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Abstract

In this thesis we focus on calculating the shape of small bubbles and droplets near

surfaces, in regimes where intermolecular forces are significant. In the first part of

this thesis we focus on vapour nanobubbles where we use classical density functional

theory (DFT) to determine the interfacial free energy (the binding potential) of simple

model fluids in contact with a planar surface. This is done by calculating sequences

of constrained density profiles for varying amounts of vapour adsorbed between the

wall and the bulk liquid. This allows us to determine multi-scale properties of fluids

at interfaces, and thereby determine the structure and the thermodynamics of vapour

adsorption at solvophobic interfaces and how these depend on the microscopic properties

of the fluid. We then use the binding potentials obtained as an input to the interfacial

Hamiltonian (IH) model and study the properties of vapour nanobubbles at equilibrium.

In the second part of this thesis, we focus on liquids at interfaces forming droplets

and in particular on the systems where there are strong packing and molecular layering

effects in the liquid near the wall. These phenomena leads to oscillatory binding poten-

tials. We discuss the influence of the layering on the spreading behaviour of liquid drops

and the shape of steady drops. In order to describe the dynamic behaviour, we use the

thin-film equation which is derived from the Navier-Stokes and continuity equation for

an incompressible fluid. In addition, we developed a modified thin-film equation that

incorporates both the effects of surface diffusion and advective flow over the surface.
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A.1 Convergence test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

ix



Chapter 1

Introduction

The behaviour of fluids on solid substrates is important in nature, industry and everyday

life. Just think about blinking your eyes and you realise this. Many of these phenomena

depend on the motion of individual atoms or molecules (particles) from which the liquid

and the surface are made. For example, the movement of rain drops on windows, the

sliding of oil on a Teflon coated frying pan, or a spilled drink drying to form a coffee

stain on the table. Understanding the microscopic properties and arrangements of

the particles, and how these give rise to the macroscopic behaviour of non-uniform

fluids is not only important in different areas of physics and chemistry, but there are a

wide range of applications such as in the design of microdevices and ink jet technology

that depend on the behaviour of fluids on surfaces. In this thesis we demonstrate the

influences of the nature of the microscopic particle interactions of fluids on the macro

scale properties.

To effectively model the statics and dynamics of nanoscale droplets and bubbles,

a variety of scientific disciplines need to be combined. Classical fluid mechanics, sta-

tistical mechanics and thermodynamics all play important roles in this thesis, and are
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CHAPTER 1. INTRODUCTION

discussed individually and collectively at various points. Fluid mechanics describes the

governing equations of fluid flow at the continuum mechanics scales, based, for instance,

on the Navier-Stokes equations which conserve properties such as mass and momentum

of a continuous fluid and are parametrised by coarse-grained transport coefficients such

as surface tension and viscosity. Statistical mechanics, in contrast, explores the smallest

scales at a particle level, and the theory allows us to capture particle interactions and

collisions in an averaged sense. Here we use a formulation of statistical mechanics known

as classical density functional theory (DFT) to compute heterogeneous nanoscale fluid

density profiles. Thermodynamics provides the framework within which these two fields

combine, and explores fundamental relationships between concepts such as the energy,

temperature and entropy of systems in a variety of ensembles. Thermodynamics is cen-

tral to our understanding of how matter organises itself. For example, it tells us than in

a closed system at fixed temperature T , the equilibrium state is that which minimises

the Helmholtz free energy, F = U − TS, where U is the internal energy and S is the

entropy. This fundamental equation neatly showcases how the vapour and solid phases

differ. At equilibrium the free energy F must be minimised, and hence at high tem-

perature T (where the contribution −TS dominates), the entropy must be maximised

and so a highly disordered gaseous state is formed in which the particles are spread out

within the container. In contrast, at low temperature the contribution −TS is small

and so the contribution from the internal energy U dominates. Thus the particles order

based on their interactions into a solid state. The liquid state is particularly fascinating

because it occurs when the two terms, U and −TS are comparable in magnitude and so

in a liquid the particles gather to lower U , but remain somewhat disordered in order to

make the entropy S larger. The particle interactions are fundamental in giving rise to

many macroscopic phenomena such as the interfaces between the phases, determining

the corresponding surface tensions, and the wetting behaviour of fluids in contact with

2



CHAPTER 1. INTRODUCTION

solid surfaces. The following subsections explore this in more depth.

1.1 Surface tension

The interactions between the molecules in a fluid give rise to a variety of macroscop-

ically observed quantities, an important one being the surface tension. The existence

of surface tension plays a crucial role in the behaviour of systems containing inter-

faces. Although commonly we may think the thickness of a surface is negligible, on the

molecular level, the thickness of the interfacial region is actually significant [1].

Consider the situation where a liquid is in contact with its gas phase. Fig. 1.1

illustrates the interactions with neighbouring molecules experienced by molecules in

different positions. The potential energy between pairs of molecules has a minimum as

a function of the distance between the centres of the molecules. Deep in the liquid, each

molecule sits at roughly this minimum energy distance from its nearest neighbours, so

as to lower its total potential energy, U . One can think of each of those pair interactions

as forming a ‘bond’ (equivalent to a release of energy) between neighbouring molecules.

Molecule A, fully in the bulk liquid, forms bonds with molecules all around it and

stays closely to the minimum energy distance from its nearest neighbours. In contrast,

molecule B, which is at the surface, is not able to form as many bonds because there

is nearly no attraction acting from above, which results in an inward force and also

molecule B has a higher potential energy than molecule A. Molecule C in the gas phase

rarely has any neighbours nearby and so its potential energy is close to zero and higher

than that of A or B. Since the system tries to evolve towards a minimum free energy

state, it will seek to have as few as possible higher energy molecules at the surface, thus

the tendency is to reduce the surface area and the liquid surface will be forced to find

its minimum area.

3



CHAPTER 1. INTRODUCTION

Molecule C

Molecule A

Molecule B

Gas

Liquid

Figure 1.1: A sketch illustrating the interactions of particles in a liquid (Molecule A),

a gas (Molecule C) and at the interface between the two (Molecule B). Molecule A

is deep in the liquid, it forms bonds with molecules all around it and thus is staying

close to the minimum energy distance from its nearest neighbours; Molecule B is at the

surface and is not able to form as many bonds and has higher energy; Molecule C is in

the gas and has no near neighbours thus its potential energy is roughly zero [1].

Note that since the gas and the liquid are in phase coexistence, they must have the

same free energy (we say more on this in Chapter 3). The gas of course, has a larger

entropy than the liquid. The molecules in the interface neither have low potential

energy nor large entropy, therefore there is a free energy penalty due to the interface.

It is well known that supplying energy is necessary to create a surface. Suppose one

wants to distort a liquid to increase the surface area by a certain amount, work needs

to be done to pull the molecules in the liquid against the attractions of neighbouring

molecules back to the surface. This work done can be represented in the following

4



CHAPTER 1. INTRODUCTION

equation

dW = γdA, (1.1.1)

where the surface tension γ is given in units of energy per unit area and is the extra

energy required to increase the surface area by one unit [1] and dA is the area increased.

This work done dW is stored as potential energy.

Since the liquid will evolve in order to minimise the surface area, the liquid surface

will reach the minimum area eventually, resulting in the familiar fact that drops of

liquid surrounded by the vapour are spherical, since a sphere has the minimum surface

area compared to other shapes with the same volume. Another example is that when

we separate an oil drop into smaller ones, the little droplets subsequently move back

together and form the original drop to minimise the surface area.

1.2 Wetting behaviour and Young’s equation

When a liquid drop is placed onto a solid dry substrate, it spreads on the surface

to a certain extent, until equilibrium is reached and the free energy of the system is

minimised. The extent of the spreading is determined by the equilibrium contact angle

θ. It is obtained from a balance of interfacial tensions, which is given by Young’s

equation [2]

γlv cos θ = γsv − γsl, (1.2.1)

where γsv, γsl, and γlv represent the interfacial tensions (excess free energy per unit

area) of the solid/vapour, solid/liquid, and liquid/vapour interfaces, respectively. These

are defined when three phases are in equilibrium with each other1. For large enough

1Note that as discussed in Ref. [3], γsv is distinct from γso, the interfacial energy of the completely
dry interface.
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(a)aaaaaaaaaaaaaaaaaaaaaa(b)aaaaaaaaaaaaaaaaaaaaaa(c)aaaaaaaaaaaaaaaaaaaaaaaaa

Substrate

Non Wetting

= 180

Complete Wetting

= 0

Substrate Substrate

Partial Wetting

Figure 1.2: When a small droplet is in equilibrium on a horizontal substrate, the three

different possible wetting regimes that may exist in any three phase system according to

Young’s equation. Case (a) is almost spherical and this ideal substrate can be considered

even less wetting than e.g. a non-stick teflon surface. Case (b) has a macroscopically

thick film; the droplet fully spreads out over the surface. This could be e.g. metal

surface. Case (c) is a spherical cap with contact angle θ. A typical example of this is

water on a plastic surface.

droplets (a few hundred nm or µm, depending on the situation), θ is the inner angle

the liquid-vapour interface makes with the substrate.

If the three surface tension energies are known, the wetting regime of the fluid can

be calculated directly. Fig. 1.2 shows the different possible wetting behaviours of a

droplet on solid substrate. Complete wetting occurs when θ = 0◦. The system is in

equilibrium when a uniform macroscopically thick liquid layer covers the whole solid

surface. Partial wetting occurs when 0◦ < θ < 180◦. In this case, small droplets form

a spherical cap due to the liquid volume constraint and the dominant capillary effects.

Deviations from a spherical cap shape occur if the radius of the drop is larger than the

capillary length κ−1 =
√

γlv
mρlG

, where ρl is the number density of liquid, m is the mass

of a molecule and G is the acceleration due to gravity. Above this size, gravity can no

longer be neglected. Unless the vapour pressure of the liquid is zero, at equilibrium

the substrate surrounding the drop is covered by a microscopically thin film layer of

6
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thickness h0 adsorbed on the substrate. This adsorbed layer is generally submonolayer,

so the popular terminology ‘precursor film’ is potentially misleading [4, 5, 6]. For non-

wetting to occur, θ = 180◦.

1.3 Macroscopic to mesoscopic

For very small drops and for length scales below a few hundred nm, the wetting be-

haviour is determined by the molecular interactions, e.g. the van der Waals and elec-

trostatic forces. For such droplets these interactions become important and can extend

across the thickness of the film and contribute extra forces that determine the shape

of the drop and how it spreads. For a film of thickness h in contact with a solid wall,

surface tension energies alone are not sufficient to describe the free energy of the system

anymore. Particle interactions lead to an effective interaction between the two inter-

faces, i.e. there is an additional contribution to the free energy g(h), often referred to

as the binding potential, which must be included. It can be expressed in terms of the

Derjaguin, or disjoining (or conjoining) pressure [7, 8],

Π(h) = −∂g(h)

∂h
. (1.3.1)

The interaction between the two interfaces can also be discussed in terms of this pres-

sure. The total excess free energy per unit area of a system with a film of liquid with

uniform thickness h is:
4F
A

= γlv + γsl + g(h), (1.3.2)

where A is the area covered by the film. Thus, g(h) gives the contribution to the

free energy from the interactions between two interfaces, and has the limiting values

7
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g(∞) = 0 and [1]

g(h0) = γsv − (γlv + γsl), (1.3.3)

where h0 is the height of the flat film at equilibrium.

The disjoining pressure is an important thermodynamic function and it plays a key

role in studying thin films. It is a function of film height h and is responsible for the

equilibrium thickness of wetting films. It gives the difference between the pressure P (h)

in a thin liquid layer and P (∞), the pressure when the liquid film is macroscopically

thick. Thus,

Π(h) = P (h)− P (∞). (1.3.4)

In general, three main contributions to the disjoining pressure Π are identified

[9, 10, 11, 12]:

(i) a long-range van der Waals contribution due to the interaction between dipoles (ei-

ther permanent or induced) of the liquid molecules and the substrate molecules. It can

be either attractive or repulsive;

(ii) long-range electrostatic forces, from charge double layers overlapping during thin-

ning. The like charged surfaces of the film repel each other;

(iii) short-range steric forces, which stem from the repulsive interactions between molecules

when they are pushed close together.

The van der Waals force is characterised by the Hamaker constant H [10, 11, 12],

originating from the attractive (London) potential between individual pairs of molecules

which at large r is often modelled as proportional to ∼ r−6, where r is the distance

between molecules. It gives the longest range contribution to Π. The leading order

term that dominates for large h is [12]

Π ≈ − H

6πh3
, (1.3.5)

8
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which is obtained by summing (averaging) over all the interactions between the fluid

and the particles forming the wall [13]. If H > 0, it means the two interfaces attract

each other and the film pinches; on the other hand if H < 0, the two interfaces repel

each other. Thus, the van der Waals force often determines the wetting behaviour. In

the case H > 0, one must include additional terms in Π.

A commonly used expression that describes a partially wetting situation and allows

for a stable precursor film is

Π1(h) =
5a

h6
− 2b

h3
, (1.3.6)

where b = H/12π and a is a positive constant. The corresponding binding potential is

g1(h) =
a

h5
− b

h2
. (1.3.7)

The positive term represents the short range repulsive forces, while the second term

describes the longer range van der Waals forces contribution. This form has been

frequently used in thin-film models, e.g., in Refs. [14, 15, 16]. However, as can be

deduced from considering the h → 0 limit, where g1(h) is infinite, it is clear that this

expression is really only valid for large film thickness, since we expect a finite value of

g(h = 0). Similarly, for model systems with only short range forces one finds that for

large h the binding potential decays exponentially,

g(h) ∼ a1exp (−h/ξ) + a2exp (−2h/ξ) + · · · , (1.3.8)

where ξ is the bulk correlation length (a measure of how quickly the correlations between

particles decays with distance) in the liquid phase wetting the wall and the coefficients

ai depend on the temperature [17, 18] as well as on the form of the interactions. The

progress made in Refs. [4, 5, 6] was to develop a DFT based method for calculating

9



CHAPTER 1. INTRODUCTION

g(h), or strictly speaking g(Γ), where Γ is the adsorption, that is valid over the whole

range of values of h.

