as follows: 

Chapter 1 is introduction to the problem. 

Chapter 2 deals with the literature review on various crack monitoring techniques at 

present and about various mathematical and finite element models developed for 

studying the dynamic behaviour of structures with crack in it. 

Chapter 3 is devoted to developing the dynamic model of the cracked cantilever bar. 

The developed new procedure uses numerical approximation for dynamic compliance 

operators and a nonlinear model of cracks contact faces interaction to study the dynamic 

behaviour of the cracked bar. Nonlinear resonant phenomena due to vibro-impact 

interaction within cracked bar are obtained and analysed. A distribution of the higher 

harmonics generated due to the crack along the bar length is revealed as a function of 
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the distance from the crack.  Recommendations on structural health monitoring of 

cracked bar due to contact nonlinearity are presented. 

Chapter 4 presents the damage assessment for a component using an example of a 

crack in the cantilever bar under longitudinal harmonic loading. The finite element 

simulation is used to perform this analysis. For nonlinear materials, their properties in 

terms of the plastic behaviour are introduced. The effects of the crack size and position 

along the beam length are studied. An observed change in frequency response is used to 

characterize the damage state of the cracked cantilever bar. 

Chapter 5 discusses experiments performed on the cracked cantilever bar under 

longitudinal harmonic loading excitation. In experiments piezo-strain gauges are used 

for measuring a response of the uncracked and cracked bar. The dynamic response of 

the system obtained is used to characterize the structural health of the bar under 

consideration. 

Chapter 6 summarises the outcome of the present work, draws conclusions and 

recommends areas for future work. 
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Chapter 2 Crack Monitoring Techniques 

2.1 Introduction 

In recent years, there has been increase in crack detection methodologies and online 

techniques. These techniques for crack detection are conventional and non conventional 

Non-Destructive Evaluation (NDE) techniques. The conventional NDE methods have 

unacceptable limits in terms of their applications for online crack detection. Some of 

these conventional NDE techniques are time consuming and inconvenient. Almost all 

the conventional NDE techniques require that vicinity of the damage be known in 

advance and they can provide only local information with no indication of structural 

strength at component and system level. In addition to this, the effectiveness of these 

techniques is affected by the high measurement noise level. Hence there is a need for 

new non-conventional NDE techniques. In this chapter various available NDE 

techniques have been discussed on the basis of their application in different sections. 

2.1.1 Visual Inspection 

Visual inspection is a method in which the structural integrity of the material 

component is assessed by the eye. This method is effective for the detection of the 

damage on the surface of the component. It is most commonly used for assessing the 

damage in aircraft in service. Visual inspection by the eye can be assisted by a 

microscope to provide detailed information on micro crack in metals and delamination 

areas in composites. However this procedure is not helpful in finding the subsurface 

crack in the material component. 

2.1.2 Eddy Current Technique 

The eddy current technique is the most widely used technique for monitoring the 

damage in aircraft. This method is based on the principle of detecting the changes in 

electromagnetic impedance due to the strain in the material. In this technique a circular 

coil carrying current is placed in the proximity of an electrically conductive specimen. 

The alternating current in the coil generates changing magnetic field which interacts 

with the conductive specimen and generates eddy currents. The presence of any flaw 

causes a change in the eddy current flow and a corresponding change in phase and 

amplitude of the measured current.  This technique is widely used because of its 
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simplicity to implement and inexpensive equipment for performing test. However, 

disadvantages of this technique is that large power requirements and complicated data. 

2.1.3 Ultrasonic Technique 

Ultrasonic technique used high frequency sound energy for flaw detection and the 

material characterization. This technique can be classified as linear and nonlinear 

ultrasonic technique. The conventional (linear) ultrasonic techniques utilize wave 

attenuation, reflection, and refraction for the damage detection. But in non conventional 

(non-linear) ultrasonic technique Lamb waves are used for damage detection. Lamb 

waves are guided waves governed by the same wave equations as bulk waves having 

infinite number of modes associated with propagation. In this technique, an external 

source of energy is used to open and close the crack while it is isonified with the Lamb 

waves. This results in the interaction between the Lamb wave and the frequency of the 

energy which opens and closes the crack. This interaction occurs only in the presence of 

crack. Thus non-linear method based on Lamb waves provides a quick and reliable 

method of determining a crack for SHM [McGravie et al., 2000] when compared with 

conventional ultrasonic technique. 

Nagy, 1998 used nonlinear ultrasonic to study effect of fatigue on nonlinear behaviour 

of materials. The comparisons were made between different linear and nonlinear 

parameters to the degradation of material strength during long term fatigue cycling. It 

was found that just before the failure, nonlinearity caused by fatigue cracks were as 

much as one order of magnitude higher than the intrinsic nonlinearity of the intact 

material. From the results obtained, it was concluded that acoustic nonlinearity was 

uniquely sensitive to the fatigue damage, which could be exploited for non-destructive 

characterization of plastics, plastic joints, epoxy matrix composites, adhesive joints as 

well as metals and metal matrix composites.  

Solodov, 1998 investigated acoustic non-linear phenomena on contact boundaries. He 

performed simulation and experiments to study this phenomenon. It was found that 

contact vibrations led to threshold nonlinear distortion due to clapping and kissing 

mechanism, multiple bifurcations and chaos development. It was also observed that 

Hertzian contact nonlinearity increased with the decrease in contact load and was 

predominated by a clapping mechanism in mixed mode vibrations. Also, the author has 
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proposed many modes of non-linear NDE to detect small fractured defects invisible by 

linear NDE techniques. 

Donskoy et al., 2001 developed a vibro-acoustic modulation technique based on 

modulation of ultrasonic signal by low frequency vibration in the presence of a flaw 

such as a crack, delamination or poor quality bonding. They found that the resulting 

modulated signal contained new frequency components which were associated with the 

flaw. They indicated that the method developed could be expanded and enhanced for 

non-destructive testing and characterization by providing discriminating and 

quantitative capabilities.  

Donskoy et al., 2003 suggested the vibro-modulation technique for the detection of 

contact type interfaces such as cracks. The principle of vibro-modulation technique is 

shown in Fig. 2.1. In this technique, the excitation of low frequency vibrations at    and  

 

Figure 2.1 Principle of vibro-modulation technique 

Modified, after [Donskoy  et al. , 2003] 

  

high ultrasound at frequency    were given to the damaged and undamaged sample of 

linear elastic material. It was found that the output spectrum of sample with no defect 

showed only    and     frequency components. However in the case of the sample with 

a crack, applied low frequency vibrations vary a contact area of cracks faces effectively 

modulating a high frequency ultrasonic wave passing through it. From Fig. 2.1 it is clear 
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that modulation leads to additional spectral components at the combination frequencies 

of        which serve as indicators of material imperfection. They have shown that 

spectral amplitude as the sum and difference of frequencies were proportional to the 

crack size and could be used for defect characterization as well as monitoring. 

Staszewski et al., 2004 developed structural health monitoring technique using Lamb 

waves based on guided waves introduced to a structure at one point and sensed at 

different location. The technique utilized a laser Doppler velocitimeter for sensing the 

Lamb waves. The study showed that there is a potential of laser vibrometry for Lamb 

wave sensing. This sensing technique was utilized for the damage detection using low 

frequency Lamb waves [Mallet et al., 2004]. It was found that scanning laser 

vibrometry could be used to analyse the 3D Lamb wave propagation field, which 

allowed for automated damage detection and location. This technique was further 

extended for fatigue crack detection in metallic structures [Leong et al., 2005]. It was 

shown that the method developed could be used for non-contact measurements of local 

amplitude and time of flight variations of Lamb waves that cannot be achieved with a 

smaller number of traditional contact transducers. The experimental results obtained 

clearly located the crack at the centre of an aluminium plate. 

Palit Sagar et al., 2006 used nonlinear ultrasonic technique to assess the fatigue damage 

in low carbon steel. They considered percentage of harmonic distortion, ratio of the 

second harmonic and the fundamental as the measurement parameter in this study. They 

observed that second harmonic amplitude becomes comparable to the amplitude of 

fundamental at nearly 95% of expended fatigue life, which could be used as a signature 

of fatigue crack initiation of in-service components. Their results were analyzed in the 

light of dislocation theory for harmonic generation during material degradation. 

Zaitsev et al., 2006 discussed nonlinear modulation acoustic technique for crack 

detection. This technique was based on the cross modulation effect consisting in transfer 

of modulation from an intensive, initially slowly amplitude modulated pump to probe 

signal. The carrier frequency of the latter may be either lower or comparable or higher 

than that of the pump signal. The principle of cross modulation is schematically shown 

in Fig.2.2. Their investigation revealed that the modulation technique was sensitive to 

the presence of crack like defect. Their result indicated that in contrast to conventional 

role of the elastic part of the sample nonlinearity, the effect of amplitude dependent 
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dissipation might play a dominant role for modulated effect in weakly damaged 

samples. 

 

Figure 2. 2 Cross modulation of a probe wave caused by an amplitude modulated 

pump excitation 

Modified, after [Zaitsev et al. , 2006] 
 

Parsons et al., 2006 developed a technique based on acoustic wave propagation in 

structures for crack detection. They used piezoelectric excitation in the nonlinear 

acoustic technique for the detection of fatigue cracks. Their results showed the 

encouraging potential of piezoelectric excitation for the nonlinear acoustic technique. 

The ultrasonic damage detection techniques discussed in this section show that 

nonlinear ultrasonic technique is quite advantageous as compared to the linear 

ultrasonic technique because of its high sensitivity to the defects like crack. It can be 

observed from the literature that the nonlinear ultrasonic’s can be used to characterize 

the material properties of the damaged specimens, predict the extent of damage in the 

specimen and to locate the position of the crack in the specimen. The nonlinear 

ultrasonic technique offers an advantage for SHM whereas conventional ultrasonic 

technique is quite expensive, time consuming and it needs the dismantling of the 

machines for testing. This conventional technique is useful for NDE has limited 

application and cannot be used for online structural health monitoring. 

2.1.4 Acoustic Emission Technique 

Acoustic Emission (AE) is one of the early and widely used NDE techniques for 

structural damage detection. This technique relies on the transient sound waves 

generated by the material during fracture which then propagates through the analyzed 
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material. Most of these waves are short-time transient events (burst signals) of 

significant energy between 100-1000 kHz. The waves can propagate long distances in 

circles, i.e. in all possible directions. Therefore AE testing can cover large, often 

inaccessible, monitored areas. The distance of propagation depends on material 

properties, geometry, frequency and environment. Acoustic events at their origin are 

high-frequency (in MHz) wideband impacts emitted internally by micro cracks and/or 

inclusion de-cohesion (e.g. metallic inclusions, bubbles) under external loading applied 

to monitored specimens. These material defects release elastic energy due to rapid local 

stress redistribution as a result of loading. The energy results from growing cracks, 

rubbed surfaces of cracks or dislocations. In this section literature is focussed on the 

new developments in the acoustic emission technique. 

Paget et al., 2003 developed a very efficient way to determine the location of a damage 

using Tobias algorithm. However, this algorithm is restricted to the quasi isotropic 

composites. To overcome this, they developed an analytical triangulation algorithm 

adapted to composites including quasi-isotropic materials. They experimentally verified 

the results using damage monitoring system based on modified acoustic emission called 

BALRUE. It was concluded that new algorithm was very effective in damage location 

with good accuracy and fast processing time. 

Carpinteri et al., 2007 used acoustic emission technique to identify defects and damage 

in reinforced concrete structures and masonry buildings. They developed a methodology 

for crack propagation monitoring and damage assessment in structural elements under 

service conditions. This technique allowed to estimate the energy released during 

fracture propagation and to obtain information on the criticality of the ongoing process. 

This made them possible to ascertain stability or instability conditions and to forecast 

the extent of damage in structures. 

This technique is used for monitoring the bridges, masonry buildings, pipelines, 

pressure vessels, storage tanks and reinforced structures. This technique offers good 

advantage of continuously gathering the data and detecting the changes due to the 

damage in structure under consideration. But the acoustic emission signals are quite 

weak. In noisy environment it becomes difficult to discriminate between the signal due 

to the damage and signal due to the surrounding environment. 
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2.1.5 Vibration Based Technique 

Vibration based technique offers an effective and fast means of detecting the cracks in 

the structures under working condition. Several researchers have used this technique for 

various problems. This technique has several advantages over other crack monitoring 

techniques. This technique can be used for online crack monitoring. Moreover this 

technique is economical as compared to other NDE techniques.  This technique has 

been classified on the basis of the type of vibration and the behaviour of crack. 

2.1.5.1 Transverse Vibration of Cracked Beams 

This section discusses the transverse vibration of the cracked beam. The literature 

considered in this section deals with the different approaches used by researchers for the 

modelling of the cracked beam and their findings. 

Cawley et al., 1979 developed a method of non-destructively assessing the structural 

integrity by measuring the natural frequency. They have shown that measurement made 

at single point in the structure can be used to detect, locate and quantify the damage. 

The results obtained showed good agreement between the predicted and actual damage 

sites useful for the indication of the magnitude of defect. 

Gounaris et al., 1988 modelled cracked prismatic beam using finite element method by 

using local flexibility introduced by the crack in beam section. They used strain energy 

concentration argument which led to the development of a compliance matrix for the 

behaviour of beam in the vicinity of the crack. This matrix was used to develop the 

stiffness matrix for the cracked beam element and the consistent mass matrix. The 

element was used to evaluate the dynamic response of a cracked cantilever beam to a 

harmonic point excitation. The results obtained showed that the resonant frequencies 

and vibration amplitudes were considerably affected by the existence of the moderate 

cracks.  

Ostachowicz et al., 1990 modelled a beam with a transverse crack by triangular disk 

finite elements. They studied the effects of crack locations and sizes on the vibration 

behaviour of the beam. They determined the location of the crack by determining the 

deflection shape of the beam. It was found that vibration amplitude was three times 

bigger than vibration amplitudes without a crack. 
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Shen et al., 1990 suggested an approximate Galerkin solution to the one-dimensional 

cracked beam theory developed by Christides et al.,1984 for free bending beams with 

pairs of symmetric open cracks. In Galerkin’s procedure, series of comparison functions 

were considered to be consisting of mode shapes of the corresponding uncracked beam. 

The number of terms in the expansion was determined by convergence of natural 

frequencies and was confirmed by studying the stress concentration profile near the 

crack. This approach allowed them to determine the higher natural frequencies and the 

mode shape of the cracked beam. A finite element approach, predicted the changes in 

eigen frequencies and eigen modes due to cracks. Results obtained for the first three 

natural frequencies and mode shapes agreed well with the finite element results and 

experimental findings. 

Rizos et al., 1990 analyzed flexural vibrations of a cantilever beam with rectangular 

cross-section having a transverse surface crack extending uniformly along the width of 

the beam. They measured amplitudes at two points on the structure vibrating at one of 

its natural modes. This helped them to predict the crack location and the crack depth 

with satisfactory accuracy. The identification method was based on the assumption of a 

transverse surface crack, extending uniformly along the width of the structure. The 

proposed method can be developed into a simple, non-invasive technique and a useful 

tool for preventive maintenance and non-destructive testing of structures. 

Ostachowicz et al., 1991 proposed a method to study the effects of two open cracks on 

the natural flexural vibrations of a cantilever beam. They considered two types of crack: 

double sided, occurring in the case of cyclic loadings and single sided, occurring as a 

result of fluctuating loads. They assumed that the cracks occurred in the first mode of 

fracture i.e. the opening mode. They developed an algorithm which indicated the 

relationship between the position, the magnitude of the crack and the first natural 

frequency of the cantilever beam. The results obtained showed that the positions of the 

cracks in relation to each other significantly affected the natural frequency in the case of 

equal relative depth of the cracks. It was also found that a decrease in the natural 

frequency was the largest if the cracks are near to each other. When the distance 

between cracks increased, the natural frequencies of the beam tend to the natural 

frequencies of a system with a single crack. Moreover in case of two cracks with 

different depths, the larger crack had more significant effect on the natural frequency. 

They also concluded from the algorithm that double sided cracks affected the vibration 
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frequencies to a smaller degree than a single crack with the same relative depth of crack 

and the same position. 

Shen et al., 1991 developed the procedure to determine the crack characteristics from 

the dynamic measurements. Their procedure was based on minimization of either the 

‘‘mean-square’’ or the ‘‘max’’ measure of difference between the measured data such 

as natural frequency and mode shape. They obtained a necessary condition for 

formulations and simulated damage in the form of one-side or symmetric cracks in a 

simply supported Bernoulli-Euler beam. The results obtained indicated the uniqueness 

and reliability of the developed procedure.  

Kam et al., 1992 used modal test data for identifying the crack in a cantilever beam. 

They discretized the cantilever beam into a set of elements and assumed the crack to be 

located within one of these elements. They used vibration frequencies and mode shapes 

to identify the cracked element based on the simple reduced stiffness model. They 

performed static deflection analysis of the structure with and without a crack and 

constructed a strain energy equilibrium equation for determining the size of the crack. 

They suggested that the procedure in general can be applied to more complex structures 

containing a crack. 

Kam et al., 1994 developed an expanded mode method based on modal analysis and 

energy method for crack identification at a given location in a damaged structure. The 

result obtained indicated that the use of frequency and mode shape of only one vibration 

mode of cracked structures could yield good results as long as the crack was not located 

at the nodes of the mode. 

Cheer Germ Go et al., 1994 formulated a super element by using infinitely small 

elements for analyzing the dynamic behaviour of a cracked beam. They used the 

concept of matrix condensation, using the characteristic properties of stiffness for the 

plane elements. This element approach for determining the stress field in the immediate 

neighbourhood of a singular point was found to be excellent. The sub-element around 

the crack tip was subdivided to be arbitrarily small to model the stress singularity with 

sufficient accuracy. The results obtained indicated that it was economical in terms of 

computer memory and programming. 
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Shen et al., 1994 presented a formulation for the flexural motion of a Bernoulli – Euler 

beam containing a single edge crack. They used generalized variational principle. They 

represented strain concentration by introducing a crack function in to the beams 

compatibility relations. A displacement function was also introduced to modify the in- 

plane displacement and its slope near the crack. Both functions were chosen to have a 

maximum value at the cracked section and to decay exponentially along the longitudinal 

direction. They solved the resulting equation of motion for simply supported and 

cantilevered beams with a single-edge crack by Galerkin and a local Ritz procedure. It 

was found that the effects of cracks on frequency and mode shape were very sensitive to 

crack location and mode number. 

