
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Ergodicity of invariant capacitiesErgodicity of invariant capacities

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1016/j.spa.2020.02.010

PUBLISHER

Elsevier

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This paper was accepted for publication in the journal Stochastic Processes and their Applications and the
definitive published version is available at https://doi.org/10.1016/j.spa.2020.02.010.

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Feng, Chunrong, Panyu Wu, and Huaizhong Zhao. 2020. “Ergodicity of Invariant Capacities”. Loughborough
University. https://hdl.handle.net/2134/11889675.v1.

https://lboro.figshare.com/
https://doi.org/10.1016/j.spa.2020.02.010


Ergodicity of Invariant Capacities

Chunrong Fenga, Panyu Wub,∗, Huaizhong Zhaoa

aDepartment of Mathematical Sciences, Loughborough University, LE11 3TU, UK
bZhongtai Institute for Financial Studies, Shandong University, 250100, China

Abstract

In this paper, we investigate capacity preserving transformations and their er-
godicity. We obtain some limit properties under capacity spaces and then give
the concept of ergodicity for a capacity preserving transformation. Based on
this definition, we give several characterizations of ergodicity. In particular,
we obtain a type of Birkhoff’s ergodic theorem and prove that the ergodicity
of a transformation with respect to an upper probability is equivalent to a
type of strong law of large numbers.

Keywords: Capacity; Ergodicity; Invariant set; Strong law of large
numbers; Choquet integral

1. Introduction

In this paper, we investigate capacity preserving transformations and
their ergodicity. Capacities (or nonadditive probabilities) arise in modelling
heterogeneous environments, for example, a financial market where biased
beliefs of future price movements drives the decision of stock-market partici-
pants and creates ambiguous volatility. It was pointed out that the additive
probability theory might not be adequate in either economics (see [1], [18] and
[25]) or statistics (see [27]). Dynamical systems on a capacity space concern
transformations from the capacity space to itself. It is vitally important to
study the dynamics of such transformations, of which little is known. When
additivity ceases to be valid, many classical results turn out to be invalid and
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the situations become more complicated. In particular, irreducibility has not
been defined for capacity.

The classical ergodic theory deals with a probability preserving map θ
from Ω to Ω on a probability space (Ω,F , P ). Let G denote all the invariant
sets with respect to θ. Then θ is called ergodic if any invariant set B ∈ G
has either P (B) = 0 or P (B) = 1. This is equivalent to for any B ∈ G,
P (B) = 0 or P (Bc) = 0. This means that the dynamical system cannot be
decomposed into different dynamical systems (see [20] or [28]). However, in
the capacity theory, the equivalence is no longer true. To see this, let (µ, µ̄)
denote a pair of conjugate capacities on F . Then for any B ∈ G, µ(B) = 0
or 1 is equivalent to that for any B ∈ G, µ(B) = 0 or µ̄(Bc) = 0. But it
is not equivalent to either that for any B ∈ G, µ(B) = 0 or µ(Bc) = 0, or
that for any B ∈ G, µ̄(B) = 0 or µ̄(Bc) = 0. So how to define an ergodic
transformation is an issue worthy of discussions.

Cerreia-Vioglio, Maccheroni and Marinacci called a capacity µ ergodic if
µ(G) = {0, 1} and then established an ergodic theorem for lower probabilities
in [3]. But with the requirement of µ(G) = {0, 1} in a capacity space, it is
still possible that µ(Bc) = 1 when µ(B) = 1. That means if θ is “ergodic” in
the sense of [3], the space Ω may still be divided into two sets B and Bc, each
having full capacity but θ(B) = B and θ(Bc) = Bc, that is, θ is reducible
(see Example 4.2 in this paper).

The irreducibility condition is arguably important even in the sublinear
expectation ([16]) or the capacity settings as in the classical ergodic theory
situation. It was proved that the G-Brownian motion on a circle has an
invariant expectation and it is ergodic in [16]. Inspired by the results of
[16] for the ergodicity on sublinear expectation spaces, we strengthen the
ergodicity concept by adding another condition that is for any θ-invariant
set B, either µ(B) = 0 or µ(Bc) = 0. Under this case, if θ is ergodic with
respect to a capacity µ then the space Ω cannot be decomposed into two
sets B and Bc, each having positive capacity but θ(B) = B and θ(Bc) = Bc.
In other words, θ is irreducible. Subsequently, we obtain two equivalent
characterizations of our ergodicity with respect to a continuous subadditive
capacity µ: recurrence (Theorem 4.3) and the shift invariant random variable
being a constant µ-almost surely (Theorem 4.4).

In the classical additive probability case, the result that any shift invariant
random variable must be constant, as stated in Theorem 4.4 for capacities,
provides an important characteristics of ergodicity in terms of the spectral
structure of the corresponding transformation operator on the space of mea-
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surable functions. For a Markov semigroup with an invariant measure, this
suggests that 0 is a simple eigenvalue of the infinitesimal generator of the
Markov semigroup if and only if the invariant measure is ergodic. A well-
known case in literature is that of mixing stationary processes. In this case
the Koopman-von Neumann theorem implies that the generator has only one
eigenvalue 0 on the imaginary axis which is simple. Recently it was observed
in [17] that random periodic process is another ergodic regime of which the
spectral structure of the generator is distinct from that of the mixing regime.
In the ergodic random periodic regime the infinitesimal generator has infi-
nite number of simple eigenvalues including 0 equally placed on the imaginary
axis.

In [3], Cerreia-Vioglio, Maccheroni and Marinacci obtained an important
result that for bounded random variable ξ, if the lower probability v is θ-
invariant, then

v

({
ω : lim

n→∞

1

n

n−1∑
k=0

ξ(θkω) exists

})
= 1.

Based on this result, we obtain that θ is ergodic with respect to a con-
tinuous upper probability in the sense defined in this paper if and only if
lim
n→∞

1
n

∑n−1
k=0 ξ(θ

kω) is a constant V -almost surely, where V is the correspond-

ing upper probability (Theorem 4.5). This is achieved by the irreducibility
given in the ergodicity definition of this paper. However, this is not the case
under the framework of [3] as demonstrated in Example 4.7. Moreover, if the
upper probability is concave, we show that this constant is bounded by the
Choquet integrals with respect to the upper probability and the conjugate
lower probability (Theorem 4.6). This is due to the property that θ pre-
serving capacity can infer θ preserving the corresponding Choquet integral
(Proposition 3.1).

So far, no other limit theory about capacity provided a condition for the
limit of 1

n

∑n
i=1Xi being a constant V -almost surely. Therefore, the ergodic

theory of this paper can provide new insight to the study of capacity. On the
other hand, there are also other papers attempting to investigate the ergod-
icity in capacity spaces or sublinear expectation spaces from different angles,
one can see [10] and [19] and the references therein. None of these papers
dealt with dynamical property of processes especially the non-decomposable
property.

The Kolmogorov 0-1 Law plays an important role in the limit theory
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under the classical probability framework, which implies that the tail event
happens with probability 0 or 1. In Section 2, we investigate the Kolmogorov
0-1 Law for the independence in the capacity space setting (Definition 2.1).
We give an example to show that a sequence of independent random variables
with respect to capacity µ cannot deduce σ(Yk, k ≤ n) and σ(Yk, k ≥ n+ 1)
being independent with respect to µ, for all n ∈ N. Here and in the sequel,
we use N to denote the set of all the positive integers and N0 = N∪{0}. Then
we investigate some properties of Choquet integral which will be used in this
paper. In Section 3, we study the properties of θ-invariant capacities. In
Section 4, we firstly investigate the limit properties under the scenario that
µ(G) = {0, 1} and then give the definition of a transformation to be ergodic.
Based on our definition, we give several characterisations of ergodicity and a
type of Birkhoff’s ergodic theorem. In Section 5, we give a strong law of large
numbers for stationary and ergodic sequences in upper probability spaces.