The physics of vapour bubbles on surfaces shares many similarities with the more

commonly studied system of liquid droplets on a surface, surrounded by the vapour

(see Fig. 1.3). In both cases, the two main contributions to the excess free energy F [h]

of the system due to the interface are the binding potential contribution (i.e. due to the

molecular interactions), and the surface tension contribution (proportional to the area

of the liquid-vapour interface), which gives [17, 19, 1]

FIH [h] =

∫∫ [
g (h) + γlv

√
1 + (∇h)2

]
dxdy, (1.3.9)

where h(x, y) is the thickness of the fluid film at some point (x, y) above the substrate

as shown in Fig. 1.3. This free energy is often termed an interfacial Hamiltonian (IH).

Note that in Eq. (1.3.9) we have omitted terms independent of h.

This thesis is structured as follows: In the next chapter, we present some necessary

background theory on statistical mechanics and the relevant interfacial thermodynamics

for studying fluids at the microscopic level. Following this, in Chapter 3, we introduce

classical density functional theory (DFT), which is a statistical mechanical theory and

is used to calculate the binding potential g(Γ). Then, in Chapter 4, the mathematical

(fluid mechanics) description of steady and spreading drops or bubbles is formulated.

The following two chapters then present the principal original work contained in

this thesis, each describing a different situation relating to fluids at interfaces. Even

though a large number of studies with calculations on liquids in contact with a solid

surface have been done using DFT [20], much less has been published for a vapour film

surrounded by a liquid, with the vapour in contact with the wall. In Chapter 5, we

develop a model for stable nanobubbles at equilibrium, that is based on calculating the

10
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Solid
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Liquid

Solid
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z

Figure 1.3: (a) Sketch of a liquid drop with height profile z = h(x, y), surrounded by

vapour, on top of a solid planar wall that exerts an external potential Vext(z) on the

fluid. The coordinate direction z is perpendicular to the solid surface and the x- and

y-axes are parallel to the surface. The contact angle of the liquid with the wall is θ.

(b) Sketch of a vapour bubble in contact with the solid wall.

binding potential g(h) as a function of thickness h (including in the small h regime)

using DFT. We do this for various different wall potentials to investigate how the decay

form of these (as we move away from the wall) influences the decay form of the binding

potential, that can then be used as an input into the interfacial Hamiltonian (1.3.9)

model, in order to determine vapour nanobubbles height profiles and their free energies.

A sketch of the system of interest here is shown in Fig. 1.3(b). It presents a cross section

through a nanometre scaled vapour bubble adhered to the solid wall. A vapour layer

is in contact with the solid surface which we define to be at z = 0.

In Chapter 6, building on the previous work of Hughes et al. in 2015 [4, 5, 6],

who considered the wall-liquid-vapour system and computed using DFT an oscillatory

binding potential in a particular case of a fluid close to the freezing temperature, here we

determine the influence of such an oscillatory binding potential on the shape of steady

11



CHAPTER 1. INTRODUCTION

drops and also the dynamics of drop spreading. A sketch of a typical droplet profile that

would be obtained using the IH model is displayed in Fig. 1.3(a). The established thin

film models describe the advective motion2 of the liquid over the substrate, sometimes

also incorporating slip [21, 22]. However, normally, such models do not include the

diffusive particle-hopping dynamics that one should expect when the adsorption is low

[23, 24]. Thus, we also develop here an augmented thin-film equation that incorporates

this effect, with the principal aims of this work being to (a) incorporate well-founded

structural disjoining pressures into thin-film modelling, and (b) to propose and probe

a model that switches between diffusion and hydrodynamics.

Finally, the conclusions which can be drawn from this thesis and the possible im-

provements which could be made to the model are discussed in Chapter 7.

2Note that here by ‘advective’ motion, we refer to classical hydrodynamic motion of the film—
principally using the term to contrast with the diffusive dynamics added in Sec. 6.4

12



Chapter 2

Statistical Mechanics

The aim of statistical mechanics is to determine the collective average behaviour of

a large number of interacting particles. At the microscopic level, the particles are in

constant motion, but on mesoscopic and macroscopic scales they can be in a well-defined

configuration, such as one observes for a drop of liquid on a surface.

We start by considering a classical fluid system that is made of N identical, spherical

particles in three dimensions (3D), where each particle has mass m and velocity vi.

Then the state of the particles can be characterised by the set of all the position and

momenta variables

(rN ,pN) = (r1, r2, ..., rN ,p1,p2, ...,pN), (2.0.1)

where ri = (rx, ry, rz)i is the position and pi = (px, py, pz)i is the momentum of the ith

particle. Thus the system is in a 6N dimensional phase space which is a space that

contains all possible microstates of the system. Each microstate is defined by its value

of (rN ,pN), and as time changes, the system changes from one microstate to another

and can be represented by different points in the phase space. The equations of motion

for these coupled particles are almost impossible to solve exactly. For example, there

13



CHAPTER 2. STATISTICAL MECHANICS

are approximately 2.5×1025 gas molecules in a cubic metre of air, which means we have

a total of 1.5 × 1026 coupled first order differential equations to solve simultaneously

to find the position and momentum over time of every gas molecule. Hence, instead

of solving the equations of each individual particle, we focus our interest instead on a

small number of macroscopic variables such as the total energy of the system.

The total energy at any given time of such a system is given by the Hamiltonian H,

which consists of a sum of three terms and can be written as

H(rN ,pN) = K(pN) + V(rN) + Φ(rN), (2.0.2)

where

K(pN) =
N∑
i=1

1

2
mv2

i =
N∑
i=1

p2
i

2m
, (2.0.3)

is the total kinetic energy contribution,

V(rN) =
N∑
i=1

Vext(ri), (2.0.4)

is the one-body external potential energy contribution, with Vext(ri) being the external

potential felt by a single particle at position ri. Φ(rN) is the contribution to the

potential energy from interactions between the particles. In our work, as is common in

the literature, we neglect three and higher body contributions for simplicity, hence the

total potential energy is just the sum of all two body particle interactions in the system

and is given as

Φ(rN) =
1

2

N∑
i=1

N∑
j 6=i

v(ri − rj). (2.0.5)

The ensemble average (i.e. the mean value over many realisations, or copies, of the

system, see next section) of this Hamiltonian gives rise to the macroscopic thermody-

14
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namic variable U , the total internal energy of the system at equilibrium

〈H〉 = U, (2.0.6)

where 〈·〉 denotes the ensemble average of the quantity between the angular brackets.

Other thermodynamic quantities, such as pressure P , density ρ and chemical poten-

tial µ, can all be calculated by performing an ensemble average for the system, and a

principal aim is to relate the microscopic behaviour of particles to macroscopic ther-

modynamic quantities.

2.1 Ensembles and thermodynamics

In statistical mechanics and thermodynamics, a system can be classified according

to whether it is an isolated, closed or an open system. To determine the average

properties of a system one can perform a time average or, if the system is ergodic,

one can equivalently average over an ensemble of copies of the system. A statistical

ensemble is a collection of a large number of many copies of a system which are subjected

to the same given macroscopic conditions, such as temperature T , volume V , pressure

P , entropy S, or internal energy U , however, each copy is in a different microstate. In

general there exist a huge number of microstates that are all consistent with the same

macrostate.

Consider an isolated system with U , V , N fixed and with no work being done on

it, as shown in Fig. 2.1(a). The hashed lines indicate that the system is isolated and is

unable to exchange either energy or particles with its surounding environment. By the

first law of thermodynamics, which states that the change in the internal energy dU of

a system has to be equal to the sum of the heat that is supplied to the system dQ and
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System

a)
System

Heat bath

b)
System

Heat bath

c)

Figure 2.1: Sketches of three different thermodynamic ensembles: (a) micro-canonical

ensemble where the internal energy U , volume V and the number of particles N are fixed

because the system is isolated by an insulating container. (b) The canonical ensemble,

where the temperature T , volume V and the number of particles N are fixed (T is fixed

by the surrounding bath). (c) The grand canonical ensemble where the temperature T ,

volume V and the chemical potential µ are fixed (T , µ are fixed by the bath).

the work being done on the system dW , therefore dU can be expressed as

dU = dQ+ dW, (2.1.1)

where dW = −PdV , dV is the change in volume. We also know that heat will flow

from a hotter system to a colder system. Thus, by introducing another quantity, the

entropy S(U, V,N), which is a measure of the amount of disorder within a system, we

have

TdS ≥ dQ, (2.1.2)

where T is the temperature of the system. The inequality in the above equation becomes

an equality if the changes take place sufficiently slowly and are reversible. Hence by
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combining the first and second laws we can rewrite Eq. (2.1.1) as

dU ≤ TdS − PdV. (2.1.3)

Since for the system in Fig. 2.1(a) the volume V is fixed, then

dV = 0 =⇒ dW = 0. (2.1.4)

Since U is also fixed, there can be no change in internal energy

dU = 0 =⇒ dQ = 0, (2.1.5)

we therefore have

dS ≥ 0, (2.1.6)

which means the statistical equilibrium of this system must maximise the entropy S.

In other words, the equilibrium state of the system is that with the maximum entropy.

This type of system with fixed U , V and N is called the microcanonical ensemble.

The canonical ensemble is shown in Fig. 2.1(b). It consists of a closed system with

a thermal conducting boundary in contact with a heat bath which is at some fixed

temperature T . By allowing exchange of heat, the system will eventually have the

same temperature as the bath, however the total number of particles remains constant.

In this case, we fix V , N , T (so in comparison to the microcanonical ensemble, we fix

T but U is allowed to vary) and get

dW = 0 =⇒ dU − TdS ≤ 0, (2.1.7)
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which we can write as

dF ≤ 0, (2.1.8)

where F = U − TS is the Helmholtz free energy. This tells us that any spontaneous

change in the system leads to the Helmholtz free energy decreasing and that at equi-

librium, the Helmholtz free energy F is minimised.

The canonical ensemble [Fig. 2.1(b)] can be modified by also allowing the system

exchange particles with the heat bath. To describe this open system thermodynamically,

we need to consider the chemical potential µ, which is the energy required to insert one

particle from the bath into the system. Thus, the change in the energy of the system

when the number of particles in the system changes from N to N + dN is µdN and

this term now needs to be added to the right hand side of Eq. (2.1.1). In this ensemble

then T , V and µ are fixed, with internal energy U and number of particles N allowed

to vary. Therefore Eq.(2.1.3) becomes

dU = TdS − PdV + µdN. (2.1.9)

Since the volume of the system is fixed, this becomes

dU − TdS − µdN = 0, (2.1.10)

which implies that at equilibrium

dΩ = 0, (2.1.11)

where dΩ is the change in the grand potential Ω, which is defined as

Ω = U − TS − µN = F − µN. (2.1.12)
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Or, using the inequality in Eq.(2.1.1) we have dΩ ≤ 0. Thus in this system the grand

potential is minimised at equilibrium. This system is called the grand canonical ensem-

ble and is shown in Fig. 2.1(c). The dashed lines around the system indicate particles

are free to move in and out of the system. Similar to the canonical ensemble, the equi-

librium is reached when there are no more changes at constant T and µ and the grand

potential Ω is at a minimum.

Recall that the Helmholtz free energy is given as

F = U − TS. (2.1.13)

By considering the differential of this and also using Eq. (2.1.9), we obtain

dF = dU − SdT − TdS = −SdT − PdV + µdN. (2.1.14)

Therefore, by knowing F = F (T, V,N), many central thermodynamic variables can be

found as a derivative of F

P = −
(
∂F

∂V

)
T,N

, µ =

(
∂F

∂N

)
T,V

, S = −
(
∂F

∂T

)
V,N

. (2.1.15)

2.2 Partition function in the canonical ensemble

In a canonical ensemble, where we allow the exchange of heat and fix V , N and T , the

ensemble average of the energy can be calculated as

〈
H
〉

=

∫∫
H(rN ,pN)f(rN ,pN)drNdpN , (2.2.1)
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where H is the Hamiltonian in Eq. (2.0.2) and
∫

drN =
∫

dr1
∫

dr2 . . .
∫

drN ,
∫

dpN =∫
dp1

∫
dp2 . . .

∫
dpN . Here, f(rN ,pN) is the probability density that the system is

in a particular state and is normalised so that the integral of the probability density

function over all of the phase space is

∫∫
f(rN ,pN)drNdpN = 1. (2.2.2)

At equilibrium, the probability density f(rN ,pN) is given by the (Gibbs) Boltzmann

distribution [25]:

f
(
rN ,pN

)
=

1

N !h3N
exp

[
−H

(
rN ,pN

)
/(kBT )

]
ZN

. (2.2.3)

This has the division by N ! to prevent the over counting of states due to the fact that

particles are indistinguishable, h is Plank’s constant and it appears in the denominator

to make sure that the probability density function is correctly non-dimensionalised. We

use (kBT )−1 = β, which is known as Boltzmann’s factor, with kB being Boltzmann’s

constant, T is the temperature, and ZN is the partition function.

The partition function is an important quantity in statistical mechanics because

it determines all thermodynamic properties of the system being studied, as well as

ensuring that f
(
rN ,pN

)
is correctly normalised. It is defined as

ZN =
1

N !h3N

∫∫
exp

[
−βH

(
rN ,pN

)]
drNdpN , (2.2.4)

where we can see the normalisation from Eqs. (2.2.2) and (2.2.3) holds. Since the

momentum only appears in the kinetic energy term in the Hamiltonian, Eq. (2.2.4) can
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be rewritten as

ZN =
1

N !h3N

∫
exp

[
−β
(
Φ
(
rN
)

+ V
(
rN
))]

drN
∫

exp
[
−βK(pN)

]
dpN . (2.2.5)

The integral over all the momenta pN is straightforward, thus by using Eq. (2.0.3) and

the relation
∫∞
−∞ exp (−ax2) dx =

√
π/a, the second integral can be expressed as

∫
exp

[
−βK

(
pN
)]

dpN =

∫
exp

(
−β

N∑
i=1

p2
i

2m

)
dpN

=
N∏
i=1

∫
exp

(
−β p2

i

2m

)
dpi

=
N∏
i=1

(√
2πm

β

)3

=

(√
2πm

β

)3N

. (2.2.6)

We simplify this by writing

1

h3N

(√
2πm

β

)3N

=

(√
2πm

βh2

)3N

= Λ−3N , (2.2.7)

where Λ is the thermal de Broglie wavelength. Therefore the partition function can be

reduced to

ZN =
Λ−3N

N !