Bamnios et al., 1995 studied the influence of a transverse surface crack on the dynamic 

behaviour of a cracked cantilever beam. They modelled the crack as a rotational spring; 

relations linking to the change in natural frequency and mechanical impedance to the 

location and depth of crack were obtained. It was shown that the change in the 

mechanical impedance due to the presence of the crack was substantial and exhibited 

definite trends depending upon the location of the crack and the driving point. The 

method was based on the combined examination of both natural frequencies and 

mechanical impedance that allowed an estimation of both the location and size of the 

crack. 

Gounaris et al., 1996 developed a new method for the determination of the depth and 

location of a transverse surface crack in a beam. They found that the direct responses 

changed very little due to the presence of small cracks, while the coupled responses 

changed substantially allowing the diagnosis of the presence of small cracks. It was also 

observed that the coupled response was only due to the existence of cracks, which 

disappeared in the absence of cracks. 

Gounaris et al., 1997 developed a new method for crack identification in structures in 

fluid environments such as offshore installations, ship and others. In this method, they 

correlated the mode differences with the crack depth and location. The correlated 

differences were chosen to be the ratio of two amplitude measurements in two positions 

and the distance of node of the vibrating mode from the left end, while the structure was 

vibrating under harmonic excitation in resonant condition. Their findings suggested that 

this method could have application in diagnosis of cracked bone restoration process. 
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Dado, 1997 developed a comprehensive algorithm for crack identification in different 

boundary conditions. In this study he assumed crack as a torsional spring and calculated 

the torsional stiffness using the expression of local crack compliance. For developing 

the algorithm he considered natural frequencies of the first two bending modes .The 

algorithm developed helped to give the initial estimate of severity and the proper 

location of the cracks. The algorithm was developed for pinned-pinned beams, clamped-

free beams, clamped-pinned beams and clamped-clamped beams. From the results, it 

was found that in the case of pinned-pinned beams for a given first mode frequency 

ratio, as the crack location moved towards the middle of the beam, the second mode 

frequency ratio gets closer to unity and the crack got deeper as it moved closer to 

support. In clamped-free beams as the crack location moved towards the root of the 

beam, the second mode frequency ratio got closer to unity and the crack got deeper as it 

moved closer to the free end. In clamped-pinned beams as the crack location moved 

towards the clamped end or the middle of the beam, the second mode frequency ratio 

got closer to unity and the crack depth got smaller near the clamped end and the middle 

of the beam. Finally, in clamped-clamped beams the crack location came near the end 

or the middle of the beam as the second mode frequency ratio gets closer to unity and 

the crack depth got smaller near the end and the middle of the beam. 

Chondros et al., 1998 proposed a vibration theory for the lateral vibration of continuous 

cracked Euler-Bernoulli beams with single edge or double edge open cracks. They used 

the Hu-Washizu-Barr variational formulation [Barr, 1966] to develop a differential 

equation and the boundary conditions of the cracked beam as a one dimensional 

continuum. The crack was modelled as a continuous flexibility using the displacement 

field in the vicinity of the crack found by fracture mechanics methods. They compared 

the lowest natural frequency of the bar obtained from the continuous cracked bar 

vibration theory and the experimental results. They found that the analytical results and 

experimental results showed very good correlation. 

Shifrin et al., 1999 introduced a new technique for calculating the natural frequencies of 

vibrating beams with an arbitrary finite number of transverse open cracks. They 

considered the crack as a mass-less spring and used a continuous mathematical model of 

the beam in transverse vibration. The main feature of this technique was related to the 

reduction of the dimensions of the matrix involved in the calculation to reduce 

computation time for evaluating the natural frequencies compared to alternative 
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methods which also make use of a continuous model of the beam. Utilising this 

approach, they have showed that it was possible to write a determinantal equation 

whose roots were the eigen frequencies of the beam. They showed that just (n+2) 

equations were sufficient to solve the problems for a beam with n number of cracks. 

Hence, a key feature of the procedure was to evaluate a small dimension of the 

determinant which enabled reduction of computation time. As a consequence, this 

procedure opened new possibilities in the reduction of computation time needed for 

solving the inverse problem through advanced optimisation techniques. 

Viola et al., 2001 used a cracked beam element method to study the dynamic behaviour 

of a cracked cantilever beam. They developed a special finite element for a cracked 

Timoshenko beam and used shape functions for rotational and translational 

displacements to obtain consistent mass matrix for the cracked beam element. They 

investigated the effect of the crack on stiffness and consistent mass matrix. Their study 

proposed that the finite element model of a cracked beam, coupled with identification 

methodology might be useful for detecting the cracks in engineering applications. 

Saavedra et al., 2001 proposed a new modelling approach for cracked beam structures. 

The additional flexibility that crack generated in its vicinity was evaluated by using the 

strain energy density function given by the linear fracture mechanic theory. Based on 

this flexibility, a new cracked finite element stiffness matrix was deduced, which was 

used subsequently in the FEM analysis of crack systems.  

Bamnios, 2002 studied the influence of a transverse open crack on the mechanical 

impedance of cracked beams under various boundary conditions. They found that 

driving point impedance changed substantially due to the presence of the crack. This 

change depended on the location and the size of the crack and on the location of the 

excitation force. The results obtained indicated the change in first anti-resonance as a 

function of location of measurement point along the beam for different boundary 

conditions. It was found that there was a jump in a slope of plot in the vicinity of the 

crack. 

Sinha et al., 2002 modelled cracks in beams undergoing transverse vibration. They used 

Euler-Bernoulli beam elements with small modifications to the local flexibility in the 

vicinity of the cracks. This crack model was used to estimate crack location and sizes. It 
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was observed that estimation of crack location was more accurate than the estimation of 

crack depth. 

Dilena et al., 2002 presented a technique of crack location in vibrating beams from the 

changes in node positions. They focussed on detecting a single crack when the 

damaged-induced shift in the nodes of mode shapes of a beam in bending vibration was 

known. It was shown that the direction by which the nodal points shifted might be used 

to estimate the location of damage. The analytical results agreed well with the 

experimental tests performed on cracked steel beams. The results obtained represented 

the first step of a line of research on the damage-induced changes in the null set of eigen 

functions of vibrating systems. 

Dado et al., 2003 addressed the problem of linear crack quantification, crack depth 

estimation and localization in structures. They obtained the modal data for cracked 

structures by solving the corresponding eigenvalue problem. The error in the modal data 

was simulated by an additive noise that followed the normal distribution. The simulated 

modal data was expanded using eigenvector projection method. The results obtained 

showed that this technique gave good results with high depth ratio. 

Dado et al., 2003 investigated the vibrational behaviour of a cracked cantilever beam 

carrying end mass and rotary inertia. They coupled transverse and axial vibrations of 

beam through the crack model. They found that the coupling between transverse and 

axial vibration was weak for the first two modes for the moderate values of the crack 

depth ratio. For the higher crack depth ratio there was a strong coupling between the 

modes. 

Dilena et al., 2004 investigated the influence of single open crack in a vibrating beam. 

They showed that how an appropriate use of frequencies and anti-resonances might be 

useful to avoid non-uniqueness of damage location problem which occurred in 

symmetrical beams when only one frequency data was used. 

Dharmaraju et al., 2004 suggested a general identification algorithm to estimate crack 

flexibility coefficients and crack depth based on the force–response information. This 

technique required that the crack location and the force acting on the beam were known. 

They used a harmonic force of known amplitude and frequency to excite the beam. For 

finite element modelling, Euler-Bernoulli beam element was used. They considered an 
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open transverse surface crack and modelled the crack by a local compliance matrix of 

four degrees of freedom. This compliance matrix contained diagonal and off diagonal 

terms. To simulate the cracked-beam response, they assumed the coefficients of the 

compliance matrix due to the crack, which was evaluated by the fracture mechanics 

approach for a given crack depth. However, for measuring responses at all the nodes, 

general identification algorithm had practical limitations. To overcome this they 

incorporated the static reduction technique in the identification algorithm to eliminate 

some of the degrees of freedom. The results for the cracked beam response showed 

splitting of the natural frequency due to the coupled motion of the beam in two 

orthogonal directions in the presence of the crack. It was also found that the splitting of 

natural frequency was more intensive when the location of crack was at the anti-nodal 

point of the mode shapes. 

Douka et al., 2004 studied the effects of two transverse open cracks on the anti-

resonances of a double cracked cantilever beam analytically and experimentally. They 

found that far from the expected changes in natural frequencies, the anti-resonance 

frequencies changed substantially due to the presence of the cracks. They concluded 

that anti-resonance could be used as an additional information carrier for crack 

appearance which was complementary to natural frequency changes. 

Çam et al., 2005 used impact-echo method to excite the natural frequencies of a cracked 

beam. It was found from this study that when the position of the crack changed starting 

from the clamped end of the beam, natural frequencies of the beam and the amplitude of 

the high frequency vibration increased, but the amplitude of low frequency vibration 

decreased. It was also shown that as the depth of the crack increased, the amplitude of 

vibration also increased at high frequencies but the natural frequencies decreased as 

expected because of stiffness reduction which is inversely proportional to the depth of 

the crack. From this they concluded that more sensitive results may be obtained by 

optimizing the impact point. 

Dharmaraju et al., 2005 developed an algorithm for the estimation of beam crack 

parameters. The result showed the separation of its natural frequencies due to coupled 

motion of the beam in two orthogonal directions in the presence of the crack. The 

separation of the natural frequency was found to be more when the location of crack 

was at the anti-nodal point as compared to nodal points of the mode shape. 
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Nahvi et al., 2005 studied a crack cantilever beam to establish a method for predicting 

the location and depth of the crack. To avoid non-linearity, it was always assumed that 

crack was open. To identify the crack, contours of the normalized frequency in terms of 

the normalized crack depth and location were plotted. The intersection of the contours 

with constant modal natural frequency planes were used to relate the crack location and 

its depth. A minimization approach was employed for identifying the cracked element 

within the cantilever beam. 

Orhan, 2007 analyzed the free and forced vibration of a cracked cantilever beam using a 

finite element program in order to locate the crack. This study was carried on a single 

and two edge crack. The natural frequencies were calculated by the free vibration 

analysis. The sinusoidal harmonic force was applied on the free end of the beam and the 

harmonic response was obtained at the point of application of the force. The changes in 

natural frequencies and the harmonic responses corresponding to the change in crack 

depth and location were evaluated for crack detection analysis. The study indicated that 

the harmonic response analysis was more suitable than the free vibration analysis in the 

case of a single crack on the top and the bottom surfaces. On other hand, free vibration 

analysis seemed to be a more effective method of detection as compared to the 

harmonic response analysis for two cracks on the top and bottom surfaces of the beam. 

Bayissa et al., 2008 developed a new damage identification technique based on 

statistical moments of the energy density function of the vibration in the time-frequency 

domain. They concluded that the time-frequency analysis conducted using wavelet 

transform provided a powerful tool to characterize deterministic as well as random 

responses and could be used to detect slight changes in the response characteristics and 

local variations. The results obtained from this method showed that it was more 

sensitive than the non-model based damage identification techniques. 

Manoach et al., 2008 studied the sensitivity of nonlinear vibration response parameters 

to the presence of damage on geometrically nonlinear vibrations of a fully clamped 

rectangular plate. They represented damage as a stiffness reduction in a small area of 

the plate and obtained plate vibration response by a pseudo-load mode superposition 

method. Numerical results obtained for large amplitude vibrations of damaged and 

healthy rectangular and square plates showed good abilities to detect and localize 

damage. 
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Shih et al., 2009 used dynamic computer simulation techniques to develop and apply a 

multi-criteria procedure using non-destructive methods for damage assessment in beams 

and plates. In addition to changes in natural frequency, this multi-criteria procedure 

incorporated two methods called modal flexibility and the modal strain energy based on 

vibration characteristics of the structure. The results obtained showed that multi-criteria 

method incorporating modal flexibility and modal strain energy method was effective in 

multiple damage assessment in beam and plate structures 

From the literature, it can be observed that researchers considered the open crack for the 

purpose of modelling. They used different approaches to derive the stiffness matrix for 

the behaviour of a beam in the vicinity of a crack and established a finite element model 

having different boundary condition. They showed that the presence of a crack in the 

beam affected the resonance frequencies and the vibration amplitude considerably. Few 

researchers used the Galerkin’s solution to the cracked beam theory. Their approach 

allowed them to determine the higher natural frequencies and the mode shapes of the 

cracked beam. Some researchers used a variational approach to model the cracked 

beam. They modelled crack as a continuous flexibility using the displacement field in 

the vicinity of the crack using the fracture mechanics method. This allowed them to 

estimate the damage in the beam with the use of eigen frequencies and mode shapes. 

Some of them observed that there were damage-induced shifts in the nodes of mode 

shape which could be used for determining the location of damage. Few of them 

suggested that the coupled response and the shift in the anti-resonance frequency could 

be used for predicting the presence of crack and estimating the severity of damage. It 

was also observed by some researchers that due to the presence of a crack, splitting of 

the frequencies takes place. It was also found by a few of them that combined 

examination of both natural frequency and mechanical impedance allowed an 

estimation of both location and size of the crack. 

It is clear from discussion in above section that the presence of crack significantly 

affects resonant frequency, mode shape, and vibration amplitude, position of node in a 

mode shape, anti-resonance frequency and mechanical impedance. All this parameters 

can be used for determining the location and the size of crack. But in all this research 

carried by researchers the crack was considered as an open crack to avoid the 

nonlinearity in the cracked beam. The crack closure effect was neglected. However, the 

opening and closing of the crack has the significant effect on the dynamics of a cracked 
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beam. So it becomes necessary to study the effect of the breathing crack on the 

dynamics of the cracked beam. 

2.1.5.2 Longitudinal Vibration of Cracked Beams 

This section deals with the longitudinal vibration of cracked beams. The literature 

considered over here discusses the different approaches used by the researchers for 

modelling of the open crack and their findings. 

Gudmundson, 1982 considered a bar with a free end and a transverse crack at the centre. 

He presented a perturbation method which predicted the changes in resonance 

frequencies of a structure resulting from cracks, notches or other geometrical changes. 

He had shown that eigen frequency changes due to crack depend on the strain energy 

static solution. The results compared well with the values obtained by experiments and 

finite element method for small cracks.  

Chondros et al., 1998 developed the continuous cracked bar vibration theory. They 

analyzed a fixed-free bar with single open edge crack. In this study, the stress and 

displacement field about the crack was used to modify the stress and displacement field 

throughout the bar; reduction to one spatial dimension was achieved by integrating the 

stress and displacement fields throughout the bar cross-sections so that total 

displacement would be exact. They obtained differential equation with variable 

coefficients with the modified displacement field due to the embedded crack. The 

displacement field about the crack was computed using fracture mechanics methods. 

The results obtained from numerical solution and a first order perturbation solution 

showed changes in natural frequencies. These results obtained had very close 

correlation with the experimental results. 

Chondros et al., 1998 proposed a vibration theory for the longitudinal vibration of rods 

with an edge crack. They analyzed a free-free bar with single open edge crack. They 

used Hu-Washizu-Barr variational formulation [Barr, 1966] to develop the differential 

equation and boundary conditions for a cracked bar as a one dimensional continuum. 

The crack was modelled as a continuous flexibility using the displacement field in the 

vicinity of the crack with the fracture mechanics methods. They have compared the 

lowest natural frequency of the bar obtained from continuous cracked bar vibration 

theory, the lumped crack bar vibration analysis and the experimental results. They 
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found that experimental results fall between the values predicted by the two analytical 

methods. Moreover, they found that continuous bar theory agreed better with the 

experimental results. 

Viola et al., 2007 investigated the changes in the magnitude of natural frequencies and 

modal response introduced by the presence of a crack on an axially loaded uniform 

Timoshenko beam using a particular member theory. The results indicated that when the 

effects of shear deformation and rotary inertia were neglected, the errors associated with 

them became increasingly large as the beam thickness and the modal index increased. 

They also found that natural frequency decreased when shearing effect was included. 

As discussed in the previous section about the study of cracked beams under transverse 

vibration researchers also studied and proposed the vibration theory for the longitudinal 

vibration of the cracked bar. They used similar techniques of modelling the crack bar as 

used for the transverse vibration problem. Their findings suggested that resonant 

frequencies and the mode shape were significantly affected in cracked bar when 

compared with the response of the uncracked bar. 

2.1.5.3 Vibration of Cracked Rotors 

In every machine we come across rotors and the reciprocating parts. For example steam 

turbine in the power plant has to operate continuously for the power generation. This 

machine is quite expensive costing billions of pounds. Moreover, single day’s loss of 

power generation can cost millions of pounds. So it becomes necessary to continuously 

monitor the health of the rotor to avoid the loss caused due to its failure. There is a need 

for good fault diagnostic techniques so that the loss caused due to the failure can be 

minimized. In this section, literature is focussed on the vibration of cracked rotors. It 

deals with the different approaches used by researchers for modelling and analyzing the 

behaviour of cracked rotors. 

Dimarogonas et al., 1983 investigated a de-Laval rotor with a crack by the way of 

application of the theory of shaft with dissimilar moments of inertia. They obtained the 

analytical solution for closing crack under the assumption of large static deflections, a 

common situation in turbo machinery. This realistic assumption for turbo machinery led 

to a bilinear spring behaviour of the cracked section of the shaft. For a rotating shaft, 

this led to equations with periodic coefficients and appropriate analytical solutions for 
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natural and forced vibrations. As expected, higher harmonics were identified. They also 

found the local flexibility of a cracked section using a Paris energy equation for crack. 

Their computation of local flexibility was based on the plane strain assumption for the 

shaft and the stress intensity factors used for the plane strip. Furthermore, they 

investigated the case of uncoupled bending vibration of a de-Laval rotor with an open 

surface crack. Their results showed that near the half critical speed it was possible to 

clearly identify the crack in an isotropic cylindrical shaft. Hence, this speed was used as 

the primary source of information for identification of the existence of a crack in turbo 

machinery rotors. 

Papadopoulos et al., 1987 analyzed the coupling of longitudinal and bending vibrations 

of a rotating shaft due to an open transverse crack. Their assumption of open crack led 

to a system behaviour similar to that of a rotor with dissimilar moment of inertia along 

two perpendicular directions. They represented the local flexibility due to the presence 

of a crack by way of a 6x6 matrix for six degrees of freedom in a short shaft element 

which included crack. The matrix had off-diagonal terms which caused coupling along 

the directions which were indicated by these terms. They neglected shear and used three 

degrees of freedom i.e. bending in two directions and extension. This led to 3x3 

stiffness matrix with coupling terms. They considered undamped free and forced 

coupled vibrations as well as damped free and forced vibrations. They investigated the 

coupling and examined the effects of unbalance and gravity. Their results indicated 

variations of eigen frequencies for a small crack depth. A much more pronounced 

manifestation of the existence of the crack appeared in the vibration spectrum where 

both the longitudinal and lateral vibration frequencies coexisted in the same spectrum. It 

was only due to the surface crack and could be used for an unambiguous identification 

of the existence of the crack. Similarly for the damped system coupling of the motion 

was clearly observed for moderate crack depths. 