2. Basic concepts and independence on capacity space

Let (Ω,F) be a measurable space. Recall a set function µ : F → [0, 1] is

• a capacity/nonadditive probability if µ(∅) = 0, µ(Ω) = 1, and µ(A) ≤
µ(B) for all A,B ∈ F such that A ⊆ B;

• concave/submodular/2-alternating if µ(A∪B)+µ(A∩B) ≤ µ(A)+µ(B)
for all A,B ∈ F ;

• convex/supermodular/2-monotonic if µ(A ∪ B) + µ(A ∩ B) ≥ µ(A) +
µ(B) for all A,B ∈ F ;

• subadditive if µ(A∪B) ≤ µ(A)+µ(B) for all A,B ∈ F with A∩B = ∅;

• superadditive if µ(A∪B) ≥ µ(A)+µ(B) for all A,B ∈ F with A∩B =
∅;

• continuous from below/inner continuous if lim
n→∞

µ(An) = µ(A) for An ↑
A;

• continuous from above/outer continuous if lim
n→∞

µ(An) = µ(A) for An ↓
A;

• continuous if it is both continuous from below and above.
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For a capacity µ on F , (Ω,F , µ) is called a capacity space. The conjugate
capacity µ̄ on F is defined by

µ̄(A) = 1− µ(Ac), for any A ∈ F ,

where Ac is the complementary set of A. Notice that if µ is additive, then
µ̄ = µ. Capacity µ is continuous at Ω if and only if µ̄ is continuous at ∅.
Moreover, capacity µ is convex if and only if µ̄ is concave. However, the
superadditivity and the subadditivity do not have such a conjugate relation.

Let ∆(Ω,F) denote the set of all finitely additive probabilities on F and
∆σ(Ω,F) denote the set of all probabilities (σ-additive) on F . The widely
studied conjugate capacities which satisfy the subadditivity and superaddi-
tivity respectively are upper and lower probabilities. A pair of capacities
(V, v) is called the upper and lower probabilities on (Ω,F) (generated by P)
if

V (A) = sup
P∈P

P (A) and v(A) = inf
P∈P

P (A), for any A ∈ F ,

where P is a nonempty set of ∆(Ω,F).
Before we establish the Kolmogorov 0-1 Law in a capacity space, we give

the following definitions which are natural extensions of the corresponding
concepts in the classical probability theory.

Definition 2.1. Let (Ω,F , µ) be a capacity space and J be an index set.
Events A and B are called independent with respect to µ if µ(A ∩ B) =

µ(A)µ(B).
Events set {At, t ∈ J} are called (mutually) independent with respect to

µ if for any finite subset I ⊆ J

µ

(⋂
t∈I

At

)
=
∏
t∈I

µ(At).

Let {Dt, t ∈ J} be a set of subclasses of F . If for any finite subset I ⊆ J

µ

(⋂
t∈I

At

)
=
∏
t∈I

µ(At), for any At ∈ Dt, t ∈ I,

then {Dt, t ∈ J} are called (mutually) independent subclasses with respect to
µ.
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Lemma 2.1. If {Dt, t ∈ J} are independent subclasses with respect to a
continuous capacity µ and Dt is an algebra for every t ∈ J , then {σ(Dt), t ∈
J} are independent σ-algebra with respect to the capacity µ.

Proof. This lemma can be deduced from the monotone class theorem. We
omit the details. 2

Definition 2.2. Random variables {Yt, t ∈ J} on (Ω,F , µ) are said to be
independent with respect to capacity µ if the σ-algebras {σ(Yt), t ∈ J} are
independent with respect to µ.

For a sequence of random variables {Yn}n∈N, Definition 2.2 is equivalent
to the definition of independent random variables sequence with respect to
µ given by [22] (Definition 4). But it is worth noting that {Yn}n∈N being
independent with respect to µ cannot deduce σ(Yk, k ≤ n) and σ(Yk, k ≥
n + 1) being independent with respect to µ, for all n ∈ N. We give the
following example to illustrate this.

Example 2.1. Let Ω = {ω1, ω2, ω3, ω4, ω5}, F be all subsets of Ω and µ be a
capacity on F , with µ(A) = 0 if |A| ≤ 3, and µ(A) = 1 if |A| ≥ 4, where |A|
denotes the number of elements in A. It is easy to see that µ is superadditive
but is not convex. However, the conjugate capacity of µ is neither subadditive
nor superadditive. Let

Y1(ω) =

{
0 ω = ω1, ω2

1 ω = ω3, ω4, ω5

, Y2(ω) =

{
0 ω = ω1, ω4, ω5

1 ω = ω2, ω3

,

Y3(ω) =

{
0 ω = ω3, ω4

1 ω = ω1, ω2, ω5

, Y4(ω) =

{
0 ω = ω1, ω4

1 ω = ω2, ω3, ω5

.

It is easy to check that Y1, Y2, Y3, Y4 are independent and identically dis-
tributed with respect to µ. However, σ(Y1, Y2) and σ(Y3, Y4) are not inde-
pendent with respect to µ since

µ(({Y1 = 0} ∪ {Y2 = 0}) ∩ ({Y3 = 0} ∪ {Y4 = 1})) = µ({ω2, ω4, ω5}) = 0

6= 1 = µ({Y1 = 0} ∪ {Y2 = 0}) · µ({Y3 = 0} ∪ {Y4 = 1})).

Moreover, notice that

µ
({
ω : (Y1, Y2)(ω) ∈ {(0, 0), (0, 1), (1, 1)}

})
= µ({ω1, ω2, ω3}) = 0
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but

µ
({
ω : (Y3, Y4)(ω) ∈ {(0, 0), (0, 1), (1, 1)}

})
= µ({ω2, ω3, ω4, ω5}) = 1.

So (Y1, Y2) and (Y3, Y4) are not identically distributed with respect to µ.

Proposition 2.1. An upper/lower probability must be a subadditive/superadditive
capacity. The converse is not true.

Proof. It is obvious that an upper/lower probability must be a subaddi-
tive/superadditive capacity.

We disprove the converse by giving the following counterexample. Let
Ω = {ω1, ω2, ω3}, F be all subsets of Ω and µ be a capacity on F , with
µ(A) = 1/2 if 1 ≤ |A| ≤ 2, where |A| denotes the number of elements in A.
Then µ is subadditive. If µ is an upper probability, then µ̄ (the conjugate
capacity of µ) is lower probability, thus µ̄ is superadditive. Actually, µ̄ = µ
and µ̄({ω1, ω2}) = 1/2 < 1 = µ̄({ω1}) + µ̄({ω2}) which contradicts with the
superadditivity of µ̄. Therefore, µ cannot be an upper probability.

Now we turn to the superadditive capacity µ in Example 2.1. This µ
cannot be a lower probability since the conjugate capacity of µ is not subad-
ditive. 2

Next we give the Kolmogorov 0-1 Law in capacity spaces which will be
used in the proof of Corollary 5.1.

Theorem 2.1. Let {Yn}n∈N be random variables such that for any n ∈ N,
σ(Yk, k ≤ n) and σ(Yk, k ≥ n + 1) are independent with respect to a con-
tinuous capacity µ. By T we denote the tail σ-algebra of {Yn}n∈N, that is

T =
∞⋂
n=1

σ(Yk, k ≥ n). Then for any A ∈ T , the following two statements

are true:
(i) µ(A) = 0 or 1;
(ii) µ(A) = 0 or µ(Ac) = 0.

Proof. It is obvious that T is independent of A =
⋃
n≥1 σ(Yk, k ≤ n) with

respect to µ since T ⊆ σ(Yk, k ≥ n + 1), for all n ∈ N. Notice that A is
an algebra, then by Lemma 2.1, T is independent of σ(A). On the other
hand, T ⊆ σ(A). Hence, T is independent of itself with respect to µ. So
for any A ∈ T , µ(A) = µ(A ∩ A) = µ(A) · µ(A), which implies µ(A) = 0 or
1. Meantime, µ(∅) = µ(A ∩ Ac) = µ(A) · µ(Ac), which deduces µ(A) = 0 or
µ(Ac) = 0. 2
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Remark 2.1. Although the proof of the Kolmogorov 0-1 Law in capacity
spaces is no big difference with the proof of the classical Kolmogorov 0-1 Law,
we still present here since the two statements (i) and (ii) in Theorem 2.1 are
equivalent when µ is additive, but not equivalent when µ is nonadditive.

