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Asymptotic estimation of state and faults for linear systems

withunknownperturbations

Jianglin Lan

Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.

Abstract

It is challenging to achieve asymptotic estimation of state and actuator faults for systems with unknown perturbations in both
the state dynamics and output measurements. To address this, an adaptive sliding mode unknown input observer (ASMUIO) is
developed under a mild rank condition of the perturbation distribution matrices. The key idea is to estimate the perturbations
simultaneously with the state and faults, which then vanishes the perturbation effects from the estimation error dynamics.
Existence conditions and rigorous feasibility proof of the proposed ASMUIO are given. A simulation example is provided to
demonstrate the design efficacy in comparison with existing approaches.
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1 Introduction

Fault estimation (FE) can provide direct reconstruc-
tion of fault signals and thus plays an important role in
the active fault-tolerant control (FTC) framework. FE
designs are effective unless they have good robustness
against perturbations including external disturbance
and/or system uncertainty, acting on the state dynamics
and/or output measurements.

There are mainly three types of approaches in the lit-
erature to enhance FE robustness. The first type is at-
tenuation approach, which suppresses the perturbations
using H∞ optimization. It is conservative but widely
used in the literature, see for example the extended state
observer (Gao & Ding, 2007) and augmented state un-
known input observer (ASUIO) (Lan & Patton, 2016).
The second type is decoupling approach, which removes
from the estimation error dynamics the perturbations
whose distribution matrix satisfy the matching rank con-
dition (Gao et al., 2016). The sliding mode observers
(SMOs) for FE (Huang et al., 2016; Yan & Edwards,
2007) also use the spirit of decoupling to realize insen-
sitivity to the state perturbations that satisfy a simi-
lar matching condition. The decoupling approach has
limited applicability because usually only partial per-
turbations can meet the matching condition. The non-
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decoupling part is attenuated using H∞ optimization
(Gao et al., 2016; Huang et al., 2016; Yan & Edwards,
2007). The third type is reconstruction approach, which
eliminates the perturbation effects by estimating them.
An adaptive sliding mode unknown input observer (AS-
MUIO) is proposed in Lan & Patton (2018) to achieve
asymptotic estimation of state, actuator faults and per-
turbations for linear systems. Different from other SMO
based FE designs, the ASMUIO can handle perturba-
tions in both state and outputs. Moreover, the estimated
perturbations can be used for robust system control.

This paper proposes a new ASMUIO to achieve asymp-
totic estimation of state, actuator faults and perturba-
tions, where the perturbation distribution matrices sat-
isfy a less conservative rank condition compared with
Lan & Patton (2018). Moreover, the proposed ASMUIO
contains the one in Lan & Patton (2018) as a special
case. Designing the ASMUIO under such a relaxed rank
condition relies on reformulating the original system as
an infinitely observable descriptor system (Dai, 1989),
where partial perturbations are regarded as auxiliary
state and the rest as virtual faults. The observer design
is then described based on Lan & Patton (2018) with
existence conditions and feasibility proof provided.

The rest of this paper is organized as follows. Section 2
states the problem. Section 3 presents the system refor-
mulation. Section 4 describes the observer design. Sec-
tion 5 provides a simulation example. Section 6 draws
the conclusions.
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2 Problem statement

Consider a class of linear systems represented by

ẋ = Ax+Bu+ Ff +D1d

y = Cx+D2d
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, con-
trol input and output, respectively. f ∈ Rl is the energy
bounded actuator fault representing additive, compo-
nent or partial loss of effectiveness faults (Lan & Patton,
2016). d ∈ Rq is the perturbation representing a large
class of signals, e.g. disturbance, uncertainty, additive
nonlinearity and sensor bias, for which more details can
be found in Chapter 5 of Chen & Patton (1999). A, B,
F , D1, C and D2 are known constant matrices of ap-
propriate dimensions. The system satisfies rank(F ) = l,
rank(C) = p, and the following assumptions:

Assumption 2.1 rank

[
sI −A F D1

C 0 D2

]
= n + q + l,

∀s ∈ C, Re(s) ≥ 0.

Assumption 2.2 rank
[
D>1 D>2

]>
= q.

Assumption 2.3 rank

[
CF CD1 D2

0 D2 0

]
= rank(D2) +

rank

[
F D1

0 D2

]
.

This paper aims to design an observer for the system (1)
to obtain asymptotic estimation of x and f , and realize
reconstruction of d as a way of completely eliminating
the perturbation effects.

