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The Expertise Reversal Effect is a Variant of the More General Element 

Interactivity Effect 

Abstract 

Within the framework of cognitive load theory, the element interactivity and the 

expertise reversal effects usually are not treated as closely related effects. We argue 

that the two effects may be intertwined with the expertise reversal effect constituting a 

particular example of the element interactivity effect. Specifically, the element 

interactivity effect relies on changes in element interactivity due to changes in the 

type of material being learned while the expertise reversal effect also relies on 

changes in relative levels of element interactivity but in this case, due to changes in 

relative levels of expertise. If so, both effects rely on equivalent changes in element 

interactivity with the changes induced by different factors. Empirical evidence is used 

to support this contention. 

Keywords: cognitive load theory, element interactivity, expertise, worked 

example effect, generation effect
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Within cognitive load theory, the element interactivity and expertise reversal effects 

are regarded as distinct cognitive load effects. However, empirical evidence obtained 

recently (Chen, Kalyuga, & Sweller, 2015), along with previous evidence (Blayney, 

Kalyuga, & Sweller, 2010; Kalyuga, Chandler, & Sweller, 2001; Leahy & Sweller, 

2005), can be interpreted as indicating that the expertise reversal effect may be a 

variant of the more general element interactivity effect. In this paper, we review the 

two effects and suggest possible relations between them. 

The Expertise Reversal Effect 

The expertise reversal effect focuses on the interaction between levels of 

learners’ expertise and the instructional procedures used. Consider two instructional 

procedures, one of which results in superior test performance compared to the other 

when instructing novices. Under the expertise reversal effect, with increases in levels 

of expertise, the difference between the two procedures first decreases, then is 

eliminated, and may finally reverse (Kalyuga, 2007; Kalyuga & Renkl, 2010). Based 

on these changes in the relative effectiveness of instruction, two formats of this effect 

can be categorized: An ordinal interaction in which one of two instructional 

procedures is effective for novices, but is less effective or has no effects when testing 

more experienced learners, and a dis-ordinal interaction where one instructional 

procedure is effective for novices with the relative effectiveness reversed for more 

experienced learners (Nievelstein, Van Gog, Van Dijck, & Boshuizen, 2013). Which 

form occurs depends on the relative levels of expertise of the learners. If the 

differences in expertise are small, test performance may not include a cross-over point 
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resulting in an ordinal interaction. Larger differences in expertise are more likely to 

include a cross-over point resulting in a dis-ordinal interaction. 

Evidence for the Expertise Reversal Effect. The expertise reversal effect was 

initially investigated in a series of longitudinal studies by intensively training groups 

of technical apprentices from novices to experts in the domain of engineering 

(Kalyuga, Chandler, & Sweller, 1998, 2000, 2001). In one set of experiments 

(Kalyuga et al., 1998), text integrated with diagrams was compared with a diagrams 

alone condition, testing for the redundancy effect. Results indicated that the diagrams 

and text condition was superior to the diagrams alone condition for novices, but after 

a period of training, the effectiveness of the diagrams and text condition deceased 

compared to the increasing effectiveness of the diagrams alone condition. Subjective 

ratings of cognitive load further supported the hypothesis that diagrams alone were 

more easily processed by more knowledgeable learners, whereas, the diagrams and 

text condition was more suitable for novices who needed additional textual 

instructions to understand the presented diagrams. With an increase in learner’s 

expertise, textual information that had been beneficial for novices became redundant 

for more knowledgeable learners. 

Subsequent experiments by Kalyuga et al. (2000, 2001) and Kalyuga, Chandler, 

Tuovinen, and Sweller (2001) provided more data concerning the expertise reversal 

effect. Kalyuga et al. (2000), using mechanical engineering materials, found novices 

benefited more if narrated explanations used to explain how to use specific diagrams 

were presented together with relevant animated diagrams, as opposed to a diagram 
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only condition. However, integrating narrated explanations with animated diagrams 

interfered with learning after novices had received a series of intensive training 

sessions which developed their expertise in the relevant domain. For these more 

knowledgeable students, diagrams alone were superior to the diagrams with narrations 

format. Kalyuga et al. (2001) obtained a full expertise reversal effect when they 

compared worked examples with instructions to explore in writing switching 

equations for relay circuits. The results demonstrated that worked examples initially 

were superior to instructions to explore, but after additional training, the advantage 

was reversed. For more knowledgeable learners, instructions to explore resulted in 

superior learning than studying worked examples. 