At the end of this section, we recall the Choquet integral/expectation
of a random variable, introduced by Choquet in [7]. For any F -measurable
real valued random variable ξ, the Choquet integral/expectation of ξ with
respect to µ is defined by∫

Ω

ξ(ω)dµ =

∫ ∞
0

µ({ω : ξ(ω) ≥ t})dt+

∫ 0

−∞
[µ({ω : ξ(ω) ≥ t})− 1]dt,

if the right side is not∞−∞. In this paper, we always consider the random
variables taking real values. The asymmetry is one of the most important
properties of Choquet integral (see Proposition 5.1 in [12]), which means that∫

Ω

−ξ(ω)dµ = −
∫

Ω

ξ(ω)dµ̄.

It is well known that a capacity is concave/convex if and only if the related
Choquet integral is subadditive/superadditive (see Exercise 5.1 and Theorem
6.3 in [12]). A concave/convex capacity must be an upper/lower probability
(Proposition 10.3 in [12]). However, the converse is not true. It is easy to
check that the upper probability given in Example 4.4 is not concave.

Definition 2.3. In a capacity space (Ω,F , µ), we call that a statement holds
µ-almost surely (µ-a.s. for short) if it holds outside a set A with µ(A) = 0.

The following lemma provides a dominated convergence theorem in a
capacity space with respect to the Choquet integral which has been studied in
[24] (Theorem 3.3) for bounded random variables. Suppose that the capacity
is continuous first, [29] established a similar result (Theorem 11.10) as this
lemma which will be used in the proof of Theorem 4.6.

Lemma 2.2. Let µ be a subadditive capacity on F and continuous from
above, we have
(i) for random variables {Xn}n∈N, Y and Z with Y ≤ Xn ≤ Z and

∫
Ω
Y dµ,∫

Ω
Zdµ being finite, if Xn → X µ-a.s. then

lim
n→∞

∫
Ω

Xndµ =

∫
Ω

Xdµ; (1)

(ii) capacity µ is continuous.
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Proof. (i) For any ε > 0, we get

µ

(
∞⋂
n=1

∞⋃
k=n

{ω : |Xk(ω)−X(ω)| ≥ ε}

)
= 0

from

0 = µ ({ω : Xn(ω) 6→ X(ω)}) = µ

(⋃
ε>0

∞⋂
n=1

∞⋃
k=n

{ω : |Xk(ω)−X(ω)| ≥ ε}

)

≥ µ

(
∞⋂
n=1

∞⋃
k=n

{ω : |Xk(ω)−X(ω)| ≥ ε}

)
.

Therefore, by the continuity from above of µ, we have

0 ≤ lim sup
n→∞

µ ({ω : |Xn(ω)−X(ω)| ≥ ε})

≤ lim sup
n→∞

µ

(
∞⋃
k=n

{ω : |Xk(ω)−X(ω)| ≥ ε}

)

= µ

(
∞⋂
n=1

∞⋃
k=n

{ω : |Xk(ω)−X(ω)| ≥ ε}

)
= 0,

which means Xn converges to X µ-stochastically (p97 in [12]). Since µ is
subadditive, then by Proposition 8.5 and Theorem 8.9 in [12], we can get
(1). Claim (ii) is a direct corollary of (i) if we consider Xn = IAn and
X = IA. 2

3. Properties of invariant capacities

We consider a F/F -measurable transformation θ : Ω → Ω. A set A
is called invariant set with respect to θ if θ−1A = A. It is easy to check
that Ac is an invariant set if and only if A is an invariant set. Let G denote
the set of all invariant sets with respect to θ, it is easy to check that G
is a sub-σ-algebra of F (Exercise 7.1.1 in [13]). Corresponding to the θ-
invariant probability, Cerreia-Vioglio, Maccheroni and Marinacci introduced
the definition of θ-invariant capacity (Definition 1 in [3]) as follows.

Definition 3.1. A capacity µ is θ-invariant if for each A ∈ F , µ(A) =
µ(θ−1A). We also say that θ preserves µ if µ is θ-invariant.
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Remark 3.1. Let N denote the set of all θ-invariant capacities, N denote
the set of all subadditive θ-invariant capacities and N denote the set of all
superadditive θ-invariant capacities. Using the construction given in the proof
of the Claim in [3] (p3390), one can show that for any F/F-measurable
transformation θ, there exists a θ-invariant finitely additive probability. Then
N , N and N are non-empty. Actually, we can define a pair of conjugate
capacities (µ, µ̄) by

µ(A) = lim inf
n→∞

1

n

n−1∑
k=0

IA(θkω), µ̄(A) = lim sup
n→∞

1

n

n−1∑
k=0

IA(θkω),

which belongs to N and N respectively. It is easy to check that the sets N ,
N and N are convex.

Proposition 3.1. (i) A capacity µ is θ-invariant if and only if its conjugate
capacity µ̄ is θ-invariant.

(ii) A capacity µ is θ-invariant if and only if θ preserves the Choquet
integral with respect to µ, that is, for any random variable ξ, the Choquet
integrals of ξ and ξ(θ) with respect to µ exist at the same time and∫

Ω

ξ(ω)dµ =

∫
Ω

ξ(θω)dµ

when Choquet integral of ξ or ξ(θ) with respect to µ exists.

Proof. (i) is easy to check by the definition of θ-invariant and conjugate
capacity.

(ii) If capacity µ is θ-invariant, then for any t ∈ R,

µ({ω : ξ(θω) ≥ t}) = µ({ω : ω ∈ θ−1(ξ−1[t,∞))})
= µ({ω : ω ∈ ξ−1[t,∞)}) = µ({ω : ξ(ω) ≥ t}).

Thus, the Choquet integrals of ξ and ξ(θ) with respect to µ exist at the same
time and ∫

Ω

ξ(ω)dµ =

∫
Ω

ξ(θω)dµ

when Choquet integral of ξ or ξ(θ) with respect to µ exists.
On the other hand, we consider ξ = IA, for any A ∈ F . Then µ(A) =∫

Ω
IA(ω)dµ =

∫
Ω
IA(θω)dµ =

∫
Ω
Iθ−1A(ω)dµ = µ(θ−1A). 2
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The following lemma can be deduced from the Theorem 2 obtained by
Cerreia-Vioglio, Maccheroni and Marinacci in [3] which will be useful in our
characterization about the ergodicity in an upper probability space.

Lemma 3.1. Let v be a continuous lower probability on (Ω,F). If v is θ-
invariant, then for any bounded F-measurable random variable ξ,

v

({
ω : lim

n→∞

1

n

n−1∑
k=0

ξ(θk(ω)) exists

})
= 1.

4. Ergodicity under capacity spaces

Before studying the ergodicity under a capacity space, we first study the
following properties of random variables which are measurable with respect
to a sub-σ-algebra of F with capacity only 0 or 1.

Theorem 4.1. Let µ be a continuous capacity on F and F0 be any sub-
σ-algebra of F with µ(F0) = {0, 1}. Then, for any F0-measurable random
variable ξ, we have

(i) the Choquet integrals of ξ with respect to µ and µ̄ are finite and

µ

({
ω : ξ(ω) ≥

∫
Ω

ξdµ

})
= 1, (2)

and

µ

({
ω : ξ(ω) ≤

∫
Ω

ξdµ̄

})
= 1; (3)

(ii) if further µ(A ∩ B) = 1 for any A, B ∈ F0 with µ(A) = 1 and
µ(B) = 1, then

µ

({
ω :

∫
Ω

ξdµ ≤ ξ(ω) ≤
∫

Ω

ξdµ̄

})
= 1. (4)

Proof. (i) Since µ is continuous from below, we have

1 = µ ({ω : ξ(ω) ∈ (−∞,∞)}) = µ

(
∞⋃
n=1

{ω : ξ(ω) ∈ [−n, n]}

)
= lim

n→∞
µ ({ω : ξ(ω) ∈ [−n, n]}) .
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Notice that µ(F0) = {0, 1} and ξ is F0-measurable, there exists n ∈ N, such
that

µ ({ω : ξ(ω) ∈ [−n, n]}) = 1.

It turns out that the set I is not empty, where

I = {t ∈ R : µ({ω : ξ(ω) ≥ t}) = 1}.