Assumptions 2.1 and 2.3 coincide respectively with the
minimum phase condition and matching condition that
ensure strong∗ detectability of the system (Hautus,
1983). These conditions are well-known sufficient con-
ditions for achieving asymptotic state estimation in the
presence of disturbances (which include faults and per-
turbations here). Assumption 2.2 is further needed for
the proposed observer design to achieve simultaneously
asymptotic estimation of state, faults and perturba-
tions, which has not been discussed in the literature.
Moreover, Assumption 2.2 is more general than the one
(rank(D2) = q) in Lan & Patton (2018), and contains
the latter as a special case. The condition rank(D2) = q
is satisfied only when all the perturbations appear at
the output measurements. However, under the new
rank condition, the perturbations acting on the state
and output can be different. For example, the perturba-
tions can include a state disturbance and a sensor bias.
Therefore, the observer designed based on this new rank
condition is applicable for a wider class of systems.

Without loss of generality, this work focuses on the case
when rank(D2) = r < q. In such a case, following the
same system augmentation strategy described in Lan &
Patton (2018) gives an infinitely unobservable descrip-
tor system, for which no asymptotic observer exists. To
overcome this problem, a system reformulation is per-
formed in Section 3 to obtain an infinitely observable
descriptor system that admits an asymptotic observer.

3 System reformulation

Since rank(D2) = r < q, the singular value decomposi-
tion of D2 is given by D2 = UdΣdV

>
d , where Ud ∈ Rp×p

and Vd ∈ Rq×q are orthogonal matrices, and Σd =
diag{Σr, 0(p−r)×(q−r)} is a block diagonal matrix with

the diagonal matrix Σr ∈ Rr×r containing all the r sin-
gular values of D2 on the diagonal. Define the terms

V >d d =

[
d1

d2

]
l r
l q − r, U

>
d y = ȳ,

D1Vd = [D11 D12], U>d C = C̃.

(2)

By using (2), the system (1) is rewritten as

ẋ = Ax+Bu+ F f̄ +D11d1

ȳ = C̃x+ D̄2d1
(3)

where f̄ = [f> d>2 ]>, F = [F D12] and D̄2 = [Σ>r 0]>.

The system (3) is rearranged into the descriptor form

Eχ̇ = Aχ+ Bu+ F f̄
ȳ = Cχ (4)

where χ = [x> d>1 ]>, E = [In 0n×r], A = [A D11],

B = B and C = [C̃ D̄2]. Here d1 is treated as auxiliary
state and d2 as virtual faults to be estimated together
with the real fault f . If following Lan & Patton (2018)
by regarding the entire vector d as auxiliary state, then
E = [In 0n×q], A = [A D1], F = F and C = [C D2],
which will result in an infinitely unobservable descriptor
system (i.e. the violation of Corollary 3.1).

Corollary 3.1 Under Assumptions 2.1 - 2.3, the de-
scriptor system (4) holds the following properties:

rank

[
E
C

]
= n+ r, (5)

rank

[
E F
C 0

]
= n+ l + q, (6)

rank

[
sE − A F
C 0

]
= n+ l + q, ∀s ∈ C, Re(s) ≥ 0. (7)
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Proof 3.1 Since rank(D̄2) = r, it holds that

rank

[
E
C

]
= rank

[
In 0

C̃ D̄2

]
= n+ r.

In view of the structure of D̄2 in (3), it follows that

rank

[
D11 D12

D̄2 0

]
= r + rank(D12). (8)

According to Assumption 2.2 and (2), one gets

rank

[
D11 D12

D̄2 0

]
= rank

{[
In 0

0 U>d

][
D1

D2

]
Vd

}
= q.

Combining the above equation with (8) gives rank(D12) =

q − r and col(C̃D11) ⊆ col(D̄2), where col(·) represents
the column space spanned by the matrix. This implies that

rank[D̄2 C̃F C̃D1Vd] = rank[D̄2 C̃F C̃D12]. (9)

Since Ud and Vd are non-singular, it holds that

rank[D̄2 C̃F C̃D1Vd] = rank[D2 CF CD1]. (10)

By using Assumptions 2.1 - 2.3, one has

rank[CF CD1 D2] = rank

[
F D1

0 D2

]
= l + q.

