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Abstract 14 

Event-driven optimal control was recently developed for central air-conditioning systems to 15 

speed up the response of optimal control to irregular changes in the system optioning 16 

conditions. In a time-driven paradigm usually the optimization is carried out with a constant 17 

frequency, however the event-driven optimal control triggers optimization actions by events, 18 

which will be essentially defined to catch up with the irregular changes. Considering that the 19 

occurrence of events should imply the necessity to execute optimization, this paper investigates 20 

the necessity of optimization actions, based on which a new method to develop event-driven 21 

optimal control law is proposed. This can naturally lead to the establishment of an event-action 22 

map. This map indicates that not all the decision variables should be optimized when an event 23 

occurs, different from other methods that require optimizing all decision variables. The merits 24 

of the new method were also demonstrated using several case studies.  25 

 26 

Keywords: Real-time optimal control; Event-driven optimization; Energy efficiency; Air-27 

conditioning system 28 

 29 

1. Introduction 30 

Real-time optimal control is an approach to optimize the operation of central air-conditioning 31 

(AC) systems and hence improve their energy efficiency without sacrificing indoor thermal 32 

comfort (Chua et al. 2011; ASHRAE 2015). It always optimizes the set-points for the local 33 
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controllers in AC systems in response to the changes in their working condition, including 34 

outside weather and indoor thermal conditions (Wang 2009). Real-time optimal control has 35 

undergone rapid developments since the 1980s (Cumali 1988). Most research have 36 

concentrated on the formulation of optimization problems (Kelman, Ma and Borrelli 2013; 37 

Wang and Ma 2008) and the development of advanced optimization techniques, such as 38 

evolutionary algorithms (Fong, Handy, and Chow 2009; Ma and Wang 2011) and branch and 39 

bound (Chang, Lin, and Lin 2009; Fisk 2014). 40 

  41 

In the current real-time optimal control, most current strategies adopts a time-driven paradigm 42 

(Kusiak, Li, and Tang 2010; Sun et al. 2013; Martyr et al. 2019), i.e. optimization actions are 43 

triggered following a fixed frequency or a scheduled timetable during operation of AC systems. 44 

For example, Nassif (2005) developed a bi-objective optimal control strategy for an AC system, 45 

in which the supply air and the chilled water supply temperatures were optimized every 30 46 

minutes. However, in the operation of a central AC system, many changes are stochastic and 47 

hard to predict, such as those in the weather, load, and occupancy conditions. Being a periodic 48 

mechanism in nature, time-driven optimal control (TDOC) may fail to capture those aperiodic 49 

changes and thus cannot perform the optimization at the right time (Ma, Matusko, and Borrelli 50 

2015). It may also waste the computational resources when the operating conditions are stable, 51 

and no optimization is necessary (but is still performed). 52 

  53 

The event-driven paradigm offers an alternative to the time-driven paradigm. Its core idea is 54 

that “an action should be triggered by an ‘event’ that is specified as a well-defined condition 55 

on the system state or as a random state transition” (Cassandras 2014). The event-driven 56 

approach has been used in sampling (Astrom and Bernhardsson 1999), estimation (Xia, Gupta, 57 

and Antsaklis 2016), control (Shen, Yan, and Zhang 2016; Borgers, Dolk, and Heemels 2017) 58 

and optimization (Cao 2008), and it is especially attractive when many components are 59 

connected over a shared network. For example, in the network control system, using the event-60 

driven method can be more efficient as information transmission (the action) is triggered only 61 

when there is a significant change in the plant output measurements (the event) (Zhu, Xia, and 62 

Antsaklis 2014).  63 

 64 

The event-driven approach has also gain primary applications in AC systems in recent years. 65 
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It has been used in the adaptive control of AC systems (Dhar, Verma, and Behera 2017), 66 

building energy management (Xu et al. 2017), and the optimal control of the air-loop of an AC 67 

system (Wu, Jia, and Guan 2015; Jia et al. 2018). In the work of Jia et al. (2018), the set-points 68 

of the supply air temperature and air volumes were optimized (the action) when state variables, 69 

such as the indoor air temperature, crossed the boundary of a predefined range (the event). A 70 

whole central AC system including both water and air loops was considered in Wang et al.’s 71 

studies, where events were defined using a knowledge-based method (Wang et al. 2016; Wang 72 

et al. 2018) or a data mining approach (2017). All these studies showed that compared with the 73 

TDOC, the event-driven optimal control (EDOC) was able to capture the aperiodic changes in 74 

the operations of HVAC systems, and simultaneously the computational load of the EDOC can 75 

be saved significantly. It should be noted that there are many factors that limit the general 76 

application of optimal control for HVAC systems and computational complexity might not be 77 

the critical one. However, to perform the optimization at the right time and reduce the 78 

computational complexity could improve the cost-to-benefit ratio of implementing the real-79 

time optimal control in HVAC systems.    80 

 81 

Despite these merits of EDOC, there are several limitations in these previous studies. First, the 82 

knowledge-based or the data mining method are not a systematic way to define events. Try-83 

and-error should be used to access how “good” the defined events are. Second, in these studies 84 

a direct map between events and individual decision variables has not been established. When 85 

an event occurs, all the decision variables must be optimized. This might not be an efficient 86 

method to execute optimization, especially when many variables are needed to be optimized. 87 

It is possible that the occurrence of an event might only affect part of the decision variables, 88 

and hence for this event only those decision variables that are affected should be optimized.        89 

 90 

This paper proposed a study to overcome the abovementioned limitations. Considering that the 91 

occurrence of events should imply the necessity to execute optimization, this paper investigates 92 

the necessity of optimization actions, based on which a new method to develop event-driven 93 

optimal control is proposed. This new method identifies the state transitions that have a critical 94 

influence on the performance of the real-time optimal control to establish a mathematical 95 

relationship between the variation in the optimal values of a decision variable and its critical 96 

state transitions. According to this relationship, an EDOC law is set up and naturally, this 97 
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EDOC law leads to the definition of an event and action space as well as the map between them. 98 

The event-action map is used to specify which decision variable should be optimized when an 99 

event occurs, which indicates that that not all of the decision variables should be optimized 100 

when an event occurs, which is different from a traditional strategy that requires to optimize 101 

all decision variables. 102 

 103 

Considering the mutual interactions among the decision variables, the event and action spaces 104 

are improved through action and/or event merging after analyzing the interaction among the 105 

decision variables. Case studies are used to demonstrate the development of the EDOC strategy 106 

for a typical central AC system. The performance of the developed strategy is assessed using 107 

multiple evaluation indices and compared to that of a TDOC method. It is worth noting that 108 

since the proposed method is based on the optimization necessity; it is universal and not limited 109 

to the application in AC systems.  110 

 111 

This paper is organized as follows. Section 2 illustrates the necessity of optimization actions. 112 

Section 3 shows the procedure to establish the event and action spaces for EDOC as well as 113 

the map between them. Section 4 presents case studies, including the simulation platform for a 114 

typical AC system and the development of the EDOC law. Result analysis and discussion are 115 

shown in Section 5. Concluding remarks are presented in Section 6.   116 

 117 

2. Necessity of optimization actions 118 

Before the illustration of EDOC strategy development method for AC systems, the necessity 119 

of optimization actions is firstly introduced, which lays the foundation of the proposed 120 

development method. Assume there is a simple system, where only a state variable and a 121 

decision variable are involved as shown in Eqn. (1) and (2). The state variable 𝑠𝑠 refers to the 122 

uncontrollable operation condition, and the decision variable 𝑣𝑣 is controllable by resetting its 123 

value. 124 

𝐹𝐹 = 𝑓𝑓(𝑠𝑠(𝑡𝑡),𝑣𝑣)                                    (1) 125 

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = arg min 
𝑣𝑣

𝑓𝑓(𝑠𝑠(𝑡𝑡),𝑣𝑣)                            (2) 126 

During the operation of the system, the state variable 𝑠𝑠 varies in the time dimension as shown 127 

in Fig. 1. Optimization actions 𝑎𝑎𝑎𝑎𝑡𝑡1,𝑎𝑎𝑎𝑎𝑡𝑡2,⋯ are executed in a row to minimize the objective 128 

function 𝑓𝑓  in real time by searching the decision variable’s optimal values 𝑣𝑣1
𝑜𝑜𝑜𝑜𝑜𝑜, 𝑣𝑣2