Define t∗ = sup I. Since µ is continuous from above, we get µ ({ω : ξ(ω) ≥ t∗}) =
1, so t∗ ∈ I. Due to µ(F0) = {0, 1}, for any t > t∗, µ ({ω : ξ(ω) ≥ t}) = 0,
and for any t ≤ t∗, µ ({ω : ξ(ω) ≥ t}) = 1. The above observations lead to
that, if t∗ ≥ 0 then∫

Ω

ξdµ =

∫ ∞
0

µ ({ω : ξ(ω) ≥ t}) dt+

∫ 0

−∞
[µ({ω : ξ(ω) ≥ t})− 1]dt =

∫ t∗

0

1dt = t∗;

and if t∗ < 0 then∫
Ω

ξdµ =

∫ ∞
0

µ ({ω : ξ(ω) ≥ t}) dt+

∫ 0

−∞
[µ({ω : ξ(ω) ≥ t})− 1]dt =

∫ 0

t∗
(−1)dt = t∗.

That is, t∗ =
∫

Ω
ξdµ ∈ I. Therefore, the Choquet integral of ξ with respect

to µ is finite and the equality (2) holds.
Considering random variable −ξ in (2), we get

∫
Ω
−ξdµ is finite and

µ

({
ω : −ξ(ω) ≥

∫
Ω

−ξdµ
})

= 1.

Thus
∫

Ω
ξdµ̄ is finite and the equality (3) holds since

∫
Ω
−ξdµ = −

∫
Ω
ξdµ̄.

(ii) Under the additional assumption, equality (4) can be deduced directly
from equalities (2) and (3). 2

Remark 4.1. (i) If ξ is bounded, then we can replace the continuity of µ by
the continuity from above of µ, the conclusions in Theorem 4.1 still hold.

(ii) When ξ is bounded and µ is lower probability, Theorem 4.1 degener-
ates to Lemma 2 in [3].

If µ is a lower probability, it obviously satisfies that µ(A ∩ B) = 1 for
any µ(A) = 1 and µ(B) = 1. There are also other capacities rather than
lower probabilities satisfying this condition. See the following example and
proposition.
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Example 4.1. Let (Ω,F , P ) be a probability space and f : [0, 1] → [0, 1] be
an increasing function with f(0) = 0, f(1) = 1. Then µ = f(P ) is a capacity
on F , called a distorted probability. Especially if f is left (right) continuous
then µ is continuous from below (above); if f is strictly increasing on point
1, then µ satisfies µ(A ∩B) = 1 for µ(A) = 1 and µ(B) = 1.

Proposition 4.1. Let (µ, µ̄) is a pair of conjugate capacities on (Ω,F). If
µ is subadditive, then µ̄ satisfies µ̄(A ∩B) = 1 for µ̄(A) = 1 and µ̄(B) = 1.

Proof. It follows from the conjugate relation and the subadditivity of µ that
µ̄(A∩B) = 1−µ(Ac∪Bc) ≥ 1−(µ(Ac)+µ(Bc)) = 1−(1−µ̄(A)+1−µ̄(B)) = 1.
2

Corollary 4.1. Let (V, v) be a pair of continuous upper and lower probabil-
ities on F with v(F0) = {0, 1}, then for any F0-measurable random variable
ξ,
∫

Ω
ξdV and

∫
Ω
ξdv are finite and

v

({
ω :

∫
Ω

ξdv ≤ ξ(ω) ≤
∫

Ω

ξdV

})
= 1, (5)

V

({
ω : ξ(ω) =

∫
Ω

ξdv

})
= 1, (6)

V

({
ω : ξ(ω) =

∫
Ω

ξdV

})
= 1. (7)

Proof. The finiteness of
∫

Ω
ξdV and

∫
Ω
ξdv and equality (5) are directly

from Theorem 4.1 since the lower probability v satisfies v(A ∩ B) = 1 if
v(A) = 1 and v(B) = 1.

Applying the result of Theorem 4.1 (i) to v and V , we can get the following
four equalities

v

({
ω : ξ(ω) ≥

∫
Ω

ξdv

})
= 1, (8)

v

({
ω : ξ(ω) ≤

∫
Ω

ξdV

})
= 1, (9)

V

({
ω : ξ(ω) ≥

∫
Ω

ξdV

})
= 1, (10)

V

({
ω : ξ(ω) ≤

∫
Ω

ξdv

})
= 1. (11)
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Since (V, v) is a pair of upper and lower probabilities, we have V (A∩B) = 1
if V (A) = 1 and v(B) = 1. So (6) can be deduced from (8) and (11) while
(7) can be deduced from (9) and (10). 2

Theorem 4.2. Let µ be a continuous capacity on F with µ(G) = {0, 1},
where G is the set of all invariant sets under θ. For any bounded random
variables ξ, there exist G-measurable random variables ξ∗ and ξ∗ such that

µ

({
ω : lim inf

n→∞

1

n

n−1∑
k=0

ξ(θk(ω)) ≥
∫

Ω

ξ∗dµ

})
= 1, (12)

and

µ

({
ω : lim sup

n→∞

1

n

n−1∑
k=0

ξ(θk(ω)) ≤
∫

Ω

ξ∗dµ̄

})
= 1. (13)

Moreover, if µ satisfies µ(A ∩ B) = 1 for any A,B ∈ G with µ(A) = 1 and
µ(B) = 1, then

µ

({
ω :

∫
Ω

ξ∗dµ ≤ lim inf
n→∞

1

n

n−1∑
k=0

ξ(θk(ω)) ≤ lim sup
n→∞

1

n

n−1∑
k=0

ξ(θk(ω)) ≤
∫

Ω

ξ∗dµ̄

})
= 1.

(14)

Proof. Let ξ∗ = lim inf
n→∞

1
n

∑n−1
k=0 ξ(θ

k(ω)), ξ∗ = lim sup
n→∞

1
n

∑n−1
k=0 ξ(θ

k(ω)). No-

tice that

ξ∗(θ(ω)) = lim inf
n→∞

1

n

n−1∑
k=0

ξ(θk+1(ω))

= lim inf
n→∞

1

n

[
n∑
k=0

ξ(θk(ω))− ξ(ω)

]

= lim inf
n→∞

[
n+ 1

n

1

n+ 1

n∑
k=0

ξ(θk(ω))− 1

n
ξ(ω)

]
= ξ∗(ω),

we have ξ∗ is G-measurable. Similarly, ξ∗ is G-measurable. Therefore (12)
(13) and (14) can be derived from Theorem 4.1. 2

As mentioned in the introduction, we think µ(G) = {0, 1} used in [3] is
too permissive to define the ergodicity in a capacity space. We will use the
following example to illustrate the reason.
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Example 4.2. Let Ω = {ω1, ω2, ω3, ω4}, F be all subsets of Ω. Define θ :
Ω→ Ω by

θ(ω1) = ω2, θ(ω2) = ω1, θ(ω3) = ω4, θ(ω4) = ω3.

Let µ1 be a capacity on F , with µ1(A) = 0 if |A| ≤ 1, µ1(A) = 1 if
|A| ≥ 2, where |A| denotes the number of elements in A. Then µ1 is neither
subadditive nor superadditive.

Let P1 and P2 be probabilities on F with P1(ω1) = P1(ω2) = 1
2
, P1(ω3) =

P1(ω4) = 0, P2(ω1) = P2(ω2) = 0, P2(ω3) = P2(ω4) = 1
2
. For any A ∈ F , let

µ2(A) = maxi=1,2 Pi(A) be an upper probability.
Then it is easy to check that θ preserves both µ1 and µ2 and the set of all

invariant sets is G = {Ω, ∅, {ω1, ω2}, {ω3, ω4}}. Here µi(G) = {0, 1}, i = 1, 2,
so they together with their conjugate capacities satisfy the ergodicity definition
in [3]. Note the conjugate capacity of µ2 is a lower probability. But under
these two different capacities, Ω can be split into two invariant sets {ω1, ω2}
and {ω3, ω4} with µi({ω1, ω2}) = 1 and µi({ω3, ω4}) = 1, i = 1, 2. That is to
say Ω is decomposable under θ.