Combining (9) and (10) yields rank[D̄2 C̃F C̃D12] =
l + q. This results in

rank

[
E F
C 0

]
= rank

{[
In 0

−C̃ Ip

][
In 0 F D12

C̃ D̄2 0 0

]}

= rank

[
In 0 F D12

0 D̄2 C̃F C̃D12

]
= n+ l + q.

Under Assumption 2.1, it can be derived that

rank

[
sE − A F
C 0

]
= rank

{
X1

[
sIn −A F D1

C 0 D2

]
X2

}
= n+ l + q

where X1 = diag{In, U>d } and X2 = diag{In, Il, Vd} are
full rank. Therefore, (7) is satisfied. 2

The properties (5) and (7) ensure that the system (4) is
infinitely observable (Dai, 1989), and (6) further ensures
that f̄ can be fully reconstructed. Therefore, there exists
an observer for (4) to estimate accurately χ and f̄ , and
subsequently x, f and d of the original system (1).

Remark 3.1 FE design for descriptor systems is stud-
ied in Chan et al. (2017) following a similar reformu-
lation strategy. However, there are a few differences be-
tween this paper and their work. First, both state and out-
put perturbations are considered in this paper, while only
state perturbation is studied in their work. Second, the
matrix E in (4) is rectangular, while it is square in their
work. Third, the canonical form SMO (Yan & Edwards,
2007) is used in their work to estimate the state and

faults, while the Walcott–Żak form SMO (Huang et al.,
2016) is adopted here.

4 Observer design

Since the descriptor system (4) and the one in Lan &
Patton (2018) share the same form, the observer designs
for them are similar. Therefore, this section only briefly
describes the observer design, while its focus is to pro-
vide a rigorous feasibility proof of asymptotic estima-
tion, which is missing in Lan & Patton (2018).

The ASMUIO is designed as

ż = Nz + Ju+ Lȳ +Wv

χ̂ = z +Hȳ
(11)

where z ∈ Rn+r is the observer state and χ̂ ∈ Rn+r is the
estimate ofχ.N , J ,L,W andH are design matrices. The
sliding switching function v is designed as v = ρ̂sign(ey),
with ey = ȳ − Cχ̂ and a scalar gain ρ̂ governed by

˙̂ρ = σ0‖ey‖, ρ̂(0) = 0, (12)

with a given positive constant σ0. A larger σ0 can in-
crease the estimation accuracy of f̄ but leading to a high
gain ρ̂ and possible bigger overshoots at transients. A
trade-off can be realized via trial and error. The existence
conditions of asymptotic estimation are given below.

Theorem 4.1 Under Assumptions 2.1 - 2.3, the ob-
server (11) can achieve asymptotic estimation of x, f
and d, if there is a symmetric positive definite matrix P ,
matrices T and Q, and a positive scalar α such that

PN +N>P + 2αP < 0, (13)

PTF = C>Q. (14)

Then the estimates of x, f and d are given as:

x̂ = [In 0]χ̂, f̂ = [Il 0] ˆ̄f, d̂ = Vd

[
d̂1

d̂2

]
, d̂1 = [0 Ir]ˆ̄x,

d̂2 = [0 Iq−r] ˆ̄f, ˆ̄f = (Q>CP−1C>Q)−1Q>CP−1C>veq,
where veq is the low pass filtering of v.

Proof 4.1 The proof is based on Lyapunov stability the-
ory and similar to that of Theorem 3.1 in Lan & Pat-
ton (2018). Hence, it is only briefly discussed below. By
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defining e = χ− χ̂ and the matrix equations

TA−NTE − LC = 0, (15)

TB − J = 0, (16)

In+r −HC − TE = 0, (17)

then the estimation error system is derived as

ė = Ne+ TF f̄ −Wv.

The condition (13) is then given to make N stable. Dif-
ferent from Lan & Patton (2018), the term 2αP is intro-
duced to improve the decay rate of e(t). Since v can only
compensate a matched term, the matrix W is designed
as W = P−1C> and a matrix Q is introduced to make
PTF = C>Q and thus TF f̄ = P−1C>Qf̄ . This ensures
that TF f̄ − Wv = P−1C>(Qf̄ − v). Therefore, v can
be designed to compensate the matched term Qf̄ under
satisfaction of the equality condition (14). 2

Lemma 4.1 The conditions (13) and (14) in Theorem
4.1 are always feasible under Assumptions 2.1 - 2.3.