∫
exp

[
−β
(
Φ
(
rN
)

+ V
(
rN
))]

drN . (2.2.8)

We also note that the average energy can be written as

U =
〈
H
〉

=

∫∫
H
(
rN ,pN

)
f
(
rN ,pN

)
drNdpN

=
1

ZNh3NN !

∫∫
H
(
rN ,pN

)
exp

[
−βH

(
rN ,pN

)]
drNdpN

= − 1

ZN

∂ZN
∂β

= − ∂

∂β
ln (ZN) . (2.2.9)
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Note that in Eq. (2.2.9) we have a relationship between the internal energy of the

system (a thermodynamic quantity) and the partition function (a statistical mechanics

quantity). We can also show the relation

F = −kBT ln(ZN) (2.2.10)

is consistent with our definition of the Helmholtz free energy in Eq. (2.1.13). Since

β = (kBT )−1, rearranging Eq. (2.2.10), we get

βF = − ln(ZN). (2.2.11)

Taking derivatives with respect to β on both sides yields

∂

∂β
(βF ) = − ∂

∂β
(lnZN) = U (2.2.12)

by Eq. (2.2.9), which implies that

∂

∂β
(βF ) =

(
∂β

∂β

)
(F ) + β

∂F

∂β
= F + β

∂F

∂β
= U. (2.2.13)

Now

β
∂F

∂β
=

1

kBT

∂F

∂
(

1
kBT

) =
1

T

∂F

∂(T−1)
=
−T 2

T

∂F

∂T
= −T ∂F

∂T
, (2.2.14)

and thus from Eq. (2.2.13),

F − T ∂F
∂T

= U. (2.2.15)

From Eq. (2.1.15), we have ∂F
∂T

= −S for fixed V and N in our canonical ensemble, and

thus

F = U − TS. (2.2.16)
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If we assume the system is homogeneous, which means there is no external potential,

then the partition function of an ideal gas, where Φ = 0 and V = 0, is

Zid
N =

Λ−3N

N !
V N , (2.2.17)

where V N =
∫

drN is the volume of the system. Thus,

ln(Zid
N ) = ln(Λ−3NV N)− ln(N !). (2.2.18)

As N is large, by applying Stirling’s formula (ln y! ≈ y ln y − y for large y), we get

ln(Zid
N ) = N ln(Λ−3V N)−N lnN +N

= N

[
ln

(
Λ−3V

N

)
+ 1

]
, (2.2.19)

and since the number density in the system is ρ = N/V , substituting ln(Zid
N ) back into

Eq. (2.2.10) and rearranging we obtain

Fid
N

= kBT
[
ln
(
Λ3ρ
)
− 1
]
. (2.2.20)

Since the chemical potential can be obtained by differentiation of F from Eq. (2.1.15),

we have the following expression for the ideal gas chemical potential

µid =

(
∂F

∂N

)
T,V

= kBT ln
(
Λ3ρ
)
, (2.2.21)

where ρ = N/V is again used. The partition function can now be written in the form

ZN =
Zid
N

VN

∫
exp [−β (Φ + V)] drN . (2.2.22)
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Substituting back to Eq. (2.2.10) again gives

F = −kBT ln(Zid
N )− kBT ln

[∫
exp [−β (Φ + V)]

V N

]
drN

= Fid + Fex, (2.2.23)

where Fex is the excess Helmholtz free energy which includes contributions from both

the molecular interactions and the external potential energy for inhomogeneous systems

and Fid is the free energy of an ideal gas. To evaluate it, Fex must almost always be

approximated, although in one case it is known exactly, namely, for a 1D system of

hard rods. As we show below, for inhomogeneous systems, where ρ becomes ρ(r),

these quantities can be written as functionals of the density profile ρ(r). A particular

approximation that is commonly used for molecular or colloidal systems is that referred

to as ‘fundamental measure theory’, is discussed in Sec. 3.2.

2.3 Partition function in the grand canonical en-

semble

In the grand canonical ensemble, as discussed above, we allow for an exchange of par-

ticles between the system and reservoir and therefore fix T , V , µ. The appropriate free

energy is the grand potential energy Ω(T, V, µ) and is given by

Ω = F − µN, (2.3.1)

and the differential of the grand potential energy is therefore [c.f. Eq. (2.1.14)]

dΩ = dF − µdN −Ndµ = −SdT − PdV −Ndµ. (2.3.2)
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Thus, thermodynamic quantities can be expressed as the derivatives of the grand po-

tential energy Ω(T, V, µ) with respect to an appropriate variable, such as

S = −
(
∂Ω

∂T

)
V,µ

, P = −
(
∂Ω

∂V

)
µ,T

, N = −
(
∂Ω

∂µ

)
V,T

. (2.3.3)

In the grand canonical ensemble, the probability density function is expressed as

f(rN ,pN) =
exp [−β(H− µN)]

Ξ
, (2.3.4)

where the normalising factor Ξ is the grand canonical partition function

Ξ =
∞∑
N=0

1

h3NN !

∫∫
exp (−β(H− µN)) drNdpN

= Tr [exp [−β (H− µN)]] , (2.3.5)

where Tr is the trace operator [26], which is used as a shorthand notation for the integral

over all possible position, momenta and the sum over all possible numbers of particles,

and is

Tr(x) =
∞∑
N=0

1

h3NN !

∫∫
xdrNdpN . (2.3.6)

Thus the internal energy U = 〈H〉, i.e. the ensemble average ofH in the grand canonical

ensemble, is expressed as

〈
H
〉

=
∞∑
N=0

1

h3NN !

∫∫
H(rN ,pN)f(rN ,pN)drNdpN

= Tr (Hf) . (2.3.7)
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Moreover, the grand partition function can also be related to the grand potential in a

manner analogous to that in the canonical ensemble [see Eq. (2.2.10)] via

Ω = −kBT ln(Ξ). (2.3.8)

2.4 Thermodynamic foundations of classical density

functional theory (DFT)

Classical density functional theory (DFT) is a hugely powerful and widely used mi-

croscopic statistical mechanical theory for calculating the density profile ρ(r) for in-

homogeneous systems of interacting particles, where r = (x, y, z). An advantage of

DFT is that it gives a molecular-level detail description (as do, e.g. molecular dy-

namics computer simulations), but the computer time taken to solve DFT is typically

small, particularly when the fluid average density profile only varies in one direction

(e.g. perpendicular to the wall). DFT is especially suitable for determining excess

thermodynamic quantities, arising from inhomogeneities in the fluid density distribu-

tion due to the presence of interfaces. There are numerous works applying DFT to

study the wetting and drying interfacial phase behaviour of liquids – see for example

Refs. [17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

Now that we have a relationship between the thermodynamic grand potential and

the statistical mechanical partition function for a grand canonical system, we can give

an outline of the proof that minimising the grand potential gives an equilibrium state

of the system.

Firstly, we can express the grand potential as a functional of the probability density
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function f(rN ,pN), as suggested in [37],

Ω [f ] = Tr [f (H− µN + kBT ln f)] . (2.4.1)

If f = f ∗ is the equilibrium probability density in Eq. (2.3.4), which is a functional of

the Hamiltonian H and is independent of time t, then we have

Ω [f ∗] = Tr [f ∗ (H− µN + kBT ln f ∗)]

= Tr

{
exp [−β(H− µN)]

Ξ

[
H− µN + kBT

(
− 1

kBT
(H− µN)− ln Ξ

)]}
= Tr

[
exp [−β(H− µN)]

Ξ
(−kBT ln Ξ)

]
= −kBT ln Ξ

= Ω, (2.4.2)

which tells us that at equilibrium, the functional Ω[f ] in Eq. (2.4.1) equals the ther-

modynamic grand potential Ω of the system. On the other hand, if f is some other

arbitrarily chosen probability density function that is not the one at equilibrium, then

by using

H− µN = −kBT ln exp [−β (H− µN)] = −kBT ln (f ∗Ξ) (2.4.3)

together with Eq. (2.4.1) we find that

Ω [f ] = Tr [f (−kBT ln(f ∗Ξ) + kBT ln(f))]

= Tr [f (−kBT ln(f ∗)− kBT ln(Ξ) + kBT ln(f))]

= Ω + kBTTr [f ln(f)− f ln(f ∗)] (2.4.4)

which by the Gibbs inequality, we can prove that the term Tr [f(ln(f)− ln(f ∗))] ≥ 0
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for all f , which further implies that

Ω [f ] ≥ Ω [f ∗] = Ω. (2.4.5)

The equality only holds if f = f ∗. Further details of this proof can be found in [37].

This result shows that the equilibrium state of the system always has the lowest grand

potential energy. We will come back to this subject in Sec. 2.6 after we introduce the

particle densities.

Returning to Eq. (2.3.5) as in the canonical ensemble, the momentum term in the grand

partition function can be integrated out which gives [c.f. Eq. (2.2.6)]

Ξ =
∞∑
N=0

1

Λ3NN !

∫
exp [−β(V + Φ− µN)] drN . (2.4.6)

2.5 Particle densities

Our aim now is to express the grand potential free energy Ω as a functional of the

average one body density profile ρ(r). This is the probability density for finding a

particle located at position r in space [c.f. Eq. (2.2.20)]. Firstly, we introduce the

particle density operator

ρ̂(r) =
N∑
i=1

δ (r− ri) , (2.5.1)

where the δ(r− ri) is the Dirac δ-function. Note also that the total number of particles

N in the system can be expressed as

N =

∫
ρ̂(r)dr. (2.5.2)
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Similarly, we may rewrite the total contribution to Hamiltonian H due to the one body

external potential as

V(rN) =
N∑
i=1

Vext(ri) =

∫
ρ̂(r)Vext(r)dr. (2.5.3)

Analogous to Eq. (2.3.7), the average density ρ (r) can be calculated as the ensemble

average of the density operator:

ρ(r) =
〈
ρ̂ (r)

〉
= Tr [ρ̂ (r) f(r)]

=
∞∑
N=0

1

Λ3NN !

∫
ρ̂ (r) f (r) drN

=
1

Ξ

∞∑
N=0

1

Λ3NN !

∫ N∑
i=1

δ (r− ri) exp [−β(Φ + V − µN)] drN

=
1

Ξ

∞∑
N=1

1

Λ3N(N − 1)!

∫
exp [−β(Φ + V − µN)] drN−1

= ρ(1) (r) . (2.5.4)

This is the single (or one body) particle density, for an inhomogeneous fluid. Note that

it takes the form of an integral over all except one of the particle coordinates. When

the external potential V = 0 and the pair potential Φ = 0, then ρ(1) (r) = ρ = N/V ,

i.e. a constant. To obtain the probability density distribution function with particle

number n < N , we have

ρ(n) (r1, r2, ..., rn) =
1

Ξ

∞∑
N=n

1

Λ3N(N − n)!

∫
exp [−β(Φ + V − µN)] drn+1, drn+2, ..., drN ,

(2.5.5)
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which is an integral over N − n of the particle coordinates. This arises from the fact

that n-point particle density distribution functions are expressible in terms averages

over products of Dirac δ-functions. For example, when n = 2, the pair density is

ρ(2)(r1, r2) =
〈 N∑
i=1

N∑
j=1
j 6=i

δ (r1 − ri) δ (r2 − rj)
〉
, (2.5.6)

which tells us the probability of finding a pair of particles within the volume dr1 centred

at the point r1, and another particle in the volume dr2 centred at the point r2 (the

remaining N − 2 particles could be anywhere).

The pair distribution function is closely related to the radial distribution function

g(r), which describes how particles at a distance of r = |r| away from a given particle

are related to this reference particle, and for general n, is defined as

g(n) (r1, r2, ..., rn) =
ρ(n) (r1, r2, ..., rn)∏n

i=1 ρ
(1)(ri)

. (2.5.7)

For a bulk fluid, this simply reduces to

ρng(n) (r1, r2, ..., rn) = ρ(n) (r1, r2, ..., rn) . (2.5.8)

Hence, for the pair distribution function, where n = 2, we have

ρ2g(2)(r1, r2) = ρ(2)(r1, r2) = ρ(2)(|r1 − r2|) = ρ(2)(r12) = ρ2g(r12), (2.5.9)

where the above defines the bulk radial distribution function g(r). This is of particular
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importance as it relates to the total pair correlation function h(2)(r1, r2) via [38]

h(2)(r1, r2) = g(2)(r1, r2)− 1, (2.5.10)

which describes the total correlation in position between particle 1 and particle 2 at a

distance r12 away from each other. It is also related to the static structure factor of the

system via a Fourier transform, and hence can in principle be determined experimentally

through X-ray or neutron scattering [39].

For all fluids that are composed of spherical particles, when the particles are far

apart, i.e. when |r1 − r2| = r12 → ∞, the particles’ position become uncorrelated like

in an ideal gas, and g(r12) → 1. However, when the separation between particles are

less than the particle diameter, the radial distribution g(r12) ≈ 0 due to the strong

repulsive force. Between these two limits, a highly oscillating g(r12) could occur due

to the packing of particles. In Fig. 2.2, we plotted the radial distribution function g(r)

obtained using the Ornstein-Zernike equation and the Percus-Yevik closure relation [38]

for the Lennard Jones pair potential (defined later). At r ≈ σ, the radial distribution

is at its maximum which indicates that it is most likely to find two particles at this

separation. In contrast, at r ≈ 1.5σ, g(r) < 1, indicating a much lower probability of

finding particles separated at this distance from one another, due to packing.