Now we give our definition of an ergodic transformation in a capacity
space.

Definition 4.1. A measurable capacity preserving transformation θ on the
capacity space (Ω,F , µ) is said to be ergodic (with respect to µ) if for any
θ-invariant set B the following two conditions hold:
(i) µ(B) = 0 or µ(B) = 1,
(ii) µ(B) = 0 or µ(Bc) = 0.

Remark 4.2. If θ is not ergodic with respect to capacity µ then the space Ω
can be split into two θ-invariant sets B and Bc either each having positive
capacity or one of them having positive capacity which is less than 1. This is
to say θ is not “irreducible”.

The following example shows why we do not only consider (ii) in Definition
4.1 to define ergodicity.

Example 4.3. Let Ω = {ω1, ω2, ω3}, F be all subsets of Ω and P1, P2, P3

be probabilities on F with P1(ω1) = 0, P1(ω2) = P1(ω3) = 1
2
, P2(ω2) =

0, P2(ω1) = P2(ω3) = 1
2
, P3(ω3) = 0, P3(ω1) = P3(ω2) = 1

2
. Let v(A) =
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mini=1,2,3 Pi(A), for any A ∈ F , be a lower probablity. We consider the
following transformation θ with

θ(ω1) = ω2, θ(ω2) = ω1, θ(ω3) = ω3.

It is easy to check that v is θ-invariant and the set of all invariant sets with
respect to θ is G = {Ω, ∅, {ω1, ω2}, {ω3}}. So for any set B ∈ G, v(B) = 0 or
v(Bc) = 0. But v(G) = {0, 1

2
, 1}, and Ω can be split into two invariant sets

{ω1, ω2} and {ω3} with v({ω1, ω2}) = 1
2
.

It is easy to check that the following proposition holds.

Proposition 4.2. Let (µ, µ̄) be a pair of conjugate capacities on (Ω,F). If
µ is subadditive, then

(i) for any A ∈ F , µ̄(A) ≤ µ(A);
(ii) a transformation θ being ergodic with respect to µ is equivalent to for

any θ-invariant set B, either µ(B) = 0 or µ(Bc) = 0;
(iii) a transformation θ being ergodic with respect to µ implies that µ is

additive on the θ-invariant σ-algebra;
(iv) the ergodicity of θ with respect to µ implies the ergodicity of θ with

respect to µ̄.

Remark 4.3. For a lower probability v, it is easy to see that v(B) = 0 or
v(B) = 1 implies v(B) = 0 or v(Bc) = 0. Thus, condition (i) in Definition
4.1 is adequate to guarantee the ergodicity of v. Therefore, the definition of
ergodicity given in [3] agrees with our definition in the case of lower proba-
bility. However, as v(B) = 0 does not imply V (B) = 0, so the ergodicity of
θ under the lower probability does not imply the ergodicity of θ with respect
to the upper probability.

Motivated by Theorems 2.6 and 2.7 in [16], we derive the following The-
orems 4.3 and 4.4 as the characterizations of ergodicity in a subadditive
capacity space.

Theorem 4.3. Let µ be a subadditive capacity on (Ω,F) and θ be a mea-
surable transformation from Ω to Ω preserving µ. Then the following four
statements:
(i) the transformation θ is ergodic;
(ii) if every B ∈ F with µ(θ−1B4B) = 0, then µ(B) = 0 or µ(Bc) = 0;

16



(iii) for every A ∈ F with µ(A) > 0, we have µ

((
∞⋃
n=1

θ−nA

)c)
= 0;

(iv) for every A,B ∈ F with µ(A) > 0 and µ(B) > 0, there exists n ∈ N
such that µ(B ∩ θ−nA) > 0,
have the following relations: (ii) implies (i); (iv) implies (i). If µ is contin-
uous from below, then (i) implies (ii); (iii) implies (iv). If µ is continuous
from above, then (i) implies (iii). Moreover, if µ is continuous, then all the
above four statements are equivalent.

Proof. By Proposition 4.2, (ii) ⇒ (i) is obvious.
(iv) ⇒ (i). Let B be any invariant set. If µ(B) > 0 and µ(Bc) > 0, then

by (iv) and invariant assumption of B, there exists n ∈ N such that

0 < µ(Bc ∩ θ−nB) = µ(Bc ∩B) = 0

which derives a contradiction. Hence µ(B) = 0 or µ(Bc) = 0. Therefore by
Proposition 4.2, (i) is proved.

(i) ⇒ (ii) under the continuity from below assumption of µ. Let B ∈ F
with µ(θ−1B4B) = 0. Since for any n ∈ N

θ−nB4B ⊆
n−1⋃
k=0

(θ−(k+1)B4θ−kB) =
n−1⋃
k=0

θ−k(θ−1B4B)

then by the monotonicity, subadditivity and θ-invariance of µ,

µ
(
θ−nB4B

)
≤ µ

(
n−1⋃
k=0

θ−k(θ−1B4B)

)

≤
n−1∑
k=0

µ
(
θ−k(θ−1B4B)

)
=

n−1∑
k=0

µ
(
θ−1B4B

)
.

Because of µ(θ−1B4B) = 0, we have

µ
(
θ−nB4B

)
= 0. (15)

Moreover, (
∞⋃
k=0

θ−kB

)
4B ⊆

∞⋃
k=0

(
θ−kB4B

)
,
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thus from the monotonicity, continuity from below and subadditivity of µ
and (15) we have

µ

((
∞⋃
k=n

θ−kB

)
4B

)
≤ µ

(
∞⋃
k=0

(
θ−kB4B

))

= lim
n→∞

µ

(
n⋃
k=0

(
θ−kB4B

))
≤

∞∑
k=0

µ
(
θ−kB4B

)
= 0.

Immediately, we have

µ

((
∞⋃
k=n

θ−kB

)
\B

)
= 0, (16)

and

µ

(
B\

(
∞⋃
k=n

θ−kB

))
= 0. (17)

Define B∞ =
∞⋂
n=0

∞⋃
k=n

θ−kB. Combining (16), it is direct from B∞\B ⊆(⋃∞
k=n θ

−kB
)
\B and the monotonicity of µ that

µ (B∞\B) = 0. (18)

Meanwhile,

B\

(
∞⋃
k=n

θ−kB

)
↑ B\

∞⋂
n=1

(
∞⋃
k=n

θ−kB

)
= B\B∞,

together with the continuity from below of µ and (17), we have

µ (B\B∞) = 0. (19)

On the other hand, B∞ is an invariant set since

θ−1B∞ =
∞⋂
n=0

∞⋃
k=n+1

θ−kB = B∞.

By the ergodicity assumption of µ, we have µ(B∞) = 0 or µ(Bc
∞) = 0.
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If µ(B∞) = 0, then by the subadditivity of µ and (19), we have µ(B) = 0
since

µ(B) = µ(B)−µ(B∞) ≤ µ(B)−µ(B∩B∞) ≤ µ(B\(B∩B∞)) = µ(B\B∞) = 0.

If µ(Bc
∞) = 0, then similarly by the subadditivity of µ and (18), we have

µ(Bc) = 0 since

µ(Bc) = µ(Bc)− µ(Bc
∞) ≤ µ(Bc)− µ(Bc ∩Bc

∞)

≤ µ(Bc\(Bc ∩Bc
∞)) = µ(Bc\Bc

∞) = µ(B∞\B) = 0.

Hence, the statement (ii) is proved.
(iii)⇒ (iv) under the continuity from below assumption of µ. Let A,B ∈

F with µ(A) > 0 and µ(B) > 0. From (iii), we know µ

((
∞⋃
n=1

θ−nA

)c)
= 0.

By the subadditivity, monotonicity and continuity from below of µ, we have

0 < µ(B) ≤ µ

(
B ∩

(
∞⋃
n=1

θ−nA

))
+ µ

(
B ∩

(
∞⋃
n=1

θ−nA

)c)

≤ µ

(
∞⋃
n=1

(B ∩ θ−nA)

)
+ µ

((
∞⋃
n=1

θ−nA

)c)

= µ

(
∞⋃
n=1

(B ∩ θ−nA)

)
= lim

k→∞
µ

(
k⋃

n=1

(B ∩ θ−nA)

)

≤
∞∑
n=1

µ
(
(B ∩ θ−nA)

)
.