𝑜𝑜𝑜𝑜𝑜𝑜,⋯ 129 
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under the state variable’s instantaneous values 𝑠𝑠1, 𝑠𝑠2,⋯. 130 

 131 

Fig. 1. The state transition and variation of the decision variable’s optimal value 132 

 133 

Conceptually, an optimization action is necessary when the current value of the decision 134 

variable is no longer optimal. Therefore, 𝑎𝑎𝑎𝑎𝑡𝑡2  is necessary due to non-zero ∆𝑣𝑣2
𝑜𝑜𝑜𝑜𝑜𝑜 , the 135 

variation of the searched decision variable’s optimal value by 𝑎𝑎𝑎𝑎𝑡𝑡2  from that by 𝑎𝑎𝑎𝑎𝑡𝑡1 . 136 

Furthermore, the larger the deviation, the performed optimization action has the higher 137 

necessity. Considering that the variation of the decision variable’s optimal values is caused by 138 

changes of the state variable, an event will be defined as these state variables’ changes leading 139 

to an obvious variation of decision variables’ optimal values. Events defined in this way will 140 

certainly drive optimization actions with a high necessity. 141 

 142 

3. Methodology 143 

The development method of EDOC strategy for AC systems consists of three steps: 1) 144 

identification of critical state transitions, 2) EDOC law, and 3) improving the event-action map. 145 

 146 

3.1 Identification of critical state transitions for decision variables 147 

To find state variables’ changes leading to an obvious variation of decision variables’ optimal 148 

values, it is necessary to first identify critical state transitions. These state variables should be 149 

selected from weather data (such as outdoor temperature, humidity, solar radiation intensity), 150 

operating states of the air-conditioning system (such as the on/off status of components), and/or 151 

occupancy conditions. Then, analyze the impact of their variations on selected decision variables.  152 

 153 

To this end, time-driven optimal control of AC systems is conducted over a period (from 𝑡𝑡 = 0 154 

to 𝑡𝑡 = 𝑙𝑙). The matrix of the state transitions 𝑀𝑀𝑠𝑠 and the matrix of the variation of the decision 155 

variables’ optimal values and 𝑀𝑀𝑣𝑣, as shown in Eqn. (3) and (4), are obtained from operating 156 

data. 157 

1 Time

Value

2

𝑎𝑎𝑎𝑎𝑡𝑡1 𝑎𝑎𝑎𝑎𝑡𝑡2
𝑠𝑠1 𝑠𝑠2 ∆𝑠𝑠2
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𝑀𝑀𝑠𝑠 =

⎣
⎢
⎢
⎡
∆𝑠𝑠1,1

∗ ∆𝑠𝑠1,2
∗

∆𝑠𝑠2,1
∗ ∆𝑠𝑠2,2

∗
… ∆𝑠𝑠1,𝑙𝑙

∗  
… ∆𝑠𝑠2,𝑙𝑙

∗  
⋮ ⋮

∆𝑠𝑠𝑚𝑚,1
∗ ∆𝑠𝑠𝑚𝑚,2

∗
⋱ ⋮ 
… ∆𝑠𝑠𝑚𝑚,𝑙𝑙

∗

 

⎦
⎥
⎥
⎤
 with ∆𝑠𝑠𝑗𝑗,𝑜𝑜

∗ = 𝑠𝑠𝑗𝑗,𝑡𝑡−𝑠𝑠𝑗𝑗,𝑡𝑡−1

max
𝑡𝑡=1→𝑙𝑙

�𝑠𝑠𝑗𝑗,𝑡𝑡−𝑠𝑠𝑗𝑗,𝑡𝑡−1�
,  𝑗𝑗 = 1,∙∙∙, m, 𝑡𝑡 = 1,∙∙∙, 𝑙𝑙  (3) 158 

𝑀𝑀𝑣𝑣 =

⎣
⎢
⎢
⎢
⎡∆𝑣𝑣1,1

𝑜𝑜𝑜𝑜𝑜𝑜∗ ∆𝑣𝑣1,2
𝑜𝑜𝑜𝑜𝑜𝑜∗

∆𝑣𝑣2,1
𝑜𝑜𝑜𝑜𝑜𝑜∗ ∆𝑣𝑣2,2

𝑜𝑜𝑜𝑜𝑜𝑜∗
… ∆𝑣𝑣1,𝑙𝑙

𝑜𝑜𝑜𝑜𝑜𝑜∗ 

… ∆𝑣𝑣2,𝑙𝑙
𝑜𝑜𝑜𝑜𝑜𝑜∗ 

⋮ ⋮
∆𝑣𝑣𝑛𝑛,1

𝑜𝑜𝑜𝑜𝑜𝑜∗ ∆𝑣𝑣𝑛𝑛,2
𝑜𝑜𝑜𝑜𝑜𝑜∗

⋱ ⋮ 
… ∆𝑣𝑣𝑛𝑛,𝑙𝑙

𝑜𝑜𝑜𝑜𝑜𝑜∗

 

⎦
⎥
⎥
⎥
⎤

 with ∆𝑣𝑣𝑖𝑖,𝑜𝑜∗ =
𝑣𝑣𝑖𝑖,𝑡𝑡
𝑜𝑜𝑜𝑜𝑡𝑡−𝑣𝑣𝑖𝑖,𝑡𝑡−1

𝑜𝑜𝑜𝑜𝑡𝑡

max
𝑡𝑡=1→𝑙𝑙

�𝑣𝑣𝑖𝑖,𝑡𝑡
𝑜𝑜𝑜𝑜𝑡𝑡−𝑣𝑣𝑖𝑖,𝑡𝑡−1

𝑜𝑜𝑜𝑜𝑡𝑡 �
, 𝑖𝑖 = 1,∙∙∙, n, 𝑡𝑡 = 1,∙∙∙, 𝑙𝑙 (4) 159 

where 𝑠𝑠𝑗𝑗,𝑜𝑜 is the value of the 𝑗𝑗𝑜𝑜ℎ state variable at time 𝑡𝑡, and 𝑣𝑣𝑖𝑖,𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜 is the optimal value of 160 

the 𝑖𝑖𝑜𝑜ℎ decision variable at time 𝑡𝑡. 161 

 162 

Then, the impact of state transitions on variations of decision variables’ optimal values are 163 

investigated based on the obtained 𝑀𝑀𝑠𝑠  and 𝑀𝑀𝑣𝑣 . Available tools with respect to the 164 

identification of critical variables include sensitivity analysis (Saltelli et al. 2004; Tian 2013), 165 

feature selection (Guyon and Elisseeff 2003; Zhang and Wen. 2019), and mutual information 166 

(May et al. 2008; Kapetanakis, Mangina, and Finn 2017). Due to its simple and low 167 

computation cost, the regression-based sensitivity analysis is adopted in this study, which fits 168 

a linear regression to the model outputs and uses the regression coefficients as direct measures 169 

of sensitivity, as illustrated in studies by Saltelli et al. 2004. The state transitions corresponding 170 

to the coefficients with high magnitude are regarded as the critical ones. More details are given 171 

in Section 4.3. It is assumed that there are 𝑚𝑚𝑖𝑖 critical transitions are identified for the 𝑖𝑖𝑜𝑜ℎ 172 

decision variable 𝑣𝑣𝑖𝑖 , denoted as (∆𝑠𝑠1𝑖𝑖 , ∙∙∙,∆𝑠𝑠𝑚𝑚𝑖𝑖
𝑖𝑖 ), and 𝑚𝑚�  critical transitions in total for all 173 

decision variables. The map is obtained from the variable selection to link the decision variable 174 

and its critical state transitions as shown in Fig. 2. 175 

 176 

 177 

Fig. 2. (a) An initial map to show critical state transitions for decision variables (an example); 178 