To calculate h(2)(r1, r2), we can use the generalisation of the Ornstein and Zernike

(OZ) equation, which splits the total correlation function into a ‘direct’ part and an

‘indirect’ part [38]:

h(2)(r1, r2) = c(2)(r1, r2) +

∫
c(2)(r1, r3)ρ

(1)(r3)h
(2)(r3, r2)dr3 (2.5.11)

where c(2)(r1, r2) is the pair direct correlation function and the rest is the indirect
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Figure 2.2: The radial distribution function g(r) as a function of r/σ, based on the

Lennard-Jones pair potential, calculated using the Ornstein-Zernike equation, together

with the Percus-Yevick closure relation, for the density ρσ3 = 0.8.

contribution, which includes all effects of a particle 1 at r1, on another particle 2

at r2 via all the other particles in the system. Since at this stage c(2)(r1, r2) is not

defined, we need an additional equation, the ‘closure relation’, which relates c(2)(r1, r2)

to h(2)(r1, r2) and can be used together with the OZ equation in order to solve for the

total pair correlation function. The exact closure relation is given as [38]

c(2)(r) = h(2)(r)− ln
[
g(2)(r)

]
− βv(r) +B(r), (2.5.12)

where v(r) is the pair potential [see Eq. (2.0.5)], B(r) is the bridge function and is in
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general not known exactly and therefore must be approximated [38, 40]. An example of

a well known approximation which is particularly good for hard spheres is the Percus-

Yevick closure relation [38], which is defined as

c
(2)
PY(r) = (1− exp [−βv(r)])(h(2)(r) + 1). (2.5.13)

For purely repulsive and slowly varying pair potentials, another good approximation is

called the hypernetted chain closure relation (HNC), where the bridge function B(r) is

set to be zero:

c
(2)
HNC(r) = h(2)(r)− ln

[
g(2)(r)

]
− βv(r). (2.5.14)

2.6 Density functional theory

From Eq. (2.3.4), we can see that the equilibrium probability f ∗ is a functional of the

external potential Vext(r) through H = K + V + Φ, and from Eq. (2.5.4), we also see

that the equilibrium density ρ∗(r) is also a functional of Vext(r). We can then make a

proof by contradiction (see Ref. [37]) to conclude that two different density profiles can

not arise from the same external potential Vext(r). In other words, Vext(r) is uniquely

determined by ρ∗(r). Therefore, the equilibrium probability f ∗ is a unique functional

of the equilibrium density ρ∗(r), and

f ∗ = f ∗[ρ∗(r)]. (2.6.1)

Moreover,

Ω[f ∗] = Ω[ρ∗(r)], (2.6.2)
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which implies that the grand potential is minimised when the density profile is that

corresponding to

Ω[ρ(r)] ≥ Ω[ρ∗(r)] = Ω. (2.6.3)

We can also rewrite the total grand potential functional Ω[f ] as a functional of the one

body fluid density ρ(r), as follows

Ω [f ] = Ω [ρ(r)] = Tr [f (K + Φ + V − µN + kBT ln f)]

= Tr [f (K + Φ + kBT ln f)] +
〈
V (r)

〉
−
〈
µN
〉

= F [ρ(r)] +

∫
ρ(r)Vext(r)dr− µ

∫
ρ(r)dr, (2.6.4)

where F [ρ] is the intrinsic Helmholtz free energy functional and where F [ρ] = F −∫
ρ(r)Vext(r)dr and where F is the Helmholtz free energy. This quantity is normally

not known exactly because the multiple integrals in the trace operator Tr cannot be

evaluated exactly and therefore approximations must made. As mentioned above, the

equilibrium state of a system in the grand canonical ensemble occurs when Ω is min-

imised. Therefore the equilibrium density profile ρ(r) = ρ∗(r) must satisfy the Euler

Lagrange equation
δΩ

δρ(r)

∣∣∣∣
ρ=ρ∗

= 0. (2.6.5)

For an ideal gas, the intrinsic Helmholtz free energy functional is [see Eq. (2.2.20)]

Fid[ρ(r)] =

∫
kBTρ(r)(ln[Λ3ρ(r)]− 1)dr. (2.6.6)

Therefore the intrinsic Helmholtz free energy can also be split into two parts, i.e. F =

Fid +Fex, where Fid is the exact free energy contribution of an ideal gas and the excess
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part Fex contains all the information about the particle interactions. Thus,

F [ρ(r)] = kBT

∫
ρ(r)[ln(Λ3ρ(r)− 1)]dr + Fex[ρ(r)]. (2.6.7)

Inserting Eq. (2.6.7) into Eq. (2.6.4) we obtain

Ω[ρ(r)] = kBT

∫
ρ(r)[ln(Λ3ρ(r)− 1)]dr + Fex[ρ(r)] +

∫
ρ(r)(Vext(r)− µ)dr. (2.6.8)

To be able to find the equilibrium state, the functional Ω [ρ(r)] must be minimised with

respect to the density profiles ρ(r), giving

δΩ

δρ(r)
= kBT ln(Λ3ρ(r)) +

δFex
δρ

+ Vext(r)− µ = 0. (2.6.9)

The solution of this Euler-Lagrange equation gives the equilibrium density profile. It

may be rearranged to obtain

ρ(r) = Λ−3exp

(
β

[
−δFex

δρ
− Vext(r) + µ

])
. (2.6.10)

In general, this does not solve the problem, since Fex depends on ρ(r). However, for

an ideal gas, where Fex = 0, and also with Vext = 0, so that the density is a constant,

ρ(r) = ρb, we have µid = kBT ln(Λ3ρb), or equivalently

ρb = Λ−3exp (βµid) . (2.6.11)

We can also define the one body direct correlation function as

c(1)(r) = −β δFex[ρ(r)]

δρ(r)
. (2.6.12)

35



CHAPTER 2. STATISTICAL MECHANICS

Taking a further functional derivative of the excess part of the intrinsic free energy Fex
with respect to the density generates the two body direct correlation function

c(2)(r1, r2) =
δc(1)(r1)

δρ(r2)
= −β δ

2Fex[ρ(r1)]

δρ(r1)δρ(r2)
. (2.6.13)

If we evaluate c(2)(r1, r2) for the equilibrium fluid profile, ρ(r), then this is the inho-

mogeneous direct correlation function in the Ornstein-Zernike equation in Eq. (2.5.11)

(see Ref. [26] for proof). Also, when we set ρ(r) = ρb and Vext = 0 in Eq. (2.6.10)

corresponding to a uniform bulk fluid, we obtain

µ = kBT ln(Λ3ρb)− kBTc(1)[ρb]. (2.6.14)

Hence, we see that c(1)[ρb] = −βµex, where µex is the excess (over ideal gas Eq. (2.2.21))

contribution to the chemical potential. Substituting this into Eq. (2.6.14), we obtain

ρ(r) = ρbexp

(
β

[
−δFex

δρ
(r)− Vext(r) + µex

])
. (2.6.15)

This is the form usually used for solving DFT numerically using a Picard iterative algo-

rithm. The Picard iterative process consists of constructing a sequence of approximate

solutions, indexed by the integer k, such that the (k + 1)th approximation is obtained

from the previous kth approximation, and with each successively closer to the true

density profile. We start by guessing an initial density profile (for example the ideal gas

result), and calculate a new profile ρrhs from the right hand side of Eq. (2.6.15). Then,

a small fraction of this new profile, ρrhs is mixed with the previous approximation for

the profile ρk, to compute the new approximation ρk+1 [41]:

ρk+1 = αρrhs + (1− α)ρk. (2.6.16)
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The process is then iterated until it converges and a desired tolerance is achieved. Here,

α is the mixing parameter, which typically is chosen in the range 0.1 > α > 0.01. It

often needs to be small for the first few iterations (small k) where the density profiles are

far from the equilibrium profile, to prevent the iterative algorithm becoming unstable,

e.g. leading to too large a value of the density. Often the value of α can subsequently

be increased to a larger number at a later stage to enable faster convergence. See Ref.

[41] for further information on choosing the value of α in Picard iteration.
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Approximations Used in Density

Functional Theory

The excess intrinsic Helmholtz free energy functional Fex is still unknown since the the

trace operator Tr in (2.6.4) cannot be in general evaluated exactly. To treat a system

using DFT, we must develop an approximation for Fex. Here, Fex[ρ(r)] is approximated

using a standard mean field DFT functional, which treats the attractive parts of the

inter-particle potential via a simple van der Waals mean field theory [26, 38, 31, 32, 41,

42], and the repulsive part of the interactions via a functional developed for fluids of

hard spheres.

3.1 Hard spheres

One of the main challenges in DFT is to obtain an accurate approximation for the

excess Helmholtz free energy Fex functional. The form of this functional depends on

the nature of the interactions between the particles. These typically consist of strong
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repulsion at a short distance between the centres of the particles and a weak attraction

at longer distances. There are various assumptions that are made concerning the form

of the particle interactions and the simplest model of a fluid is to assume a system

consisting of hard spheres. Suppose the fluid is composed of particles interacting via

the pair potential

vhs(r) =

∞ if 0 < r ≤ σ,

0 if σ < r.

(3.1.1)

where r := |ri−rj| is the separation distance between centres of a pair of particles i and

j, and where σ is the hard sphere diameter. It is also the closest distance two particles

can approach one another. For particles interacting solely via the potential Eq. (3.1.1),

there are no interactions between the particles when they are separated by a distance

that is greater than σ.

For hard-spheres in 1D (i.e. a fluid of hard rods), with only nearest neighbour

interactions, the excess intrinsic Helmholtz free energy functional Fhr is known exactly

and is given by [43, 44]

Fex[ρ] ≡ Fhr = − 1

β

∫
n
(1D)
0 (z) ln[1− n(1D)

1 (z)]dz, (3.1.2)

where n
(1D)
α (z) is a set of weighted density and is defined as

n(1D)
α (z) =

∫
ρ(z′)ω(1D)

α (z − z′)dz′, (3.1.3)

with α = 0, 1 and ω
(1D)
α being weight functions, where the first is

ω
(1D)
0 (z) =

1

2
(δ(z −R) + δ(z +R)) , (3.1.4)
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which corresponds to Dirac delta functions on the ends of the hard rods, which geo-

metrically is the surface of the 1D particle, and the second weight function is

ω
(1D)
1 (z) = Θ(R− |z|), (3.1.5)

where Θ(z) is the Heaviside step function and R = σ/2 is half the length of the rod.

This weight function geometrically corresponds to the 1D ‘volume’ of the rod.

3.2 Fundamental measure theory

To give a good approximation for the excess intrinsic Helmholtz energy for a 3D system

of hard spheres Fhs, we use fundamental measure theory (FMT) [41, 31, 42, 38] which

is arguably the most successful weighted density approximation (WDA). As a starting

point, Rosenfeld considered the excess free energy functional which is valid at low

density limit (where only lower order terms in the density contribute) and is expressed

as

βFhs = −1

2

∫∫
ρ(r)ρ(r′)f(|r− r′|)drdr′ +O(ρ3) (3.2.1)

where f(|r− r′|) is the Mayer function. For a system with particles interacting via the

pair potential v(r), we have

f(r) = exp (−βv(r))− 1. (3.2.2)

If the particles interacts via the hard sphere potential, defined in Eq. (3.1.1), we have

f(r) =

−1 if 0 < r ≤ σ,

0 if σ < r.

(3.2.3)
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This Mayer function can be decomposed as follows

−f(r) = ω3 ⊗ ω0 + ω0 ⊗ ω3 + ω2 ⊗ ω1 + ω1 ⊗ ω2 −w2 ⊗w1 −w1 ⊗w2 (3.2.4)

are weight functions which have a similar structure to the weight functions found in

1D, Eqs. (3.1.4) and (3.1.5), but extended to 3D. Together theses are [42, 45]

ω3(r) = Θ(R− r),

ω2(r) = δ(R− r),

ω1(r) =
ω2(r)

4πR
,

ω0(r) =
ω2(r)

4πR2
,

w2(r) =
r

r
δ(R− r),

w1(r) =
w2(r)

4πR
,

where Θ(r) and δ(r) denote the Heaviside step function and the Dirac δ-function func-

tion respectively, and R = σ/2 is the radius of the hard sphere. The symbol ⊗ denotes

the convolution, such as

ωα ⊗ ωβ(r) =

∫
ωα(r′)ωβ(r− r′)dr′ (3.2.5)

with α, β = 0, 1, 2, 3. Here we have four scalar weight functions ωα(r), which correspond

to four fundamental measures for the sphere and are known as: volume V (α=3), surface

area S (α=2), radius R (α=1), and the Euler characteristic (α=0). There are also two

vector weight functions wα(r). The convolution of the density profile ρ(r) with different
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weight functions generates a set of weighted densities {nα(r)}, i.e.

nα(r) =

∫
ρ(r′)ωα(r− r′)dr′. (3.2.6)

For 1D rods, the exact excess free energy functional can be expressed as a function of a

single weighted density. Following the structure of this exact model, Rosenfeld defined

Fex by

Fhs =

∫
Φ({nα})dr, (3.2.7)

where Φ({nα}) is a function of the set of weighted densities {nα(r)} and is constructed

as

Φ = φ1(n3)n0 + φ2(n3)(n1n2 − n1 · n2) + φ4(n3)(n
3
2 − 3n2n2 · n2) (3.2.8)

where the φi functions are calculated such that the exact low density limit in Eq. (3.2.1)

is recovered and also recovers the Percus-Yevick compressibility equation of state [46]

and are given as

φ1(n3) = − ln(1− n3), (3.2.9)

φ2(n3) =
1

1− n3

, (3.2.10)

φ4(n3) =
1

24π(1− n3)2
. (3.2.11)

Hence, the Rosenfeld version of FMT [42] which uses both scalar and vectorial weighted

densities and is given by

Φ(nα) = −n0 ln(1− n3) +
n1n2 − n1 · n2

1− n3

+
(n3

2 − 3n2n2 · n2)

24π(1− n3)2
. (3.2.12)

In bulk, the vector weighted densities vanish and the scalar weighted densities are

just the convolution of the bulk density and the weight function [41]. Note that if
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the weighted density n3(r) > 1, Eq. (3.2.12) becomes undefined. Of course, this is

impossible physically, since n3 is the local packing fraction. One draw back of the

original version of Rosenfeld’s FMT is that it does not describe the freezing transition.

There are other modified versions such as the White-Bear of FMT [47] and the 2D

FMT for hard disks [41]. However, for the situation to which we apply the DFT here,

Rosenfeld’s original version is sufficiently accurate.