Proof 4.2 Multiplying (4) with T and using (17) gives

χ̇ = TAχ+ TBu+ TF f̄ +H ˙̄y

ȳ = Cχ.

By Lemma 3 of Corless & Tu (1998), there is a symmetric
positive definite matrix P̌ and a matrix Ľ such that

P̌ (TA− ĽC) + (TA− ĽC)>P̌ < 0, (18)

P̌ TF = C>Q, (19)

if and only if the following conditions hold:
C1: rank(CTF) = rank(TF) = l + q − r.
C2: All the invariant zeros of (TA, TF , C) are stable.

The next step is to prove satisfaction of C1 and C2 under
Assumptions 2.1 - 2.3. According to (17), it holds that[

T H

0 Ip

]
=

[
In+r

[0 C]

][
E
C

]−1
. (20)

Hence, the left-hand side of (20) has full column rank
n+ r and it follows from (6) that

rank

[
E F
C 0

]
= rank

{[
T H

0 Ip

][
E F
C 0

]}

= rank

[
In+r TF
C 0

]
= n+ l + q. (21)

According to Lemma 1 in Yu & Liu (2009), (21) is equiv-
alent to the condition C1, which means that C1 holds.

By using (7), (17) and (20), it gives ∀s ∈ C, Re(s) ≥ 0,

rank

[
sE − A F
C 0

]
= rank

{[
T sH

0 Ip

][
sE − A F
C 0

]}

= rank

[
sIn+r − TA TF

C 0

]
= n+ l + q.

This means that the condition C2 holds. The above anal-
ysis shows that C1 and C2 are satisfied under Corollary
3.1. Hence, (18) and (19) are feasible under Assumptions
2.1 - 2.3. By using (15), (17) and L̄ = L−NH, one has
N = TA− L̄C. Defining P = P̌ and L̄ = Ľ, then feasi-
bility of (18) and (19) induces that of (13) and (14). 2

The conditions (13) and (14) are nonlinear of P , N and
T and cannot be solved directly. As in Liu et al. (2017),
a special solution of T can be obtained from (17) and
used to make (14) linear. However, this imposes design
conservativeness. To solve (13) and (14) less conserva-
tively, this paper adopts the parametrization approach
from Lan & Patton (2018). Based on (15) and (17), the
matrices T ,H,N and L̄ (L̄ = L−NH) are parametrized
by two design matrices Y1 and Y2 as follows:

T = T1 − Y1T2, H = H1 − Y1H2,

N = N1 − Y2N2, L̄ = L̄1 − Y2L̄2,
(22)

where T1 = Ω†1Γ1, T2 = (In+p − Ω1Ω†1)Γ1, H1 =

Ω†1Γ2, H2 = (In+p − Ω1Ω†1)Γ2, N1 = TAΩ†2Γ3, N2 =

(In+r+p − Ω2Ω†2)Γ3, L̄1 = TAΩ†2Γ4, L̄2 = (In+r+p −

Ω2Ω†2)Γ4, Ω1 =

[
E
C

]
,Ω2 =

[
In+r

C

]
, Γ1 =

[
In

0

]
,

Γ2 =

[
0n×p

Ip

]
, Γ3 =

[
In+r

0

]
,Γ4 =

[
0(n+r)×p

Ip

]
.

Applying (22) to (13) and (14), and defining Y = [Y1 Y2]
and M = PY , it then gives the linear conditions (23)
and (24) in Lemma 4.2. Once P , Y1 and Y2 are obtained
from Lemma 4.2, all the observer gains (N, J, L,W,H)
can be determined using (16), (22) and W = P−1C>.

Lemma 4.2 Under Assumptions 2.1 - 2.3, the observer
(11) can achieve asymptotic estimation of x, f and d,
if there exists a symmetric positive definite matrix P ,
matrices M and Q, and a positive scalar α such that

(PT1Φ−MT2N ) + (PT1Φ−MT2N )> + 2αP < 0 (23)

(PT1 −MT̂2)F = C>Q (24)

where Φ = AΩ†2

[
In+r

0

]
, T2N =

[
T2Φ

N2

]
, T̂2 =

[
T2

0

]
.

Then the matrices Y1 and Y2 are obtained as
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Y1 = P−1M

[
In+p

0

]
, Y2 = P−1M

[
0

In+r+p

]
.