Sekhar et al, 1992 used the approach of a flexibility matrix developed by Papadopoulos 

et al., 1987. They used finite element method for the crack detection. They detected the 

cracks in a shaft by measuring the changes in the adequate number of natural frequency 

using the finite element method. Their results showed that the changes in natural 

frequencies due to crack were appreciable in case of shafts with low slenderness ratio.  
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Tsai et al., 1996 developed a diagnostic method for determining the position and size of 

a transverse open crack on a stationary shaft without disengaging it from the machine 

system. They modelled the crack as a joint of a local spring. They employed the transfer 

matrix method on the basis of Timoshenko beam theory to obtain the dynamic 

characteristics of a stepped shaft and a multi disc shaft. It was combined with beam 

segments to derive a frequency equation for the assembly and was then solved for the 

frequency as well as the corresponding mode shape of the cracked shaft. The position of 

the crack was predicted by comparing the fundamental mode shapes of the shaft with 

and without a crack. Furthermore, the depth of the crack was obtained by the change of 

natural frequency of the shaft with and without a crack. The result showed that the 

bending term in the crack compliance matrix was dominant. Therefore, the proposed 

method, which excluded the coupled flexibility at the crack point, was considered 

reliable. 

Gounaris et al., 2002 investigated a rotating cracked shaft to identify the depth and 

location of a transverse surface crack. They used local compliance matrix of different 

degrees of freedom to model the transverse crack of circular cross-section, based on the 

expressions of the stress intensity factors and associated expressions for strain energy 

release rates. Their findings suggested the possibility to detect the existence of cracks in 

rotating shafts by measuring the axial response for two or three different rotational 

speeds and loadings. 

Sinou et al., 2005 studied the influence of cracks in rotating shafts. They addressed the 

two distinct issues of change in modal properties and the influence of the breathing 

crack on dynamic response during operation. Their investigation of evolution of the 

orbit of a cracked rotor near half of the first resonance frequency provided a possible 

basis for an online monitoring.  

Chondros et al., 2007 analyzed the torsional vibration of a circumferentially cracked 

shaft. In this analysis, the crack was assumed as an open crack in order to avoid 

nonlinearity. They used Hu-Washizu-Barr variational [Barr,1966] formulation to 

develop the differential equation and the boundary conditions of the cracked shaft. They 

modelled the crack as a continuous flexibility based on the fracture mechanics principle. 

They used Rayleigh quotient to approximate the natural frequencies of the cracked 

shaft. Furthermore, they used the finite element method and compared the results 
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obtained from the variational formulations. They concluded that the behaviour of this 

damaged model led to the extension of their utility for the fault detection of the 

cylindrical shaft and rotors. 

It can be seen from this section that researchers have tried to model the crack in the 

rotor. Their findings have suggested that the presence of a crack in the rotor 

significantly affects the modal properties of the rotor during the operating condition. 

2.1.5.4 Breathing Crack 

Breathing crack as defined in the literature is the crack which opens and closes during 

vibration process. This opening and closing of crack has the character of the bilinear 

spring which introduces the nonlinearity in the system. The research based on open 

crack consideration has given the good insight about the dynamic behaviour, but in real 

situation opening and closing of crack during vibration process has a significant effect 

on the dynamic behaviour. Researchers have tried to address this issue by modelling the 

breathing crack as a bilinear spring to study its effect on the dynamics of beam /bar. 

Below are the few sources from the literature in which researchers have tried to address 

the issue of the breathing crack. 

Gudmundson, 1983 studied a dynamic behaviour of cracked cantilever beam. He had 

shown that a crack could be represented by a consistent, static flexibility matrix. He 

used two different methods for the determination of the flexibility matrix. In the first 

method he considered that if the static stress intensity factors were known, the 

flexibility matrix could be determined from integration of these stress intensity factors. 

Alternatively, he used static finite element calculations for the determination of the 

flexibility matrix. The mathematical model developed for edge-cracked cantilevered 

beam was used to determine the eigen frequencies for different crack lengths and crack 

positions. The obtained results compared well with dynamic finite element calculations. 

The results from experiments showed that crack closure effect in a vibrating beam was 

of considerable importance. It was found that the eigen frequencies decreased, as 

functions of crack length, at much slower rate than in case of an open crack. 

Actis et al., 1989 used the finite element method to study the simply supported beam 

with a breathing crack. They used beam finite elements to model the uncracked portions 

of the beam. They determined the flexibility of cracked beam when crack is open using 
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fracture mechanics considerations. The crack was modelled as a rotational spring in 

between the two uncracked beam segments. So that they can simulate the behaviour of 

fully open and fully closed crack. 

Qian et al., 1990 derived the element stiffness matrix of a beam with a crack. They 

established a finite element model by integrating the stress intensity factor. The model 

established was applied to the cracked cantilever beam with an edge crack and the eigen 

frequencies were determined for different crack lengths and locations. Results obtained 

were well in agreement with the experimental results 

Krawczuk et al., 1990 studied the transverse vibrations of a cracked beam with a time-

varying stiffness. The periodic time-varying stiffness was simulated by a square-wave 

function with a fundamental frequency equal to the forcing frequency. The equation of 

motion was solved by employing the harmonic balance technique. It was shown that, 

when a breathing crack was present, higher harmonics in the frequency spectrum were 

generated revealing the non-linear behaviour of the system. 

Friswell et al., 1992 simulated the nonlinear behaviour of a beam with a closing crack, 

vibrating in its first mode of vibration, through a simple single degree of freedom model 

with bilinear stiffness. The response due to harmonic excitation was obtained using 

numerical integration. Integral multiples of the forcing frequencies were found in the 

frequency spectrum. 

Chu et al., 1992 proposed a closed form solution based on the use of two square wave 

functions to model the stiffness change for bilinear oscillators under low frequency 

excitation. They extended the solution procedure to the cases of bilinear forcing 

function which usually occurs in the dynamics of damaged structures. The results 

showed that the proposed solution might be used to predict spectral patterns of damaged 

structures efficiently. 

Shen et al., 1992 formulated the equation of motion and associated boundary conditions 

for vibration of a uniform beam containing one single edge fatigue crack. They 

introduced the fatigue crack in the form of breathing crack. The Galerkin procedure was 

used to formulate a bilinear equation of motion for each mode of vibration of simply 

supported beam. The dynamic response of the bilinear equation under a concentrated 

excitation force was calculated through a numerical analysis. The results clearly showed 
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the nonlinear behaviour in the time history and frequency spectrum for each mode of 

vibration. They suggested that changes in the dynamic behaviour of structure could be 

used to deduce the size and location of crack. 

Sundermeyer et al., 1995 studied a single degree of freedom bilinear spring mass 

system. They excited the system at two frequencies, the difference of which was the 

resonant frequency of the system. The Fourier transform of the steady state spectra 

showed the presence of nonlinearity. When the crack was open a simply supported 

beam was modelled using an appropriate rotational spring between two segments of 

uncracked portions of the beam. When the crack was closed the whole beam was 

assumed to be a continuous beam. Modal expansions were employed to compute the 

beam response at any excitation with proper incorporation of continuity of displacement 

and velocity when the crack was in a state of transition. Again, a similar nonlinear effect 

was found in the Fourier spectra of displacement. This was then correlated with the 

location and depth of the crack. 

Brandon et al., 1995 proposed a model for the opening and closing of a breathing crack 

in which two uncracked portions of the beam were considered as two subsystems. The 

connection between these two systems ensured continuity of normal force, bending 

moment and shear force. A discontinuity of axial displacement, transverse displacement 

and slope was permitted at the crack section. The two subsystems in a cantilever beam 

were considered as two Timoshenko beams, one with clamped-free boundary conditions 

and the other with free-free boundary conditions. The two subsystems of the cantilever 

beam, separated by a crack, were related to one another by time varying connection 

matrices representing the interaction forces. The natural frequencies and mode shapes 

were determined and compared with those available in literature 

Ruotolo et al., 1996 extended the work of Krawczuk et al. they assumed that the crack 

changes from a state of fully open to fully close instantaneously, which gave rise to 

bilinear stiffness nonlinearity. The bilinear stiffness was approximated using a higher 

order polynomial. Beam curvature at the crack section was checked to determine 

whether the crack is open or closed. When the crack was open, flexibility was 

introduced using cracked beam elements. Higher order frequency response functions 

were defined using Volterra series for systems having polynomial type nonlinearity. A 

damage assessment procedure was suggested, based on a quantitative comparison of 
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higher order frequency response functions. 

Lamonaca et al., 1997 proposed the crack identification procedure in vibrating beams. 

They made use of the concept of model updating that were recast to include an 

evolutionary modal model capable to deal with the non-stationarity of the dynamic 

response arising from the nonlinearity of the problem. The outcome of this 

identification suggest that evolutionary stiffness of the damaged elements and their time 

variations and global excursions were used to assess the crack type and severity  

Chati et al., 1997 used modal analysis to study the nonlinear dynamics of the cantilever 

beam with a transverse crack edge. They modelled nonlinearity produced by opening 

and closing of crack as a piece wise linear system. To define effective natural 

frequencies for piece wise linear system they used the idea of bilinear frequency. They 

obtained the bilinear frequency by computing associated frequencies of each of the 

 

Figure 2.3 The Two Degree of Freedom System 

Modified, after [Chati et al., 1997] 

linear pieces of the piecewise-linear system. They used finite element method to obtain 

the natural frequencies in each linear region. In order to understand essential nonlinear 

dynamics of the cracked beam, a piecewise linear two degree of freedom model was 

studied as shown in Fig. 2.3. They used a perturbation method to obtain the nonlinear 

normal modes of vibration and the associated period of motion. It was found that the 

bilinear frequency formula was a good approximation for the effective natural 

frequency.  

Chondros et al., 1998 investigated the dynamics of a cracked fixed-free bar with a 

breathing crack in longitudinal vibration. They used Hu-Washizu-Barr variational [Barr, 

1966] formulation to develop the equation of motion and the boundary conditions of the 

cracked bar as a one-dimensional continuum. The crack was modelled as a continuous 
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flexibility using the displacement field in the vicinity of the crack found by fracture 

mechanics methods. They presented an analytical approach to the non-linear dynamic 

problem of cracked fixed–free bar and examined the effect of the breathing crack. They 

used the bilinear character of the system for the prediction of changes in longitudinal 

vibration of a bar. The result obtained analytically was compared with the experimental 

results from bars with open cracks. It was found that breathing cracks result in a smaller 

drop in the dominant system frequency as compared to the natural frequencies of linear 

system with open cracks. 

Rivola et al., 1998 used a different approach to study the vibration of a beam with a 

breathing crack. They modelled the beam as an oscillator with a bilinear restoring force 

(Fig.2.4) and applied bi-spectral analysis to the response. The bi-spectral analysis 

showed high sensitivity to the non-linear behaviour of the system compared to other 

techniques. 

 

Figure 2.4 Bilinear Model 

Modified, after [Rivola et al., 1998] 

Cheng et al., 1999 developed a simple nonlinear fatigue crack model. For simplicity 

they analyzed the dynamic behaviour of a cracked beam vibrating at its first mode. They 

carried the analysis in both time domain and frequency domains, which was aimed to 

identify the distinguishing features of the dynamic response associated with the 

existence of the fatigue crack. They found that the side peaks appeared in frequency 

response functions near the resonance peak due to the fatigue crack. There were also 

pronounced anti-resonance frequency shifts and super/sub-harmonic vibration 

phenomena observed in the experimental study of naturally grown fatigue cracks. 

Tsyfansky et al., 2000 simulated the bending vibrations encountered in an aircraft wing 

under external harmonic excitation. They have shown that due to the influence of the 

elastic non-linearity of typical cracks, super-harmonic vibration regimes appear in 
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system response. By utilizing specific features of these regimes they developed a new 

method for the detection of the crack. This method showed capability of high detection 

sensitivity and testing reliability. 

Pugno et al., 2000 presented a technique capable of evaluating the response of a beam 

with several breathing cracks perpendicular to its axis subjected to harmonic excitation. 

The method described by them was based on the assumption that the response was 

periodic and cracks open and close continuously. They defined a non-linear system of 

algebraic equations and solved it iteratively using numerical integration. They analyzed 

the vibrational response of a cantilever beam with cracks of different size and location 

using the harmonic balance method. The results obtained by harmonic balance approach 

compared well with those obtained through numerical integration. 

Matveev et al., 2002 analyzed the vibration of damaged structures. They modelled 

bending vibrations of a beam with closing crack and evaluated the distribution functions 

of vibration characteristics of damage based on the estimation of non-linear distortions 

of the displacement, acceleration and strain waves of a cracked beam for first three 

mode shapes. The results showed that the amplitudes of concomitant modes of vibration 

were heavily dependent on the crack depth. Furthermore, a closing crack essentially 

caused non-linearity of these distribution functions; this fact might serve as a diagnostic 

indication of damage. 

Sinha et al., 2002 developed a finite element approach to study the vibration behaviour 

of free-free beam with a breathing crack. Their simulation results were in good 

agreement with the experimental results.  

Douka et al., 2005 studied the free vibration response of a beam with breathing crack. 

They have used Hilbert transform and empirical mode decomposition for evaluating the 

instantaneous frequency of a mono component signals. Their analysis revealed that the 

instantaneous frequency (IF) allowed an efficient and accurate description of 

nonlinearities of the system and could be used to improve the reliability and 

effectiveness of vibration based crack diagnosis technique.  

Loutridis et al., 2005 investigated the dynamic behaviour of a cantilever beam with a 

breathing crack under harmonic excitation theoretically and experimentally. They 

developed a simple model of single degree of freedom with varying stiffness to simulate 
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the dynamic behaviour. They analysed both the simulated and experimental response 

data by applying empirical mode decomposition and Hilbert transform. The results 

obtained by them indicated that the instantaneous frequency oscillates between 

frequencies corresponding to the open and closed states of the crack. The variation of 

the instantaneous frequency increased with increasing crack depth following a 

polynomial law which could be used for estimation of crack size. They have also 

showed that the harmonic distortion increased with crack depth following definite 

trends and could be used as an effective indicator of crack size. 

Andreaus et al., 2007 simulated the problem of nonlinear dynamics of cracked 

cantilever beam under harmonic loading using finite element technique. They used two 

dimensional finite elements for the analysis. Their investigation revealed that the 

frequency does not change with the oscillation amplitude but the steady state response 

obtained was very rich of sub and super-harmonic components (Fig. 2.5). They also 

found that when the forcing frequency coincides with any one of the integer sub-

multiples of the first system frequency   , then the nth harmonic component of the 

forcing frequency, which was close to    would be significantly exalted. Moreover, 

within the super-harmonic resonance ranges the phase portraits were characterized by 

significant wiggles due to impact between cracks (Fig. 2.6). 

 

Figure 2. 5 A Sub Harmonic and Super Harmonic Frequencies 

Modified, after [Andreaus et al. , 2007] 
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 (a)         (b)         

 

 (c)         (d)     

 

Figure 2. 6 Phase Portrait for Different Values of     
Where   is excitation to system frequency ratio          

Modified, after [Andreaus et al. , 2007] 

Sinha, 2009 used bi-coherence and tri-coherence and applied it on acceleration response 

of structures having fatigue cracks. The results obtained indicated that higher order 

coherence has tremendous potential for the detection of fatigue cracks even in presence 

of noisy environment. 

This section was focussed on the modelling of the breathing crack in the cracked beam/ 

bar. As breathing crack behaves like a bilinear spring, researchers have used the 

different approaches to model the crack having bilinear characteristics. Few researchers 

used Galerkin’s procedure and formulated a bilinear equation of motion for each mode 

of vibration. Their results clearly indicated the nonlinear behaviour on the time history 

and frequency spectrum for each mode of vibration. Some of them used periodic time 

varying stiffness for modelling the breathing crack. Their findings suggested that higher 

harmonics in the frequency spectrum were generated revealing the non-linear behaviour 

of system. Few of them modelled crack as a piecewise linear two degree of freedom 
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system and used perturbation methods to obtain nonlinear normal modes of vibration. 

They suggested that bilinear frequency formula was good approximation for effective 

natural frequency. 

It is clear from the above section that the breathing crack introduces nonlinearity in the 

system. This shows that crack-induced nonlinearity significantly affects the dynamic 

behaviour of system. 

2.2 Discussion 

From the literature review above it can be seen that several researchers have used 

vibration characteristics as a tool for crack identification. Researchers have considered 

transverse vibration, and longitudinal vibration of a cracked beam/bar with open and 

breathing cracks. Their findings have suggested that presence of the open crack in the 

structure significantly affected the modal properties of the beam/bar. But in the actual 

situation under the action of dynamic force crack opens and closes. This opening and 

closing of the crack has characteristics of a bilinear spring. This bilinear nature of the 

crack introduces nonlinearity in the system. The results obtained by them considering 

the bilinear model of the spring indicate the distortion of the time history and the 

presence of the higher harmonics in the frequency response. Moreover, few researchers 

modelled bilinear behaviour of the crack as a bilinear spring with single degree of 

freedom system or two degree of freedom system to study the nonlinear vibration 

characteristics. This has given valuable information about the behaviour of breathing 

crack. This can be extended to the continuous system with infinite degrees of freedom. 

In the next chapter a special mathematical technique is developed to study the dynamics 

of the continuous structure with discontinuities. In this technique developed local 

discontinuity (crack) is implanted as a nonlinear feedback and continuous elements as 

the operators of the dynamic compliance of the media at the contact point. 

2.3 Summary 

This chapter was focussed on the various linear and nonlinear methods of crack 

monitoring. The methods such as visual inspection, eddy current technique, acoustic 

emission technique and linear ultrasonic technique are useful for some application. But 

these techniques cannot be used for online monitoring of the structures. Nonlinear 

ultrasonic technique when compared with linear ultrasonic technique provides added 
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advantage for online SHM. Though they can be used for detecting cracks they cannot 

predict the structural strength. On the contrary, vibration based techniques can be used 

for online crack monitoring and it can also be used for getting the information about the 

structural strength. So the vibration based techniques need to be explored for crack 

monitoring of structures under working conditions. 
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Chapter 3 Vibro-Impact Response of a Cracked 
Bar 

3.1 Introduction 

The presence of discontinuity in the structure affects its dynamic behaviour under 

working conditions. A crack in structure behaves like a discontinuity and it drastically 

changes the general dynamic characteristics of the structure which results in the 

excitation of significant additional perturbations. It occurs mainly due to the generation 

of intensive forces of impact between the contact surfaces. In order to simulate and 

study the dynamics of the cracked bar a special mathematical technique for proper 

matching of local and distributed elements of the resulting structure has been developed. 