3.3 Mean field approximation for the attraction

In the previous subsection we described the approximation for the excess Helmholtz

free energy functional Fhs for hard spheres. However, the hard sphere model is not

very realistic for most systems since in this model there are only repulsive forces but

no attractive forces present, which means there is only a single fluid phase with no

distinction between a liquid and gas [38]. In reality, fluids are not composed of purely

repulsive particles. An alternative model contains both the short ranged repulsion and

the longer ranged attractive interaction and can be split as follows

v(r, r′) = v0(r, r
′) + λ̃v1(r, r

′), (3.3.1)

where v0(r, r
′) is the the repulsive part of the pair potential, which is treated via the

hard sphere potential, and v1(r, r
′) is the perturbation and is the attractive part. The

parameter λ̃ can be varied continuously from 0 to 1, when λ̃ = 0 the perturbation van-

ishes and corresponds to purely repulsive interactions, and with λ̃ = 1 the perturbation

is added and corresponds to the full system with attractive interactions.

For a system with pairwise additive interactions between particles as defined in

Eq. (2.0.5), we can write the partition function Eq. (2.4.6) in the grand canonical
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ensemble as

Ξ =
∞∑
N=0

1

Λ3NN !

∫
exp (−β (V − µN))

× exp

−β2
∫∫ N∑

i=1

N∑
j=1
j 6=i

δ (r− ri) δ (r′ − rj) v(r, r′)drdr′

 drN . (3.3.2)

Inserting the above equation back into Eq. (2.3.8) and taking the derivative with respect

to the pair potential v1(r, r
′) yields [c.f. Eq. (2.5.5)]:

δΩ

δv(r, r′)
= −kBT

δ ln Ξ

δv(r, r′)

=
1

2
〈
N∑
i=1

N∑
j=1
j 6=i

δ (r− ri) δ (r′ − rj)〉

=
1

2
ρ(2)(r, r′) =

δFex
δv(r, r′)

. (3.3.3)

Integrating1 this we get

Fex[ρ(r)] = F0[ρ(r)] +
1

2

∫ 1

0

dλ̃

∫∫
ρ(2)(r, r′; λ̃)v1(r, r

′)drdr′. (3.3.4)

where F0 ≈ Fhs[ρ(r)] is the free energy functional contribution from the repulsive part

of the pair potential, which in our model is the excess Helmholtz free energy functional

for the hard sphere fluid Fhs (where λ̃ = 0). If we make another approximation, by

1This is done using the differential version of Eq. (3.3.3)

δF =
1

2

∫∫
ρ(2)(r, r′)δv(r, r′)drdr′

and also noting from Eq. (3.3.1) that δv = v1dλ̃.
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neglecting in Eq. (3.3.4) correlations between the fluid particles so that g(r, r′) ≈ 1, the

two body density distribution function is just the product of one body densities, i.e.

ρ(2)(r, r′; λ̃) ≈ ρ(r)ρ(r′). (3.3.5)

Hence Eq. (3.3.4) reduces to

Fex[ρ(r)] = Fhs +
1

2

∫∫
ρ(r)ρ(r′)v1(|(r− r′)|)drdr′, (3.3.6)

where v1(|r− r′|) is the attractive part of the pair potential, which is negative and

depends continuously on the distance |r− r′|. This approximation is called a mean-

field or van der Waals approximation [31, 38]. So, although it appears that we have

made the ideal-gas approximation for g(r) in Eq. (3.3.6), actually recent work has shown

this approximation is actually better than might be suggested by Eq. (3.3.5), meaning

that the correlation function obtained from calculating g(r) in the so called test particle

limit (where one fixes a particle and calculates the density distribution around it), is

very different from the ideal gas result and is actually rather accurate [48].

There are two forms for the attractive pair potential v1(r, r
′) that are considered

in this thesis. A simple but commonly used model form is the 12 − 6 Lennard-Jones

potential [12, 38, 49], which gives good approximations for the potential between a pair

of molecules and is

vLJ1 (r) = ε

[(σ
r

)12
−
(σ
r

)6]
, (3.3.7)

where the parameter ε determines the depth of the attractive well in this interaction

potential. The Pauli-repulsion between the cores of atoms is described by the repulsive

term r−12 at short range. The weaker, longer ranged attraction that arises from induced

dipole-induced dipole interactions between molecule is modelled by the term ∼ r−6.
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Another commonly used model for the attractive part of the potential v1(r, r
′) is

the following Yukawa potential

vY1 (r) =

 −ε if 0 < r ≤ σ,

−ε exp(−(r−σ)/λ)
r/σ

if σ < r,

(3.3.8)

where the range of the potential is defined by the length parameter λ and the strength

of the attraction is determined by the interaction energy parameter ε. A plot of the

pair potential (3.3.8) is displayed in Fig. 3.1 for λ = σ, the value used throughout this

thesis. We use this Yukawa model potential because it is a widely studied model fluid in

DFT, see e.g. Refs. [50, 51, 28, 52, 53] for a few examples from over the years, providing

a good model for simple liquids [38].

3.4 Bulk fluid phase diagram

For two different phases (e.g. the liquid and the vapour) to coexist in thermodynamic

equilibrium, the following conditions need to be satisfied:

Tl = Tv,

Pl = Pv,

µl = µv,

where the subscripts l and v corresponds to liquid phase and vapour phase, and T , P

and µ are the temperature, pressure and chemical potential respectively. If we set the

external potential to be zero, i.e. Vext = 0, then the fluid density ρ(r) = ρ = N/V

is a constant (uniform density), where N is the average number of particles in the
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Figure 3.1: The hard-sphere plus Yukawa tail pair potential, i.e. (3.1.1) + (3.3.8), with

λ = σ, which is the interaction potential between the fluid particles in our system,

plotted as a function of r, the distance between the centres of the particles. The

parameter ε determines the strength of the attraction for r > σ, where σ is the diameter

of the (hard) cores of the particles.

system and V is the volume. Substituting this into Eqs. (2.6.7) and (3.3.6) to obtain

the Helmholtz free energy per volume f as

f =
F

V
= kBTρ(ln ρ− 1) + Fhs(ρ) +

1

2
ρ2
∫
v1(r)dr. (3.4.1)
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With the Rosenfeld version of FMT and the Yukawa pair potential, we can write f as

f =
F

V
= kBTρ(ln ρ− 1)− ρ ln(1− ηp) +

πσ3ρ2

2(1− ηp)

+
π2σ6ρ3

24(1− ηp)2
− 2περ2(1 + z)

z2
− 2περ2

6
. (3.4.2)

where ηp = 1
6
πσ3ρ is the packing fraction. Recalling that Eq. (2.1.14) is for the pressure,

we obtain

P (ρ) = −
(
∂F

∂V

)
N,T

= ρ
∂f

∂ρ
− f, (3.4.3)

and the chemical potential

µ(ρ) =

(
∂F

∂N

)
V,T

=
∂f

∂ρ
. (3.4.4)

Thus the coexisting liquid and vapour densities can be found as the solution to the

equations

P (ρl) = P (ρv), (3.4.5)

µ(ρl) = µ(ρv), (3.4.6)

which is equivalent to solving

∂f

∂ρ

∣∣∣∣
ρ=ρl

=
∂f

∂ρ

∣∣∣∣
ρ=ρv

, (3.4.7)

[
ρ
∂f

∂ρ
− f

]
ρ=ρl

=

[
ρ
∂f

∂ρ
− f

]
ρ=ρv

. (3.4.8)

From these two relations, we can then write down a set of simultaneous equations for

the coexisting vapour and liquid densities, ρv and ρl, respectively, which are then solved

for numerically over a range of temperatures to obtain the bulk fluid binodal [38].
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Figure 3.2: Bulk fluid phase diagram of the fluid with hard-sphere plus Yukawa tail

pair potential in the temperature versus density plane, for the system with λ = σ and

z = σ. The solid line corresponds to the binodal curve and the dashed line corresponds

to the spinodal curve.

In Fig. 3.2 we display the resulting bulk fluid phase diagram, showing the binodal

curve giving the two distinct densities of the vapour and liquid phases at bulk coex-

istence. As the temperature T is increased, the density difference between the two

coexisting phases decreases and finally becomes zero at the critical temperature Tc.

The fluid in the area of the phase diagram outside the binodal curve is stable and phase

separation no longer occurs, this corresponds to the single phase region. The spinodal

curve shows the boundary of instability and is determined where the curvature of the
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free energy is zero
∂2f

∂ρ2
= 0. (3.4.9)

The region inside the spinodal curve (within the region where two phase coexistence

occurs) is where a uniform phase with the given density will phase separate sponta-

neously. In contrast, for densities between the spinodal and the binodal curves, phase

separation is a nucleated process, with a free energy barrier that must be surmounted

by thermal fluctuations [54].

3.5 Fluids at interfaces

For a system at bulk vapour liquid coexistence, we find that the average one body

density ρ(r) takes a constant value in the bulk of the two distinct phases, but varies

smoothly through the interfacial region. In this case, the surface makes a contribution

to the free energy. Since both the liquid and the vapour density have the same grand

potential energy at coexistence, the free energy cost of having such an interface can be

defined as the excess grand potential per unit area. A density profile for a system with

periodic boundary conditions is shown in Fig. 3.3. Hence we have,

γ =
Ω− Ωb

A
=

Ωex

A
, (3.5.1)

where A is the interfacial area, γ is the interfacial tension, the total grand potential

Ω is divided into a bulk contribution Ωb, i.e. fluid with no interface, and a surface

excess contribution Ωex. Ωb = −PV is the grand potential for a bulk system with no

interfaces, V is the volume of the whole system, (it is the length of the system in a

1D calculation) and P is the pressure of the coexisting bulk phases. In our system, we

assume that the fluid density only varies in the z direction and has periodic boundary
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Figure 3.3: Equilibrium density profile calculated at liquid vapour coexistence using

DFT, showing two liquid-vapour interfaces. We assume the system only varies in the

z-direction, so the system is a slab of liquid next to a slab of vapour, periodically

repeated.

conditions, which leads to there being two vapour liquid interfaces (see Fig. 3.3). Thus,

the liquid vapour surface tension γlv can be calculated as

γlv =
Ω− Ωb

2A
=

Ω + PV

2A
. (3.5.2)
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3.6 Binding potential

In the presence of an external field, Vext, due to the wall, we have another interface in the

system, namely that between the wall and the fluid. Moreover, when this interface and

the liquid-vapour interface become sufficiently close to one another, they can influence

one another. The fluid particles near the solid wall experience attractive van der Waals

forces from both the fluid molecules and solid molecules. Depending on the balance of

the forces, sometimes the system can lower its free energy by increasing the distance

between the two interfaces, which leads to a macroscopically thick layer of fluid in

contact with the wall even when the vapour is the equilibrium bulk phase. Similarly,

when the bulk phase is the liquid, sometimes a thick film of the vapour is favoured at

the wall, this is drying. Hence, minimising the liquid-vapour surface area is no longer

necessarily the condition for minimising the free energy of the system. We must also

include additional contributions to the grand potential free energy. When there is a film

of liquid on the solid surface, there is the excess free energy (interfacial tension) due

to this interface, i.e. γsl. Additionally, when these interfaces are close to one another,

there are contributions from interaction between these two interfaces that are included

via the so called binding potential g(h), where h is the distance between the interfaces,

i.e. the thickness of the liquid film. A schematic diagram is shown in Fig. 3.4. The left

hand figure shows a fluid confined in a volume V , in contact with a planar substrate

with area A. The height of the whole system is L and with density distribution ρ(r).

However, due to the surface interactions and the fact that the bulk phase is close to

liquid-vapour phase coexistence, a thick layer of vapour, with thickness h, is adsorbed

at the wall. In an analogous fashion, in the right hand panel of Fig. 3.4, the equilibrium

consists of a thick film of liquid adsorbed at the wall in coexistence with the bulk vapour

phase; the wall is wet by a liquid film of thickness h.
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Figure 3.4: A schematic diagram of the system with: (a) a uniform thickness layer of

vapour adsorbed at the interface between a planar solid substrate and the bulk liquid.

The thickness of the vapour film is h. This corresponds to considering a bubble. (b) A

liquid film layer in contact with the solid substrate, which corresponds to a liquid drop.

Note, however, that from the microscopic (statistical mechanics) viewpoint, the

adsorption is a better defined and arguably more useful measure of the amount of

a particular phase on the substrate, than the film thickness h [4]. This is because

when the amount of the phase adsorbed on the substrate is small and on microscopic

length scales, e.g. when there is sub-monolayer adsorption at an interface [4, 6, 55], then

talking about a film height that is a fraction of a molecule does not make physical sense,

whilst the adsorption is well-defined. In fact, when the vapour pressure is non-zero,

the adsorption on a substrate can in principle even be negative, so in this case, talking

about a film height is meaningless. The total adsorption on the substrate is calculated

from the fluid density profile as

Γ =
1

A

∫
V

(ρ(r)− ρb) dr, (3.6.1)
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where ρb is the bulk fluid density, which in the context of liquids on surfaces with

the bulk phase being the gas, then ρb = ρv, where ρv is the vapour density at bulk

coexistence. However, we also consider bubbles on surfaces here and in this case ρb = ρl,

the liquid density.

If we assume the z-axis is perpendicular to the substrate, which has its planar surface

corresponding to the z = 0 plane in a Cartesian coordinate system, then we can define

the local adsorption as

Γ(x, y) =

∫ ∞
0

[ρ(x, y, z)− ρb] dz. (3.6.2)

The corresponding height h(x, y), quantifying the amount of the phase that is on the

substrate, may be defined in a number of ways. This lack of a unique definition is

another reason why Γ(x, y) is a better measure. For example, one could define h(x, y)

to be the position where the average density ρ(x, y, z = h) is given as (ρb+ρa)/2, i.e. the

average of the bulk density and the density of the phase adsorbed on the substrate, ρa.

However, here we prefer to define the film height h as [4, 6, 55]

h(x, y) ≡ Γ(x, y)

ρa − ρb
. (3.6.3)

In the situation where the bulk phase is the vapour (with density ρb = ρv) and the

phase adsorbed on the surface is the liquid (with density ρa = ρl), then this is a widely

used definition. Note also that in the case when the liquid is the bulk phase (ρb = ρl)

and it is the vapour that is adsorbed at the interface (ρb = ρv), then in general both of

the quantities in the numerator and denominator on the right hand side of Eq. (3.6.3)

are negative, but of course still giving a positive thickness h.