(b) the improved map to link decision variables and their critical state transitions   179 

Decision variablesState transitions

Critical to 𝑣𝑣1

𝑣𝑣2

⋮
𝑣𝑣𝑛𝑛

∆𝑠𝑠1

∆𝑠𝑠2

⋮

∆𝑠𝑠𝑚𝑚�

State transitions

Critical to
𝑣𝑣1

𝑣𝑣2

⋮
𝑣𝑣𝑛𝑛

∆𝑠𝑠11,⋯ ,∆𝑠𝑠𝑚𝑚1
1

⋮

Decision variables

∆𝑠𝑠12,⋯ ,∆𝑠𝑠𝑚𝑚2
2

∆𝑠𝑠1𝑛𝑛,⋯ ,∆𝑠𝑠𝑚𝑚𝑛𝑛
𝑛𝑛

reorganize

(b)(a)
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3.2 EDOC law 180 

To develop the event-driven paradigm, the important tasks are to build an event/action space, 181 

which contains all the events/actions, and a map to link the event and action space all together. 182 

The map specifies the appropriate action that should take place when an event occurs. To this 183 

end, the mathematical relationship between the variation of each decision variable’s optimal 184 

value and its critical state transitions should be developed. Regression (Aranda et al. 2012), 185 

artificial neural network (ANN) (Kalogirou 2000), and support vector machine (SVM) (Jung, 186 

Kim, and Heo 2015) are most techniques commonly used for developing relationship in 187 

building energy systems. A simple and explicit regression mode is highly recommended for 188 

this study since the event occurrence should be calculated and identified timely. Besides, the 189 

relationship developed for event definition is only used to trigger the optimization, not to 190 

predict the optimal value of decision variables which are obtained through detailed system 191 

models after the trigger. Thus, a simple and explicit regression model can make the immediate 192 

identification and satisfy accuracy requirement with less striction.  193 

 194 

The mathematical relationship between the critical state transitions and the decision variables 195 

is written as 196 

∆𝑣𝑣𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑖𝑖(∆𝑠𝑠1𝑖𝑖 , ∙∙∙,∆𝑠𝑠𝑚𝑚𝑖𝑖

𝑖𝑖 )                        (5) 197 

where 𝑓𝑓𝑖𝑖 is a suitable mathematical function, which should be selected according to the data 198 

generated by a time-driven optimal control.  199 

 200 

Assuming that the optimization of the decision variable 𝑣𝑣𝑖𝑖 (𝑖𝑖 = 1,⋯ ,𝑛𝑛) is necessary when 201 

the absolution value of ∆𝑣𝑣𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 is larger than a predefined threshold 𝛾𝛾𝑖𝑖, then an event to trigger 202 

the optimization of 𝑣𝑣𝑖𝑖 should be defined as  203 

𝑒𝑒𝑖𝑖: �𝑓𝑓𝑖𝑖(∆𝑠𝑠1𝑖𝑖 , ∙∙∙,∆𝑠𝑠𝑚𝑚2
𝑖𝑖 )� > 𝛾𝛾𝑖𝑖                     (6) 204 

Therefore, the event-driven optimal control (EDOC) law can be written as: 205 

 206 

EDOC law: the decision variable 𝑣𝑣𝑖𝑖 , 𝑖𝑖 ∈ [1,⋯ ,𝑛𝑛] should be optimized at time 𝑡𝑡 if its critical 207 

states transition (∆𝑠𝑠1,𝑜𝑜
𝑖𝑖 , ∙∙∙,∆𝑠𝑠𝑚𝑚𝑖𝑖,𝑜𝑜

𝑖𝑖 ) satisfies �𝑓𝑓𝑖𝑖(∆𝑠𝑠1,𝑜𝑜
𝑖𝑖 , ∙∙∙,∆𝑠𝑠𝑚𝑚2,𝑜𝑜

𝑖𝑖 )� > 𝛾𝛾𝑖𝑖. 208 

 209 

The EDOC law defines the event and action spaces as well as the map between them, as shown 210 

in Fig. 3. There are 𝑛𝑛 events and 𝑛𝑛 actions, and each single event triggers one single action. 211 
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It should be noted that the threshold 𝛾𝛾𝑖𝑖 in this EDOC law is an important factor to balance the 212 

optimization performance and the computational load. Its value should be specified by 213 

considering multiple aspects including mainly the sensitivity of the energy consumption of the 214 

AC system to the variation of decision variables, the control precision of control loops for 215 

decision variables, and the fluctuation of the system operating state caused by the reset of 216 

decision variables.  217 

 218 

Fig. 3. Event and action space with the map directly from the EDOC law 219 

 220 

3.3 Improve the event-action map 221 

Fig. 3 indicates that when 𝑒𝑒𝑖𝑖  occurs, only 𝑣𝑣𝑖𝑖  needs to be optimized. However, in an 222 

optimization problem, the global optimal solution can usually be achieved when all decision 223 

variables are optimized simultaneously. This is due to the interaction between decision 224 

variables which means the optimization of a variable is affected by values taken by other 225 

variables (Li et al. 2016). Thus, if only the single corresponding decision variable is optimized 226 

when an event occurs, the overall performance of the EDOC may be deteriorated. However, if 227 

all decision variables are optimized simultaneously when any event occurs, the computation 228 

load will increase considerably. 229 

 230 

This problem can be avoided by analyzing the correlation among ∆𝑣𝑣𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜, 𝑖𝑖 = 1,⋯ , 𝑛𝑛 , and 231 

merging the optimization actions of those decision variables with a high correlation coefficient. 232 

The merging process is shown in Figure (4a), where ∆𝑣𝑣𝑖𝑖 and ∆𝑣𝑣𝑗𝑗 are assumed to be highly 233 

correlated. In this case, 𝑣𝑣𝑗𝑗  should be optimized when 𝑣𝑣𝑖𝑖 is optimized and vice versa. Thus, 234 

the optimization of 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑗𝑗  should be merged, i.e. whenever 𝑒𝑒𝑖𝑖  or 𝑒𝑒𝑗𝑗  occurs both 𝑣𝑣𝑖𝑖 235 

and 𝑣𝑣𝑗𝑗  should be optimized. When the optimization of highly correlated decision variables is 236 

merged, the next step is to analyze the independence of the corresponding events and merge 237 

events as necessary. For example, if the occurrence of 𝑒𝑒𝑖𝑖 will lead to the occurrence of 𝑒𝑒𝑗𝑗, 238 
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then 𝑒𝑒𝑖𝑖 and 𝑒𝑒𝑗𝑗 can be merged as 𝑒𝑒𝑖𝑖. Note that this merging will not change the definition of 239 

𝑒𝑒𝑖𝑖 as shown in Eqn. (6). The final event-action map is shown in Figure (3b), where the links 240 

are categorized into two types: Type I where a single event will trigger the optimization of a 241 

single decision variable; while in Type II a single event will trigger the optimization of multiple 242 

decision variables.  243 

 244 

 245 

 246 

Fig. 4. (a) The process of merging actions; (b) improved map after the analysis of interaction 247 

between decision variables 248 

 249 

3.4 Realization of the EDOC strategy 250 

After the event and action spaces, together with their map are established, EDOC can be 251 

realized using the flowchart shown in Fig. 5. At each sampling time, all the critical state 252 

transitions (∆𝑠𝑠1,⋯ ,∆𝑠𝑠𝑚𝑚� ) need to be calculated, and hence the corresponding states (𝑠𝑠1,⋯ , 𝑠𝑠𝑚𝑚� )  253 

need to be monitored and their values at each sampling must be recorded. According to the 254 

definitions of the events in the event space, the occurrence of each event should be detected. If 255 

no event occurs, no optimization should be carried out at this time and therefore the values of 256 

the all the decision variables should be maintained unchanged. Otherwise, there is a need to 257 

find all the decision variables that should be optimized following the map between the event 258 

space and the action space. Next, these variables are optimized using the adopted optimization 259 

algorithm and updated to the new optimal values.   260 

 261 

Action spaceEvent space

map
opt. 𝑣𝑣𝑖𝑖

opt. 𝑣𝑣𝑗𝑗

𝑒𝑒𝑖𝑖

𝑒𝑒𝑗𝑗

merge actions

map

opt. 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗
𝑒𝑒𝑖𝑖

𝑒𝑒𝑗𝑗
(a)