This has been effectively implemented with the use of the force characteristics of 

contact interaction for the discontinuous elements and Green’s function for media, 

calculated in the contact areas. This description leads to application of integral equation. 

Laplace transformation of the integral equation produces an operator for the simulation 

of the interaction, where local discontinuity is implanted as a nonlinear feedback and 

continuous elements as the operators of dynamic compliance (receptance) of the media 

at the contact points. Effective numerical simulation of such structures with Matlab-

Simulink software needs implementation of realistic models for contact phenomena and 

transformation of the transcendental operators of dynamic compliances into rational 

functions of complex variable. This has been made with the help of modal 

representation for the dynamic compliances. Uniform convergence of the modal 

approximation leads to high accuracy of simulation within the use of first few initial 

modes. This also produces a convenient calculation scheme for accurate estimation of 

system response. In this chapter, a model of the one-dimensional cracked cantilever bar 

subjected to longitudinal harmonic excitation is used to analyse a vibro-impact response 

as a way to monitor the structural health. Nonlinear resonant phenomena due to vibro-

impact interaction within the cracked bar are obtained and analysed. 

3.2 Differential Equation of Motion of a Cantilever Bar 

Consider a cantilever bar as shown in the Fig. 3.1 of length   with plane cross sectional 

area   having modulus of elasticity   and mass density  . The exciting force        

        is applied at the free end of the bar with co-ordinate      measured from the 
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fixed end. Let there be any arbitrary section    at the distance   measured from the 

fixed end of the bar. The absolute displacement of this arbitrary section can be written 

as a function of         , and the axial force acting on it is called        . This axial 

force        results in strain in the arbitrary section    which is represented by   

[Babitsky,1998].  

 

Figure 3.1 Schematic of the cantilever bar 

According to Hooke’s law 

              
       

  
 (3.1)  

The change in axial force over an element    is as follows 

                    
        

   
   (3.2)  

The force difference produces an acceleration              transferred to the 

element     . Therefore from Newton’s second law, we can write 

     
        

   
   

        

   
   (3.3)  

Dividing both sides of Eq. (3.3) by    , we have 

 
        

   
 

 

 

        

   
 (3.4)  

Eq. (3.4) can be rewritten as 

 
        

   
   

        

   
 (3.5)  

Where  
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The Eq. (3.5) doesn’t take into account the internal damping of the material. Internal 

damping is common to range of mechanism’s that occur in the deformation of the 

materials that are cyclically strained, in particular, internal damping is the cause of 

hysteresis loops that occur in the stress/strain curve. Several experimental results have 

shown that under a periodic deformation the area of hysteresis loops for most materials 

depends on the amplitude of deformation for a wide range of change but not on 

frequency. For this reason, in the study of a periodic process an equivalent force, 

proportional to the velocity of strain, is introduced selecting a suitable factor   so that 

the general dissipative effect corresponds to the experimental data [Panovko, 1960]. 

Considering an equivalent force proportional to the velocity of strain Eq. (3.1) can be 

written as: 

               
  

  
 (3.7)  

Where 

              ;            

Therefore, we have  

          
       

  
    

        

    
 (3.8)  

The change in axial force over an element    is as follows 

                    
        

   
      

        

     
   (3.9)  

The force difference produces an acceleration              transferred to the 

element     . Therefore from Newton’s second law, we can write 

     
        

   
   

        

   
      

        

     
   (3.10)  

Dividing both sides of Eq. (3.10) by    , we have 

 
        

   
 

 

 

        

   
 

  

 

        

     
 (3.11)  

 

 



Chapter 3 Vibro-Impact Response of a Cracked Bar 

 

37 
 

Using Eq. (3.6) we have 

  
        

   
   

        

   
    

        

     
   (3.12)  

As a result, Eq. (3.12) for the study of periodic vibration of the rod can be written in the 

following form  

 
        

   
   

        

   
  

        

     
   (3.13)  

where               is the linearised coefficient of force of internal damping; 

  is the frequency;   is the absorbtion coefficient found from the test as the ratio of 

energy absorbtion during the cycle (proportional to the hysteresis loop) to the basic 

deformation energy. Because of internal damping, the periodic process can only be 

established in a case with a regular addition of energy into system. 

3.3 Expression of Dynamic Compliance for a Cantilever Bar 

The expression of the dynamic compliance can be derived by solving a suitable 

boundary value problem. As the complete details of the derivation of the dynamic 

compliance has not been given in the monograph [Babitsky V.I., 1998] referred it has 

been given over here with minute details. The differential Eq. (3.13) for cantilever bar 

can be written in the following form:  

                  
 
   (3.14)  

Where          ,        the expression for dynamic compliance can be obtained 

by applying the boundary conditions to Eq. (3.14). 

Fixed End: 

          (3.15)  

Free End: 

      
 

  
   

       

  
 
   

           (3.16)  

Assuming the solution of form  

                               (3.17)  
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Substituting Eq. (3.17) in Eq. (3.14), Eq. (3.15) and Eq. (3.16) we have 

                       
          

   
   (3.18)  

 

            (3.19)  

 

        
 

  
  

         

  
 
   

   (3.20)  

The solution of differential Eq. (3.18) of second order with constant coefficients 

satisfying the boundary conditions Eq. (3.19) and Eq. (3.20) takes the form  

             
       

    (3.21)  

Where  

   
  

       
 (3.22)  

Applying the boundary conditions Eq. (3.19) and Eq. (3.20) to Eq. (3.21) we have  

        (3.23)  

 

     
   

    
 

 

        
  (3.24)  

From Eq. (3.21), Eq. (3.23) and Eq. (3.24) we have  

           
   

    
 
        

        
  (3.25)  

The Eq. (3.22) can be rewritten by substituting           as 

   
  

 
    

 

  
 
    

 (3.26)  

Taking in account smaller value of damping coefficient   the solution can be simplified 

by expanding Eq. (3.26) as a series in   and neglecting higher order terms we have 
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 (3.27)  

Substituting Eq. (3.27) in Eq. (3.25) we have  

           
   

    
 
 
 
  
 

 
  
   

  
  

  
  
 

 
  
   

  

 
 
  
 

 
  
   

  
  

  
  
 

 
  
   

  
  (3.28)  

For    , we obtain 

           
   

    
 
 
 
  
 

 
  
   

  
  

  
  
 

 
  
   

  

 
 
  
 

 
  
   

  
  

  
  
 

 
  
   

  
  (3.29)  

Let  

   
  

 
 (3.30)  

Substituting Eq. (3.30) in Eq. (3.29) we have  

           
   

    
 
 
    

 
  

  
  

     
 
  

  

 
    

 
  

  
  

     
 
  

  
  (3.31)  

Simplifying the expression in bracket we get 

            
   

    
 
 
  
   

 

   
  
      

  
              

 
  
   

 

  
  
           

  (3.32)  

Using Eq. (3.27) we have 

             
  

 
 

  

   
 

  

    
 
 
  
   

 

   
  
      

  
              

 
  
   

 

  
  
           

  (3.33)  

Rearranging the terms in Eq. (3.33) we get 

            
 

  
 
  

  
 

  

    
  

 
  
   

 

   
  
      

  
              

 
  
   

 

  
  
           

  (3.34)  

Neglecting the second order term in Eq. (3.34) and using Eq. (3.30), we have 
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  (3.35)  

Simplifying Eq. (3.35) we have 

          
 

   
       

 

  

   
       

     
  (3.36)  

Eq. (3.36) represents the expression of the closed form dynamic compliance for the 

cantilever bar under longitudinal vibration. This closed form of dynamic compliance 

cannot be implemented numerically in the Matlab-Simulink model. So to implement 

this numerically the equivalent of the closed form dynamic compliance is used, which is 

derived from the basics of the general linear theory of integral equations for straight 

rods [Babakov, 1958]. The derivation of the dynamic compliance using theory of 

integral equation for the straight rods is given in appendix A. The expression of the 

dynamic compliance is as follows: 

         
          

     
 

 

   

 (3.37)  

Eq. (3.37) represents the expression of the dynamic compliance for the straight rods. In 

this, expression of the dynamic compliance internal damping has not been considered. 

This will cause the rod to vibrate continuously for the given excitation. But in reality the 

rod will not vibrate continuously because the energy of excitation will be absorbed by 

internal damping of material, which will bring the rod to stand still. Hence, we need to 

take into consideration internal damping of material which will represent the real 

system. Hence Eq. (3.37) can be modified to the following form [Babitsky, 1998]: 

         
          

            
 

 

   

   (3.38)  

Where 

             

The expression in Eq. (3.38) consists of infinite number of vibration modes and the 

coefficients of each mode remain functions of the continuous coordinate   which 

represents the position of the section under consideration. This coefficient       

represents the transferring action to the section     from the concentrated force 
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applied at the section    . The mechanism of energy dissipation in the form of 

internal friction in the material is taken into consideration in terms of absorption 

coefficient   in the parameter   . 

3.4 Dynamic Model of a Cracked Bar 

Consider a cantilever bar of length   with a plane cross-sectional area   excited by the 

harmonic force               . The crack is considered at the free end of the bar 

and is modelled as a limiter stop with a distance   from the free end (Fig.3.2). The 

dimensions of the cantilever bar are given in Table 3.1. Under the application of the 

 

Figure 3.2 Schematic of cantilever bar with crack at free end 

harmonic force the crack’s faces interact. This interaction of the bar with the limiter 

(considered as a crack in this case) leads to generation of the contact force due to 

opening and closing of the crack. The concept of dynamic compliance and the contact 

force characteristics of impact interaction are considered for analysing the dynamics of 

the bar due to the crack [Babitsky, 1998]. The blocks of the dynamic compliance and  

Material Steel 

Length(L) [mm] 300 

Width(b) [mm] 10  

Height(h) [mm] 25  

 

Table 3.1 Dimensions of the bar 

 the contact force are modelled in Matlab-Simulink software. From the schematic shown 

in Fig.3.3 it is clear that when the harmonic loading is acting on the bar it starts to 

interact with a limiter, generating the contact force that affects deformation of the bar.  
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Figure 3.3 Block Diagram 

This contact force generated is implanted as the nonlinear feedback. When the 

cantilever bar interacts with the limiter, the vibrational displacement of an arbitrary 

section   is defined as a function of       . By introducing the contact force 

characteristics         and dynamic compliance operator        , the coupling 

displacement       due to the force acting at      can be written in terms of 

compliance operator in the following form: 

                                     (3.39)  

3.5 Dynamic Compliance (Receptance) 

 Eq. (3.36) represents the expression of dynamic compliance of rod under longitudinal 

vibration. Effective numerical simulation of structures needs transformation of the 

transcendental operators of dynamic compliance as a function of complex variable into 

rational function of complex variable. This can be made with the help of modal 

representation for the dynamic compliances. Uniform convergence of the modal 

approximation leads to high accuracy of simulation within the use of first few initial 

modes. The equivalent of transcendental dynamic compliance can be obtained by 

comparing following expression Eq. (3.36) and Eq. (3.38) 

          
 

   
       

 

  

   
       

     
    

          

            
 

 

   

 (3.40)  

The Fig. 3.4 shows the comparison between the transcendental operators of dynamic 

compliance (closed form) with the rational form of dynamic compliance (summation 

form). It is clear that the rational form of dynamic compliance gives the very good 

approximation for the transcendental form of dynamic compliance for the first three 
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modes of vibration. Hence the rational form of the dynamic compliance can be 

effectively used for the simulation of continuous structures. 

 

Figure 3.4 Comparison of frequency response 
 

3.6 Characteristics of Contact Force 

Under harmonic loading the bar interacts with the limiter (Fig.3.2). This interaction with 

the limiter transforms the continuous process into successive impulses modulated by the 

velocity of the input process at the instant when the process reaches the threshold value. 

Such nonlinear components of the structural scheme are called the impact elements 

[Babitsky, 1998]. These impact elements have positional impulse effects, which 

specifically combine the effects of the relayed and impulse elements. Fig.3.5 shows an 

example of transformations of deformation into the force by impact elements. This force 

characteristic of the contact interaction is given by an expression called static force 

characteristics of the impact pair: 

                   (3.41)  

Where  

       
     
     

  (3.42)  
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Figure 3.5 Contact force characteristics 

 

3.7 Flow Chart of a Matlab-Simulink Program 

Fig. 3.6 shows the general procedure for generating the simulation model of the 

continuous structure with discontinuities in Matlab-Simulink software. This algorithm 

has been used for generating the one-dimensional model of the cracked bar for studying 

the effect of crack on dynamics of the bar. The procedure developed requires deriving 

differential equations of motion of linear substructure and solving it considering the 

boundary condition of the problem. The expression of eigen frequencies and eigen 

modes are obtained after solving the differential equation. The values obtained for eigen 

frequencies, eigen modes and experimental values of absorption coefficients of material  

is used to construct the expression of the dynamic compliance of the structure under 

consideration. After obtaining the expression of dynamic compliance next step is to 

construct the model of discontinuity which is responsible for the generation of contact 

force. When all the blocks are ready they are arranged in the logical form to model the 

dynamic system having discontinuities. This has been implemented for the analysis of 

one-dimensional model of cracked cantilever bar. External force in the form of 

harmonic force is given as input to the system and the output response obtained is given 

as input to the contact force block which is again given as a feedback to the system. 

These contact force and the harmonic force are summed up at the summation block and 

the output response for the system is obtained. This output in the form of time response 

       is then transformed into the frequency response using the Fast Fourier 

Transform program. 
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Figure 3.6 Flow chart of the program 

 

3.8 Simulation Results 

3.8.1 Response of Cantilever Bar without Crack  

The forced longitudinal vibration was performed on a cantilever bar without crack. The 

frequency sweep was performed from 3500 Hz to 35000 Hz in the Matlab-Simulink 

model of cantilever bar. The results in Fig. 3.7(a) and Fig. 3.7 (b) shows the time and 

frequency response of the cantilever bar respectively. From the time response it was 
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observed that it was symmetric about the x-axis.  The frequency response of the system 

clearly shows that the first three resonances occur at the frequencies of 4206 Hz, 12619 

Hz and 21031 Hz. 

 

(a) Time response 

 

(b) Frequency response 

 

Figure 3.7 Response of cantilever bar (linear case) 

3.8.2 Response of Cantilever Bar with Crack  

Similarly, for a cantilever bar with a crack, the frequency sweep was performed from 

3500 Hz to 35000 Hz in the Matlab-Simulink model. The result in Fig.3.8 (a) and Fig. 

3.8 (b) shows the time response and frequency response of the cracked cantilever bar 
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respectively. From the time response it was observed that the it has lost the symmetry, 

indicating distortion. This distortion in time response was an indication of nonlinearity 

due to opening and closing of the crack. In frequency response (Fig.3.8 (b)) it can be 

observed that there has been shift in the frequencies when compared with the frequency 

response of the uncracked bar (Fig.3.7 (b)) along with the generation of higher 

harmonics. This indicates the crack-induced nonlinearity causes frequency shift and 

generation of higher harmonics (Fig.3.9). 

 

(a) Time response 

 
(b) Frequency response 

 

Figure 3.8 Response of cracked cantilever bar (nonlinear case) 
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Figure 3.9 Comparison of frequency response of cracked and uncracked bar 

 

3.8.3 Effect of Changing Clearances at Constant Contact Stiffness 

The simulation was performed for the different values of the clearances ( ) by keeping 

the contact stiffness constant. The frequency sweep was performed from 3500 to 35000 

Hz. It was performed for the three different values of clearances. The values of 

clearance for three different cases were    ,            and      

       . The contact stiffness used for all the three cases was            . The  

 

Figure 3.10 Frequency response for different values of clearance ( ) 
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Figure 3.11 First nonlinear resonance frequency 

 

Figure 3.12 Second nonlinear resonance frequency 

 

Figure 3.13 Third nonlinear resonance frequency 
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result in Fig.3.10 shows the comparison of frequency response of the system for 

different values of clearance. Fig. 3.11, Fig 3.12 and Fig. 3.13 shows the close up view 

of the each mode for the clearances      ,     and    . The case     corresponds 

to an isochronous system in which frequency was independent of amplitude retaining 

the nonlinear vibration character. For the system with clearance (   ) for each mode 

had a hard character while for system with interference (      the curve was of soft 

type.  

3.8.4 Effect of Changing Contact Stiffness 

3.8.4.1 Case (A)      

In this case simulation was performed by keeping the clearance value zero and varying 

the contact stiffness. The frequency sweep was performed from 3500 Hz to 35000 Hz. 

Fig. 3.14 shows the comparison between the frequency responses for different values of 

contact stiffness. It was found that as the contact stiffness increases frequency shift goes 

on increasing significantly indicating the strong nonlinear response. Fig. 3.15, Fig 3.16 

and Fig.3.17 show the close up view of each prominent mode. It was observed that 

frequency shift for first mode varies from 9.03 % to 22.56 % with increase in contact 

stiffness when compared with linear system response. For second mode it varies from 

1.06 % to 3.3 % with increase in contact stiffness. Similarly for third mode it varies 

from 0.38 % to 1.25%. It clearly showed that the frequency shift for the first mode was 

quite significant when compared with second and third mode. 

 

 

Figure 3.14 : Frequency response for different values of constant stiffness 
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Figure 3.15 First nonlinear mode of vibration 

 

 

Figure 3.16 Second nonlinear mode of vibration 

 

 

Figure 3.17 Third nonlinear mode of vibration 
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3.8.4.2 Case (B)      

In this case simulation was performed by keeping the clearance value greater than zero 

and varying the contact stiffness. The frequency sweep was performed from 3500 Hz to 

35000 Hz. Fig.3.18 shows the comparison between the frequency responses for 

different values of contact stiffness. It was found that as the contact stiffness increases 

frequency shift goes on increasing significantly indicating the strong nonlinear 

response. Fig.3.19, Fig.3.20 and Fig.3.21 shows close up view of each prominent mode. 

It was observed that frequency shift for first mode varies from 8.9 % to 22.23 % with  

 

Figure 3.18 Frequency response for different values of constant stiffness 

 

Figure 3.19  First nonlinear mode of vibration 
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Figure 3.20 Second nonlinear mode of vibration 

 

 

 

Figure 3.21 Third nonlinear mode of vibration 

 

increase in contact stiffness when compared with linear system response. For second 

mode it varies from 1.01 % to 3.16 % with increase in contact stiffness. Similarly for 

third mode it varies from 0.37 % to 1.12%. It clearly showed that the frequency shift for 

the first mode was quite significant when compared with second and third mode. 