Consider the two systems illustrated in Fig. 3.4. Treating them in the grand canon-
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ical ensemble, the grand potential Ω is the relevant free energy to consider, which is

minimised when the system is at equilibrium. To describe the interfacial phase be-

haviour, we follow the usual procedure [56] and consider surface excess quantities; in

this case, as mentioned above, it is the total excess grand potential Ωex, in terms of

adsorption is then for a liquid film at the wall with the vapour being the bulk phase we

have

Ωex(Γ) = Aγlv + Aγsl + Agl(Γ), (3.6.4)

and for the vapour adsorbed at the wall with the bulk being the liquid, we have

Ωex(Γ) = Aγlv + Aγsv + Agv(Γ). (3.6.5)

The interfacial tensions γsl and γsv are the solid liquid and solid vapour surface tension

respectively, and can be calculated using DFT in a similar approach to γlv (c.f. Eq. (3.5.2))

[26, 38, 32, 33], except there is only a single interface and hence the result does not

need to be divided by 2. Equations (3.6.4) and (3.6.5) assume the system is at bulk

liquid vapour phase coexistence.

More generally, for a bulk system having the same volume V and pressure P , but

with no interface, the grand potential is Ωb = −PV , hence using Ωex = Ω − Ωb, and

noting that the volume of the phase adsorbed at the wall is Ah, the excess grand

potential per unit area can be split into the following contributions for the case when

the vapour is adsorbed at the wall

Ωex

A
=

Ω− Ωb

A
= h(Pl − Pv) + γlv + γsv + gv(Γ), (3.6.6)

and an analogous formula for the case in Fig. 3.4 (b). Here, Pl−Pv = δP is the pressure

difference between the pressure of the bulk liquid and that of the corresponding vapour
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at the same chemical potential µ. If the system is at bulk vapour-liquid coexistence,

then we have Pl = Pv and Eq. (3.6.6) reduces to Eq. (3.6.5). The above equation may

be viewed as defining the binding potential: it is the ‘remainder’ after the other terms

have been subtracted, i.e. at bulk vapour-liquid coexistence, with δP = 0, the binding

potential can be calculated using [57]

gv(Γ) =
Ω + PV

A
− γlv − γsv. (3.6.7)

Similarly, the binding potential of a system with a film of liquid with adsorption Γ is:

gl(Γ) =
Ω + pV

A
− γlv − γsl. (3.6.8)

Solving the Euler Lagrange equation Eq. (2.6.9) as described at the end of Sec. 2 gives

the equilibrium fluid density profile ρ∗ that has an adsorption Γ0, as determined by

Eq. (3.6.2). Using this density profile as an input and substituting into Eq. (2.6.8) we

obtain the value of the grand potential energy of our system. Together with Eq. (3.6.7),

we can find the minimum value of the binding potential g(Γ0), i.e. for bulk vapour, we

have [1]

gl(Γ0) = γsv − γsl − γlv, (3.6.9)

and for the case where the bulk phase is the liquid

gv(Γ0) = γsl − γsv − γlv. (3.6.10)

When |Γ| → ∞, the two interfaces are far from one another, so they do not influence

each other, and therefore we have gl(Γ)→ 0 and gv(Γ)→ 0.

Using the Young equation [2] γlv cos θ = γsv−γsl, we obtain from (3.6.9) and (3.6.10)
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the following two results [1, 58, 59]

cos θ = 1 +
gl(Γ0)

γlv
, (3.6.11)

cos θ = −1− gv(Γ0)

γlv
, (3.6.12)

where θ is the equilibrium contact angle, measured as in the usual definition as the

angle through the liquid phase. Therefore, this is the outer angle on bubbles and so

we have the opposite sign in the second equation compared to when considering liquid

drops.

To find the full binding potential curve gl(Γ) and gv(Γ) using DFT, one must calcu-

late for a series of constrained density profiles, the constraint being that the adsorption

at the wall Γ (rather than the adsorbed film thickness h) takes a series of specified

values. This can be done by applying the ficticious potential approach proposed in

Ref. [60] and further developed by Hughes et al. [4, 6]. This method constrains the

adsorption of the system to be a desired value by modifying the Picard iteration by

replacing ρrhs in Eq. (2.6.16) with

ρnew = (ρrhs − ρb)
Γd

Γrhs
+ ρb, (3.6.13)

where Γrhs is the adsorption corresponding to the profile ρrhs calculated via Eq. (3.6.1)

and Γd is the desired value of the adsorption.

The required constraint takes the form of a fictitious external potential that can

be calculated self-consistently as part of the algorithm for determining the constrained

density profile. This desired adsorption is then increased slightly, using the previous

calculated density profile as an initial approximation, we find the new constrained
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equilibrium density profile that corresponds to the specified value of the adsorption,

which gives us the next value of the binding potential. Repeating this procedure we

get a series of points with each point being the value of the binding potential for a

particular adsorption.

Hughes et al. [4, 6] applied the method to determine the binding potential for films of

liquid adsorbed on a surface in contact with a bulk vapour. Taking the resulting binding

potentials together with the IH results in droplet profiles are in excellent agreement

with those obtained from solving the full DFT to determine the droplet profile [4,

6], validating the overall coarse graining approach. Further validation comes from

Ref. [61] where two other completely different approaches for obtaining g(Γ) were used

that nonetheless produce identical results. These two approaches are: (i) applying

the nudged-elastic-band algorithm to connect the sequence of density profiles required

to calculate g and (ii) a method based on an overdamped nonconserved dynamics to

explore the underlying free-energy landscape. For liquid droplets, the resulting binding

potential can also be incorperated into a thin film hydrodynamic equation to study the

dynamics of liquid droplets on surfaces [55], which will be discussed in Chap. 6.
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Thin Film Equation

The results from DFT enable us to accurately describe the binding potential allowing to

bridge the gap from the microscopic properties of particles to the mesoscopic collective

behaviour, e.g. to the wetting behaviour of fluids. In order to investigate how the

non-equilibrium dynamics over time and the shape of a drop over time are related to

the microscopic interactions between particles, the thin film equation is applied. This

equation (originating from hydrodynamics, as we derive below) shows that the time

evolution of the thin film of fluid on a solid substrate h (x, t) is given by

∂h

∂t
=

∂

∂x

[
h3

3η

∂

∂x

δFIH

δh

]
, (4.0.1)

where h(x, t) is the liquid film thickness at time t and position x on a solid substrate,

i.e. for simplicity we assume that the profile only varies in one direction over the

surface, η is the fluid dynamic viscosity and

FIH [h] =

∫ g (h) + γlv

√
1 +

(
∂h

∂x

)2
 dx. (4.0.2)
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is the free energy of the system, which is the form in Eq. (1.3.9) reduces to when the

film height profile varies only in one direction.

In the following we derive this equation from Navier-Stokes equation, using what is

referred to as the long-wave or lubracation approximation [62, 63]. It reduces the full

Navier-Stokes equations to a nonlinear fourth order partial differential equation which

is simpler to solve and computationally much more efficient. Consider the particular

example of the motion of a thin liquid film over a surface. The movement of this droplet

is driven by various properties. Assume the fluid is an incompressible Newtonian viscous

fluid of constant density ρ and dynamic viscosity η. For simplicity in the derivation

we assume the system is two dimensional. However, the argument generalises straight

forwardly for three dimensions. The fluid free surface is given by z = h (x, t). P (x, z, t)

is the pressure in the fluid and the liquid is moving in a positive x-direction with velocity

v = (u,w), where u and w are the velocity components along the x-direction and the

z-direction. We know from fluid mechanics that the evolution of the fluid and its free

surface, in the absence of body forces, obeys the Navier-Stokes equations, which are

expressed based on the principle of conservation of mass and momentum. Thus for the

x-component and z-component momentum equations we have

ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −∂P

∂x
+ η

(
∂2u

∂x2
+
∂2u

∂z2

)
(4.0.3)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −∂P

∂z
+ η

(
∂2w

∂x2
+
∂2w

∂z2

)
, (4.0.4)

and the continuity equation is
∂u

∂x
+
∂w

∂z
= 0. (4.0.5)

To proceed, the mathematical analysis is most easily understood with dimensionless
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variables, so we non-dimensionalise, by scaling

x = Lx∗, z = εLz∗, h = εLh∗, u = Uu∗, w = εUw∗, P =
3ηU

ε2L
P ∗, t =

L

U
t∗,

where the ratio of the film height to its characteristic length, ε = H
L
� 1 is assumed as

the film we considered is sufficiently thin so the variations along the horizontal direc-

tion are much more important than the one normal to the surface, x∗, z∗, u∗, w∗, t∗, P ∗

are dimensionless quantities, the pressure scale is chosen to balance the pressure and

viscosity force. U is the characteristic velocity scale, L is the characteristic length scale

and T is the characteristic time scale.

By substituting the above non-dimensional expressions into the above governing

equations, we obtain

ρUL

η

(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗

)
= − 3

ε2
∂P ∗

∂x∗
+
∂2u∗

∂x∗2
+

1

ε2
∂2u∗

∂z∗2
, (4.0.6)

ε
ρUL

η

(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗

)
= − 3

ε3
∂P ∗

∂z∗
+ ε

∂2w∗

∂x∗2
+

1

ε

∂2w∗

∂z∗2
, (4.0.7)

∂u∗

∂x∗
+
∂w∗

∂z∗
= 0, (4.0.8)

where Re = ρUL
η

is the dimensionless Reynolds number that corresponds to the ratio of

the velocity and viscosity. Multiplying Eq. (4.0.6) by ε2 and Eq. (4.0.7) by ε3 gives

ε2Re

(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗

)
= −3

∂P ∗

∂x∗
+ ε2

∂2u∗

∂x∗2
+
∂2u∗

∂z∗2
, (4.0.9)

ε4Re

(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗

)
= −3

∂P ∗

∂z∗
+ ε4

∂2w∗

∂x∗2
+ ε2

∂2w∗

∂z∗2
. (4.0.10)

Taking the limit as ε −→ 0, and assuming that ε2Re � 1, the Navier-Stokes and
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continuity equation can then be reduced to the simplified forms [64]

∂2u∗

∂z∗2
− 3

∂P ∗

∂x∗
= 0, (4.0.11)

−3
∂P ∗

∂z∗
= 0, (4.0.12)

∂u∗

∂x∗
+
∂w∗

∂z∗
= 0. (4.0.13)

At the solid fluid surface, the no slip and no penetration boundary conditions are

assumed,

u∗ (x∗, 0) = 0, w∗ (x∗, 0) = 0, (4.0.14)

and at the liquid vapour interface, the tangential stress balance is applied as1 ,

∂u∗

∂z∗
= 0 on z∗ = h∗. (4.0.15)

At the free interface, where we have the kinematic boundary condition since there is

no flux across the free interface,

∂h∗

∂t∗
+ u∗

∂h∗

∂x∗
= w∗ on z∗ = h∗. (4.0.16)

Then we can solve the system directly by integrating Eq. (4.0.11) twice with boundary

1For use of the reader, before neglecting terms of order ε2, this tangential stress balance is given
as [65] (

ε2
(
∂h∗

∂x∗

)2

− 1

)(
∂u∗

∂z∗
+ ε2

∂w∗

∂x∗

)
+ 4ε2

∂u∗

∂x∗
∂h∗

∂x∗
= 0
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conditions Eq. (4.0.14) and Eq. (4.0.15) to find the thin film velocity profile. It gives:

u∗ (z∗) = 3
∂P ∗

∂x∗

(
z∗2

2
− h∗z∗

)
. (4.0.17)

Using the relation in Eq. (4.0.13), differentiating Eq. (4.0.17) with respect to x and

integrating ∂w∗

∂z∗
with respect to z∗ with boundary condition Eq. (4.0.14) gives rise to

w∗ = 3
∂P ∗

∂x∗
∂h∗

∂x∗
z∗2

2
− 3

∂2p∗

∂x∗2

(
z∗3

6
− hz∗2

2

)
. (4.0.18)

Substituting Eq. (4.0.18) into the kinematic boundary condition Eq. (4.0.16) and

simplify gives the following equations for the time evolution of the film height profile

∂h∗

∂t∗
=

∂

∂x∗

(
h∗3

∂P ∗

∂x∗

)
. (4.0.19)

There are normally 2 contributions to this pressure: the Young-Laplace capillary

effect γlv
∂2h
∂x2 [66] and the intermolecular interactions in the film which are taken into

consideration by introducing an additional disjoining pressure term Π(h) = −∂g(h)
∂h

,

i.e. from the binding potential which originates from the molecular interactions as ex-

plained in the previous chapter. As one passes across a curved liquid-vapour interface,

there is a jump in pressure [67]. The increase in pressure ∆P is equal to the product of

a surface tension γ and the curvature κ of the surface. Thus the pressure in the liquid

is given by

P = −γlvκ− Π (h) ≈ −γlv
∂2h

∂x2
− Π (h) , (4.0.20)

where γlv is the liquid-vapour surface tension, κ is the curvature and Π (h) is the

disjoining pressure.

Eq. (4.0.20) is in dimensional form. By introducing the non-dimensionalisation as
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previously and an additional scaling Π = Π∗ 3ηU
ε2L

, we get

P ∗ = −∂
2h∗

∂x∗2
γlvε

3

3ηU
− Π∗, (4.0.21)

and then noting that Ca = 3ηU
γlv

is the capillary number and is assumed to be of order

ε3, for the dominant balance to retain physically relevant terms (i.e. to retain surface

tension). Thus Eq. (4.0.21) becomes

P ∗ = −γ∗lv
∂2h∗

∂x∗2
− Π∗, (4.0.22)

and substituting this pressure term back to Eq. (4.0.19) one obtains

∂h∗

∂t∗
=

∂

∂x∗

[
h∗3

∂

∂x∗

(
−γ∗lv

∂2h∗

∂x∗2
− Π∗ (h∗)

)]
, (4.0.23)

Subsequently, we drop the ‘*’ for brevity. Equation (4.0.23) is 1st order in time and

4th order in space, and is non-linear and commonly known as the thin film equation. It

describes the time evolution of the liquid film thickness and can be solved using numer-

ical techniques described in Chapter 6. Equation (4.0.23) is the nondimemnsionalised

form of Eq. (4.0.1) with the free energy

FIH [h] =

∫ [
g (h) +

γlv
2

(
∂h

∂x

)2
]

dx, (4.0.24)

which is obtained from Eq. (1.3.9) using the long-wave approximation
√

1 +
(
∂h
∂x

)2 ≈
1 + 1

2

(
∂h
∂x

)2
. This equation is the long wave approximation version of Eq. (1.3.9) in the

case where the height only varies in the x-direction and not in the y-direction.
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Chapter 5

Binding Potentials for Vapour

Nanobubbles on Surfaces Using

Density Functional Theory

In this chapter we calculate density profiles of a simple model fluid in contact with a

planar surface using density functional theory (DFT), in particular for the case where

there is a vapour layer intruding between the wall and the bulk liquid. We apply

the method of Hughes et al. [4] to calculate the density profiles for varying (specified)

amounts of the vapour adsorbed at the wall. This is equivalent to varying the thickness h

of the vapour at the surface. From the resulting sequence of density profiles we calculate

the thermodynamic grand potential as h is varied and thereby determine the binding

potential as a function of h. The binding potential obtained via this coarse-graining

approach allows us to determine the disjoining pressure in the film and also to predict

the shape of vapour nano-bubbles on the surface. Our microscopic DFT based approach

captures information from length scales much smaller than some commonly used models
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in continuum mechanics, such as the Navier-Stokes equations or the classical thin film

model.