Action spaceEvent space

map

opt. 𝑣𝑣�1 

opt. 𝑣𝑣�𝑛𝑛1

⋮

�̂�𝑒1

�̂�𝑒𝑛𝑛1

⋮

�̃�𝑒𝑛𝑛2

(b)

Optimize single 
decision variable 
when a single 
event occurs

Optimize multiple 
decision variables 
when a single 
event occurs

⋮⋮

�̃�𝑒1
𝑣𝑣�11,⋯ , 𝑣𝑣�𝑙𝑙1

1
Opt.

Opt.

𝑣𝑣�1
𝑛𝑛2 ,⋯ , 𝑣𝑣�𝑙𝑙𝑛𝑛2

𝑛𝑛2

𝑛𝑛1 + 𝑛𝑛2 ≤ 𝑛𝑛 𝑛𝑛1 + 𝑙𝑙1 +⋯ 𝑙𝑙𝑛𝑛2 = 𝑛𝑛
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 262 

Fig. 5. Visualisation of the developed EDOC strategy   263 
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variables that need to be optimized
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Optimize and update the decision 
variables

W
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e

event-action 
map

Definitions 
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Eqn. (6)
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4. Case studies 264 

In this section, the proposed mechanism to develop an EDOC strategy is illustrated through 265 

relevant case studies. A typical AC system was first selected, and then its simulation platform 266 

was established using TRNSYS and MATLAB. Based on this platform, operating data of AC 267 

systems were generated to develop and evaluate the EDO control strategy using the proposed 268 

method. The identification of critical state transitions and the establishment of an event-action 269 

map are explained below in detail.  270 

 271 

4.1 Simulation platform 272 

The selected typical air-conditioning system is illustrated in Fig. 6, which has three basic loops: 273 

the cooling water (CW), the chilled water (CHW), and the supply air (SA) loops. In the chilled 274 

water loop, the chiller is used to generate chilled water, which is delivered by a constant speed 275 

pump in the primary side and a variable speed (vs) pump in the secondary side. In the cooling 276 

water loop, a constant speed pump is used to cycle the cooling water, which dissipated heat to 277 

the ambient. In the supply air loop, the supply air is conditioned by an air-handling unit (AHU) 278 

and delivered to zones for cooling. During the operation, the CWS, CHWS, and the SA 279 

temperatures were under feedback control to track their preset set-points. The CWS, CHWS 280 

and SA temperatures were controlled by adjusting the cooling tower fan frequency, the flow 281 

rate of the refrigerant inside the chiller, and the flow rate of the chilled water through the AHU 282 

respectively. 283 

 284 

ZoneCooling 
tower Chiller AHU

coil

AHU fanConstant speed pump

Bypass 

Constant speed pump
Ambient 

air

Variable speed pump

Cooling water loop Chilled water loop Air loop

CWS: cooling water supply
CWR: cooling water return

CHWS: chilled water supply
CHWR: chilled water return

SA: supply air
RA: return air

CWS

CWR

CHWS

CHWR

SA

RA

 285 

Fig. 6. Schematic of a typical air-conditioning system 286 

 287 
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TRNSYS was chosen to establish the simulation platform for the AC system because of its 288 

proven capability to simulate the dynamics of AC systems. The type numbers of adopted 289 

components in TRNSYS and their parameter settings are presented in Table 1. All the 290 

component models used in this study are quasi-steady models. Note that external feedback 291 

controllers are not used for the control of the CHWS and the SA temperatures since Type 666 292 

and Type 508c themselves assume that the set-points for the CHWS and the SA temperatures 293 

to be achieved respectively in their calculations. The performance data within Type 666 was 294 

rewritten according to the performance curve of a real chiller (Reform EIR Chiller Screw York 295 

YS 781kW/5.42COP/Valve) as described in the software DesignBuilder.  296 

 297 

Table 1. Parameter settings of components in TRNSYS 298 

Component Parameter Value 

Chiller  

(Type 666) 

Capacity (kW) 509 

COP 6.5 

Chilled water flow rate (kg/s) 23.6 

Cooling water flow rate (kg/s) 27.8 

Cooling tower  

(Type 51b) 

Maximum air flow rate (m3/s) 19.4  

Rated power (kW) 5.5  

Cooling water flow rate (kg/s) 27.8 

Cooling capacity (kW) 604  

CHW cs pump  

(Type 114) 

Water flowrate (kg/s) 23.6 

Head (m) 15 

Rated power (kW) 5.1 

CW cs pump  

(Type 114) 

Water flowrate (kg/s) 27.8 

Head (m) 15 

Rated power (kW) 6 

CHW vs pump  

(Type 110) 

Water flowrate (kg/s) 23.6 

Head (m) 30 

Rated power (kW)  10.4 

Coil (Type 508c) Coil bypass fraction 0.15 

Fan (Type 111b) Rated air flow rate (kg/s) 37.3 

 Rated power (kW) 40 

CW PI controller  

(Type 23) 

Gain constant -0.1 

Integral time (hr) 0.2 

 299 

Hong Kong weather for 2003 was selected as the operating environment of the AC system 300 

taken from the Hong Kong Observatory. The measured load profiles from a commercial 301 

building was used in the simulation. This commercial building had three cooling seasons: 302 
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spring, summer, and autumn as was recorded by the building energy management system 303 

(BEMS),. The weather and load data of six days of each season; spring (April), summer 304 

(August), and autumn (October) were used as the training condition to develop the event-driven 305 

optimal control strategy (see below Section 4.3). The data of a day of each season; spring 306 

(April), summer (August), and autumn (October) were used as the test condition to evaluate 307 

the developed strategy, and the results are presented in Section 5. Basic information on weather 308 

and load data is shown in Table 2. 309 

  310 

Table 2. Weather and load condition 311 

Item 
 Strategy development Strategy evaluation 

 Spring Summer Autumn Spring Summer Autumn 

Db temp.  

(℃) 

Max. 22.5  32.0  28.3  22.5  30.7 27.3  

Min. 18.4  25.9  21.6  19.8  26.9 22.1  

Mean 19.8  28.8  24.7  21.1  28.8 24.6  

Wb temp.  