12,500 13,000 13,500 14,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-6

Frequency (Hz)

A
m

p
li

tu
d

e 
(m

m
)

 

 

1x10
8

2x10
8

3x10
8

4x10
8

5x10
8

X:12749
Y:1.224e-6

X:12848
Y:1.207e-6

X:13021
Y:1.106e-6

X:12911
Y:1.134e-6

X:12969
Y:1.09e-6

21,000 21,500 22,000 21,000 21,500 22,000 21,000 21,500
0

1

2

3

4

5

x 10
-7

 

 

Frequency (Hz)

A
m

p
li

tu
d

e 
(m

m
)

1x10
8

2x10
8

3x10
8

4x10
8

5x10
8

X:21162
Y:4.585e-7

X:21201
Y:4.536e-7

X:21236
Y:4.54e-7

X:21108
Y:4.634e-7 X:21267

Y:4.577e-7



Chapter 3 Vibro-Impact Response of a Cracked Bar 

 

54 
 

3.8.4.3 Case (C)      

In this case simulation was performed by keeping the clearance value less than zero and 

varying the contact stiffness. The frequency sweep was performed from 3500 Hz to 

35000 Hz. Fig.3.22 shows the comparison between the frequency responses for 

different values of contact stiffness. It was found that as the contact stiffness increases 

frequency shift goes on increasing significantly indicating the strong nonlinear 

response. Fig.3.23, Fig.3.24 and Fig.3.25 shows close up view of each prominent mode. 

It can be observed that frequency shift for first mode varies from 9.17 % to 22.75 % 

with increase in contact stiffness when compared with linear system response. For 

second mode it varies from 1.15 % to 3.35 % with increase in contact stiffness.  

 

 

Figure 3.22 Frequency response for different values of contact stiffness 

 

 

Figure 3.23 First nonlinear mode of vibration 
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Figure 3.24 Second nonlinear mode of vibration 

 

Figure 3.25 Third nonlinear mode of vibration 
 

Similarly for third mode it varies from 0.44 % to 1.30%. It clearly showed that the 

frequency shift for the first mode was quite significant when compared with second and 
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an additional frequency component coupled with it. This additional frequency 

component was due to the free vibration taking place during the process of forced 

excitation, i.e. the interaction between cantilever bar and limiter. 

 

(a) Time response 

 

(b) Frequency response 
 

Figure 3.26 Response at first linear resonance frequency of excitation 
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an additional frequency component coupled with it. This additional frequency 

component was due to the free vibration taking place during the process of forced 

excitation, i.e. the interaction between cantilever bar and limiter. 

 

(a) Time response 

 

(b) Frequency response 
 

Figure 3.27 Response at second linear resonance frequency of excitation 
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component was due to the free vibration taking place during the process of forced 

excitation, i.e. the interaction between cantilever bar and limiter. 

 

(a) Time response 

 

(b) Frequency response 
 

Figure 3.28 Response at third linear resonance frequency of excitation 
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(a) Time response 

 

(b) Frequency response 
 

Figure 3.29 Response at first nonlinear resonance frequency of excitation 
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(a) Time response 

 

(b) Frequecny response 
 

Figure 3.30 Response at second nonlinear resonance frequency of excitation 
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(a) Time response 

 

(b) Frequency response 
 

Figure 3.31 Response at third nonlinear resonance frequency of excitation 
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state response at each of this frequencies. The measurement of the response was taken at 

the different points on the bar, i.e. changing the distance from the crack. It was observed 

that as one moved away from the crack for the measurement of frequency response, the 

effect of nonlinearity decreased (Fig.3.32) indicating that it was more localised and can 

be used for detecting the location of the crack in the bar. 
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(a) First resonant frequency 

 

(b) Second resonant frequency 

 

 

(c) Third resonant frequency 

 

Figure 3.32 Influence of measurement point from the crack on higher harmonics 
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3.9 Summary 

In this chapter the new procedure was developed using numerical approximation for the 

dynamic compliance operator and the nonlinear model of contact forces interaction 

implanted numerically as a nonlinear feedback. Nonlinear resonant phenomena due to 

vibro-impact interaction within cracked bar were obtained and analysed. This was 

implemented in the Matlab-Simulink software. It was found that there was significant 

frequency shift for the first mode of the vibration which varies from 9% to 22 % as the 

contact stiffness was increased. Similarly there was a frequency shift for the second and 

third mode for different contact stiffness but it was not that significant when compared 

with the frequency shift of the first mode. It was also found that the crack-induced 

nonlinearity has localized effect on the dynamics of the cracked bar, which leads to the 

generation of higher harmonics as a function of distance from the crack. 
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Chapter 4 Damage Assessment of a Cracked Bar: 
Effect of Material Nonlinearity on Vibro-Impact 
Response 

4.1 Introduction 

Finite Element Analysis (FEA) is used for the numerical solution of field problems. A 

field problem is solved by determining a spatial distribution of one or more dependent 

variables. Mathematically, a field problem is described by differential equations or by 

an integral expression. An Individual finite element can be visualized as a part of a 

structure. The word ‘finite’ distinguishes these parts from infinitesimal elements used in 

calculus. In each ‘finite' element a field quantity is allowed to have only a simple spatial 

variation; the actual variation in the region spanned by an element is more complicated. 

Hence FEA provides an approximate solution. Elements are connected with each other 

at points called nodes. The assemblage of elements is called ‘finite-element structure’. 

A particular arrangement of elements is called mesh. Numerically, a finite element 

model is represented by a system of algebraic equations to be solved for unknown 

magnitudes at nodes. Nodal unknowns are values of the field quantity. The solution for 

nodal quantities, when combined with the assumed field in any given element, 

completely determines a spatial variation of the field in that element. Thus the field 

quantity over the entire structure is approximated element by element, in a piecewise 

fashion [Cook et al., 2002]. 

This chapter deals with damage assessment for a component using an example of a 

crack in a cantilever bar under longitudinal harmonic loading. The finite-element 

simulation is used to perform this analysis. The nonlinear material properties are 

introduced in terms of their plasticity. The effect of a crack size and position along the 

beam length is studied. An observed change in a frequency response is used to 

characterize the damage state of the component. 

4.2 Procedure for Solving a Problem by FEA 

Solving a problem with FEA involves formulating the problem, preparing a 

mathematical model, discretizing it, implementing calculations with a computer and 

checking the results. In many cases, more than one cycle through these steps is required. 



Chapter 4 Damage Assessment of a Cracked Bar: Effect of Material Nonlinearity on 
Vibro-Impact Response 
 

65 
 

The steps involved in solving the finite element analysis problem is shown in Fig. 

4.1[Cook et al., 2002]  

Step 1: Classification of Problem 

This step involves identifying important physical phenomena involved, establishing 

whether the problem is time-dependent or not, checking for nonlinearity involved so 

that an iterative solution can be used, deciding on results sought from analysis and 

checking for the accuracy required. In this way a proper model can be developed and 

can be used for the calculation. 

Step 2: Mathematical Modelling  

In this step, a mathematical model has to be developed after the physical nature of the 

problem has been understood. A mathematical model is an idealization, in which 

geometry, material properties and boundary conditions are simplified based on the 

analyst’s understanding of what features are important or unimportant in obtaining the 

results required. A geometric model becomes a mathematical model when its behaviour 

is described by selected constitutive equations and boundary conditions. FEA is applied 

to this mathematical model. Thus, a fully continuous field is represented by a piecewise 

continuous field defined by a finite number of nodal quantities and a simple 

interpolation within each element. 

Step 3: Preliminary Analysis 

Preliminary analysis can involve analytical calculations or a use of existing handbook 

formulas, trusted previous solutions, or an experimental study. Subsequently it will be 

used to check the computed results. 

Step 4: Finite Element Analysis 

This step involves three sub-steps such as pre-processing, numerical analysis, and post-

processing. In pre-processing input data such as geometry parameters, material 

properties and so on should be transferred into a mesh of respective elements with the 

requested density. Numerical analysis involves the generation of matrices describing the 

behaviour of each element, combining these matrices for the entire problem and 

formulating a matrix equation and solving this equation to determine values of field 
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quantities at nodes. In post-processing, FEA solution and quantities derived from it can 

be listed or displayed graphically.  

 

Figure 4.1 Outline of finite element analysis 

Modified,after [Cook, 2002] 

 

Step 5: Result Checking 

FEA results obtained are compared with solutions from preliminary analysis and with 

any other useful information that may be available. 
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Step 6: Revision 

FEA results obtained are not always satisfactory, as there may be large discrepancies 

with physical observation/experiment due to a lack of physical understanding or 

deficiencies of the FEA model or both. Hence, revision can help an analyst to learn 

more which results in a more appropriate solution. 

4.3 Introduction to Package MSC. Marc Mentat 

MSC.Marc Mentat is an interactive computer program that prepares and processes data 

implementing the finite element method. It is a powerful tool for performing linear and 

nonlinear stress analyses in the static and dynamic regimes, as well as heat transfer 

analysis and electromagnetic analysis. The nonlinearities that can be treated may be due 

to material behaviour, large deformations and/or boundary conditions. 

 

Marc also enables researchers to assess the structural integrity and performance of parts 

undergoing large permanent deformations as a result of thermal and/or structural loads. 

Marc can also simulate deformable, part-to-part contact under varying conditions that 

include the effects of friction critical for analyzing a nonlinear behaviour. The software 

package offers an extensive library of metallic and non-metallic material models, along 

with a library of 175 elements for structural, thermal, and fluid analysis. It works with 

two pre- and post processors and also provides unique ability to process large problems 

in parallel using domain decomposition technique.  

 

MSC Marc.Mentat is used for the purpose of simulation as it can solve nonlinear 

problem and it has robust capabilities for contact, large strain, and multi-physics 

analysis to solve static and quasi-static nonlinear problems [MSc Marc. 2007 r1 

Volume. A]. 

4.4 Problem Formulation 

The analysed problem physically represents a straight bar of length  , which has a 

single crack of depth   and has a uniform rectangular cross-section of height h and 

width b. The cantilever bar is clamped at the left end and is free at its right end. The 

crack is located at the upper edge of the bar and is at the distance d from the fixed end, 

with d/L being a dimensionless crack position. a/h is the dimensionless ratio between 
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the depth of crack to the depth of the cross-sectional area. The longitudinal harmonic 

force is acting at the free end of the bar. Fig. 4.2 shows the schematic of the system 

model for three different cases. The dimensions and the mechanical properties for the 

straight bar are given in Table 4.1 and Table 4.2 respectively. 

 

 

(a) Crack near the fixed end of the bar 
 

 

 

(b) Crack at the centre of the bar 
 

 

 

(c) Crack near the free end of the bar 

 

Figure 4.2 Crack configurations 

 

Parameters Dimensions in mm 

Length(L) 300 

Width(b)  10  

Height(h)  25  

Depth of crack (a)  2, 4, 6, 8 and 10 

Distance of crack from fixed end (d)  100, 150, 250  

 

Table 4.1 Dimensions of cracked bar 

d=200 mm 

a 
h 

L=300 mm 

d=150 mm 

a 
h 

L=300 mm 

d=100 mm 

a 
h 

L=300 mm 
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 Material Aluminium (Grade 6082T6) 

Density [kg/mm
3
] 2.70 x 10

-6
 

Modulus of elasticity [N/mm
2
] 7 x 10

4
 

Yield strength [N/mm
2
] 2.514 x 10

2
 

Ultimate tensile strength [N/mm
2
] 3.434 x 10

5
 

 

Table 4.2 Mechanical properties 

4.5 Stress-Strain Curve 

A representation of relationship between a stress generated due to the application of 

force to a specimen and a strain obtained from measuring its induced deformation is 

called stress-strain curve. It varies from material to material. In Fig. 4.3 the engineering 

stress-strain curve shown demonstrates mechanical behaviour of metals as the loading 

in the specimen gradually increased. From O to A stress is proportional to strain. 

Beyond point A, the deviation from the Hooke’s law can be observed; hence, the stress 

at A represents the proportionality limit. At B, elongation of specimen begins without 

any appreciable increase in the load and the material is said to become plastic. This 

phenomenon is called yielding, continues until the test bar is stretched plastically as 

much as ten to fifteen times the elastic stretch up to the proportional limit. The stretch at 

which this yielding takes place is called yield point. At point C the material begins to  

 

Figure 4.3 Stages of stress-strain curve  
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strain-harden, recovers some of its elastic properties, and with further elongation the 

stress-strain curve reaches point D, representing the maximum tensile strength or 

ultimate tensile strength. Beyond point D, further stretching of the bar is accompanied 

by a decrease in the load and fracture takes place [Timoshenko, 2002]. 

The engineering stress-strain curve does not give a true indication of deformation 

characteristics of a metal because it is based entirely on original dimensions of the 

specimen and these dimensions change continuously during the test. Actually, the metal 

continues to strain-harden all the way up to fracture, so that the stress required to 

produce further deformation should also increase. If the true stress based on the current 

cross-sectional area of the specimen and the strain measurement based on instantaneous 

measurements is used then the curve obtained is known as a true stress-true strain curve 

[Timoshenko,2002]. 

 

Figure.4.4  Stress-Strain curve of Aluminium (Grade 6082T6) 

 

The true stress is given by  
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where 

  = Actual area of specimen;  

  = Original area of specimen; 

  = Applied load; 

  = strain. 

The true strain is determined by  

              (4.2)  

 where   = Elongation of specimen. 

Fig. 4.4 shows the comparison between the engineering stress-strain curve and the true 

stress-strain curve for aluminium. In the Fig. 4.4 true stress-strain curve is shown in 

dotted line and engineering stress-strain curve in solid line.  

4.6 Strain Additivity 

The total strain can be presented as a sum of elastic and plastic components [Meyers et 

al., 2009] 

           (4.3)  

The bilinear model combining elasticity with linear strain-hardening plasticity can be 

used for low-level plastic strains. It can be expressed as follows: 

elastic part: 

    
 

  
   (4.4)  

plastic part: 

    
    

  
   (4.5)  

where    is the slope of the true stress-plastic strain curve 

Using Eq. 4.1 and Eq. 4.5 we can obtain the graph (Fig 4.5) for true stress-plastic strain 

relationship used for the FEA simulations 
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Figure. 4.5  True stress vs. Plastic strain for Aluminium (Grade 6082T6) 

4.7 Methodology of Simulation 

Fig. 4.6 shows the flow chart of the simulation process for the cantilever bar. It can be 

seen from it that the harmonic analysis is performed on the cracked bar and uncracked 

bar with linear and nonlinear material properties. The static analysis is performed on the 

 

Figure.4.6 Flow chart for simulation 
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cracked cantilever bar with nonlinear material properties. The results obtained from this 

static analysis are used as an initial condition for the FEM model with the crack II. 

Using this initial condition, harmonic analysis is performed for the FEM Model II. The 

results obtained from this analysis are compared for those of FEM model without a 

crack. Similarly, the harmonic analysis is performed on the FEM model I with crack 

having linear material properties. The results obtained are also compared with those of 

the FEM model without a crack. Further the final results are obtained from the 

comparison between FEM model I and FEM model II. In all this analysis friction 

between the cracks faces is neglected. 

4.8 Finite Element Model of Cracked Cantilever Bar 

The 2D finite-element model of the cracked cantilever bar was modelled with MSC 

Marc commercial software. The finite element model of the cracked cantilever bar is 

modeled using element type 3. Element type 3(Fig 4.7) is a four-node, isoparametric, 

arbitrary quadrilateral element used for plane stress applications. This element uses 

bilinear interpolation functions; the strain is constant throughout the element. The 

stiffness of this element is formed using four point Gaussian integration. The crack is 

introduced in the cantilever bar by drawing the geometry of bar with a crack as a notch 

and meshing with the quad element. Fig 4.8(a) shows the finite element model of a 

cantilever bar fixed at the left end and harmonic loading applied at the free end for  

 

Figure 4.7 Quad element 

 

performing harmonic analysis. In all total 7500 elements are used. The simulation is 

performed on the cracked cantilever bar with and without account for crack-tip 

plasticity. Fig. 4.8(c) presents results for the former case while Fig. 4.8(b) for a latter 
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one. The first three natural frequencies are obtained for both cases and are compared to 

estimate the effect of crack-tip plasticity on them. 

 

 

(a) Entire bar with boundary conditions 

 

     

(b) Meshing near crack tip (c) Stress concentration near crack tip 
 

Figure.4.8 FEA model of a cracked cantilever bar 

4.9 Irwin’s Approach 

According to the Irwin’s approach linear elastic stress analysis of sharp cracks predicts 

infinite stresses at the crack tip. In real materials, however, stresses at the crack tip are 

finite because the crack tip radius is finite. Inelastic material deformation, such as 

plasticity in metals leads to the relaxation of crack-tip stress. The elastic stress analysis 

becomes increasingly inaccurate in the inelastic region as the crack tip grows. Simple 

corrections to linear elastic fracture mechanics are available when moderate crack-tip 

yielding occurs. The size of crack tip yielding zone can be estimated by this approach  

Consider the crack plane on which the normal stress     , in a linear elastic material is 

given by Eq. (4.6) as an approximation. We assume that the boundary between elastic 

and plastic behaviours occurs when the stresses given by Eq. (4.6) satisfy the yield 

criterion. For plane-stress conditions, yielding occurs when     =    , the uniaxial yield 

strength of material [Anderson, 2005]. 
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 (4.6)  

Where 

   is stress intensity factor 

 

Figure.4.9 First-order and second-order estimates of plastic zone 

Modified,after [Anderson, 2005] 

For plane stress the size of the crack-tip plastic zone is given by  

    
 

  
 
  

   
 
 

 (4.7)  

Following the yielding (Fig. 4.9) there will be redistribution in the crack tip stress to 

make up for the load carrying capacity lost due to yielding. 

According to the Irwin’s analysis, we have 

              

  

 

 (4.8)  

Substituting Eq. (4.6) in Eq. (4.8) we have 

         
  

    
  

  

 

 (4.9)  
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Solving Eq. (4.9) one gets the second estimate for the size of a plastic zone 

    
 

 
 
  

   
 
 

 (4.10)  

Comparing Eq. (4.7) and Eq.(4.10) we obtain 

        (4.11)  

Hence Eq. (4.11) can be used to validate the number of elements defined in the Finite 

element analysis of the cracked cantilever bar. From the finite element analysis it is 

found that for elasto-plastic crack number of elements defined for FEA simulation 

satisfies the criteria of Eq. (4.11). Table 4.3 shows the results for FEA simulation 

performed for calculating KI and corresponding values of ry and rp . 