5.1 Introduction and background

For more than two decades there has been interest in surface nanobubbles, which can

form when a hydrophobic surface is fully immersed in liquid [68, 69, 70, 71]. Due to the

high Laplace pressure inside a hemispherical cap shaped nanobubble, we might expect

the gas inside to dissolve and diffuse away in microseconds [72]. However, in reality

they can sometimes remain stable for many hours or even up to days [69, 70, 73, 74].

The existence of surface nanobubbles at the solid-liquid interface plays a significant

role in a number of chemical and physical processes, such as flotation in mineral pro-

cessing [75], design of microdevices [76] and drug delivery to cancer cells [77]. As well

as the wide range of applications, there are also theoretical challenges to understand-

ing the fundamental physical properties of nanobubbles which has also attracted the

attention of many scientists.

These surface nanobubbles contain air molecules that have come out of solution in

the liquid, and are not purely filled with the vapour phase. To properly describe such

a system, one must treat the full two component system of solvent liquid and solute

air molecules. However, as a precursor to tackling the full binary mixture problem, the

situation that must be first understood is that of the pure liquid and the properties of

nanobubbles of the vapour that may appear between the liquid and a solid surface. It

is this aspect that we discuss in the present chapter.

Our approach is to use a microscopic (i.e. particle resolved) classical density func-

tional theory (DFT) [26, 38] based method to calculate a coarse grained effective interfa-

cial free energy (often called the binding potential, which is defined in previous sections)
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for vapour nanobubbles. Since DFT is an accurate theory for the spatial variations in

the particle density, it thereby incorporates the effects of vapour compressibility, which

are believed to be important for nanobubbles. There are, of course, other computer

simulation methods where this can be done [57, 78, 79, 80]. The resulting binding

potential is then incorperated into a mesoscopic interfacial free energy functional for

determining the height profile of the nanobubbles. This also allows us to calculate the

total free energy of such a nanobubble and how it depends on the interaction potential

between the surface and the fluid particles, thereby allowing us to estimate the relative

probabilities for observing nanobubbles as a function of size and surface properties.

To study nanobubbles, in Ref. [81] a simple approximate form for the binding po-

tential g(h) was postulated, since although much can be inferred about the qualitative

form of g(h) from various considerations [1, 17, 19], its precise form is not known ex-

actly. The model of Ref. [81] includes contributions to g(h) due to the van der Waals

forces. Our approach here is to develop a model for vapour nanobubbles at equilibrium,

based on calculating the binding potential g(h) using DFT for all values of h, that can

then be used as an input to the IH model. Since DFT incorporates the effects of the

compressibility of the vapour, these effects are also incorporated into g(h) when it is

calculated using our approach. The system we model here is a very small bubble of

vapour located on a planar solid surface that is in contact with a bulk liquid as il-

lustrated in Fig. 1.3(b). The height of the liquid-vapour interface is defined to be at

h(x, y) above the surface, where (x, y) is the position on the surface.

To develop an understanding of such a bubble, h(x, y) is a key quantity to be de-

termined, as is the contact angle the liquid-vapour interface makes with the substrate.

This, via Young’s equation [1], is related to thermodynamic quantities, namely the

three interfacial tensions: γlv, γsl and γsv, which are the liquid-vapour, solid-liquid and

solid-vapour interfacial tensions, respectively. Of course, for larger bubbles h(x, y) is of

67



CHAPTER 5. BINDING POTENTIALS FOR BUBBLES USING DFT

the shape of a hemispherical cap, because this minimises the area of the liquid-vapour

interface and so also the free energy of the system. However, near the contact line (i.e.

where the three phases meet) there is an additional contribution to the free energy from

the binding (or interfacial) potential g(h), which results from molecular interactions.

This influences the shape of h(x, y) near the contact line and for nanobubbles is partic-

ularly important and can influence the overall shape of h(x, y). The contribution to the

pressure within the bubble can be expressed in terms of the Derjaguin (or disjoining)

pressure Π(h) = −∂g(h)/∂h [1] and its effects can be observed experimentally [82].

This chapter is structured as follows: In Sec. 5.2 we describe briefly the DFT based

method we apply for calculating g(h) for vapour films adsorbed between a planar wall

and a bulk liquid. Then, in Sec. 5.3 and Sec. 5.4, we introduce the model fluid that we

consider, the approximate DFT used to treat this fluid and the various different wall

potentials that we consider. In Sec. 5.5 we present results for g(Γ), for various different

wall potentials and how the decay form of the wall potential moving away from the

wall influences the decay form of g(Γ). Following this, in Sec. 5.6 we input the obtained

binding potentials into the interfacial Hamiltonian (1.3.9), in order to determine vapour

nanobubble height profiles and their free energies. Finally, in Sec. 5.7 we draw our

conclusions.

5.2 DFT approach to calculate g(Γ)

Elements of this section repeat key formulae and definitions from earlier chapters but

are included to allow the reader to follow this chapter in a reasonably self-contained

manner. In DFT [26, 38] we find that the grand potential Ω is the following functional
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of the fluid density profile ρ(r):

Ω[ρ(r)] = F [ρ(r)] +

∫
ρ(r)(Vext(r)− µ)dr, (5.2.1)

where Vext(r) is the external potential felt by a single particle at position r (i.e. the

potential due to the solid substrate in the treatment here), µ is the chemical potential

and

F [ρ(r)] = kBT

∫
ρ(r)(ln[Λ3ρ(r)]− 1)dr + Fex[ρ(r)] (5.2.2)

is the intrinsic Helmholtz free energy. The first term is the ideal-gas contribution and

Fex is the excess part due to the interactions between the fluid particles. In the ideal-gas

part, kB is Boltzmann’s constant, T is the temperature and Λ is the thermal de Broglie

wavelength. The equilibrium fluid density profile is that which minimises Ω[ρ(r)], i.e.

it satisfies the Euler-Lagrange equation

δΩ

δρ(r)
= kBT ln[Λ3ρ(r)] +

δFex
δρ

+ Vext(r)− µ = 0. (5.2.3)

This equation may be rearranged to obtain

ρ(r) = Λ−3exp

(
β

[
µ− δFex

δρ
− Vext(r)

])
, (5.2.4)

where β = (kBT )−1. This is the form usually used for solving DFT numerically using

a Picard iterative process [33, 41].

A typical series of the constrained density profiles calculated using this procedure

are displayed in Fig. 5.1(a). These results are for the model fluid defined below, with

fixed wall attraction strength. Fig. 5.1(b) shows the corresponding binding potential

g(Γ). The global minimum occurs at a small negative value of the adsorption, which
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Figure 5.1: (a) A sequence of density profiles with decreasing adsorption correspond-

ing to increasing thickness films of vapour between a wall and the bulk liquid. The

adsorption values for each are Γσ2 = −0.0, −0.8, −2.8, −4.8, −6.8, −8.8, −10.8, −12.8

and −14.8, where σ is the diameter of the cores of the particles. The strength of the

attraction between the fluid particles is βε = 0.5, with range λ = σ, and the system is

at vapour-liquid coexistence, with µ = µcoex. The wall potential is that in Eq. (5.4.1),

with βε
(Y )
w = 1.817 and λ

(Y )
w /σ = 1. (b) The resulting binding potential, with the points

on the curve corresponding to the sequence of density profiles displayed in (a).
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corresponds to a partially drying liquid. In the density profiles there is peak near to

the wall, corresponding to some particles being adsorbed preferentially at a particular

distance from the surface of the wall. In the second density profile, which corresponds

to the minimum in the binding potential, there are some oscillations near the wall, due

to packing effects of the particles. As the adsorption becomes increasingly negative,

there is an increasingly thick film of the vapour near the wall, and also as the thickness

increases, the vapour density in the film becomes closer to that of the vapour at bulk

vapour-liquid coexistence.

5.3 Model fluid

The model fluid that we consider consists of a system of particles interacting via a pair

potential that can be split as follows:

v(r) = v0(r) + v1(r), (5.3.1)

where r is the distance between the centres of the pairs of particles and v0(r), the

repulsive-core part of the potential, is treated via the hard-sphere potential

v0(r) =

∞ if 0 < r ≤ σ,

0 if σ < r,

(5.3.2)
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where σ is the diameter of the cores of the particles. We model the attractive part of

the potential v1(r) via the following Yukawa potential

v1(r) =

 −ε if 0 < r ≤ σ,

−εexp(−(r−σ)/λ)
r/σ

if σ < r,

(5.3.3)

where ε is the magnitude of interaction, λ is the parameter measuring the range of the

attractive tail.

We make a standard approximation, and treat the contribution to the free energy

from the hard-sphere repulsions via fundamental measure theory (FMT) DFT and the

attractive part via a van der Waals mean field like contribution [26, 38, 31, 32, 41, 42],

that is nonetheless fairly accurate [48]. In this case we can assume that the excess

intrinsic Helmholtz free energy Fex can be approximated as follows:

Fex[ρ(r)] = Fhs +
1

2

∫∫
ρ(r1)ρ(r2)v1(|r1 − r2|)dr1dr2, (5.3.4)

where Fhs =
∫

Φ({nα}) is the hard-sphere contribution to the excess free energy, that

we treat using Rosenfeld’s original version of FMT and described in Chap. 3.2 [42].

There are more modern FMTs such as the White-Bear version and the 2D FMT for

hard disks, that are more accurate when the fluid density is high and approaching

freezing, but for the present study, Rosenfeld is sufficiently accurate.

5.4 External potential due to the wall

We assume that the planar solid substrate exerts an external potential on the fluid that

varies in only one Cartesian direction, along the z-axis, which is perpendicular to the
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plane of the substrate. Having chosen to model the fluid particle-particle interactions

via the Yukawa pair potential in Eq. (5.3.3), an obvious choice for the potential between

the particles and the wall is also a Yukawa:

Vext
(Y ) (z) =

 ∞ if z < σ
2

−ε(Y )
w exp

(
−z/λ(Y )

w

)
z/σ

if z ≥ σ
2
,

(5.4.1)

where the parameters ε
(Y )
w and λ

(Y )
w determine the strength of the attraction to the wall

and the range, respectively.

We also consider the behaviour of the fluid in the presence of a wall with a z−3

power-law form for the decay of the attractive part of the potential. Such a potential

can be viewed as originating from the r−6 decay form of the potential due to dispersion

interactions that is found in e.g. the Lennard-Jones (LJ) model pair potential [38]. If

one assumes a semi-infinite wall of uniform density and then integrates over the total

attractive contribution due to the wall, treating all the elements as interacting with a

given fluid particle with a potential decaying ∝ r−6, then the resulting form is (see e.g.

Ref. [83])

Vext
(LJ)(z) =

 ∞ if z < σ
2
,

−ε(LJ)
w

(z/σ)3
if z ≥ σ

2
,

(5.4.2)

where the parameter ε
(LJ)
w defines the strength of the attraction in this potential. An-

other wall potential that we consider is one with a short-ranged attraction, decaying

with a Gaussian form [84]

Vext
(G)(z) =

 ∞ if z < σ
2

−ε(G)
w exp

(
−(z/λ

(G)
w )2

)
if z ≥ σ

2
,

(5.4.3)
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where the parameters ε
(G)
w and λ

(G)
w define the strength and range of this potential.

Finally, we also consider a wall potential that has exponential decay

Vext
(E)(z) =

 ∞ if z < σ
2

−ε(E)
w exp

(
−z/λ(E)

w

)
if z ≥ σ

2
,

(5.4.4)

with parameters ε
(E)
w and λ

(E)
w determining the strength and range of the potential. The

reason that we consider all these different potentials is that the form of the decay as

z → ∞ influences the form of the decay of g(h) for h → ∞ [17, 84], as we also show

below.

All our calculations of density profiles are performed on a regular grid with 214

points and a grid spacing dz = 0.01σ, so that the total domain length is 164σ. This has

the wall at one end of the system and a section at the other end with ρ(z) = ρl (i.e. the

bulk density boundary condition), followed by a section where ρ(z) = 0 (roughly 10%

of the domain), to provide padding for the fast Fourier transforms used to evaluate the

convolution integrals. For more details on how to calculate density profiles using DFT

see Chap. 2 and Ref. [41].

5.5 Results for the binding potential

We calculate the binding potentials g(Γ) for a range of different values of the adsorp-

tion Γ using the procedure described above in Sec. 5.2, for the various different wall

potentials given in the previous section and for varying values of the attraction strength

parameter.

In Fig. 5.2 are results for the Yukawa wall potential (5.4.1) and in Fig. 5.3 are results

for the LJ-like wall potential (5.4.2). We see that in both cases, when the solid substrate
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Figure 5.2: A sequence of binding potentials g(Γ), for varying wall attraction strength.