In mathematics curriculum areas, Kalyuga and Sweller (2004) investigated the 

expertise reversal effect in studying coordinate geometry. Participants were assigned 

to a worked example group or a problem-solving group. A post-test indicated an 

interaction of instructional formats and learner expertise. Less knowledgeable learners 

benefited more from the worked example format with the opposite result found for 

more knowledgeable learners. In other mathematics areas, similar results were found. 

Brunstein, Betts, and Anderson (2009) observed an expertise reversal effect in algebra 

learning. They found that for students given considerable practice, a low level of 

guidance was superior to explicit guidance, whereas, for novices who had less 

practice, high guidance led to better test results than minimal guidance. Similarly, in 

the domain of statistics, Leppink, Broers, Imbos, van der Vleuten, and Berger (2012) 

assigned students with different levels of expertise to four groups: reading only; 
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answering open-ended questions; answering open-ended questions in which the 

answer had to include supporting arguments; and studying worked examples that 

included the type of arguments that students in the previous group were required to 

generate. Results again confirmed the expertise reversal effect. Specifically, students 

with low expertise learned more from worked examples, whereas, high-expertise 

students learnt more from answering open-ended questions with supporting arguments. 

Rey and Buchwald (2011) also observed an expertise reversal effect when asking 

students to learn the gradient descent (a mathematical optimization algorithm). 

Students whose expertise was increased by practice during the experiment had higher 

test scores if they did not receive additional text explaining a relevant animation, 

whereas, students with a low level of knowledge benefited more from the provision of 

additional text.  

An expertise reversal effect has also been demonstrated in the area of English 

literature. Oksa, Kalyuga, and Chandler (2010) compared two instructional formats 

used in studying Shakespearean plays. One group received material that combined 

modern English explanations with Shakespeare’s original old English line by line, 

while another group had the modern English explanatory materials presented as 

footnotes. Participants, who were less knowledgeable about Shakespearean plays, 

demonstrated better performance with an integrated format, whereas, for the 

participants who were Shakespearean experts, the separated format was better.  

Nückles, Hübner, Dümer, and Renkl (2010) found the expertise reversal effect 

in learning journal writing skills. Students were divided into a group with prompts and 
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a group without prompts in writing journal entries. During the first semester, students 

with prompts provided more writing strategies and outperformed students without 

prompts, but at the end of the semester, as the levels of learner expertise increased, the 

advantage reversed in line with the expertise reversal effect. 

Van Gog, Paas, and van Merriënboer (2008) demonstrated an expertise reversal 

effect by comparing product-oriented worked examples and process-oriented worked 

examples. The first type of worked example only indicates the procedure to solve a 

problem, whereas, the latter includes not only the procedure but also the reasons for 

each step (Van Gog, Paas, & Van Merriënboer, 2004). Students were divided into 

product-product, product-process, process-product and process-process conditions. 

Results indicated no initial differences between the conditions, but after two sessions 

of practice, the process-product group was superior to the process-process group 

because with an increase of expertise, explanations became redundant resulting in an 

expertise reversal effect. 

The expertise reversal effect also has been found in a computer-based learning 

environment. Rey and Fischer (2013) tested the effect with a computer program 

teaching statistical data analysis and induced expertise experimentally by providing 

some extra examples and illustrations in addition to textual explanations during the 

experiment. Students were randomly assigned to four groups: experts with textual 

explanations, experts without textual explanations, novices with textual explanations 

and novices without textual explanations. Results replicated the expertise reversal 

effect. Students with a low level of expertise benefited more from the provision of 
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textual explanations compared to the more expert students who performed better 

without additional textual explanations.  