Crack Depth (mm) KI  
  

      
  ry  (  ) rp  (  ) 

2 661180 0.7994 1.599 

4 705300 1.0295 2.059 

6 679850 0.845 1.6905 

8 698940 0.8934 1.786 

10 434650 0.345 0.6910 

 

Table 4.3 Calculation of plastic zone size 

4.10 Simulation Results 

The force longitudinal vibration analysis was performed to obtain the natural 

frequencies of the cantilever bar. The first, second and third natural frequencies of the 

uncracked aluminum cantilever bar of chosen dimensions are 4242.12 Hz, 12729.37 Hz 

and 21215.62 Hz respectively. The first three natural frequencies of the cracked 

aluminum bar with and without plasticity at the crack tip are compared below for 

several cases. 

4.10.1 Case (A) Crack near the Fixed End of the Bar 

It was found that in Case (A) there was no change in the first natural frequency (Fig. 

4.10) and there was only a marginal change in the third natural frequency initially but as 
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the crack-to-depth ratio was increased the change in frequency with and without 

plasticity almost remained the same (Fig. 4.12). Contrary to that there was a constant 

change in the second natural frequency as shown in Fig. 4.11. The bar chart (Fig. 4.13) 

shows that the first natural frequency was not affected by crack-tip plasticity whereas 

the second frequency and third natural frequencies showed some change due to it. This 

change in frequencies was due to the crack-induced plasticity which affected the overall 

stiffness of the cracked cantilever bar.  

 

Figure.4.10 Effect of a/h ratio on first natural frequency for d/L =0.33 

  

 

Figure.4.11 Effect of a/h ratio on second natural frequency for d/L =0.33 
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Figure.4.12 Effect of a/h ratio on third natural frequency for d/L =0.33 

 

 

Figure.4.13 Effect of a/h ratio on natural frequencies d/L=0.33 

4.10.2 Case (B) Crack at the Centre of Bar 

It was found that in Case (B) there was no change in the first natural frequency (Fig 

4.14) and there was a small change in the second and third natural frequencies initially 

due to the effect of plasticity that for all a/h ratios remains the same (Fig. 4.15 and Fig. 

4.16). The first natural frequency shows no effect due to crack tip plasticity, where as 

the second and third natural frequencies change with it as presented in Fig. 4.17. This 

change in frequencies was due to the crack-induced plasticity which affected the overall 

stiffness of the cracked cantilever bar.  
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Figure.4.14 Effect of a/h ratio on first natural frequency for d/L =0.5 

 

 

Figure.4.15 Effect of a/h ratio on second natural frequency for d/L =0.5 

 

 

Figure 4.16 Effect of a/h ratio on third natural frequency for d/L =0.5 
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Figure.4.17 Effect of a/h ratio on natural frequencies d/L=0.5 

4.10.3 Case (C) Crack near the Free End of the Bar 

It was found that in this case the crack near the free end of the bar caused no change in 

the level of the first natural frequency (Fig 4.18) and there was a marginal change in the 

second natural frequency (Fig.4.19) whereas third natural frequency showed significant 

change (Fig. 4.20). This change in third natural frequency was due to the crack-induced 

plasticity near the crack tip which overall affected the stiffness of the cracked cantilever 

bar. 

 

 

 

Figure 4.18 Effect of a/h ratio on first natural frequency for d/L =0.66 
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Figure 4.19 Effect of a/h ratio on second natural frequency for d/L =0.66 

 

 

Figure.4.20 Effect of a/h ratio on third natural frequency for d/L =0.66 

 

Figure.4.21 Effect of a/h ratio on natural frequencies d/L=0.66 
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4.10.4 Effect of Crack Location on the Natural Frequency 

Figures 4.22, 4.23 and 4.24 shows a comparison between the cases with (dashed line) 

and without (solid line) plasticity at the crack tip for the first, second and third natural 

frequency for different d/L ratio at the given crack depth (2mm, 4mm, 6mm, 8mm and 

10mm). It was observed that there was no change in first natural frequency (Fig. 4.22) 

where as there was small change in the second and third natural frequencies as the d/L 

ratio increased (Fig. 4.23 and Fig. 4.24). This was due to the crack-induced plasticity 

near the crack tip. 

 

 

Figure.4.22 First natural frequency 

 

Figure.4.23 Second natural frequency 
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Figure.4.24 Third natural frequency 
 

4.11 Summary 

This chapter was devoted to the characterization of the effect of material nonlinearity on 

the natural frequencies. The 2D finite element model of the cracked cantilever bar was 

modelled with the commercial software MSC.Marc to study the effect of crack-tip 

plasticity on the first three natural frequencies. It was found that the presence of 

plasticity at the crack tip has no effect on the first natural frequency whereas there was a 

low-level influence on the second and third natural frequencies as the a/h ratio 

increased. In addition to that there was no effect on the first natural frequency as the d/L 

ratio increased for different crack depths. On the contrary, as the d/L ratio increased the 

second and third natural frequencies were affected for different crack depth. This effect 

of change in the second and third natural frequency for different a/h and d/L ratios was 

attributed to the change in stiffness due to the crack-tip plasticity. Hence, it can be 

concluded that crack-induced plasticity can affect the natural frequency. This change 

depends on the mode shape, a/h ratio and d/L ratio.  
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Chapter 5 Experiments 

5.1 Introduction 

The experiments are performed to compare the theoretical and simulation results. 

Experiments are planned in three stages. In the first stage material is selected after 

careful consideration of its properties and availability. In the second stage, the fatigue 

crack is generated in the specimens of Aluminium and PMMA. In the third stage of the 

experiment ,the specimen with fatigue crack is used for studying  the dynamics of the 

cracked bar having a boundary condition fixed at one end  and forced longitudinal 

harmonic excitation at the other end. Fig.5.1 shows the experimental plan. 

 

Figure 5.1. Experimental Plan 
 

5.2 Selection of Specimen 

The selection of the specimen is based on the availability of the material in the 

workshop and depending upon the mechanical properties of the materials. The material 

selected for making the specimen are Aluminium and PMMA. The dimension of the 

specimen is 420mm x 25mm x 10mm each. The mechanical properties of the materials 

are given in Table 5.1. 

Selection of Material for Making 

Specimen 

Generation of Crack in Specimen 

using Fatigue Machine or Laser 

Cutting 

Studying the Dynamics of Cracked 

Specimen 
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Material 

Modulus 

of Elasticity 

(N/mm
2
) 

Density 

(Kg/mm
3
) 

Ultimate Tensile 

Strength (   ) 

(N/mm
2
) 

Poisson’s 

Ratio 

 

Aluminium 

 

70 x 10
3
 

 

2.70 x 10
-6

 

 

340 

 

0.33 

 

PMMA 

 

3000 

 

1.18 x 10
-6

 

 

60 

 

0.35-0.4 

 

Table 5.1 Mechanical properties of material 
 

5.3 Fatigue 

A periodic stress oscillating between maximum stress (      and minimum stress       

levels applied to a machine member is called repeated, alternating or fluctuating. The 

machine members failing under the action of these stresses is called fatigue failure. 

Generally a small crack is enough to initiate fatigue failure since the stress 

concentration effect becomes greater around it and the crack progresses rapidly. The 

components of stresses are depicted in Fig. 5.2 where      is minimum stress,      is 

maximum stress,    
the stress amplitude or the alternating stress,     the mid range or 

mean stress ,   the stress range and    the steady or static stress. The steady stress can 

have any value between      and      and exists for a fixed load. It is usually 

independent of the varying portion of the load. The relation between the stress 

components are as follows. 

   
         

 
 

   
         

 
 

The stress ratios 

  
    

    
 

are used to describe the fluctuating stresses. Table 5.2 shows the calculation of fatigue 

load. 
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Figure 5.2 Sinusoidal fluctuating stresses 
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 Aluminium PMMA 

Ultimate Tensile Strength (   ) 340 N/mm
2
 60 N/mm

2
 

Modulus of Elasticity (E) 70 x 10
3
 N/mm

2
 3000 N/mm

2
 

Stress ratio (R) 0.1 0.1 

Area 250 mm
2
 250 mm

2
 

Force=    x Area 85KN 15K N 

Fmax= 0.7x Force 52.5KN 10.5 KN 

Fmin 5.525 KN 1.05 KN 

 

Table 5.2 Calculation of fatigue load 

5.4 Crack Generation using Fatigue Machine 

The Fig. 5.3 shows the Instron hydraulic fatigue testing machine. The load cell capacity 

used in fatigue machine is 200 KN for quasi static load and 100KN for dynamic load. 

The hydraulic grips in the machine are used for firmly gripping material specimen so  

 

Figure 5.3 Instron testing machine 

 

Hydraulic Grips 

Aluminium Specimen 
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that while testing specimen slip does not occur. The fatigue machine is controlled by the 

9600 controller box and multi-channel transducer box. The fatigue machine can be used 

for both constant fatigue loading and complex loading. The Fig. 5.3 shows that the 

aluminium specimen is fixed in the hydraulic grip and the dynamic loading is applied 

for generating the crack in specimen at the notch of the specimen. The cyclic load is 

applied having a stress ratio of R=0.1. It is applied for 1900 cycles and then the 

specimen is removed once the crack is seen on the surface. Fig. 5.4 shows the 

microscopic view of the crack generated in the aluminium specimen 

 

Figure 5.4 Microscopic view of the crack generated in the aluminium specimen 

 

Similarly, when the cyclic load is applied for the PMMA specimen it breaks of all of a 

sudden without any sign of initial crack. Fig.5.5 shows the failure of the PMMA 

specimen under the fatigue loading. So it becomes very difficult to generate a crack in 

PMMA specimen using the fatigue machine. So the crack in the PMMA specimen is 

generated using the laser cutting which can generate a cut of 300 microns thickness. The 

Fig.5.6 shows the crack generated in the PMMA specimen using laser cutting. The 

crack generated using laser is just like an open notch. So it will always remain open 

while performing the experiment .As the experiment is supposed to study the effect of 

the vibro-impact response due to the breathing crack it is not feasible to perform the 
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experiment using PMMA so the experiments are performed only on the aluminium 

specimen. 

 

Figure 5.5 Failure of the PMMA specimen using fatigue machine 
 

 

Figure 5.6 Laser cutting in the PMMA specimen of 300 microns 

Fatigue Failure 

Laser Cut 
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5.5 Experimental Setup 

The experimental setup consists of the Shaker, Signal generator, Aluminium bar 

(cracked and uncracked specimen), Piezo-electric strain gauges and Picoscope. Each of 

the components used in the experimental set up is described below:  

Shaker: Ling Dynamic Systems 200 series vibrators are miniature units for use in small 

scale vibration testing or as non-seismic pick-ups. The 200 series Vibrators can be 

driven by a TPO 20 oscillator of the Ling Dynamic Systems. A light weight armature 

construction, top and bottom laminated spiders, vibrator body and trunnion mounting 

where required, form the main parts of the Model 200 series vibrator. Being permanent 

magnet design the 200 series vibrators do not require a field power supply. Cooling is 

not required although the provision is made for the easy connection of a forced air 

supply ( Fig. 5.7). 

 

Figure 5.7  Shaker 

 

Oscillator/Amplifier: The model TPO 20 power amplifier has been designed as a drive 

source for the Ling Dynamic Systems 100 and 200 series vibrators. The equipment is 

completely self contained and in addition to the built in oscillator, the unit has 

protection circuits to prevent damage to the equipment in the event of excessive output 

current. The TPO 20 is a quasi complementary class B amplifier. It uses an silicon 

transistor driver board which drives two NPN power output transistors connected in a 

half bridge configuration. The oscillator section is of the Wien-bridge type and module 

also incorporates a delay and interlock protection circuits (Fig. 5.8). 
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Figure 5.8 Oscillator 
 

Piezo Strain Gauges: The piezo-electric strain gauge (Fig.5.9) consists of a strip of 

piezoelectric ceramic , silvered and polarized across the thickness dimension, with the 

lower silvering carried round to the top to facilitate electrical connection. These strain 

gauges have extremely high sensitivities of the order of several hundred times that 

obtainable with wire strain gauges. Output for an expansion of 10
-6

 cm is in the order of 

200 mV for 0.5 mm thick. Approximate capacity is 1000pF having low frequency limit 

150 c/s. The dimension of this strain gauge is 20mm x 3 mm x 0.5 mm. For the lower  

 

Figure 5.9 Piezo-strain gauges 

 frequencies a voltage follower or charge amplifier unit may be used. At resonance a 

considerable displacement of the structures is obtained with a very low power input to 
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the element The transducers are so small that they do not materially affect the 

vibrational characteristics of the structure.  

Picoscope:  Picoscope 2202 (Figure 5.10) is a dual channel USB oscilloscope. It is 

suitable for use on any laptop or desktop PC, with a USB port, running Microsoft 

Windows XP or Vista. PicoScope oscilloscopes works with PicoScope software that 

provides oscilloscope, spectrum analyzer and multimeter functions. It also has the 

capabilities to view real-time signals, zoom in on your signal, and save and print 

captured waveforms. It also has a Picolog data acquisition software that transforms PC 

into a high-speed data logger.  

 

Figure 5.10 Picoscope 
 

5.6 Experimental Procedure 

Before performing the experiment all the components of the setup were assembled as 

shown in Fig. 5.11 and Fig. 5.12 for the uncracked bar and the cracked bar. The piezo 

strain gauges (sensors) for the cracked bar were fixed at the four different locations. 

One strain gauge was fixed near the fixed end of the bar and one strain gauge was fixed 

near the free end. Other two strain gauges were fixed near the crack. The frequency 

sweep was performed on the cracked bar to find the resonances. After the resonant 

frequency was obtained, the cracked bar was excited at each of these resonant 

frequencies and the response was obtained at each of the strain gauge fixed on the 
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cracked bar. The signal from each of the piezo-strain gauge was acquired using the 

Picoscope and it was processed in the picoscope software. The proper sampling rate for 

signal was maintained taking in to consideration of Nyquist criteria throughout the 

experiments to avoid aliasing error. Hanning window was used; while processing the 

signal so that leakage error is minimized. 

 

 

Figure 5.11 Experimental setup for uncracked bar 

 

 

Figure 5.12 Experimental setup for cracked bar 

Sensor 1 Sensor 2 Sensor 3 Sensor 4  

Crack 
Shaker 

Shaker 

Sensor 
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5.7 Experimental Results 

5.7.1 Uncracked Bar 

The frequency sweep was performed on the uncracked aluminum bar. The signal was 

acquired at the centre of the bar in the form of time and frequency response. During 

frequency sweep, it was found that the resonances occurred at the frequencies of 2844 

Hz, 3650 Hz, 4504 Hz, 5996 Hz and 6445 Hz. The frequency responses were obtained 

at each of these frequencies for lower and higher excitation amplitude. The magnitude 

of lower and higher vibration amplitude was approximately 2.8 N and 16 N 

respectively. 

5.7.1.1 Excitation at frequency of 2844 Hz 

The uncracked bar was excited at the lower and the higher vibration amplitude at 

resonant frequency of 2844 Hz. For lower vibration amplitude, resonant frequency was 

observed in frequency response (Fig.5.13). For higher vibration amplitude, along with 

the resonant frequency one can observe the harmonics of resonant frequency at 5689 Hz 

and 8513 Hz (Fig.5.14).  

 

Figure 5.13 Measurement of response at the centre of bar  
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Figure 5.14 Measurement of response at the centre of  bar  

5.7.1.2 Excitation at frequency of 3650 Hz 

The uncracked bar was excited at the lower and the higher vibration amplitude at 

resonant frequency of 3650 Hz. For lower vibration amplitude, resonant frequency was 

observed in frequency response (Fig.5.15). For higher vibration amplitude, along with 

the resonant frequency one can observe the harmonic of resonant frequency at 7303 Hz 

and lower frequency component at 1273 (Fig.5.16). This lower frequency caused  

 

Figure 5.15 Measurement of response at the centre of  bar  
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Figure 5.16 Measurement of response at the centre of  bar  

modulation of signal which led to the generation of side band frequencies near the 

resonant frequency at 2380 Hz, 4926 Hz, 6199 Hz and 8576 Hz. This might be due to 

the coupling of modes of vibration. 

5.7.1.3 Excitation at frequency of 4504 Hz 

The uncracked bar was excited at the lower and the higher vibration amplitude at 

resonant frequency of 4504 Hz. For lower vibration amplitude, resonant frequency was 

observed in the frequency response (Fig.5.17). For higher vibration amplitude, along  

 

Figure 5.17 Measurement of response at the centre of  bar  
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Figure 5.18 Measurement of response at the centre of  bar  

 with the resonant frequency one can observe the harmonic of resonant  frequency at 

9008 Hz and lower frequency component at 1516 Hz (Fig.5.18). This lower frequency 

caused modulation of the signal which led to the generation of side band frequency near 

the resonant frequency at 6020 Hz. This might be due to the coupling of modes of 

vibration. 

5.7.1.4 Excitation at frequency of 5996 Hz 

The uncracked bar was excited at the lower and the higher vibration amplitude at 

resonant frequency of 5996 Hz. For lower vibration amplitude, resonant frequency was 

observed in the frequency response (Fig.5.19). For higher vibration amplitude, along 

 

Figure 5.19 Measurement of response at the centre of  bar  
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Figure 5.20 Measurement of response at the centre of  bar  

with the resonant frequency one can observe lower frequency component at 1540 Hz 

(Fig.5.20). This lower frequency caused modulation of the signal which led to the 

generation of side band frequencies near the resonant frequency at 3078 Hz, 4459 Hz, 

7537 Hz and 9077 Hz. This might be due to the coupling of modes of vibration. 

5.7.1.5 Excitation at frequency of 6454 Hz 

The uncracked bar was excited at the lower and the higher vibration amplitude at 

resonant frequency of 6454 Hz. For lower vibration amplitude, resonant frequency was 

observed in the frequency response (Fig.5.21). For higher vibration amplitude, along  

 

Figure 5.21 Measurement of response at the centre of  bar  
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Figure 5.22 Measurement of response at the centre of  bar  

with the resonant frequency one can observe lower frequency component at 169 Hz 

(Fig.5.22). This lower frequency caused modulation of the signal which led to the 

generation of side band frequencies near the resonant frequency at 6287 Hz, 6624 Hz 

and 6790 Hz. This might be due to the coupling of modes of vibration. 

5.7.2 Cracked Bar 

The frequency sweep was performed on the cracked aluminium bar. During frequency 

sweep it was found that the resonances occurred at the frequencies of 2821 Hz, 3634 

Hz, 4499 Hz 6008 Hz and 6445 Hz like the bar without crack with slight difference in 

resonant frequencies. At each of these resonant frequencies, frequency response was 

obtained for lower and higher vibration amplitude. The magnitude of lower and higher 

vibration amplitude was approximately 2.8 N and 16 N respectively. These frequency 

responses were acquired at the four different points on the cracked aluminium bar.  