Thus there exists n ∈ N such that µ ((B ∩ θ−nA)) > 0. Therefore the asser-
tion (iv) is proved.

(i) ⇒ (iii) under the continuity from above assumption of µ. Let A ∈ F
with µ(A) > 0. Define

A1 =
∞⋃
k=1

θ−kA and A∞ =
∞⋂
n=1

∞⋃
k=n

θ−kA.

It is easy to see that

θ−nA1 =
∞⋃

k=n+1

θ−kA ↓ A∞.
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It follows from the continuity from above and θ-invariance of µ that

µ(A∞) = lim
n→∞

µ(θ−nA1) = µ(A1) ≥ µ(θ−1A) = µ(A) > 0.

Since θ−1A∞ = A∞, by (i), we have µ(Ac∞) = 0. Notice that A∞ ⊆⋃∞
n=1 θ

−nA, therefore µ((
⋃∞
n=1 θ

−nA)c) = 0 and (iii) is proved.
It is then obvious that all the four statements are equivalent under the

continuity assumption of µ. 2

Remark 4.4. If the upper probability V is generated by P which is a subset
of ∆σ(Ω,F), then V is continuous from below (see Lemma 2.1 in [6]). Thus,
the upper probability related to G-expectation is continuous from below (see
section 3.2 in [11]).

Remark 4.5. In Theorem 4.3, from the equivalence between (i) and (ii)
when µ is continuous from below, we can define the invariant sets in a wider
sense on a subadditive capacity space as almost invariant set in classical
ergodic theory (see p330 in [13]). A set B is said to be µ-almost invariant
with respect to θ in a subadditive capacity space (Ω,F , µ) if µ(θ−1B4B) = 0.
If the set B is µ-almost invariant, then µ(θ−1B∩B) = µ(B) = µ(θ−1B). Thus
we can consider the µ-almost invariant sets when we study the ergodicity.

The statement (iii) means that if µ(A) > 0 then θkω will lie into A in
finite steps µ-a.s.

The statement (iv) means that if µ(A) > 0 and µ(B) > 0, then those ω
starting from B, with the flow θkω arriving into A in finite steps have positive
capacity.

Theorem 4.4. Let µ be a subadditive capacity on (Ω,F) and θ be a mea-
surable transformation from Ω to Ω preserving µ. Then the following three
statements:
(i) the transformation θ is ergodic;
(ii) if ξ : Ω→ R is bounded measurable and ξ(θ·) = ξ(·), then ξ is a constant
µ-a.s.;
(iii) if ξ : Ω→ R is measurable and ξ(θ·) = ξ(·) µ-a.s., then ξ is a constant
µ-a.s.,
have the following relations: (iii) implies (ii); (ii) implies (i). Moreover,
if µ is continuous from below, then (ii) is equivalent to (i). If further µ is
continuous, then all three statements are equivalent.
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Proof. The proof of (iii) ⇒ (ii) is trivial.
We now prove (ii)⇒ (i). For any invariant set A, IA(θω) = IA(ω). Thus,

by (ii), IA is a constant µ-a.s. So IA = 0 or 1 µ-a.s. If IA = 0 µ-a.s., then
µ(A) = 0. If IA = 1 µ-a.s., then µ(Ac) = 0. Thus θ is ergodic.

Next we prove (i) ⇒ (iii) under the assumption that µ is continuous.
For any t ∈ R, let At = {ω : ξ(ω) > t} and Act = {ω : ξ(ω) ≤ t}. Notice

that θ−1At4At ⊆ {ω : ξ(θω) 6= ξ(ω)}, we have µ(θ−1At4At) = 0 due to
ξ(θ·) = ξ(·) µ-a.s. Since θ is ergodic and µ is continuous from below, by
Theorem 4.3, we know that µ(At) = 0 or µ(Act) = 0. Thus, µ(At) = 0 or 1.

Let I = {t : µ(At) = 0}. By the continuity from above of µ, we have

0 = µ({ω : ξ(ω) =∞}) = µ

(
∞⋂
n=1

An

)
= lim

n→∞
µ(An).

Thus there exists n ∈ N such that µ(An) = 0, that is n ∈ I 6= ∅. So
set t∗ = inf I, and immediately t∗ ∈ I since µ is continuous from below.
Hence, for any t ≥ t∗, we have µ(At) = 0 and for any t < t∗, we have
µ(At) = 1 and µ(Act) = 0. Due to the continuity from below of µ, we have
µ({ω : ξ(ω) < t∗}) = 0. Combining µ({ω : ξ(ω) > t∗}) = 0 and the
subadditivity of µ, we get µ({ω : ξ(ω) 6= t∗}) = 0. Thus ξ is a constant t∗
µ-a.s.

From the proof of (i) ⇒ (iii) we can see the continuity from above of µ is
used to prove I 6= ∅. But if ξ is bounded, of course I 6= ∅, so we do not need
the continuity from above of µ assumption. Therefore, if µ is continuous
from below, we can prove (i) ⇒ (ii) in the same way as (i) ⇒ (iii). 2

Remark 4.6. The result can be also presented in the language of transfor-
mation operator U defined by U(ξ)(ω) = ξ(θω) on the space of measurable
functions on Ω. Theorem 4.4 says that a map is ergodic to a subadditive
continuous capacity if and only if the transformation operator U has eigen-
value 1 which is simple. In classical probability space case, see Da Prato and
Zabczyk [8] or Walters [28].

Example 4.4. Consider Example 4.1.1 introduced by Feng, Qu and Zhao in
[15]. Let Ω1 = [0, 1), θα : Ω1 → Ω1, θα(x) = (x + α) mod 1, where α is a
irrational number. Consider Ω̂ = [0, 2) = Ω1 ∪ Ω2, where Ω2 = [1, 2). Define
θ̂α : Ω̂→ Ω̂ by

θ̂α(x) =

{
θα(x) + 1, x ∈ Ω1,

x− 1, x ∈ Ω2.
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Let Pi be the Lebesgue measure on Ωi, i = 1, 2. From the classical ergodic the-
ory, we know that (Ωi,B(Ωi), Pi, (θ̂

2n
α |Ωi

)n≥1), i = 1, 2 are ergodic dynamical
systems.

Define
P̄i(A) := Pi(A ∩ Ωi), for any A ∈ B(Ω̂),

P̄ :=
1

2
(P̄1 + P̄2), V := P̄1 ∨ P̄2, v := P̄1 ∧ P̄2,

and for all random variable X such that EP̄1
[X] ∨ EP̄2

[X] <∞, define

Ê[X] := EP̄1
[X] ∨ EP̄2

[X].

Then, by the ergodic Theorem of periodic measure in [17] (Theorem 2.20), P̄
is an invariant measure with respect to θ̂α and ergodic. By classical Birkhoff’s
ergodic theorem (see [2]), we have

lim
n→∞

1

n

n−1∑
k=0

ξ(θ̂kα·) = EP̄ [ξ] =
1

2
(EP̄1

[ξ] + EP̄2
[ξ]), P̄ -a.s.

It is easy to check that P̄ -a.s. and V -a.s. are equivalent. Hence,

lim
n→∞

1

n

n−1∑
k=0

ξ(θ̂kα·) = c, V -a.s,

and
∫

Ω̂
ξdv ≤ c = EP̄ [ξ] ≤

∫
Ω̂
ξdV .

On the other hand, by Proposition 4.5 in [15], we know that (Ω̂,B(Ω̂), Ê, (θ̂nα)n≥1)
is an ergodic sublinear dynamical system. By the definition of ergodicity of
dynamical systems under sublinear expectation (Definition 4.2 in [15]), if B
is an invariant set, then Ê[IB] = 0 and Ê[IBc ] = 0. Thus V (B) = 0 or
V (Bc) = 0. So, θ̂α is ergodic with respect to V .