Johnson, Ozogul, and Reisslein (2015) investigated the effects of both visual 

signaling and of the visual presence of an animated pedagogical agent by comparing 

the performance of four groups: visual signaling with the animated pedagogical agent 

present; visual signaling without the animated pedagogical agent present; no visual 

signaling with the animated pedagogical agent present; and no visual signaling 

without the animated pedagogical agent present. Students were divided into low or 

high levels of prior knowledge. The results indicated that students with a high level of 

knowledge performed better without the animated pedagogical agent present, whereas, 

the opposite result was observed for students with a low level of knowledge. 

In summary, work on the expertise reversal effect indicates that in a large 

variety of curriculum areas, novice students benefit from the presentation of 

additional information and guidance. With increasing levels of expertise, additional 

information becomes redundant resulting in a reduction or reversal of the advantage. 

None of these studies explicitly linked the expertise reversal effect with element 

interactivity. 

Element Interactivity 

Element interactivity is a basic concept of cognitive load theory. It can be used to 

determine categories of cognitive load as well as constituting an effect in its own right. 

Interactive elements are defined as elements that must be processed simultaneously in 

working memory as they are logically related (Sweller, Ayres, & Kalyuga, 2011). An 
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element can be a symbol, a concept, or a procedure that must be learned.  

Considered from a broad perspective, the concept of element interactivity 

provides a practically usable approximation for describing the complexity of 

information involved in learning, especially when the acquisition of domain-specific 

knowledge in long-term memory is the goal of instruction. As is the case for any 

theoretical abstraction, ideally this description should include details of relevant 

processes and operations, as well as the timescale on which they occur. Of course, 

some of these details may be difficult to precisely describe and quantify. For example, 

processes such as making inferences to construct mental representations, integrating 

them with prior knowledge, or blocking irrelevant information are likely to consume 

working memory resources but may be difficult to describe in terms of clearly defined 

interacting elements of information (Kalyuga, 2015). However, the elements 

associated with most cognitive processes can be described and the concept of element 

interactivity is effective in assessing levels of cognitive load imposed by specific 

learning tasks on specific categories of learners. Element interactivity levels can be 

determined by estimating the number of interacting elements in learning materials 

(Sweller, 1994; Sweller & Chandler, 1994; Tindall-Ford, Chandler, & Sweller, 1997). 

That number will depend on both the nature of the material being processed and the 

levels of expertise of the learner as discussed in the next section.  

Element Interactivity and Intrinsic Cognitive Load. Intrinsic load is 

determined by levels of element connectedness that determine the nature of information, 

and by learners’ knowledge (Van Merriënboer, Kester, & Paas, 2006). With respect to 
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element connectedness, instructional materials can be divided into high or low element 

interactivity materials. For example, students learning the symbols of the periodic table 

in Chemistry can study each symbol individually with no reference to other symbols. 

Students learning the symbol for hydrogen, H, can do so independently of learning the 

symbol for copper, Cu, without considering any relations between them. Such material 

has a low degree of element interactivity and a low intrinsic cognitive load. 

In contrast, a simple algebra equation such as, x-3=2, solve for x, is relatively 

high in element interactivity. In order to understand and solve this problem, students 

must consider not only the individual symbols, but also the relations among them. All 

must be processed simultaneously in working memory. If they are considered in 

isolation, the problem cannot be understood and solved. Therefore, relatively more 

interactive elements will need to be processed simultaneously in working memory 

increasing intrinsic cognitive load compared to low element interactivity material that 

allows fewer elements to be processed simultaneously.  

As well of the structure of information, the expertise of learners also affects 

intrinsic load. Experienced learners who have acquired relevant schemas for the above 

problem can treat the entire equation and the problem solution as a single element in 

working memory, thus reducing the intrinsic load. Element interactivity is a 

combination of the characteristics of the material to be learned and the knowledge base 

of the learner. It cannot be determined merely by reference to the characteristics of the 

information alone. When estimating the level of element interactivity, elements that 

have been combined into a single, higher order element by relatively more 
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knowledgeable learners enable them to reduce working memory load and so need to 

be taken into account. 