(℃) 

Max. 21.5  27.7  22.6  21.5  27.5 19.7  

Min. 16.9  24.6  14.7  18.8  25.1 16.2  

Mean 18.9  26.5  18.8  20.3  26.2 17.8  

Cooling load 

(kW) 

Max. 216  462  344 216  446 294 

Min. 88  94 93 95  105 95 

Mean 135  264 198 161 290 203 

 312 

4.2 Formulation of real-time optimal control 313 

Due to no energy storage involved, the real-time optimal control was used to do the static 314 

minimization of instantaneous power consumption of the whole system with respect to decision 315 

variables at single time point (ASHRAE 2015). The objective function is given by Eqn. (7) and 316 

the decision variables were these three set-points for the CWS, CHWS and SA temperature 317 

controls.  318 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑐𝑐ℎ + 𝑃𝑃𝑐𝑐𝑜𝑜 + 𝑃𝑃𝑐𝑐ℎ𝑤𝑤,𝑐𝑐𝑠𝑠 + 𝑃𝑃𝑐𝑐ℎ𝑤𝑤,𝑣𝑣𝑠𝑠 + 𝑃𝑃𝑐𝑐𝑤𝑤,𝑐𝑐𝑠𝑠 + 𝑃𝑃𝑓𝑓𝑓𝑓𝑛𝑛           (7) 319 

where 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 is the instantaneous power of the total system; while 𝑃𝑃𝑐𝑐ℎ, 𝑃𝑃𝑐𝑐𝑜𝑜, 𝑃𝑃𝑐𝑐ℎ𝑤𝑤,𝑐𝑐𝑠𝑠, 𝑃𝑃𝑐𝑐ℎ𝑤𝑤,𝑣𝑣𝑠𝑠, 320 

𝑃𝑃𝑐𝑐𝑤𝑤,𝑐𝑐𝑠𝑠, and 𝑃𝑃𝑓𝑓𝑓𝑓𝑛𝑛 are the power of the chiller, cooling tower, constant speed pump for chilled 321 

water, variable speed pump for the chilled water, and constant speed pump for the cooling 322 

water, and the fan of AHU respectively. The real-time optimization is then formulated as shown 323 

in Eqn. (8): 324 

 �𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜 (𝑡𝑡),𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜 (𝑡𝑡),𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜 (𝑡𝑡)� = arg min 

𝑇𝑇𝑐𝑐𝑐𝑐,𝑠𝑠𝑡𝑡,𝑇𝑇𝑐𝑐ℎ𝑐𝑐,𝑠𝑠𝑡𝑡,𝑇𝑇𝑠𝑠𝑠𝑠,𝑠𝑠𝑡𝑡

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)             (8) 325 
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where 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 , 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 , and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜  denote the set-points for the CWS, CHWS and SA 326 

temperature respectively; while 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜 , and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜  denote their optimal values.  327 

 328 

The constraints of this optimization problem were shown in Eqns. (9)-(10). The inequalities in 329 

Eqn. (9) indicated that the values of the three decision variables were constrained by lower and 330 

upper operating boundaries. The inequalities in Eqn. (10) were used to prevent the system 331 

instability from large set-point changes. The operating boundaries of three decision variables 332 

are given below in Table 3. 333 

�
𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜
𝐿𝐿 ≤ 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 ≤ 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜

𝑈𝑈

𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜
𝐿𝐿 ≤ 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 ≤ 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜

𝑈𝑈

𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜
𝐿𝐿 ≤ 𝑇𝑇𝑓𝑓𝑖𝑖𝑎𝑎,𝑠𝑠𝑜𝑜 ≤ 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜

𝑈𝑈
                          (9) 334 

�
�𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜(𝑡𝑡) − 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜(𝑡𝑡 − 1)� ≤ ∆𝑇𝑇𝑐𝑐𝑤𝑤,𝑙𝑙𝑚𝑚

�𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜(𝑡𝑡) − 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜(𝑡𝑡 − 1)� ≤ ∆𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑙𝑙𝑚𝑚

�𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜(𝑡𝑡) − 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑓𝑓(𝑡𝑡 − 1)� ≤ ∆𝑇𝑇𝑠𝑠𝑓𝑓,𝑙𝑙𝑚𝑚

                (10) 335 

where 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜
𝐿𝐿 /𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜

𝑈𝑈 , 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜
𝐿𝐿 /𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜

𝑈𝑈 , and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜
𝐿𝐿 /𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜

𝑈𝑈  are the lower/upper boundaries of 336 

𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 , 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 , and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜  respectively, and ∆𝑇𝑇𝑐𝑐𝑤𝑤,𝑙𝑙𝑚𝑚 , ∆𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑙𝑙𝑚𝑚 , and ∆𝑇𝑇𝑠𝑠𝑓𝑓,𝑙𝑙𝑚𝑚  are the 337 

limitation of set-point changes of 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜, 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜, and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 respectively. 338 

 339 

Table 3. Operating boundaries of decision variables 340 

Boundary Value (℃) 

[𝑇𝑇𝑎𝑎𝑐𝑐,𝑠𝑠𝑡𝑡
𝐿𝐿 ,𝑇𝑇𝑎𝑎𝑐𝑐,𝑠𝑠𝑡𝑡

𝑈𝑈 ] [𝑇𝑇𝑤𝑤𝑤𝑤+1.5,35] 

[𝑇𝑇𝑎𝑎ℎ𝑐𝑐,𝑠𝑠𝑡𝑡
𝐿𝐿 ,𝑇𝑇𝑎𝑎ℎ𝑐𝑐,𝑠𝑠𝑡𝑡

𝑈𝑈 ] [4,10] 

[𝑇𝑇𝑠𝑠𝑎𝑎,𝑠𝑠𝑡𝑡
𝐿𝐿 ,𝑇𝑇𝑠𝑠𝑎𝑎,𝑠𝑠𝑡𝑡

𝑈𝑈 ] [12,16] 

 341 

To obtain the relationship between these three temperatures set-points and the total power, 342 

performance models for all power-consuming components are required. Here it is assumed that 343 

these temperature set-points are well tracked, and thus the relationships between the power and 344 

these three temperatures can be used directly. For the chillers, the DOE2 model described in 345 

the study by Hydeman and Gillespie 2002, was adopted to predict the power and the CHWS 346 

temperature for a given evaporator cooling load and the CHWS temperature. For the cooling 347 

towers, the simplified cooling tower model in the paper by Lebrun et al. 2004 was used, which 348 

was able to predict the required air flow rate for a given CWS temperature and thus the power 349 
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of the fans used in the cooling tower. The performance model of the AHU coils was developed 350 

based on Type 508c in TRNSYS. The coil model was able to predict the required CHW flow 351 

rate and the outlet water temperature given the CHWS temperature, the SA temperature and 352 

humidity. The power of variable speed pumps/fans was described using a cubic polynomial of 353 

fluid flowrate. The power of constant speed pumps/fans was constant and was set at their rated 354 

power. All undetermined parameters of performance models were identified using the 355 

components operating data in TRNSYS to make these performance models consistent with the 356 

component in TRNSYS. 357 

 358 

The optimization algorithm was programmed using MATLAB and connected with TRNSYS 359 

using Type 155, an interface provided in TRNSYS to link TRNSYS and MATLAB. At each 360 

optimization time, a comprehensive search was adopted to find the optimal solutions. In this 361 

method, the total power 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 was calculated when the decision variables varied from their 362 

lower to the upper boundary at a step change of 0.1℃. Here the step change of 0.1℃ was 363 

selected as relatively accurate solutions could be obtained and be used for the comparison 364 

studies in Section 5. The combination of the decision variables that made 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 the minimum 365 

was the optimal solution [𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜 ]. The optimal solution was then transferred to 366 

TRNSYS and used as the set-points for the control of the CWS, CHWS and SA temperature 367 

respectively. 368 

 369 

It should be noted that the optimization formulation for a real chiller plant with multiple chillers, 370 

cooling towers and AHUs might be much more complex than the one described by Eq. (8), 371 

especially when discrete and continuous decision variables are incorporated (Dullinger, Struckl, 372 

and Kozek. 2018). However, since the proposed EDOC strategy aims to build a map between 373 

events and actions and use existing techniques to solve optimization problems, it can be applied 374 

to any chiller plants. 375 

 376 

4.3 Development of the EDOC strategy 377 

The TDOC for the AC system was carried out under the training condition (18 days) with three 378 

different frequencies: every 30, 60 and 120 min (Wang and Ma 2008). In each optimization 379 

action, three temperature set-points were optimized simultaneously. Note the constraints in Eq. 380 