5.7.2.1 Case (A): Excitation at Frequency of 2821 Hz (Low Vibration Level) 

The cracked bar was excited at lower vibration amplitude at resonant frequency of 2821 

Hz. The response acquired at sensor 1 (Fig.5.23) and at sensor 4 (Fig.5.26) of the bar 

showed only resonant frequency. It was also found that response acquired near the crack 

from sensor 2 (Fig.5.24) and sensor 3 (Fig.5.25) showed the resonant frequency along  
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Figure 5.23 Measurement of frequency response at sensor 1 

 

Figure 5.24 Measurement of frequency response at sensor 2 

 

Figure 5.25 Measurement of frequency response at sensor 3 
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Figure 5.26 Measurement of frequency response at sensor 4 

with the third harmonic of the resonant frequency. This third harmonic of the resonant 

frequency occurred due to the crack which induced additional perturbations in the 

cracked bar. When comparison was made between the frequency response (Fig. 5.13) of 

uncracked bar and frequency response (Fig. 5.24 and Fig 5.25) of cracked bar it was 

observed that presence of crack in a bar led to generation of higher harmonic. 

5.7.2.2 Case (B): Excitation at Frequency of 2821 Hz (High Vibration Level) 

The cracked bar was excited at the higher vibration amplitude at resonant frequency of 

2821 Hz. The response acquired at sensor 1(Fig. 5.27) and sensor 4 (Fig. 5.30) indicated 

the presence of the low frequency component at 517 Hz which resulted in modulation 

showing the presence of side band frequencies near the resonant frequency. It also 

showed the second and third harmonics of resonant frequency at 5644 Hz and 8464 Hz 

respectively. Similarly, the response acquired at sensor 2 (Fig. 5.28(a)) indicated the 

presence of low frequency components at 219 Hz and 515 Hz (Fig.5.28 (b)) these low 

frequency components occurred due to the presence of crack in a bar which resulted in 

modulation showing the additional side band frequencies (2306 Hz and 3338 Hz) near 

the resonant frequency and along with the higher harmonics (5644 Hz and 8464 Hz) of 

resonant frequency. On similar grounds when the response was acquired at the sensor 3 

(Fig. 5.29) it showed the presence of low frequency components at 222 Hz and 513 Hz 

which resulted in modulation showing the presence of additional side band frequencies 

(2308 Hz, 2601Hz, 3042 Hz and 3336 Hz) near the resonant frequency along with the 

higher harmonics (5644 Hz and 8464 Hz) of resonant frequency. When the comparison  
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Figure 5.27 Measurement of frequency response at sensor 1 

 

(a) Frequency Response 

 

(b) Frequency Response (Zoomed1 to 1000 Hz) 

 

Figure 5.28 Measurement of frequency response at Sensor 2 
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(a) Frequency Response 
 

 

 

(b) Frequency Response (1-1500 Hz) (c)Frequency Response (1500-4000 Hz) 

 

 

(d)Frequency Response (4000-7500 Hz) (e)Frequency Response (7500- 9677 Hz) 
  

Figure 5.29 Measurement of frequency response at Sensor 3 
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Figure 5.30 Measurement of frequency response at sensor 4 
 

was made between the frequency responses of the uncracked bar (Fig 5.14) and cracked 

bar (Fig 5.27 to Fig 5.30) it was observed that there was no lower frequency component 

in the frequency response of the uncracked bar. But for the cracked bar it was observed 

from the frequency response (Fig 5.27 to Fig 5.30) that along with side band 

frequencies near the resonant frequency, lower frequency components exist The 

occurrence of low frequency component and side band frequency might be attributed to 

the vibro-impact behaviour of crack. The magnitude of this low frequency component 

was proportional to the excitation frequency. This indicates that crack behaves like a 

signal modulator, detector of low frequency component and amplifier as the magnitude 

of low frequency was proportional to the magnitude of excitation frequency. 

5.7.2.3 Case(C): Excitation at Frequency of 3634 Hz (Low Vibration Level) 

The cracked bar was excited at lower vibration amplitude at resonant frequency of 3634 

Hz. It was found that, the frequency response obtained at the sensor 1 (Fig. 5.31) and 

the sensor 4 (Fig. 5.34) showed only resonant frequency. It was also found that, the 

response acquired near the crack from sensor 2 (Fig 5.32) and sensor 3 (Fig 5.33) 

showed the resonant frequency along with its higher harmonics. As seen from Fig.5.32 

and Fig. 5.33 higher harmonic (7270 Hz) is exactly 2 times the resonant frequency. 

When comparison was made between the frequency responses (Fig. 5.15) of uncracked  
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Figure 5.31 Measurement of frequency response at sensor 1 

 

 

Figure 5.32 Measurement of frequency response at sensor 2 

 

Figure 5.33 Measurement of frequency response at sensor 3 
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Figure 5.34 Measurement of frequency response at sensor 4 
 

bar and frequency response (Fig. 5.32 and Fig 5.33) of cracked bar it was observed that 

presence of crack in a bar led to generation of higher harmonic. 

5.7.2.4 Case (D): Excitation at Frequency of 3634 Hz (High Vibration Level) 

The cracked bar was excited at higher vibration amplitude at frequency of 3634 Hz. The 

response acquired at sensor 1 (Fig. 5.35) and sensor 4 (Fig. 5.38 ) indicated the presence 

of the low frequency (1359 Hz) component which resulted in modulation showing the 

presence of side band frequencies near the resonant frequency at 2275 Hz and higher 

harmonic of resonant frequency at 7270 Hz. Similarly, the response acquired at sensor 2 

(Fig. 5.36) indicated the presence of low frequency components (1359 Hz) which 

resulted in the modulation showing the presence of additional side band frequencies 

(2275 Hz and 4993 Hz) near the resonant frequency along with higher harmonic of 

resonant frequency at 7270 Hz. On similar grounds the response s acquired at the sensor 

3 (Fig. 5.28) indicated the presence of low frequency components (1357 Hz) which 

resulted in modulation showing the presence additional side band frequencies (2279 Hz 

and 4990 Hz)  near the resonant frequency along with higher harmonic of resonant 

frequency at 7270 Hz. When the comparison is made between the frequency responses 

of uncracked bar (Fig. 5.16) and cracked bar (Fig. 5.36 and Fig 5.37). It was observed 

that there is not much difference in the frequency responses. This might be due to the 

coupling between modes along with the crack. It was difficult to discriminate the 

frequencies due to the presence of crack and the coupling between the transverse mode 

and longitudinal mode. It was also observed from Fig 5.35 to Fig.5.38 that frequency 
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Figure 5.35 Measurement of frequency response at sensor 1 

 

Figure 5.36 Measurement of frequency response at sensor 2 

  

Figure 5.37 Measurement of frequency response at sensor 3 
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Figure 5.38 Measurement o frequency response at sensor 4 

 

response measured at different sensor position there was change in amplitude of 

sideband frequency. 

5.7.2.5 Case (E): Excitation at Frequency of 4499 Hz (Low Vibration Level) 

The cracked bar was excited at lower vibration amplitude at frequency of 4499 Hz. It 

was found that, the frequency response at sensor 1 (Fig. 5.39) and at sensor 4 (Fig.5.42) 

showed only resonant frequency. It was also found that signal acquired near the crack 

from sensor 2 (Fig.5.40) and sensor 3 (Fig.5.41) showed the increase in amplitude of 

resonant frequency.  

 

Figure 5.39 Measurement of frequency response at sensor 1 
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Figure 5.40 Measurement of frequency response at sensor 2 

 

Figure 5.41 Measurement of frequency response at sensor 3 

 

 

Figure 5.42 Measurement of frequency response at sensor 4 
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5.7.2.6 Case (F): Excitation at Frequency of 4499 Hz (High Vibration Level) 

The cracked bar is excited at higher vibration amplitude at the frequency of 4499 Hz. 

The response acquired at each of the sensors (Figures 5.43, 5.44, 5.45 and 5.46) showed 

the presence of resonance frequency along with the high harmonic of resonant 

frequency at 9001 Hz. When comparison is made between the frequency responses of 

uncracked bar (Fig. 5.18) and of cracked bar (Fig 5.43 to Fig 5.46) it was observed that 

presence of crack in a bar led to generation of higher harmonic.  

 

Figure 5.43 Measurement of frequency response at sensor 1 

 

 

Figure 5.44 Measurement of frequency response at sensor 2 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
-100

-80

-60

-40

-20

0

20

Frequency (Hz)

A
m

p
li

tu
d

e(
d

B
)

X:4499

Y:-13.62

X:6032

Y:-52.04

X:9001

Y:-49.54

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
-100

-80

-60

-40

-20

0

20

Frequency (Hz)

A
m

p
li

tu
d

e(
d

B
)

X:4499

Y:7.39

X:6032

Y:-54.9

X:9001

Y:-44.36



Chapter 5 Experiments 
 

111 

 

 

Figure 5.45 Measurement of frequency response at sensor 3 

 

Figure 5.46Measurement of frequency response at sensor 4 
 

5.7.2.7 Case (G): Excitation at Frequency of 6008 Hz (Low Vibration Level) 

The cracked bar was excited at lower vibration amplitude at the frequency of 6008 Hz. 

It was found, that response obtained from the sensor near the fixed end (Fig.5.47) shows 
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the frequency responses of uncracked bar (Fig. 5.19) and of cracked bar (Fig 5.43 to Fig 

5.46) it was observed that presence of crack in a bar led to generation of additional 

frequency component coupled with the resonant frequency. This additional frequency  
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Figure 5.47 Measurement of frequency response at sensor 1 

 

Figure 5.48 Measurement of frequency response at sensor 2 

 

Figure 5.49 Measurement of frequency response at sensor 3 
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Figure 5.50 Measurement of frequency response at sensor 4 
 

might be due to the free vibration taking place during the process of forced excitation 

i.e. is due to the vibro-impact behaviour of the crack. 

5.7.2.8 Case (H): Excitation at Frequency of 6008 Hz (Higher Vibration Level) 

The cracked bar was excited at higher vibration amplitude at the frequency of 6008 Hz. 

It was found that, the frequency response obtained from the sensor near the fixed end 

(Fig. 5.51) and the free end of the bar (Fig.5.54) showed the resonance frequency along 

with low frequency component  at 1500 Hz. This lower resonant frequency caused 

modulation which led to the generation of side band frequency (7510 Hz) near the 

resonant frequency. It was also found that response acquired near the crack from sensor 

2 (Fig. 5.52) showed the presence of side band frequencies in the multiples of 1500 Hz 

along with the resonant frequency. The frequency response obtained at sensor 3(Fig. 

5.53) showed that there was slight shift in the resonant frequency. It also showed the 

presence of the side band frequencies in the multiples of 1500 Hz near the resonant 

frequency. When the comparison is made between the responses of uncracked bar (Fig. 

5.20) and cracked bar (Fig. 5.52 and Fig 5.53) there was very little difference in the 

frequency response. It was also difficult to discriminate the frequencies due to the 

presence of crack and the coupling between the modes.  
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Figure 5.51 Measurement of frequency response at sensor 1 

 

Figure 5.52 Measurement of frequency response at sensor 2 

 

Figure 5.53Measurement of frequency response at sensor 3 
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Figure 5.54 Measurement of frequency response at sensor 4 

5.7.2.9 Case (I): Excitation at Frequency of 6445 Hz (Low Vibration Level) 

The cracked bar was excited at lower vibration amplitude at the frequency of 6445 Hz. 

The response acquired at each of the sensors (Figures 5.55, 5.56, 5.57 and 5.58) showed 

only the resonant frequency. 

 

Figure 5.55Measurement of frequency response at sensor 1 
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Figure 5.56 Measurement of frequency response at sensor 2 

 

Figure 5.57 Measurement of frequency response at sensor 3 
 

 

Figure 5.58 Measurement of frequency response at sensor 4 
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5.7.2.10 Case (J): Excitation at Frequency of 6445 Hz (High Vibration Level) 

The cracked bar was excited at higher vibration amplitude at the frequency of 6445 Hz. 

The response acquired at sensor 1 (Fig.5.59) showed the resonant frequency.  Similarly, 

the response acquired at sensor 2, sensor 3 and sensor 4 (Figures 5.60, 5.61 and 5.62) 

showed the presence of additional low frequency component at 196 Hz along with the 

resonant frequency. This low frequency component caused modulation which led to the 

generation of side band frequency near the resonant frequency at 6640 Hz. This 

indicated that presence of crack causes additional perturbations. 

 

Figure 5.59 Measurement of frequency response at sensor 1 
  

 

Figure 5.60 Measurement of frequency response at sensor 2 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
-100

-80

-60

-40

-20

0

20

Frequency (Hz)

A
m

p
li

tu
d

e(
d

B
)

X:6445

Y:-5.54

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
-100

-80

-60

-40

-20

0

20

Frequency (Hz)

A
m

p
li

tu
d

e(
d

B
)

X:6445

Y:5.5

X:6640

Y:-50.14

X:196

Y:-45.98



Chapter 5 Experiments 
 

118 

 

 

Figure 5.61 Measurement of frequency response at sensor 3 
 

 

Figure 5.62 Measurement of frequency response at sensor 4 
 

5.8 Summary 

In this chapter experimental results were analyzed. It was found that the presence of 

crack has the significant effect on the dynamic behaviour of the cracked bar as observed 
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the frequency responses, it was observed that measurements near the crack showed that 

there was generation of higher harmonics at lower vibration amplitude. This generation 

of higher harmonics indicated that the presence of crack induces additional 

perturbations in the bar. When the cracked bar was excited at the higher vibration 
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low frequency component appeared in the response. This low frequency component 

caused modulation which resulted in the generation of side band frequencies near the 

resonant frequency. The occurrence of low frequency component and side band 

frequency might be attributed to the vibro-impact behaviour of crack. The magnitude of 

this low frequency component was proportional to the magnitude of resonant frequency. 

This indicates that crack behaves like a signal modulator, detector of low frequency 

component and amplifier as the magnitude of low frequency component was 

proportional to the magnitude of excitation frequency. To make an analogy with the one 

of the communication system i.e. heterodyne receiver. It was concluded that the 

response obtained from bar with a crack is similar to that obtained from heterodyne 

receiver, which led to the generation of new frequencies by mixing of two oscillating 

frequency. This signature of the frequency response at lower and higher vibration 

amplitude was used for predicting the location of the crack by measuring the frequency 

response at the different location from the crack. It was found that crack-induced 

nonlinearity effect reduced as one moved away from the crack to measure the frequency 

response. Hence, measuring the frequency response at different location on the cracked 

bar can help to locate the crack position in the bar under consideration. 
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Chapter 6 Conclusions and Further Work 

6.1 Conclusion 

Vibration based structural health monitoring is advantageous as it doesn’t require 

dismantling of the structure to get insight of the structural health under working 

condition. This technique can considerably reduce the cost of monitoring the structural 

health in real time. Moreover, it would also help in making the optimum utilization of 

the structural life. Hence, this is very promising method to monitor structural health. 

The thesis was aimed at exploring the nonlinear vibration based cracked monitoring 

techniques. In this thesis work was focussed on developing the new technique of 

simulation of continuous system with discontinuities such as crack, characterizing the 

effect of material nonlinearity on the dynamics of the cracked bar and performing the 

experiments to study the dynamics of bar having a fatigue crack in it. 

The new technique was developed using the numerical approximation for dynamic 

compliance and nonlinear model of contact force generated due cracks faces interaction 

implanted numerically as a nonlinear feedback. This new technique of simulation was 

developed using Matlab- Simulink software. It was found that crack-induced 

nonlinearity generated higher harmonics along the bar length, as a function of distance 

from the crack. 

The simulation in MSC Marc Mentat was performed on the cracked bar to characterize 

the effect of material nonlinearity on the natural frequency. The 2D finite element 

model of the cracked cantilever bar was modelled to study the effect of crack-tip 

plasticity on the first three natural frequencies of the cantilever bar. It was found that the 

presence of the plasticity at the crack tip has no effect on the first natural frequency 

whereas there was a low level influence on the second and third natural frequencies as 

the a/h ratio increased. In addition to that there was no effect on the first natural 

frequency as the d/L ratio increased for different crack depths. On the contrary as the 

d/L ratio increased second and third natural frequencies were affected for different crack 

depth. This effect of change in second and third natural frequency for different a/h and 

d/L ratios is attributed to the change in stiffness due to the crack-tip plasticity. Hence, it 

was concluded that crack-tip plasticity affected the resonance frequency. This change in 

resonance frequency depends on the mode shape, a/h ratio and d/L ratio. 
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The experiments were performed on both the uncracked and the cracked bar. The 

response of the uncracked bar was obtained at the centre of bar and the responses of the 

cracked bar were obtained near the crack and away from the crack. The results obtained 

from experiments performed on both uncracked and cracked bar were analyzed. For 

uncracked and cracked bar responses were obtained at lower and higher vibration 

amplitude at the given resonant frequency of excitation. It was found that at lower 

vibration amplitude, response of uncracked bar showed only resonant frequency of 

excitation whereas response of cracked bar showed the resonant frequency of excitation 

along with its higher harmonic. This presence of higher harmonic in the frequency 

response was due to the crack in the bar which caused sharing of energy between the 

vibration modes. On the similar ground when the uncracked bar and the cracked bar was 

excited at higher vibration amplitude at the given resonant frequency of excitation. The 

response of cracked bar showed resonant frequency and its harmonics along with low 

frequency component. This low frequency component caused modulation which 

resulted in the generation of side band frequencies near the resonant frequency. The 

occurrence of low frequency component and side band frequencies might be attributed 

to the vibro-impact behaviour of crack. The magnitude of this low frequency component 

was proportional to the magnitude of resonant frequency. This indicated that crack 

behaved like a modulator, detector of low frequency component and amplifier as the 

magnitude of low frequency was proportional to the magnitude of resonance frequency 

of excitation. To make an analogy with the one of communication system i.e. 

heterodyne receiver. It can be concluded that the response obtained from bar with a 

crack is similar to that obtained from heterodyne receiver. 