Element interactivity is not equivalent to task difficulty because as indicated 

above, not all elements interact. A task that requires many elements to be learned will 

be difficult but because not all of the elements may interact, element interactivity may 

be low. Learning the chemical symbols of the periodic table or the vocabulary of a 

second language may be very difficult tasks because there are many elements that need 

to be learned but element interactivity is low. Each element can be learned 

independently of every other element. The task is difficult but working memory load 

and intrinsic cognitive load is low due to low element interactivity. 

Element Interactivity and Understanding. Element interactivity also can be 

used to define “understanding”. Information will be fully understood if all interactive 

elements can be processed in working memory simultaneously (Sweller et al., 2011). 

Nevertheless, the term “understanding” tends not be used when dealing with low 

element interactive information. If someone deals with information low in element 

interactivity, such as “Cu” stands for “copper”, we would not refer to them 

understanding or failing to understand the relation. If we fail to recall this relation, we 

will attribute the failure to forgetting or having no prior knowledge rather than failing to 

understand. Therefore, “understanding” is only used for materials high in element 

interactivity. 

The distinction between learning by understanding and learning by rote is also 

related to element interactivity. Learning by understanding increases the number of 
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interactive elements that must be processed in working memory simultaneously. 

However, if a large number of interactive elements cannot be handled simultaneously, 

learning by rote reduces the number of interacting elements albeit at the expense of 

understanding. Of course, learning by understanding is the ultimate goal of instruction. 

Element Interactivity and Extraneous Cognitive Load. Extraneous cognitive 

load is imposed by inappropriate instructional procedures. It must be reduced or 

eliminated (Kalyuga, 2011) to provide more working memory resources to deal with 

intrinsic load, which enhances learning. Extraneous load also is determined by element 

interactivity (Sweller, 2010). It occurs under conditions where element interactivity can 

be reduced without altering what is learned. For example, if instructional procedures 

require learners to study worked examples, they will need to process fewer elements 

simultaneously in working memory than if instruction requires learners to solve the 

equivalent problems.  

The Element Interactivity Effect. This effect indicates that any cognitive load 

effects, such as the worked example effect, may not be obtained if the intrinsic load is 

very low (Sweller et al., 2011). The addition of intrinsic and extraneous load determines 

the total load imposed on working memory. If the intrinsic load is low, a high 

extraneous load may not matter as the total cognitive load may still be within the 

capacity of working memory. However, if intrinsic load is high with a high extraneous 

load imposed by suboptimal instruction, working memory may be overloaded. Total 

cognitive load needs to be reduced by reducing extraneous load. Under these 

circumstances, cognitive load effects can be obtained by reducing extraneous load. 
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A body of evidence has demonstrated the element interactivity effect. Sweller and 

Chandler (1994) and Chandler and Sweller (1996) tested for the split-attention and 

redundancy effects using computers and computer manuals with students learning 

computer applications. They found both effects using high element interactivity 

material but the effects disappeared using low element interactivity material. Rey (2011) 

also found that the split-attention effect was eliminated for low element interactivity 

information. Similarly, Tindall-Ford et al. (1997) obtained the modality effect 

according to which learners who were presented instructions on how to read wiring 

diagrams and tables in spoken form performed better than students presented the same 

information in written form, using high but not low element interactivity materials. 

Leahy and Sweller (2005) tested students learning to read a bus timetable and obtained 

an imagination effect that occurs when learners asked to imagine procedures learn more 

than learners asked to study the same procedures. The effect only was obtained using 

high rather than low element interactivity material.  