(10) were not considered in this study so that the operating data could fully reflect the influence 381 
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of state transitions on the variation of the optimal value of decision variables. In this way, 382 

operating data for 18 days were obtained. 383 

 384 

4.3.1 Identification of critical state transitions for decision variables 385 

Since the operation of a chiller plant is mainly affected by its external operating conditions, 386 

which can be characterized by the ambient dry-bulb temperature 𝑇𝑇𝑑𝑑𝑤𝑤, the ambient wet-bulb 387 

temperature 𝑇𝑇𝑤𝑤𝑤𝑤, and the part-load ratio (PLR) of the chiller plant (ASHRAE 2015), they were 388 

considered as the states that had a potentially impact on the optimization of the chiller plant. 389 

Therefore, critical state transitions were identified from the variation of these three state 390 

variables for the optimization of the three decision variables 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜, 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜, and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜.  391 

 392 

As illustrated in the theory of sensitivity analysis (Saltelli et al. 2004), the linear regression 393 

coefficients of the input and output of a system can be used to measure the importance of input 394 

on the output variables. Therefore, taking the state transitions as the input and the variation of 395 

decision variables’ optimal values as the output, regression coefficients matrix 𝐶𝐶𝑎𝑎 in Eqn. (11) 396 

is used as the indicator to identify critical state transitions in this case study. 397 

𝑀𝑀𝑣𝑣 = 𝐶𝐶𝑎𝑎 ∙ 𝑀𝑀𝑠𝑠                              (11) 398 

Fitting Eqn. (11) with the operating data, the regression coefficient matrix 𝐶𝐶𝑎𝑎 for the whole 399 

year (overall of the three seasons) was obtained and shown in Eqn. (12).  400 

�
∆𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜,∗

∆𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜,∗

∆𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜,∗

� = �
−0.027 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗 𝟎𝟎.𝟒𝟒𝟗𝟗𝟒𝟒
0.019 0.010 −𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗
0.023 0.06 −𝟏𝟏.𝟎𝟎𝟏𝟏𝟎𝟎

� ∙ �
∆𝑇𝑇𝑑𝑑𝑤𝑤∗

∆𝑇𝑇𝑤𝑤𝑤𝑤∗

∆𝑃𝑃𝐿𝐿𝑃𝑃∗
�               (12) 401 

The coefficients with high magnitude in each row are in bold in the matrix, where the 402 

magnitude being larger than 0.1 was considered “high” as an example, and their corresponding 403 

state transitions were regarded as the critical ones. Other state transitions were then considered 404 

insignificant and their impacts were ignored. Therefore, three findings from the four coefficient 405 

matrixes are as follows: 406 

(1) The change in the ambient dry-bulb temperature ∆𝑇𝑇𝑑𝑑𝑤𝑤 had a little impact on the variations 407 

of all these three decision variables; however, the wet-bulb temperature ∆𝑇𝑇𝑤𝑤𝑤𝑤  had a 408 

significant impact on all these three decision variables. 409 

(2) For the CWS temperature set-point 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 , its critical state transitions were ∆𝑇𝑇𝑤𝑤𝑤𝑤  and 410 

∆𝑃𝑃𝐿𝐿𝑃𝑃.  411 
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(3) For the CHWS temperature set-point 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜  and the SA temperature set-point 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 , 412 

their critical state transition was ∆𝑃𝑃𝐿𝐿𝑃𝑃 only. 413 

The map linking the decision variables and their critical state transitions are shown in Fig. 7. 414 

 415 

Fig. 7. The decision variable and its critical state transitions 416 

 417 

4.3.2 EDOC law 418 

The linear functions shown in Eqn. (13) were adopted to describe the relationship between the 419 

variation of the decision variable optimal values and their critical state transitions: 420 

�
∆𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎1 ∙ ∆𝑇𝑇𝑤𝑤𝑤𝑤 + 𝑏𝑏1 ∙ ∆𝑃𝑃𝐿𝐿𝑃𝑃
∆𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑏𝑏2 ∙ ∆𝑃𝑃𝐿𝐿𝑃𝑃         
∆𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑏𝑏3 ∙ ∆𝑃𝑃𝐿𝐿𝑃𝑃          
                   (13) 421 

By fitting the operation data, into Eqn. (13) the linear models for the whole year were obtained 422 

as presented in Eqn. (14), where the coefficient of determination (𝑃𝑃2) was also given. As can 423 

be seen in Eqn. (14), 𝑃𝑃2 of the linear was equal or greater than 0.9, which demonstrated that 424 

the variations in the optimal values of the decision variables had a good linearity relationship 425 

with their critical state transitions.  426 

�
∆𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜 = 0.92 ∙ ∆𝑇𝑇𝑤𝑤𝑤𝑤 + 1.62 ∙ ∆𝑃𝑃𝐿𝐿𝑃𝑃           (𝑃𝑃2 = 0.92)
∆𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜 = −6.71 ∙ ∆𝑃𝑃𝐿𝐿𝑃𝑃                    (𝑃𝑃2 = 0.91)
∆𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜 = −3.41 ∙ ∆𝑃𝑃𝐿𝐿𝑃𝑃                      (𝑃𝑃2 = 0.90) 
     (14) 427 

 428 

To determine the threshold of the 𝛾𝛾𝑖𝑖  in Eqn. (6), the sensitivity of the total power to the 429 

variations of the three set-points (𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 , 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 , 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜) close to their optimal values was 430 

analyzed. Using the simulation platform, the optimal values of these three set-points were 431 

firstly calculated under multiple operating conditions where 𝑃𝑃𝐿𝐿𝑃𝑃 was varied from 0.2 to 0.9 432 

and 𝑇𝑇𝑤𝑤𝑤𝑤  from 18℃ to 27℃. The instantaneous power 𝑃𝑃  of the AC system under these 433 

∆𝑇𝑇𝑤𝑤𝑤𝑤, ∆𝑃𝑃𝐿𝐿𝑃𝑃

∆𝑃𝑃𝐿𝐿𝑃𝑃

∆𝑃𝑃𝐿𝐿𝑃𝑃

𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜

𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜

𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜

Decision variablesState transitions

Critical to
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multiple operating conditions was simulated with these three temperature set-points varying 434 

close to their optimal values. The results are summarized in Figure 8, where the horizontal axis 435 

𝛿𝛿𝑇𝑇 indicate the deviation of the current temperature set-point 𝑇𝑇𝑠𝑠𝑜𝑜 from its optimal value 𝑇𝑇𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜 436 

as shown in Eqn. (15); while the vertical axis 𝛿𝛿𝑃𝑃%  is the change rate of the current 437 

instantaneous power 𝑃𝑃 compared with the optimal instantaneous power 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜, as shown in 438 

Eqn. (16). 439 

𝛿𝛿𝑇𝑇 = 𝑇𝑇𝑠𝑠𝑜𝑜 − 𝑇𝑇𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜                            (15) 440 

𝛿𝛿𝑃𝑃% = (𝑃𝑃 − 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜)/𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜                       (16) 441 

 442 

It can be seen from Figure 8 that the instantaneous power close to the optimum was not very 443 

sensitive to the variations of these three temperatures. In detail, when the set-points deviated 444 

from the optimal values up to at least 0.4℃, the total instantaneous power was changed by 0.5% 445 

from the optimal value. The ‘flat’ optimum indicated that it was not necessary to optimize the 446 

system when any one of the three set-points deviated slightly from its optimal value (Braun 447 

1989). Meanwhile, large values of 𝛿𝛿𝑇𝑇 should not be selected as the threshold for 𝛾𝛾𝑖𝑖 in Eqn. 448 