Remark 4.1 The proposed observer can obtain asymp-
totic estimation of state, faults and perturbations, which
is impossible for the observers using the attenuating ap-
proach (Lan & Patton, 2016) or decoupling approach
(Gao et al., 2016). The existence conditions of their ob-
servers and the proposed observer are different and sum-
marized below. (i) The observer in Lan & Patton (2016)
requires that all the invariant zeros of (A,F,C) are stable,
rank(F ) = l, and l ≤ p. (ii) The observer in Gao et al.
(2016) partitions D1 as D1 = [Ď11 Ď12] corresponding
to the partition d = [ď>1 ď>2 ]> with ď1 ∈ Rq1 , ď2 ∈ Rq2

and q1 + q2 = q. It requires that all the invariant zeros of
(A, [F Ď11], C) are stable, rank(CĎ11) = rank(Ď11) =
q1, rank(F ) = l, and l + q1 ≤ p. (iii) The proposed ob-
server requires Assumptions 2.1 - 2.3 and l + q ≤ p.

5 Simulation example

Adopting from Eugene et al. (2013) the normalized air-
craft system in the form of (1) with the matrices

A =


−0.025 1.04 −9.94

57.47 0 0

1.62 0 0

 , B =


0.122 −0.276

−5.361 3.325

19.55 −52.94

 ,

F =


0.122

−5.361

19.55

 , D1 =


0 −0.276

0 3.325

0 −52.94

 , D2 =


0.1 0

0.2 0

1 0

 ,
and the state x = [β p r]>, control input u = [δa δr]>,
output y = x and perturbation d = [da ds]

>. β is the
slideslip angle, p is the roll rate, r is the yaw rate, δa
is the aileron command and δr is the rudder command.
The controller is given as

u =

[
−6.841 −0.2919 0.1227

7.9536 0.1866 −0.3261

]
x.

The fault f and the attacks da and ds are character-
ized by f(t) = 0.5 + sin(2.5πt), da(t) = 0.5 cos(2.5t) +
cos(2t) sin(β(t)) cos(p(t)), and ds(t) = cos(πt).

This simulation system satisfies Assumptions 2.1 - 2.3.
Comparative simulations are run for the three observers
specified below. (i) The observer in Lan & Patton (2016)
using the attenuation approach, where f is extended as
auxiliary state while da and ds are suppressed with the
H∞ performance index γ = 9. (ii) The observer in Gao
et al. (2016) using the decoupling approach, where f and

ḟ are extended as auxiliary state and da is decoupled,
while ds is attenuated with the H∞ performance index
γ = 0.1. (iii) The proposed observer with σ0 = 2500 and
the following gains solved from Lemma 4.2 with α = 1:

N =


12.3986 −14.9744 −6.8673 −4.5017

32.0494 −22.9446 −11.0537 −5.7266

140.0155 −107.84 −59.8610 −33.4186

140.1216 −108.2241 −58.5872 −35.1452

 ,

J =


−0.1745 0.9133

−2.7397 4.0369

0.5777 −0.984

−0.013 0.0864

 , L =


0 −16.5 −130.3

0 −24.3 −196.5

0 −128 −1002.7

0 −129.1 −1010.8

 ,

W =


−0.0976 −0.1952 −0.9759

−0.1952 0.9653 −0.1736

−0.9764 −0.1735 0.1323

1.0251 0.0001 −0.0001

 ,

H =


0 0.0913 0.3182

0 1.0523 1.8893

0 1.8435 10.2453

0.9759 1.9838 10.2028

 .
The simulations are performed with x(0) = [1 −2 −1]>

and zero initial observer state. The results in Fig. 1 show
that the proposed observer achieves the best state and
fault estimation, and accurate perturbation estimation.

0 1 2 3 4 5
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0 1 2 3 4 5

0
0.2
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0 1 2 3 4 5
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0
1
2
3

Robust Partial Proposed

0 1 2 3 4 5Time (s)

0
2
4

10-3
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Fig. 1. Estimation errors of the three observers.

6 Conclusion

An adaptive sliding mode unknown input observer is
proposed to obtain asymptotic estimation of state, faults
and perturbations for linear systems with perturbations
in both the state dynamics and outputs. Existence con-
ditions of asymptotic estimation are provided based on a
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mild rank condition of the perturbation distribution ma-
trices. Efficacy of the observer is verified through com-
parative simulations. Future work will consider observer
designs for linear systems with invariant zeros on the
imaginary axis, and for large-scale complex systems.
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