Marcus, Cooper, and Sweller (1996) investigated the relation between levels of 

element interactivity and understanding by comparing identical textual and 

diagrammatic information when students learned the effects of connecting resistors in 

series or in parallel. Textual information required learners to process multiple, 

interacting elements while diagrammatic information allowed students to use 

previously acquired knowledge to treat the multiple elements as a single, schematic 

element. The results revealed that information presented in diagrammatic form reduced 

element interactivity and cognitive load.  
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Expertise and the element interactivity effect. Because levels of element 

interactivity not only depend on the nature of the information being processed but also 

on the expertise of the learner, so learner expertise will also affect the element 

interactivity effect. For given information, higher levels of expertise reduce the level 

of element interactivity, whereas lower levels of expertise increase the level of 

element interactivity. Since levels of element interactivity are affected by levels of 

expertise, we can expect that the occurrence of the element interactivity effect also 

will be affected by levels of expertise. As is the case with all cognitive load effects, 

high element interactivity is a necessary condition. The element interactivity effect 

itself requires high element interactivity. If element interactivity is low due to high 

levels of expertise, the effect will not be obtained. 

The suggestion that expertise alters element interactivity and provides the 

machinery underlying the expertise reversal effect is the central thesis of this paper. 

There is considerable empirical evidence for the suggested effects of expertise on 

element interactivity leading to the expertise reversal effect. That evidence is 

discussed below in the sub-section entitled “Empirical Evidence for the Hypothesis”. 

Human Cognitive Architecture and the Reciprocity of Complexity and Expertise 

The reason for the equivalent effects of decreases in complexity and increases in 

expertise can be found in the cognitive architecture that underlies cognitive load 

theory. Human cognitive architecture (Sweller et al., 2011) can be used to indicate 

how novel information is acquired, and the differences in the manner in which 

familiar and unfamiliar information is processed (Sweller, 2015). 
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Human Cognitive Architecture 

The Borrowing and Reorganizing Principle. Almost all of the knowledge we 

acquire is borrowed from other people via listening, reading and imitating before 

being reorganized when combined with previously acquired information.   

Randomness as Genesis Principle. Borrowed information initially must be created. 

It is created by a random generation and test process during problem solving.   

Narrow Limits of Change Principle. Novel information is initially processed by a 

limited capacity, limited duration working memory.  

The Information Store Principle. Long-term memory has a large, effectively 

unlimited capacity to store information transferred from working memory.  

Environmental Organizing and Linking Principle. Information in long-term 

memory does not become active until it has been triggered by cues from the 

environment that induce working memory to choose which knowledge set to use. The 

specific knowledge set held in long-term memory can be used to govern complex 

behavior that is suitable for that environment. Unlimited amounts of information can 

be transferred from long-term to working memory. 

Reciprocity between Levels of Element Interactivity and Expertise 

This cognitive architecture explains the reciprocity between levels of element 

interactivity and expertise. Based on the environmental organizing and linking 

principle, knowledge held in long-term memory leads to learners’ expertise and 

determines how they perceive and organize information. Novices do not have relevant 

knowledge stored in their long-term memory (the information store principle). They 
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are likely to perceive novel information as a collection of discrete, interacting 

elements that can easily overwhelm limited working memory resources. They have 

not developed knowledge structures used to integrate individual elements, so a task 

that is presented may contain high levels of element interactivity leading to a high 

intrinsic load. In addition, if external guidance is not provided, novices may have to 

randomly generate solutions (randomness as genesis principle) to solve problems, 

which will cause a high extraneous load, leaving few resources available for learning 

(narrow limits of change principle). 

More knowledgeable learners use their knowledge to integrate individual 

elements presented by the same task into fewer elements, reducing the levels of 

element interactivity. When that knowledge is transferred by experts to working 

memory using the environmental organizing and linking principle, there may be little 

pressure on working memory resources. Novices who lack relevant knowledge cannot 

effect such an action. In this manner, levels of expertise have a reciprocal influence on 

the levels of element interactivity. For given information, low levels of expertise with 

respect to that information increase the level of element interactivity, whereas high 

levels of expertise decrease the level of element interactivity. In turn, these changes in 

element interactivity have instructional consequences. 