(6) because a large change in the set-points might cause the system to become unstable. In 449 

previous studies of the time-driven optimal control of the AC system [13, 32], set-point changes 450 

were usually constrained within 0.4 or 0.5℃. Therefore, considering the result of sensitivity 451 

study and the system stability, 0.4℃ was selected for all the three set-points. In this way, three 452 

events were defined as shown below in Eqn. (17). Thus, the event-action map was established 453 

as presented in Figure (9a). 454 

      �
𝑒𝑒1: |0.92 ∙ ∆𝑇𝑇𝑤𝑤𝑤𝑤 + 1.62 ∙ ∆𝑃𝑃𝐿𝐿𝑃𝑃| ≥ 0.4

𝑒𝑒2: |6.27 ∙ ∆𝑃𝑃𝐿𝐿𝑃𝑃| ≥ 0.4            
𝑒𝑒3: |3.23 ∙ ∆𝑃𝑃𝐿𝐿𝑃𝑃| ≥ 0.4            

               (17) 455 

 456 

 457 

Fig. 8. Sensitivity of the instantaneous power of the AC system to the three temperatures near 458 

the optimal value 459 
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 460 

4.3.3 Improve the event-action map 461 

To improve the event-action map, the interaction between decision variables were analyzed 462 

using simulation. To this end, four cases of the TDOC of the AC system were simulated, 463 

namely Base case, Case 1, Case 2, and Case 3, which are described in Table 4, where the fixed 464 

values are set according to the design guideline of ASHRAE Handbook (2015). In the base 465 

case, three decision variables are optimized simultaneously; while in other cases only two 466 

decision variables are optimized and the other is remained unchanged. A summer day was 467 

selected as an example for the detailed analysis.  468 

 469 

 470 

Fig. 9. (a) The event-action map based on the EDOC law; (b) the improved map after 471 

merging events and actions 472 

 473 

Fig. 10. Profiles of the three temperatures’ optimal values for the research of decision 474 

variable interaction 475 
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Table 4. Case information for the research of decision variable interaction 477 

Case No. Optimize Fixed Impact* 

Base case 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜, 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜, 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 - - 

Case 1 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜, 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 = 30℃ 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 on 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜, 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜  

Case 2 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜, 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜  𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 = 7℃ 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 on 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜, 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜  

Case 3 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜, 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 = 15℃ 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 on 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 , 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 
*: Because 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 in Case 1 was not optimized while it was optimized in the Base case, the comparison between 478 

Case 1 and the Base case can help to observe the impact of the optimization of 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 on the optimization of 479 

𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜. If the optimal values of 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 in the Base case were consistent with those in Case 480 

1, it can be concluded that the optimization of 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 had a little impact on the optimization 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜. 481 

 482 

The optimal values of the decision variables in the four cases are presented in Fig. 10. Fig. (10a) 483 

and (10b) compared Case 1 (without optimization of 𝑇𝑇𝑐𝑐𝑤𝑤) with the Based case, which showed 484 

that the profiles of 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜  in Case 1 were consistent with that in the Base case. 485 

This indicated that the optimization of 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 might not significantly have an impact on the 486 

optimization of 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜  and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 . Fig. (10c) and (10d) compared Case 2 (without 487 

optimization of 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜) with the Base case, and Fig. (10e) and (10f) compared Case 3 (without 488 

optimization of 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜) with the Base case. Fig. (10c) and (10e) showed that the profiles of 489 

𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜  in Case 2 and Case 3 were consistent with that in the Base case. It demonstrates that the 490 

optimization of 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 might not have a significant impact on the optimization of 491 

𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜. Fig. (10d) and (10f) showed that 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜  in Case 2 and 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜  in Case 3 were largely 492 

deviated from that in the Base case by up to 1.6 ℃ and 2.6 ℃. This large deviation indicated 493 

that  𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 interact with each other, and thus the two temperatures should be 494 

optimized simultaneously. In this way, the event-action map in Figure (9a) should be improved 495 

as the one shown in Fig. (9b) by merging 𝑒𝑒2 and 𝑒𝑒3 as 𝑒𝑒2.  496 

  497 

4.4 Optimal control algorithm 498 

Based on the determined event/action space and the event-action map, the algorithm of the 499 

event-driven optimal control for the AC system was developed and its flowchart is shown in 500 

Fig. 11. After starting the operation of the AC system, 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 , 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜  and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜  were 501 

initially optimized to make sure that these three temperatures were optimal at the beginning 502 

and the detection of the events could begin. Then, the ambient wet-bulb temperature 𝑇𝑇𝑤𝑤𝑤𝑤 and 503 

the part-load ratio of the chiller 𝑃𝑃𝐿𝐿𝑃𝑃  at each sampling period (e.g. every minute) were 504 



21 

 

monitored and recorded to detect the occurrence of the events 𝑒𝑒1 and 𝑒𝑒2. To guarantee the 505 

operation stability, a time interval ∆𝛤𝛤 between two adjacent optimization actions for the same 506 

decision variable should be greater than the time constant of the whole system. Due to the static 507 

models adopted and immediate transient responses assumed in the simulation platform, 10-508 

minute was used here for minimum time interval for frequent optimization actions. When 𝑒𝑒1 509 

or 𝑒𝑒2  was detected to occur and ∆𝛤𝛤 ≥ 10min , 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜  or  𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜  and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜  should be 510 

optimized and their set-points updated accordingly.  511 
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 512 

Fig. 11. The flowchart of the event-driven optimal control for the AC system 513 

 514 

5. Results and Discussions 515 

To evaluate the developed EDOC algorithm, the operation of the AC system was simulated 516 

under three strategies: operation without optimal control, operation with time-driven (every 517 

30min) optimal control, and the developed strategy. In the operation without optimal control, 518 

these three set-points were fixed at the specific values as listed in Table 5. In the operation with 519 

time-driven and event-driven optimal control, the constraints in Eqn. (10) were considered 520 

where values of ∆𝑇𝑇𝑐𝑐𝑤𝑤,𝑙𝑙𝑚𝑚, ∆𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑙𝑙𝑚𝑚, and ∆𝑇𝑇𝑠𝑠𝑓𝑓,𝑙𝑙𝑚𝑚 were 0.5℃ to prevent a large change in set-521 

points. The operating environments included a spring, a summer, and an autumn day as shown 522 

in Table 2. 523 
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 524 

Table 5. Fixed values of the three temperatures 525 

Item Spring (℃) Summer (℃) Autumn (℃) 

𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜 26  30 26 

𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜 7 

𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜 15 

 526 

5.1 Optimization necessity 527 

As previously mentioned, the development method of EDOC strategy presented in this study 528 

aims to achieve high necessity of optimization actions. To test whether it has been achieved, 529 

two evaluation indices are proposed, the action distance 𝑑𝑑𝑣𝑣𝑖𝑖,𝑜𝑜 and average distance �̅�𝑑.  530 

 531 

The action distance 𝑑𝑑𝑣𝑣𝑖𝑖,𝑜𝑜  was used to evaluate the necessity of the single performed 532 

optimization action at time instant 𝑡𝑡 for the decision variable 𝑣𝑣𝑖𝑖. As defined in Eqn. (18), it 533 

was the absolute variation of one decision variable’s optimal value between two adjacent 534 

optimization actions. The larger the action distance, the higher the necessity of the action for 535 

𝑣𝑣𝑖𝑖. 536 

𝑑𝑑𝑣𝑣𝑖𝑖,𝑜𝑜 = �𝑣𝑣𝑖𝑖,𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑣𝑣𝑖𝑖,𝑜𝑜−1

𝑜𝑜𝑜𝑜𝑜𝑜 � = �∆𝑣𝑣𝑖𝑖,𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜�                      (18) 537 

where 𝑣𝑣𝑖𝑖,𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜 is the 𝑖𝑖𝑜𝑜ℎ decision variable’s optimal value at time instant 𝑡𝑡. 538 

 539 

The average distance �̅�𝑑  was used to evaluate the overall optimization necessity of an 540 

optimization strategy considering all performed optimization actions and all decision variables. 541 