 

It was concluded from the analytical modelling results and the experimental results that 

crack-induced nonlinearity were responsible for the generation of higher harmonics. It 

was observed in both analytical and experimental results that as one moved away from 

the crack to measure the response; effect of crack-induced nonlinearity reduced. Hence, 

measuring the response at different location on the cracked bar can help to locate the 

crack position in the bar by considering magnitude of higher harmonics which 

decreased as one moved away from crack to measure the response which has the 

localized effect on the dynamics of the bar. 
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6.2 Further Work 

In the present study Matlab-Simulink program was developed considering the contact 

force generated due to the cracks faces interaction as a nonlinear feedback. This Matlab-

Simulink model can be further developed by incorporating structural damping, plasticity 

and dry friction. This can also be extended to the multi-dimensional problem and 

various ultrasonic processes. The finite element model developed can be further 

improved by using the high performance computing by incorporating the damping in 

the cracked bar. The experimental study performed in this can be extended to the 

PMMA specimen after the successful generation of the crack in the PMMA bar. Though 

the vibro-impact behaviour of crack caused signal modulation. There is a further need to 

investigate at what stress level crack opens and closes using high speed camera. The 

technique developed for structural health monitoring can be used in real time using the 

non-contact measurement technology for response measurement which doesn’t affect 

the dynamics of the structure. 
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Appendix A: Theory of Integral Equations for Straight Rods 

Note: There has been no literature available on theory of integral equations for 

straight rods in English. This chapter on theory of integral equations for straight rods 

has been taken from Russian literature (Babakov) and translated into English.  

The Principle of Linear Integral Equation 

The simplest continuous system with infinite number of degrees is straight rods, 

oscillating about the equilibrium position. The oscillation around the position of 

equilibrium can be longitudinal, torsional or transverse. In all these cases it is assumed 

that the rod cross-section in all deformations remain flat and that the displacement of 

points of the axis or related to these points cross section of rod due to external excitation 

are determined uniquely by the value of one function from        of two variables – 

coordinates   and time   . 

The restoring force arising due vibrations of rods for these cases are assumed to be 

within the proportionality limits, So that the values that determine the deformation of 

rod are linear functions of these forces. The systems committing these oscillations are 

called linear systems. The most important feature of linear system could be used in 

constructing the general theory of linear oscillations is the source-wise presentation of 

the deformation of system with the generalized force acting on it. 

To clarify the meaning of this, consider first the static deformation       of system from 

a distributed load of intensity     . For example, consider the static deflection of the 

rod under its own weight. Let         denote, displacement of a cross section of the rod 

with the abscissa    under action of a single generalized force applied at the point with 

abscissa  .         is a function of the coordinates   and  , defined over the whole 

length of the rod  , finite and continuous in       ,       and it satisfies all the 

properties necessary to justify the correctness of the following transformations. This 

function is called the influence function of the rod having a property of symmetry 

relative to the coordinates of   and  . This is called the law of reciprocity. Because of 

this law, displacement at cross-section-  due to unit force applied to cross-section   is 

equal to the displacement at cross-section   due to unit force applied cross-section- . 

                 
(A-1)  
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All other values associated with linear elastic deformations of the linear system have the 

similar reciprocity. Using the influence of        , static deflection of the         at 

point   from the load of intensity      can be written as following integral expression: 

                      

 

 

   
(A-2)  

This presentation of a        is called source-wise presentation. Source-wise 

representation (Eq. (A-2)) for a deformation is one of the expressions of the principle of 

superposition of linear elastic deformation of the system. According to the principle of 

superposition displacement at point   from the distributed load is obtained as the linear 

sum of elementary displacements of the loads acting on each element    of the rod.  

          
(A-3)  

From this point of view (Eq. (A-2)) represents the extension of Hooke’s law to the 

system with an infinite number of degrees of freedom. For a system with finite number 

of degrees of freedom we have the following expression (Eq. (A-4)):  

                                     

 

   

 
(A-4)  

Where   - concentrated force,    - static factors of influence. Thus, the principle of 

linear superposition and the possibility of imposing source-wise presentation of the 

strain      – are two equivalent expressions of the same basic properties of a linear 

system described by (Eq.(A-2)). Thus the existence of the functions of influence of an 

elastic system within its linear deformation is inextricably linked to its basic properties, 

expressed by the principle of superposition. If, apart from a distributed load the 

concentrated forces                  applied to the bar in some sections       

           then the deformation at any point   would be the given by 

                                

 

   

 

 

 (A-5)  
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Application of Linear Integral Equation on Small Oscillations of Straight Rod 

This linear integral equation can be applied to the small vibration of straight rod along 

with d’Alembert’s principle. Let the rod be loaded by forces depending on the time, 

with the intensity denoted as        .In this case the deformation of the rod in a section 

  will also depend on time and will be determined by some function of two variables 

from        .This deformation according to the d'Alembert principle can be considered 

as static, if the load       , does not includes the force of inertia of the masses of 

elementary particles of the rod. If      is mass or moment of inertia of unit length of 

the rod, the force of inertia of a rod element of length    at point   will be equal  

      
        

   
   (A-6)  

we get the equation of oscillations of a rod, if in the Eq. (A-2) we replace        for 

             
        

   
    

(A-7)  

and instead of      to write         

                 
        

   
 

 

 

                        

 

 

 (A-8)  

This is integral equation of small vibrations of the straight rod. When the external load 

is absent, i.e.,         , the system performs free vibrations. An integral equation of 

free vibration of rod is: 

                 
        

   
 

 

 

       
(A-9)  

One of the most remarkable properties obtained in Eq. (A-9), is the fact that these 

equations have the same form for all types of vibration of rod - longitudinal, torsion and 

lateral for all boundary conditions. However, the influence function         will be 

different for different types of vibrations and different boundary conditions. It can be 

built with the rules presented in course of mechanics of materials. The invariance of the 
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form of Eq. (A-9) in relation to different types of vibrations and different boundary 

conditions expresses the unique physical nature of small oscillations of linear systems, 

determining the existence of common properties and justifying the feasibility and 

desirability of constructing the general theory of vibration. Many principles of this 

theory significantly associated with the description of vibration by Eq.(A-9) or Eq. (A-

8), can serve as interpretations of well-known theorems of the mathematical theory of 

integral equations with symmetric kernel. This theory, therefore, is particularly suited to 

identify the general features of different types of oscillations. 

Integral Equations of the Free Oscillations of Straight Rod 

The integral equations of free oscillation is given by following equation 

                 
        

   

 

 

       
(A-10)  

The simplest periodic solution to the Eq. (A-10) is given in the following form 

                       
(A-11)  

Here       defines a continuous set of amplitude of displacements of sections of rod 

from their equilibrium. It is therefore called amplitude function, or modal function. 

Substituting Eq. (A-11) in Eq. (A-10) we have 

                       

 

 

      
(A-12)  

From the theory of integral equations is well known that a nontrivial solution of 

homogeneous Eq. (A-12) does not exist for any values of    . Those values of    for 

which there exists a nonzero solution       are called eigenvalues of the 

functions            , and the square roots of eigenvalues are resonance frequency of 

the system. The function        corresponding to the natural frequency is called an 

eigenmodes of oscillations of the system. Eq. (A-12) have the asymmetric kernel 

             
(A-13)  

This kernel can be made symmetric by substituting 
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                  (A-14)  

Multiplying Eq. (A-12) by       we have 

                            

 

 

           (A-15)  

Rearranging the terms, we have 

                                   

 

 

           
(A-16)  

Using Eq. (A-14), Eq. (A-16) takes the form 

                

 

 

      
(A-17)  

Where 

                         (A-18)  

Thus the eigenmode      are fundamental functions of a homogeneous integral 

equation with symmetric kernel and square of natural frequencies are eigenvalues of 

kernel       . From the general theory of integral equations, eigenvalues of the 

symmetric kernel form discrete infinite set renumbered in ascending order till infinity. It 

is assumed that eigenvalues corresponds to its eigenmode. They form the so called 

complete system.  

Properties of Oscillations of the Straight Rod 

Some properties of eigenmode can be found, without solving the Eq. (A-17). Of these 

properties particularly important in the theory of vibrations are the properties of 

orthogonality theorems for eigenmodes and decomposition of the mode represented 

source-wise by means of eigenmodes. These theorems are spread to the system with an 

infinite number of degrees of freedom of the known properties of systems with a finite 

number of degrees of freedom.  
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The Theorem on Orthogonality of Eigenmodes.  

Let       denote the eigenmode corresponding to natural frequency    and the       

corresponding to    so that  

         
               

 

 

 
(A-19)  

 

         
               

 

 

 
(A-20)  

Multiply the Eq. (A-19) by        
  , Eq. (A-20) by         

  , and integrate for   

ranging from 0 to   we get:  

 
 

  
                         

 

 

 

 

 

 

             
(A-21)  

 

 
 

  
                         

 

 

 

 

 

 

             (A-22)  

Double Integrals, on the right hand side of Eq.(A-21) and Eq. (A-22) is equal to each 

other due to the symmetry of the functions of the influence         Subtracting Eq. (A-

22) from Eq. (A-21) we have 

  
 

  
  

 

  
                 

 

 

 
(A-23)  

If       then  

                

 

 

 
(A-24)  
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This equality is a theorem about orthogonality of the symmetrisized , to use their eigen 

forms. Due to the homogeneity of Eq. (A-17) the eigen modes are defined to a value of 

arbitrary constant multiplier. This factor can be selected so that 

    
        

 

 

 
(A-25)  

The modes satisfying Eq. (A-25) are called as normalized ones. Going back to non 

symmetrised eigenmodes       then to such forms, taking into account the ratio  

         
          (A-26)  

conditions of orthogonality and normalization will have the form:  

        
      

        
 

 
 

 

 

     
   

   
 

(A-27)  

written in such manner a condition of orthogonality can be seen as an expression of the 

fact that the mechanical work of the eigenload due to orthogonal eigen mode is equal to 

zero.  

According to the theorem of decomposition, we assume the Eq. (A-17) of the 

eigenmode  

                     

 

 

 
(A-28)  

form a complete orthonormal system of functions  

                    
(A-29)  

renumbered in ascending order of their corresponding natural frequencies 

             (A-30)  
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In this case, with positive   
 for any value of   from the interval (   ) the kernel 

         considered as a function of   only, may be represented by a uniformly 

convergent series 

                                (A-31)  

Multiplying both sides of this equality by       and integrating to   from   to   is 

received by virtue of orthonormality for the functions       

             

 

 

      
(A-32)  

Comparing this equality with the Eq. (A-28), we have  

    
     

  
  

(A-33)  

This value of the coefficients of expansion Eq. (A-33) under the assumption that such 

an expansion exists, and a series is uniformly convergent. Hence, 

    

 

   

      (A-34)  

Now the decomposition of the kernel on its eigenmodes looks as follows:  

         
          

  
 

 

   

 
(A-35)  

This presentation of the kernel is called bilinear.  

In the theory of linear oscillations of the assumptions about the uniform convergence of 

series Eq. (A-31) and Eq. (A-35) is always implemented as the kernel of integral 

equations of small oscillations, as functions of the influence of the elementary 

deformations of the rod, satisfy all necessary conditions for this. Bilinear representation 

of the kernel Eq. (A-35) is a generalized expression of the theorem about the expansion 
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coefficients of the inverse equations of small oscillations of systems with a finite 

number of degrees of freedom. 

General Solution of Integral Equations of Free and Forced Vibrations of Straight 

Rod 

Free Vibrations of Straight Rods 

The equation of free vibration of rod is given by 

                 
        

   

 

 

       
(A-36)  

on substitution  

                    (A-37)  

and putting  

                         (A-38)  

gives Eq. (A-36) a symmetric form  

                
        

   

 

 

   
(A-39)  

Using Eq. (A-35), Eq. (A-39) can be written in eigen form as follows 

           
          

  
 

        

   
  

 

   

 

 

 
(A-40)  

Rearranging terms 

          
     

  
 

 

   

     

 

 

 
        

   
              

 

   

 
(A-41)  
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Where 

        
 

  
       

        

   

 

 

   
(A-42)  

Therefore 

           

 

   

         (A-43)  

It proves that the solution of Eq. (A-39) can be represented as an infinite sum of 

products of two functions, one of which is a function of only  , the other function of   

which is the general solution of integral equations. The solution of Eq. (A-39) can 

always be represented in the form of expansion in its eigenmodes of oscillations of the 

rod. Using the decomposition in Eq. (A-43) it is possible to find the general solution of 

Eq. (A-39). In fact, the well-known rule for determining the coefficients    by the 

decomposition of Eq. (A-43):  

                     

 

 

 (A-44)  

will have:  

              
        

   
  

 

 

 
(A-45)  

on the other hand from Eq.(A-42) we have 

        
 

  
       

        

   
  

 

 

 
(A-46)  

consequently,  

          
         

(A-47)  
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and  

                                          
(A-48)  

where    and   - arbitrary constant of integration.  

Solution in Eq. (A-43), using the Eq. (A-48) can be represented as follows:  

                                  

 

   

 
(A-49)  

It can also be written as  

                           

 

   

 
(A-50)  

if you replace the constants    and    by putting  

 
           

           
(A-51)  

Eq. (A-50) implies that the vibration of the rod represents the result of superimposing a 

finite or infinite number of simple harmonic vibrations of their eigenmodes. Thus, the 

law established for systems with a infinite number of degrees of freedom, remains valid 

for systems with finite number of degrees of freedom – this is the universal for free 

oscillations of linear systems without damping. The constant of integration    and    are 

determined from the initial conditions, which in the case, for example, the transverse 

vibrations are expressed as the initial moment     the distribution of displacements of 

point of the axis of the rod system. 

             
(A-52)  

and their velocities  

              
(A-53)  
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where      and        some known function of the variable x. The calculation of the 

constants is as follows. First, we find from (A-49): 

                                 

 

 

 (A-54)  

Putting here       , we obtain: 

                

 

 

 (A-55)  

Taking derivative of (A-54) w.r.t.   and then putting       , we have 

    
 

  

             

 

 

 (A-56)  

As can be seen from the last formulas, the constant    and    are the coefficients of 

expansion given function    ) and      on the eigenmodes. We have seen that such 

decomposition is possible for functions represented by source-wise. The functions      

and      have simple physical meaning - the initial deformation and the distribution of 

initial velocities. The potential and kinetic energy of initial state of the system is always 

finite. Thus, the functions      and      are not arbitrary mathematical functions, and 

the feasibility and convergence of expansions with respect to its own forms here does 

not require additional special studies. 

Forced Vibrations of Straight Rods 

As can be seen from the Eq. (A-49) for the general solution of Eq. (A-39) of free 

oscillations of a rod, a solution can be constructed, if systems natural frequency is 

known,  

                     

 

 

 
(A-57)  
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With the help of their eigen form of free oscillations general solution of the equation of 

forced oscillations can be constructed:  

                 
        

   
                       

 

 

 

 

 
(A-58)  

where the external excitation is a function of the load represented by           

Let 

                    (A-59)  

substituting Eq. (A-59) in Eq. (A-58) we have 

                
        

   
                  

 

 

 

 

 (A-60)  

where  

                         (A-61)  

 

        
 

     
       

(A-62)  

From Eq. (A-35) we have 

         
          

  
 

 

   

 
(A-63)  

substituting Eq. (A-63) in Eq.(A-60) gives the decomposition by eigenmodes for 

functions          

                   

 

   

 
(A-64)  
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where  

        
 

  
       

        

   
   

 

  
               

 

 

 

 

 
(A-65)  

But 

                     

 

 

 
(A-66)  

 

         
        

   
       

 

 

 
(A-67)  

substituting Eq. (A-67) in Eq. (A-65), we arrive to the equation  

   
                             

 

 

 
(A-68)  

which with the help of definition  

                       

 

 

 
(A-69)  

can be represented as follows:  

          
             (A-70)  

The solution of the Eq. (A-70) is  

                         
 

  

                  

 

 

 
(A-71)  
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where    and    are constant of integration. Substituting the expression obtained for 

      in Eq. (A-64), we obtain the general solution of Eq. (A-60) 

                            
 

  

                  

 

 

      

 

   

 
(A-72)  

when the perturbing load is changed to a harmonic law  

                      
(A-73)  

For this case Eq. (A-70) will take the form: 

          
                   

(A-74)  

where  

                 

 

 

 (A-75)  

and its integral  

                         
  

  
    

          
(A-76)  

The general solution of Eq. (A-60) to a distributed harmonic perturbing load get from 

Eq. (A-72) by re-writing it as follows:  

                            
  

  
    

                (A-77)  

Let us find the arbitrary constants    and    assuming that 

                                
(A-78)  
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From Eq. (A-77) above all we have:  

                   
  

  
    

                        

 

 

 
(A-79)  

Putting      , we get      .After differentiation w.r.t   and putting      , we 

obtain:  

    
   

     
     

 
(A-80)  

Thus, with zero initial conditions, solution of Eq. (A-79) will take the form:  

              
       

   
     

 

   

   
             

     
     

 

   

 
(A-81)  

The first element of the right-hand side defines the forced oscillations, which form 

      presented in Eq. (A-81) the sum of the series  

  
       

   
     

 

   

      
(A-82)  

The second term refers to the free oscillation, always accompanied by the forced, even 

with zero initial conditions. These accompanying oscillations depend, as it is forced, 

from the exciting forces, however, like this free oscillation, they decay in the presence 

of damping. Substituting in Eq. (A-82) the value    of the formula in Eq. (A-75) 

presented an equation for the shape of forced oscillations of the form:  

         
          

   
     

 

   

       

 

 

 
(A-83)  

and introducing the definition  

  
          

   
     

 

   

           
(A-84)  
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even so:  

        

 

 

               
(A-85)  

When the perturbing load is concentrated harmonic force       , applied at the point 

    , then  

               
(A-86)  

 

where         - impulsive function of the first order. In this case,  

                       

 

 

 
(A-87)  

and the solution (A-81) has the form  

               
          

   
     

 

 

   

   
           

     
     

 

   

       (A-88)  

The form of forced oscillations is presented here with  

  
           

  
    

 

   

                  (A-89)  

when   = l,  

                 
          

  
    

 

   

 (A-90)  

The function           is nothing other than the influence of harmonic coefficient of 

frequency of  : It is the amplitude of forced oscillations of the point   from a unit 

harmonic force of frequency   applied to a point  . Thus, the important concept of 

harmonic coefficient of the influence imposed by the theory of forced oscillations of 

systems with a finite number of degrees of freedom has a natural generalization to 

continuous systems, treated using the integral equation. All the above forms for solution 
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the equation of forced oscillations of the straight-rods, and also to determine the 

influence of harmonic influence makes sense if     , ie, where the exciting 

frequency does not coincide with any of the natural frequencies of the system. When a 

capture takes place, it is the phenomenon of resonance. In this case, the solution of the 

Eq. (A-77) will have a different form. Suppose, for example,       .Then Eq. (A-77) 

will have a solution 

                         
   

   
       (A-91)  

and  

 

                           
  

  
    

               

 

   

                    
   

   
             

(A-92)  

 

As can be seen from the above studies, in particular from the expressions Eq. (A-72), 

Eq. (A-82), and others, the general solution of integral equations of free and forced 

oscillations may be produced, if you will find the eigen modes of the considered 

systems. 
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Appendix B: Complete Matlab-Simulink Program 
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Appendix C: Contact Force Subsystem  
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