Relations between the Element Interactivity and the Expertise Reversal Effects 

As discussed above, the element interactivity effect suggests that every 

cognitive load effect relies on materials that are high in element interactivity. The 

expertise reversal effect suggests that instruction that is suitable for novices may not 
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be suitable for more knowledgeable learners. If high levels of expertise reduce the 

levels of element interactivity rendering most cognitive load effects unobtainable, 

whereas, low levels of expertise increase the level of element interactivity, facilitating 

cognitive load effects, then the expertise reversal effect may be regarded as an 

example of the more general element interactivity effect.  

A specific example can be used to clarify the relation. Consider the expertise 

reversal affect as it applies to the worked example effect. We know, based on the 

worked example effect, that novices are more likely to benefit from studying worked 

examples rather than solving problems. We also know that with increasing expertise, 

the worked example effect decreases in magnitude, then disappears and finally 

reverses with problem solving being superior to studying worked examples. 

Consider this expertise reversal effect from an element interactivity perspective. 

For novices, searching for suitable problem moves using the randomness as genesis 

principle, determining whether a particular move is suitable with respect to the 

problem goal, remembering which moves have been previously chosen, both possibly 

successful moves for later use and unsuccessful moves to ensure they are not chosen 

again, requires the processing of a large number of interacting elements. Working 

memory tends to be overwhelmed and learning may be inhibited. Far fewer 

interacting elements need to be processed when studying worked examples by using 

the borrowing and reorganizing principle. Learning is facilitated resulting in the 

worked example effect when compared to problem solving. 

Now consider more expert learners presented either problems to be solved or 
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worked examples to study. When solving problems, the learner already is likely to 

have acquired knowledge indicating which moves need to be made for that particular 

problem. Practicing those moves may be needed but determining which moves to 

make is relatively straightforward and can be accomplished merely by referring to 

information held in long-term memory via the environmental organizing and linking 

principle. Moves are generated by knowledge rather than the random generate and test 

process of novices. There may be only a single element (or schema) that needs to be 

retrieved from long-term memory to generate the problem solution. In contrast, if 

studying a worked example, more expert learners must compare their known problem 

solution with the redundant solution presented. The consequence is an increase in 

element interactivity due to redundancy rather than the decrease we find with novices 

resulting in a reverse worked example effect with problem solving being superior to 

studying worked examples. That reverse worked example effect is an example of the 

redundancy effect. 

Based on the above argument, comparing problem solving with studying 

worked examples causes a reverse result depending on whether novices or more 

expert learners are used. That result is the basis of the expertise reversal effect but on 

the current analysis, leads to the conclusion that the expertise reversal effect is caused 

entirely by changes in element interactivity. In other words, the expertise reversal 

effect may merely be an example or variant of the element interactivity effect.  

Empirical Evidence for the Hypothesis 

There are a number of research studies that were designed to simultaneously 
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investigate the expertise reversal and the element interactivity effects within a 

cognitive load theory framework. These studies may be used to reveal the 

hypothesized relation between the two effects.  

Kalyuga, Chandler, and Sweller (2001) looked at the worked example effect. 

For high element interactivity material they found when testing novices that studying 

worked examples was superior to problem solving but that with increased expertise, 

problem solving was superior to worked examples, providing an example of an 

expertise reversal effect. In contrast, no significant differences were found with 

materials that were low in element interactivity. In other words, the worked example 

effect was obtained with high but not low element interactivity material. That worked 

example effect could be eliminated not only by using different information that was 

low in element interactivity, it also could be eliminated by increased expertise that had 

a similar effect to decreased complexity. 

Leahy and Sweller (2005) looked at the imagination effect that occurs when 

learners asked to imagine procedures or concepts learn more than learners who study 

the information instead. They found the effect using more but not less knowledgeable 

students. The less knowledgeable students were not able to imagine the procedures and 

so needed to study the information. This expertise reversal effect only was obtained 

using high, not low element interactivity material. Again, element interactivity could be 

altered either by altering the information or altering the expertise of the learners. The 

level of element interactivity was influenced by the level of expertise.  