It was calculated by Eqn. (19). The larger the index, the higher the overall optimization 542 

necessity is. 543 

�̅�𝑑 =
∑ ∑ �𝑑𝑑𝑣𝑣𝑖𝑖,𝑡𝑡�

𝑛𝑛𝑣𝑣𝑡𝑡
𝑣𝑣𝑖𝑖=𝑣𝑣1

𝑁𝑁𝑜𝑜𝑜𝑜𝑡𝑡
𝑡𝑡=1

𝑁𝑁𝑜𝑜𝑜𝑜𝑡𝑡
𝑛𝑛𝑣𝑣                          (19) 544 

where 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑣𝑣  is the weighted optimization times, 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 is the number of optimization actions, 545 

𝑛𝑛𝑣𝑣𝑜𝑜 is the number of optimized decision variables in the 𝑡𝑡𝑜𝑜ℎ optimization action, 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑣𝑣  is the 546 

optimization times weighted by the number of the optimized decision variables in each 547 

optimization action and was calculated by the following equation: 548 

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑣𝑣 = ∑ 𝑛𝑛𝑣𝑣𝑜𝑜
𝑁𝑁𝑜𝑜𝑜𝑜𝑡𝑡
𝑜𝑜=1                           (20) 549 

The action distance and average distance of TDOC and EDOC are calculated and presented in 550 
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Figure 12 and Table 6. Figure 12 gave the frequency distribution histogram of all action 551 

distance in the two optimal control strategies. It can be observed that the action distances for 552 

the three optimized temperatures in the TDOC were mainly inside the range of [0℃,0.1℃]; 553 

while most of action distances in the EDOC had a large value such as 0.4℃ or 0.5℃. The 554 

average distance of the TDOC was 0.11℃ in spring, 0.15℃ in summer, and 0.14℃ in autumn; 555 

while in the EDOC it was 0.39℃ in spring, 0.33℃ in summer, and 0.35℃ in autumn. The 556 

large distance of the EDOC indicated that the defined events by the proposed development 557 

method had effectively avoided unnecessary optimization actions and thus increased the overall 558 

optimization necessity compared with the TDOC. 559 

 560 

5.2 Computation load 561 

The computation load of the two optimal control strategies was evaluated using the 562 

computation time 𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜. It refers to the time required by the optimization method to search for 563 

optimal solutions. The computation time consumed by TDOC was 11.82s in spring, 11.18s 564 

summer, and 11.92s and autumn as shown in Table 6. Compared with the TDOC, the relative 565 

computation time saving 𝑟𝑟𝐶𝐶𝐶𝐶 was 83.9% in spring, 85.2% in summer, and 75.9% in autumn. 566 

The great reduction in computation load in the EDOC strategy was caused by the removal of 567 

unnecessary optimization actions and the decrease of the search dimension of the optimizations. 568 

The search dimension of optimizations in EDOC control was decreased by the event-action 569 

map. With the map, not all three temperatures were optimized in each optimization action, so 570 

that the computation time for each optimization action was reduced. For example, the average 571 

computation time for each optimization action and each temperature in the summer day was 572 

𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜/𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑣𝑣  = 0.078s in the TDOC and 0.033s in the EDOC. 573 

 574 

5.3 Energy performance 575 

The energy performance of TDOC and EDOC strategies was compared with the operation 576 

without optimization. As shown in Table 6, the daily energy consumption of the operation 577 

without optimization was 976kWh in spring, 1747 kWh in summer and 1135 kWh in autumn. 578 

The relative energy saving 𝑟𝑟𝐸𝐸𝐶𝐶 of TDOC was 4.4% in spring, 7.5% in summer, and 4.8% in 579 

autumn, and that of the EDOC was 4.2% in spring, 7.4% in summer, and 4.8% in autumn 580 

respectively. Therefore, the EDOC strategy achieved nearly the same energy performance as 581 

that of the TDOC with a frequency of every 30 minutes. The reason for the effective energy 582 
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saving of the EDOC can be explained in Figure 13 and 14 when the summer day is taken as an 583 

example. Figure 13 presents the operating conditions of the summer day, and Figure 14 584 

compares the optimal values of the three set-points from the two optimal control strategies. It 585 

is observed that the profiles of 𝑇𝑇𝑐𝑐𝑤𝑤,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜  ,𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜  in the two optimal control methods 586 

were consistent. Besides, the EDOC responded more quickly to the rapid change of the 587 

operation conditions. For example, the cooling load during 6:00 to 9:00 am increased rapidly 588 

as shown in Figure 13. Figure (14b) and (14c) showed that optimization actions of the EDOC 589 

were carried out more frequently and 𝑇𝑇𝑐𝑐ℎ𝑤𝑤,𝑠𝑠𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑇𝑇𝑠𝑠𝑓𝑓,𝑠𝑠𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜  changed more quickly than that in 590 

the TDOC during the same period. In this way, energy saving effect of the EDOC strategy 591 

developed by the proposed method can be guaranteed although weighted optimization times 592 

are greatly reduced compared with the TDOC. 593 

Table 6. Evaluation of event-driven optimization strategy 594 

Case  Average distance 

(℃) 𝒅𝒅� 

Opt. times 

𝑵𝑵𝒐𝒐𝒐𝒐𝒐𝒐
𝒏𝒏𝒏𝒏  

Computation 

time (s) 𝝉𝝉𝒐𝒐𝒐𝒐𝒐𝒐 

Computation 

saving 𝒓𝒓𝑪𝑪𝑪𝑪 

Energy (kWh) 

𝑬𝑬𝒃𝒃𝒃𝒃𝒏𝒏 or 𝑬𝑬𝒐𝒐𝒐𝒐𝒐𝒐 

Energy saving 

𝒓𝒓𝑬𝑬𝑪𝑪 

Spring       

No opt. - - - - 976 - 

TDOC 0.11 144 11.82 - 933 4.4% 

EDOC 0.39 27 1.90 83.9% 935 4.2% 

Summer       

No opt. - - - - 1747 - 

TDOC 0.15 144 11.18 - 1616 7.5% 

EDOC 0.33 51 1.66 85.2% 1617 7.4% 

Autumn       

No opt. - - - - 1135 - 

TDOC 0.14 144 11.92 - 1080 4.8% 

EDOC 0.35 42 2.87 75.9% 1081 4.8% 

 595 
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 596 

 597 

Fig. 12. Frequency distribution histograms of the optimization distance in TDOC and EDOC. 598 

 599 

Fig. 13. Profiles of operating conditions in the summer day 600 

 601 
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 603 

Fig. 14. Profiles of the three temperatures’ optimal values in the summer day 604 

  605 

6. Conclusions 606 

This study has addressed the necessity of optimization actions in the real-time optimal control 607 

of air-conditioning systems, based on which a new method to develop event-driven optimal 608 

control is proposed. In the development method, the event/action space and the event-action 609 

map can be determined in a natural and systematic way, and not all the decision variables need 610 

to be optimized for a given event. The proposed method has been applied to a typical air-611 

conditioning system, in which one event have been defined for the single optimization of a 612 

decision variable, the set-point for the cooling water supply temperature, and the other event 613 

for the combined optimization of other two decision variables including the set-points for the 614 

chilled water supply and the supply air temperatures. Compared with the operation with no 615 

optimization, the event-driven optimal control strategy can reduce 4.2-7.4% energy use, which 616 

is comparable to that of the time-driven optimal control (4.4-7.5%). Compared with the time-617 

driven optimal control, the average distance in the event-driven optimization was 0.33-0.39℃, 618 

being 2.2-3.5 times of the time-driven control (0.11-0.15℃). Therefore, the developed event-619 

driven optimization can achieve a significant computation load reduction up to 75.9-85.2% 620 

compared with the time-driven optimization (with a frequency of 30 mins) without scarifying 621 

the energy-saving potential.  622 

 623 

In future work, the proposed method will be applied to a typical central air-conditioning system 624 

under different climates and for different types of buildings in order to identify generic events 625 

for air-conditioning systems. At the same time, the definition of events based on internal state 626 

transitions, such as on/off for major components, faults, and operators’ intervention, will also 627 

be considered.  628 
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