Example 4.5. Consider the distorted probability f(P ) (Example 4.1). If f
is a concave function then V := f(P ) is a concave capacity (Example 2.1 in
[12]), and hence V is an upper probability (Proposition 10.3 in [12]) and its
conjugate capacity v is a lower probability. If further f is strict increasing
on points 0 and 1, then for A ∈ F

P (A) = 0⇔ V (A) = 0⇔ v(A) = 0, P (A) = 1⇔ V (A) = 1⇔ v(A) = 1.
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Let θ be an ergodic transformation with respect to P . By the classical Birkhoff’s
ergodic theorem (see [2]), for any bounded F-measurable random variable ξ,

P

(
lim
n→∞

1

n

n−1∑
k=0

ξ(θk·) = EP [ξ]

)
= 1,

therefore,

v

(
lim
n→∞

1

n

n−1∑
k=0

ξ(θk·) = EP [ξ]

)
= 1,

that is lim
n→∞

1
n

∑n−1
k=0 ξ(θ

k·) is a constant V -a.s. and this constant lies in[∫
Ω
ξdv,

∫
Ω
ξdV

]
. Notice that θ is also ergodic with respect to both v and

V .

Motivated by above two examples, we will show that for a continuous
upper probability V , the ergodic average is a constant V -a.s. Moreover, we
give a characterization of ergodicity through strong law of large numbers
which is a type of Birkhoff’s ergodic theorem in an upper probability space.
If further V is concave, then we will give an estimate of the ergodic average
constant.

Theorem 4.5. Let V be a continuous upper probability on F and θ be a
measurable transformation from Ω to Ω preserving V . Then θ is ergodic with
respect to V if and only if for any bounded F-measurable random variable ξ,

lim
n→∞

1

n

n−1∑
k=0

ξ(θk·)

is a constant V -a.s.

Proof. For any bounded F -measurable random variable ξ, let v be the
conjugate lower probability of V ,

A =

{
ω : lim

n→∞

1

n

n−1∑
k=0

ξ(θkω) exists

}
(20)

and

ξ̃(ω) =

 lim
n→∞

1
n

n−1∑
k=0

ξ(θkω), if ω ∈ A

0, if ω /∈ A
.
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By Proposition 3.1 and Lemma 3.1, v (A) = 1. Therefore ξ̃ is a bounded F -
measurable random variable with ξ̃(θ·) = ξ̃(·) V -a.s. and ξ̃(·) = limn→∞

1
n

∑n−1
k=0 ξ(θ

k·)
V -a.s.

If θ is ergodic with respect to V , then by Theorem 4.4, ξ̃ is a constant
V -a.s. Therefore lim

n→∞
1
n

∑n−1
k=0 ξ(θ

k·) is a constant V -a.s.

If for any bounded F -measurable random variable ξ, lim
n→∞

1
n

∑n−1
k=0 ξ(θ

k·) is

a constant V -a.s. We consider ξ with ξ(θ·) = ξ(·), then lim
n→∞

1
n

∑n−1
k=0 ξ(θ

kω) =

ξ(ω). Hence ξ is a constant V -a.s. It follows from Theorem 4.4 that θ is
ergodic with respect to V . 2

Example 4.6. Let (V, v) denote the g-probabilities generated by the backward
stochastic differential equations (or g-expectations) with generators g(z) =
k|z| and g = −k|z| respectively, where k is any fixed number in R+. Then
(V, v) is a pair of continuous upper-lower probabilities (see Example 1 in [5]).
Thus, our results in Theorems 4.3, 4.4 and 4.5 apply immediately to this case.

The following example will show that if θ is ergodic with respect to v not to
V , then we can not get the ergodic average is a constant V -a.s.

Example 4.7. Consider (Ω,F , θ) in Example 4.2 and let V be the upper
probability µ2 and v be the corresponding lower probability of V . Define
ξ(ω) = I{ω1,ω2}(ω), then for all ω ∈ Ω,

lim
n→∞

1

n

n−1∑
k=0

ξ(θkω) = ξ(ω).

In this example, θ is ergodic with respect to v but not to V and for any
constant c,

v

({
ω : lim

n→∞

1

n

n−1∑
k=0

ξ(θkω) = c

})
= 0.

Theorem 4.6. Let V be a continuous and concave capacity on F , and v
be the conjugate capacity to V . If θ is ergodic with respect to V and ξ is a
bounded F-measurable random variable, then there exists a constant c such
that

lim
n→∞

1

n

n−1∑
k=0

ξ(θk·) = c, V -a.s. and c ∈
[∫

Ω

ξdv,

∫
Ω

ξdV

]
.
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Proof. It follows from Proposition 10.3 in [12] that (V, v) is a pair of upper
and lower probabilities. Then, by Theorem 4.5, there exists a constant c such
that

v

({
ω : lim

n→∞

1

n

n−1∑
k=0

ξ(θk(ω)) = c

})
= 1.

We only need to prove c ∈ [
∫

Ω
ξdv,

∫
Ω
ξdV ]. Since θ is ergodic with respect

to V , we have v(G) = {0, 1}. It follows from Theorem 4.2 that

v

({
ω : lim sup

n→∞

1

n

n−1∑
k=0

ξ(θkω) ≤
∫

Ω

lim sup
n→∞

1

n

n−1∑
k=0

ξ(θkω)dV

})
= 1.

Thus, c ≤
∫

Ω
lim supn→∞

1
n

∑n−1
k=0 ξ(θ

kω)dV . Let A be the set defined by
(20) in the proof of Theorem 4.5, then A is a θ-invariant set and V (Ac) = 0.
Combining above two equalities, by the subadditivity of the Choquet integral
with respect to V (Theorem 6.3 in [12]), we get

c ≤
∫

Ω

(
lim
n→∞

1

n

n−1∑
k=0

ξ(θkω)

)
IA(ω)dV +

∫
Ω

(
lim sup
n→∞

1

n

n−1∑
k=0

ξ(θkω)

)
IAc(ω)dV

=

∫
Ω

(
lim
n→∞

1

n

n−1∑
k=0

ξ(θkω)

)
IA(ω)dV

= lim
n→∞

∫
Ω

(
1

n

n−1∑
k=0

ξ(θkω)

)
IA(ω)dV

≤ lim
n→∞

1

n

n−1∑
k=0

∫
Ω

ξ(θkω)IA(θkω)dV

=

∫
Ω

ξ(ω)IA(ω)dV

=

∫
Ω

ξ(ω)dV,

where the second equality is due to the dominated convergence theorem
(Lemma 2.2) and the penultimate equality is come from θ preserving the
Choquet integral with respect to V (Proposition 3.1). Now we consider −ξ
and −c ≤

∫
Ω
−ξ(ω)dV , that is c ≥

∫
Ω
ξ(ω)dv. The proof of this theorem is

completed. 2
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Remark 4.7. Cerreia-Vioglio, Maccheroni and Marinacci obtained that for
a θ-invariant continuous lower probability v and any bounded F-measurable
random variable ξ, lim

n→∞
1
n

∑n−1
k=0 ξ(θ

k·) exists V -a.s. If θ is ergodic in their

sense, they showed that the random variable lim
n→∞

1
n

∑n−1
k=0 ξ(θ

k·) lies in the

interval [∫
Ω

lim sup
n→∞

1

n

n−1∑
k=0

ξ(θk(ω))dv,

∫
Ω

lim sup
n→∞

1

n

n−1∑
k=0

ξ(θk(ω))dV

]

V -a.s. (Theorem 2 in [3]). And then, for a continuous convex capacity v, if it
is further strongly invariant that requires all the probabilities in core(v) need
to be θ-invariant, they confirmed the interval is [

∫
Ω
ξdv,

∫
Ω
ξdV ] (Corollary 2

in [3]). Our result in Theorem 4.5 says that the ergodicity of θ with respect
to V is equivalent to lim

n→∞
1
n

∑n−1
k=0 ξ(θ

k·) being a constant V -a.s. This means

Birkhoff’s strong law of large numbers is a necessary and sufficient condition
for ergodicity. Moreover, for a convex continuous capacity v, Theorem 4.6
shows that the constant lies in [

∫
Ω
ξdv,

∫
Ω
ξdV ]. For this result we do not

need the assumption of v being strongly invariant.