Blayney et al. (2010) studied the isolated elements effect and its interaction with 
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levels of expertise. The isolated elements effect occurs when learners presented with 

very complex information that normally requires them to process more interacting 

elements than can be handled by working memory, learn more if the information first 

is presented in isolated form such that relations between interacting elements are 

omitted. In a subsequent phase, the information is presented in integrated form 

emphasizing the interactions between elements. The effect occurs when isolated 

followed by interacting elements phases results in better performance than multiple 

presentations of the interacting form only. Students first can learn the isolated 

elements followed by the interactions between the previously learned elements, 

without overloading working memory in either phase. In contrast, if the full 

interacting set of elements is presented initially, working memory is likely to be 

overloaded resulting in decreased learning.. 

Blayney et al. (2010) found that in accountancy training, less knowledgeable 

learners benefited more when presented isolated elements of information, in accord 

with the isolated elements effect but more knowledgeable learners benefited more 

from interactive elements of information. For less knowledgeable learners who 

demonstrated a standard, isolated elements effect, we can assume that they required 

the presentation of isolated elements first in order to be able to process excessive 

amounts of information in working memory, as indicated above. In the case of more 

knowledgeable learners, element interactivity and intrinsic cognitive load is reduced 

due to the environmental organizing and linking principle. Since element interactivity 

is low for these students, reducing it further by unnecessarily presenting isolated 
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elements, will inhibit rather than facilitate further learning. In this manner, the 

expertise reversal effect that was obtained is really a variant of the element 

interactivity effect.  

The failure to find an isolated elements effect using more knowledgeable 

learners is no different to the failure to find any other cognitive load effect using low 

element interactivity information (e.g., Sweller & Chandler, 1994; Tindall, Chandler 

& Sweller, 1997). High element interactivity information is essential for any cognitive 

load effect to manifest itself. Increases in expertise reduce element interactivity and 

low element interactivity eliminates cognitive load effects. If so, it is the reduction in 

element interactivity with increases in expertise that underlies the expertise reversal 

effect. 

Blayney et al. (2010) manipulated element interactivity by altering the manner 

in which the same information was presented to more and less knowledgeable learners. 

Chen et al. (2015) rather than altering the way in which the same information was 

presented to learners with different levels of expertise, altered what students at 

different levels of expertise had to learn. Some of the information was low in element 

interactivity while other information was high. In addition, rather than investigating 

the isolated elements effect, Chen et al. (2015) investigated the worked example and 

generation effects. 

The worked example and generation effects are interesting because they 

ostensibly appear to be contradictory. As indicated above, the worked example effect 

occurs when learners provided with high levels of guidance in the form of worked 
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examples perform better on subsequent test problems than learners presented with the 

same material as problems to be solved (Cooper & Sweller, 1987; Paas, 1992; Paas & 

Van Merriënboer, 1994; Renkl, 2014; Sweller & Cooper, 1985). Requiring learners to 

solve a problem provides much lower levels of guidance than studying worked 

examples. 

In contrast to the worked example effect, the generation effect occurs when 

learners are asked to generate responses rather than being provided with the correct 

responses. This effect has been investigated by various research studies using different 

types of testing materials. The most commonly used format is paired associates, such 

as hot – c_ (opposite) (Slamecka & Graf, 1978). Other research studies used single 

word fragments (Glisky & Rabinowitz, 1985) in which learners had to generate 

missing letters to complete word fragments, such as ALC-H-L as the fragments for 

ALCOHOL; incomplete sentences as contexts (Anderson, Goldberg, & Hidde, 1971) 

requiring learners to generate the last word of an incomplete sentence such as “The 

doctor looked at the time on his (watch)”; and algebra materials (McNamara, 1995), 

such as 2 x 4 = 8, in which students needed to generate the answer 8 or read the whole 

formula. Contrary to the worked example effect according to which explicitly 

providing problem solutions (providing high guidance) benefits learners more than 

asking them to solve problems (a low guidance condition), the generation effect 

demonstrates that generating answers in order to memorize information (a low 

guidance condition) is more effective than providing answers explicitly (high 

guidance). 