5. Ergodicity of stationary processes on capacity spaces

The notion of stationary stochastic process on a capacity space general-
izing the usual notion of stationary stochastic process in classical probability
space, was given in [3] as follows.

Definition 5.1. Given a capacity space (Ω,F , µ), we say that stochastic pro-
cess {Yn}n∈N is stationary if and only if for each n ∈ N, k ∈ N0 and Borel
subset A of Rk+1,

µ({ω : (Yn(ω), · · · , Yn+k(ω)) ∈ A}) = µ({ω : (Yn+1(ω), · · · , Yn+1+k(ω)) ∈ A}).

It is easy to see that {Yn}n∈N is stationary on (Ω,F , µ) if and only if {Yn}n∈N
is stationary on the conjugate capacity space (Ω,F , µ). In classical proba-
bility theory, independent identically distributed random variables sequence
must be stationary. However, such a result will not be valid in the capacity
theory, we can find such a case in Example 2.1.
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Let (RN, σ(C)) denote the space of sequences endowed with the σ-algebra
generated by the set of all cylinders C. We denote a generic element of RN

by x. Any set C in C called cylinder, has the following form

C = {x = (x1, x2, x3, · · · ) : (x1, · · · , xn) ∈ H} (21)

where n ∈ N and H ∈ B(Rn). It is well known that C is an algebra. We
consider the shift transformation τ : RN → RN defined by

τ(x) = τ(x1, x2, x3, · · · ) = (x2, x3, x4, · · · ), for any x = (x1, x2, x3, · · · ) ∈ RN.

The stochastic process {Yn}n∈N induces a measurable map from (Ω,F) to
(RN, σ(C)) by

ω 7→ Y(ω) = (Y1(ω), Y2(ω), Y3(ω), · · · ), for any ω ∈ Ω.

Define µY : σ(C)→ [0, 1] by

µY(C) = µ(Y−1(C)), for any C ∈ σ(C).

It is easy to check that µY is a capacity on σ(C) and µY is continuous/convex/

concave if µ is continuous/convex/concave respectively, as Y−1

(
∞⋃
n=1

Cn

)
=

∞⋃
n=1

Y−1 (Cn) and Y−1

(
∞⋂
n=1

Cn

)
=

∞⋂
n=1

Y−1 (Cn), for any {Cn}n∈N ⊆ σ(C).

Moreover, µY = µ̄Y.

Proposition 5.1. Let Y = {Yn}n∈N be a stochastic process on the capacity
space (Ω,F , µ) and µ be continuous. Then Y = {Yn}n∈N is stationary if and
only if µY is the shift transformation τ -invariant.

Proof. On one hand, assume Y = {Yn}n∈N is stationary and let

M = {A : A ∈ σ(C), µY(τ−1(A)) = µY(A)}.

Then by the stationarity of Y, for any C ∈ C with H given in (21) corre-
sponding to set C, we have

µY(τ−1(C)) = µ({ω : τY(ω) ∈ C}) = µ({ω : (Y2(ω), · · · , Yn+1(ω)) ∈ H})
= µ({ω : (Y1(ω), · · · , Yn(ω)) ∈ H})
= µ({ω : Y(ω) ∈ C}) = µY(C),
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which implies that C ⊆ M. Because of the continuity of µ, µY is continuous
and thenM is a monotone class. Therefore, by the monotone class theorem
we can getM = σ(C) which means µY is the shift transformation τ -invariant.

On the other hand, assume that µY is the shift transformation τ -invariant,
then for each n ∈ N, k ∈ N0 and A ∈ B(Rk+1),

µ({ω : (Yn(ω), · · · , Yn+k(ω)) ∈ A}) = µY(Rn−1 × A× RN−n−k)

= µY(τ−1(Rn−1 × A× RN−n−k))

= µY(Rn × A× RN−n−k−1)

= µ({ω : (Yn+1(ω), · · · , Yn+1+k(ω)) ∈ A}).

That is to say {Yn}n∈N is stationary. 2

Definition 5.2. The stochastic process {Yn}n∈N on capacity space (Ω,F , µ)
is called ergodic if the shift transformation τ is ergodic with respect to µY.

Now we give the strong law of large numbers for stationary and ergodic
stochastic sequences on an upper probablity space.

Theorem 5.1. Let (V, v) be a pair of continuous upper and lower probabil-
ities on F . If a bounded stationary process Y = {Yn}n∈N on capacity space
(Ω,F , V ) is ergodic, then there exists a constant c such that

v

({
ω ∈ Ω : lim

n→∞

1

n

n∑
k=1

Yk(ω) = c

})
= 1.

If further V is concave, then c ∈ [
∫

Ω
Y1dv,

∫
Ω
Y1dV ].

Proof. It is easy to check that (VY, vY) is a pair of continuous upper and
lower probabilities on σ(C) since (V, v) is a pair of continuous upper and
lower probabilities on F . By Proposition 5.1, vY and VY are the shift trans-
formation τ -invariant. Define ξ : RN → R by ξ(x) = ξ(x1, x2, x3, · · · ) = x1,
for any x = (x1, x2, x3, · · · ) ∈ RN. Since τ is ergodic with respect to VY, then
we can get the following equality by Theorem 4.5 that there exists a constant
c such that

vY

({
x : lim

n→∞

1

n

n∑
k=1

ξ(τ k−1x) = c

})
= 1.
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Notice that 1
n

∑n
k=1 xk = 1

n

∑n
k=1 ξ(τ

k−1x), we have

1 = vY

({
x : lim

n→∞

1

n

n∑
k=1

xk = c

})
= v

({
ω : lim

n→∞

1

n

n∑
k=1

Yk(ω) = c

})
.

If further V is concave, then VY is concave while v and vY are convex.
Thus, it follows from Theorem 4.6 that c ∈ [

∫
RN ξdvY,

∫
RN ξdVY]. By the

transformation rule of Choquet integral (see Proposition 5.1 in [12]), we have∫
RN
ξdvY =

∫
RN
ξdv(Y−1) =

∫
Ω

ξ(Y)dv =

∫
Ω

Y1dv

and similarly ∫
RN
ξdVY =

∫
Ω

Y1dV.

As a consequence, we completed the proof of Theorem 5.1. 2

Corollary 5.1. Let (V, v) be a pair of continuous upper and lower probabili-
ties on F . If a bounded stochastic process Y = {Yn}n∈N on the capacity space
(Ω,F , V ) is stationary and for any n ∈ N, σ(Yk, k ≤ n) and σ(Yk, k ≥ n+1)
are independent with respect to V . Then there exists a constant c such that

v

({
ω ∈ Ω : lim

n→∞

1

n

n∑
k=1

Yk(ω) = c

})
= 1.

If further V is concave, then c ∈ [
∫

Ω
Y1dv,

∫
Ω
Y1dV ].

Proof. From Theorem 5.1, we only need to prove that the shift transforma-
tion τ is ergodic with respect to VY. Let B be any τ -invariant set, then for
any n ∈ N

Y−1(B) = Y−1(τ−1(B)) = Y−1(τ−n(B)) = {ω : τnY(ω) ∈ B}
= {ω : (Yn+1(ω), Yn+2(ω), · · · ) ∈ B} ∈ σ(Yk, k ≥ n+ 1).

So Y−1(B) ∈ T . By the assumption that for any n ∈ N, σ(Yk, k ≤ n) and
σ(Yk, k ≥ n + 1) are independent with respect to V , it follows from the
Kolmogorov 0-1 Law in capacity spaces (Theorem 2.1) that V (Y−1(B)) = 0
or V (Y−1(B)c) = 0. Therefore VY(B) = 0 or VY(Bc) = 0, that is τ is ergodic
with respect to VY by Proposition 4.2. 2
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Remark 5.1. There are many references on strong law of large numbers
for capacities under different definitions of independence and identical dis-
tributions, see for example [4], [6], [9], [14], [21], [22], [23], [26], [30] and
references therein. Comparing with these papers, in this paper, we replace the
independent identically distributed hypothesis by the stationarity and ergod-
icity as in [3]. It was obtained in [3] that the empirical average exists V -a.s.
By strengthening the definition of ergodicity, we obtain that the empirical av-
erage is constant V -a.s. This is a property that was not present in previous
work.
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