 Expertise Reversal and Element Interactivity Effects 
 

 22 

Chen et al. (2015) designed experiments to directly investigate the relations 

between levels of guidance and element interactivity. They hypothesized that the 

worked example effect required high element interactivity information while the 

generation effect required low element interactivity information. Two experiments 

were conducted in the domain of geometry. Learning simple, low element 

interactivity geometry formulae were used to test for the generation effect. In contrast, 

learning to solve geometry problems using those formulae, a high element 

interactivity task, was used to test for the worked example effect. Participants in 

Experiment 1 were novices while those in Experiment 2 were more knowledgeable 

learners. The same topic areas were used in both experiments.  

The results indicated that when novices were tested in Experiment 1, the worked 

example effect was obtained for the high element interactivity information whereas 

the generation effect was obtained for the low element interactivity information. In 

Experiment 2 using more knowledgeable learners, a generation effect for learning 

formulae or reversed worked example effect for learning problem solutions, was 

obtained for both sets of information. Generating answers or solution procedures 

rather than studying provided answers or procedures, was superior irrespective 

whether learners were learning the formulae or learning to use the formulae in 

problems. 

These results support the suggestion that the expertise reversal effect depends 

on changes in levels of element interactivity. In the first experiment, the worked 

example effect was obtained using high element interactivity information while the 
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generation effect, was obtained using low element interactivity information. In the 

second experiment, increased expertise rendered all of the information low in element 

interactivity and a reversed worked example effect and a generation effect were 

obtained for all information. It also might be noted that using the high element 

interactivity problem solving information across both experiments yielded an 

expertise reversal effect. A worked example effect was obtained using low expertise 

learners in Experiment 1 while a reverse worked example effects was obtained using 

higher expertise learners in Experiment 2, with the same content material being taught 

in both experiments. These results provide evidence that the expertise reversal effect 

is caused by changing levels of element interactivity due to changes in expertise. 

Conclusions 

In this paper we have suggested that there are both theoretical and empirical 

reasons for assuming that the expertise reversal effect is a variant of the element 

interactivity effect. From a theoretical perspective, it was pointed out that increases in 

expertise have long been assumed to result in decreases in element interactivity. 

Element interactivity associated with intrinsic cognitive load only can be varied by 

changing the task or changing levels of expertise. Based on human cognitive 

architecture, a primary manifestation of expertise is the ability to treat multiple 

elements as a single element in working memory thus transforming our ability to 

function in a variety of environments. With increasing expertise, high element 

interactivity information is transformed into low element interactivity information, 

leading directly to the expertise reversal effect. Instructional procedures designed to 
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reduce working memory load for novices under a high element interactivity 

environment no longer can reduce working memory load in the already low element 

interactivity environment of more expert learners. The result is the elimination or 

reversal of usual cognitive load effects. Empirical evidence for this suggestion comes 

from data indicating that changes in expertise result in changes in element 

interactivity, ultimately generating the expertise reversal effect. 

It should be noted that a similar argument was presented by Wulf and Shea 

(2002) in the area of motor learning. They suggested that results obtained from simple 

motor tasks may not generalize to complex tasks. They also suggested that results 

using simple and complex tasks may be more similar from data obtained after more 

practice on complex tasks due to increases in expertise. These suggestions from motor 

learning bear a considerable similarity to the current suggestions based on cognition. 

Cognitive load theory and cognitive load effects are intended to have direct 

instructional implications and the current work is no exception. Element interactivity 

is a central concept of cognitive load theory and all cognitive load effects rely on 

differences in element interactivity between instructional conditions (Sweller, 2010). 

By analyzing element interactivity between instructional conditions, we can predict 

which instructional procedures are likely to be effective. That analysis simultaneously 

must take into consideration both the nature of the information learners are processing 

and the knowledge levels of the learners. Such an analysis of element interactivity 

leads to the expertise reversal effect and can provide us with guidelines for effective 

instructional design. 
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