The fluid pair interactions have βε = 0.5 and λ/σ = 1. The results are for the Yukawa

wall potential (5.4.1), for varying βε
(Y )
w as given in the key.

is very weakly attractive, the global minimum of g(Γ) is at Γ → −∞, corresponding

to drying of the fluid from the wall being the equilibrium state of the system. For the

more attractive substrates, the global minimum of the binding potentials is at a small

negative value of the adsorption, which corresponds to the partial-drying situation. Our

results are consistent with previous DFT predictions that the drying transition for these

types of systems is a continuous (critical) transition – see Ref. [20] and references therein

for an excellent recent discussion of this. It is interesting to note that this minimum
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Figure 5.3: In (a) we display results for the LJ-like wall (5.4.2) with varying βε
(LJ)
w ,

whilst (b) shows the binding potential for the strongly attractive wall with βε
(LJ)
w = 0.45.

In all except this last case the binding potentials are smooth and featureless, but in

this case some small amplitude oscillations can be seen in g(Γ).
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in g(Γ) is fairly broad and the binding potentials are rather smooth and featureless,

despite the density profiles which go into calculating these having significant structure

near the wall – see Fig. 5.1. The width of the minimum in g(Γ) is certainly broader

than the typical minima obtained in Ref. [6] for the case of liquid films adsorbed at a

wall with the bulk phase being the vapour. We believe this is due to the fact that when

there is the tendency towards drying at a solvophobic interface, there can be significant

interfacial fluctuations [85, 86, 87, 88, 20, 83] and so in these cases any minima in g(Γ)

are fairly broad.

In Fig. 5.3(b) we show the binding potential for a more strongly attracting wall,

with βε
(LJ)
w = 0.45. In this case, the liquid is more strongly attracted to the wall and so

we see more layered packing effects at the wall in the corresponding density profiles. In

cases like this, convergence of the numerics become more difficult, because the system

does not want the vapour phase at the wall, since the liquid is energetically much

more favourable. We also see in this situation the appearance of some small amplitude

oscillations in the binding potential, stemming from particle layering at the wall.

In Fig. 5.4(a) we compare four binding potentials corresponding to the four differ-

ent external potentials defined in Sec. 5.4, with the wall potential attraction strength

parameters chosen so that they all have the same minimal value of g(Γ0). Since the

vapour-liquid interfacial tension βσ2γlv = 0.603 is the same in all cases, this means

that these all correspond to the same macroscopic contact angle, because they all have

the same minimum value of g(Γ0) – see Eq. (3.6.12). It is interesting to note that the

width of the potential minimum in g(Γ) is not the same for each of these different wall

potentials. This means the precise form of the external potential due to the wall is im-

portant for controlling the amplitude of interfacial fluctuations near the wall. We also

see that the form of the external potential controls significantly the way g(Γ) decays

as Γ → −∞. This can be seen even more clearly in Fig. 5.5 where we instead plot
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Figure 5.4: In panel (a) we show a comparison of the binding potentials corresponding

to the four different external potentials defined in Sec. 5.4. The bulk fluid is the same

in all cases, with βε = 0.5 and λ/σ = 1. The parameters are chosen as given in the key

and with λ
(Y )
w = λ

(G)
w = λ

(E)
w = λ (all the same), so that they all have the same minimal

value of g(Γ0) and therefore also the same macroscopic contact angle. In panel (b) we

display plots of the corresponding four different wall potentials.
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Figure 5.5: The same binding potentials as displayed in figure 5.4(a), except here we

instead plot ln |g(Γ)| versus Γ.

ln |g(Γ)| versus Γ, which allows to observe more clearly the form of the asymptotic de-

cay. The form of the asymptotic decay of binding potentials is discussed extensively in

Refs. [17, 19, 89], and these results largely carry over to the case of drying at interfaces

– see Ref. [20]. As one should expect, the slowest decay is for the LJ-like wall potential

(5.4.2), since this has a power-law decay for z →∞. For the other three wall potentials

the binding potential decays exponentially, so that when we plot ln |g(Γ)|, we see in

Fig. 5.5 a straight line. We see that for Γσ2 < −2 the gradient is roughly the same

for all three. This is because at this particular state point the correlation length in the
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vapour phase ξv ≈ σ = λ, i.e. is very similar in value to the decay length of the wall

potentials (5.4.1) and (5.4.4). For short-ranged wall-fluid and fluid-fluid potentials one

should expect the binding potential to decay for h→∞ as [17, 19, 84, 20]

g(h) = a exp(−h/ξv) + · · · (5.5.1)

where a is a constant and “· · · ” denotes faster decaying terms. So in this case, when one

plots ln |g(Γ)|, for large Γ one sees a straight line with gradient equal to −1/[ξv(ρv−ρl)].

On the other hand, if there is an exponentially decaying wall potential (5.4.4), then one

instead has [84]

g(h) = a exp(−h/ξv) + b exp(−h/λ(E)
w ) + · · · , (5.5.2)

where b is a constant, so whichever is bigger out of ξv and λ
(E)
w determines the ulti-

mate decay of g(h) for h → ∞. When the wall potential has a Yukawa decay like in

Eq. (5.4.1), then this can also determine the decay of g(h), somewhat like in Eq. (5.5.2),

except with a renormalised decay length [84]. Note that for larger negative values of the

adsorption the binding potential g(Γ) becomes small and so on the logarithmic scale in

Fig. 5.5 one sees the numerical round-off errors, appearing as random fluctuations with

increasing amplitude as Γ→ −∞.

It is also interesting to note in Fig. 5.4(a) that all of the binding potentials have

a finite value for g(Γ → 0), but the values of g(0) for the different wall potentials are

all very different and in particular the result corresponding to the LJ wall is much

higher. We believe the origin of this difference is the fact that the LJ wall potential

Eq. (5.4.2) has a deeper (but more narrow) potential minimum for z → σ/2+ than

the other wall potentials, as can be seen in Fig. 5.4(b). This is also supported by the

fact that the values of g(0) are ordered in magnitude in the same order as the values
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of the wall potentials at contact, V
(i)
ext(z → σ/2+). That the value of g(0) must be

finite was discussed in the context of liquid droplets at surfaces in Refs. [4, 6]. Indeed,

g(Γ) remains finite even for small positive values of Γ, which corresponds to a negative

excess of vapour being adsorbed at the wall. However, the fact that g(0) remains finite

should not significantly affect the behaviour at the contact line, since the value at the

minimum g(Γ0) is far more important than the value g(0) in determining contact line

properties.

In Fig. 5.6 we display a set of binding potentials for the exponential wall potential

Eq. (5.4.4), calculated for varying wall potential decay length λ
(E)
w . Increasing the range

for fixed ε
(E)
w increases the overall integrated strength of the wall potential and so, of

course, makes the liquid more favourable at the wall and the vapour less favourable.

This is manifest in the increasingly deep minimum in g(Γ), as λ
(E)
w is increased. In

Fig. 5.7 we plot ln |g(Γ)|, which allows one to see the crossover from the first term on

the right hand side of Eq. (5.5.2) dominating the decay of g(Γ), to the second term

dominating, for larger λ
(E)
w .

In the following section we take the binding potentials that we have calculated using

DFT and input them into the IH (1.3.9) in order to determine vapour nanobubble height

profiles. To do this we fit the binding potential to obtain an analytic form which can

then be input easily. The form we use is (c.f. Eq. (5.5.2) and also Refs. [4, 6]):

g(Γ) = a1e
Γ
l0 + a2e

2Γ
l0 + a3e

3Γ
l0 + · · · (5.5.3)

where l0, a1, a2, a3, etc, are parameters to be fitted. The values obtained for these

parameters for all of the binding potentials displayed in this thesis are given in Table B.1

in the Appendix B. Recall that Γ is normally a negative quantity in Eq. (5.5.3).
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Figure 5.6: A series of binding potentials for the exponential wall potential (5.4.4) with

varying λ
(E)
w and fixed βε

(E)
w = 1. The fluid pair interactions have βε = 0.5 and λ/σ = 1.

5.6 Vapour nanobubble profiles

In Fig. 5.8, we display a sequence of equilibrium vapour nanobubble height profiles

h(x) = Γ(x)/(ρv − ρl), calculated by minimising Eq. (1.3.9) together with binding

potentials calculated using DFT. We do this for the fluid with interaction parameters

βε = 0.5 and λ/σ = 1 at a series of walls with the Yukawa potential (5.4.1) with fixed

λ
(Y )
w /σ = 1 and various values of the wall attraction parameter ε

(Y )
w .

In Eq. (1.3.9) we set the liquid-vapour interfacial tension βσ2γlv = 0.603, the value

we obtain from the DFT. We also assume for simplicity that the system is uniform
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Figure 5.7: The same binding potentials as displayed in Fig. 5.6 for varying λ
(E)
w , but

here we instead plot ln |g(Γ)| versus Γ.

in the y-direction, so strictly speaking the profiles that we calculate are actually for

ridge-shaped nanobubbles. However, we do not expect results from calculating radially

symmetric height profiles (varying in both the x- and y-directions) to have cross-section

height profiles qualitatively different from the ones we calculate here. We apply periodic

boundary conditions h(x = 0) = h(x = L), where L is the length of the domain. The

height profiles in Fig. 5.8 all have the same area under the curve (i.e. the same total

adsorption).

We numerically minimise the free energy (1.3.9) by solving the corresponding thin-

film equation with disjoining pressure Π(h) = −∂g/∂h and converging to equilibrium,

based on the approach of Ref. [55] which will be discussed in the next chapter. This
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Figure 5.8: A series of equilibrium vapour nanobubble height profiles h(x) = Γ(x)/(ρv−
ρl), calculated by minimising Eq. (1.3.9) together with the binding potentials for the

fluid with βε = 0.5 and λ/σ = 1 at the Yukawa wall (5.4.1), with fixed λ
(Y )
w /σ = 1 and

various values of the wall attraction parameter ε
(Y )
w , as given in the key. The total area

under all of the curves is 2727σ2 and the length of the domain L = 600σ.

uses the method of lines, with finite difference approximations for the spatial derivatives

and the ode15s Matlab variable-step, variable-order solver [90].

The initial guess to equilibrate from has a Gaussian shaped “bump” in it that breaks

the symmetry and determines the final location of the nanobubble on the surface. In

Fig. 5.8 we see that the vapour nanobubbles become more spread out over the surface

as the attraction due to the wall is decreased. Then, for βε
(Y )
w = 0.6, there is a uniform

thickness film of vapour on the substrate. This corresponds to the drying transition

and it occurs at the value of ε
(Y )
w that one must expect from inspecting the binding

potential curves in Fig. 5.2(a), i.e. where the minimum in g(h) at a finite value of h
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disappears, which occurs by the minimum value diverging h → ∞, since this drying

transition is continuous (critical). For the profiles containing a nanobubble, the height

of the vapour “precursor” film corresponds roughly to the value at the minimum in the

binding potentials for the different values of βε
(Y )
w . However, in a finite size domain, the

height is shifted slightly from the minimum value due to the Laplace pressure in the

nanobubbles combined with the effects of mass conservation in our periodic domain.

The excess pressure due to the presence of the nanobubble has two components,

δFIH

δh
= −Π(h(x))− κ(h(x)), (5.6.1)

where FIH is given in Eq. (1.3.9), Π is the disjoining pressure and the curvature contri-

bution is

κ = γlv∇ ·

(
∇h√

1 + (∇h)2

)
. (5.6.2)

In Fig. 5.9 we display the values of these two contributions to the excess pressure

as a function of position through a nanobubble, for the case where βε
(Y )
w = 1.5. The

corresponding nanobubble height profile is displayed in Fig. 5.8. We see in Fig. 5.9 that

these two pressure components vary significantly with x, in particular in the contact line

region. Of course, the sum of these is a constant as this is the condition for equilibrium.

As an example of the type of multiscale interfacial phenomenon that our coarse

grained model can be used to describe, we compute vapour nanobubble height profiles

on a patterned heterogeneous surface. This consists of a surface divided into two regions

with a different wettability on each of the two halves of the surface. We calculate the

free energies for nanobubbles on each half, and from this we are able to determine the

relative probabilities for finding vapour nanobubbles on each type of surface. We define

85



CHAPTER 5. BINDING POTENTIALS FOR BUBBLES USING DFT

0 100 200 300 400 500 600
x=<

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

P
re

ss
u
re

co
m

p
on

en
ts

&(x=<)

5

!& ! 5

Figure 5.9: The components of the excess pressure, Π and κ, given by Eqs. (5.6.1) and

(5.6.2), for a nanobubble with volume 2727σ2 and wall attraction strength βε
(Y )
w = 1.5.

The corresponding height profile is displayed in Fig. 5.8.

our position dependent binding potential as

g(x, h) = gl(h)(1− f(x)) + gr(h)f(x), (5.6.3)

where the smooth switching function

f(x) =
1

2

[
tanh

(
x− L/2
W

)
− tanh

(
x− L
W

)]
+

1

2

[
tanh

(
x+ L/2

W

)
− tanh

( x
W

)]
, (5.6.4)

where W = σ determines the width of the smooth transition zone between the two

halves of the surface. This function also satisfies our periodic boundary conditions.
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Figure 5.10: A comparison of two equilibrium vapour nanobubble profiles on a het-

erogeneous surface with position dependent binding potential (5.6.3). The external

potential due to the wall has attraction strength βε
(Y )
w = 2.1 on the right half of the

system and βε
(Y )
w = 1.8 on the left half. The total volume of vapour in the system is

the same in both cases.

gl(h) and gr(h) are the binding potentials on the left and right hand halves of the

surface, respectively. These are calculated for the Yukawa wall with λ
(Y )
w /σ = 1. On

the right we have βε
(Y )
w = 2.1, which represents a more solvophilic surface, whilst on

the left we have a lower attraction parameter, βε
(Y )
w = 1.8, which represents a more

solvophobic surface.

In Fig. 5.10 we display the height profiles for two different nanobubbles having the

same volume V but each centred on the two different halves of the system. The total

domain length is L = 600σ. The initial condition used to calculate each of these has the

Gaussian bump centred at either x = L/4 or x = 3L/4, in order to locate the centres
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of the final equilibrium nanobubbles at these points. The left hand vapour nanobubble

on the less attractive wall (smaller ε
(Y )
w ) has the lower free energy. The free energy of

the whole system F is calculated using Eq. (1.3.9) and in Fig. 5.11(a) we display results

for F calculated as a function of V . In this figure these results are compared with

those from a simple macroscopic (capillarity) approximation, described below. Using

this data, in Fig. 5.11(b) we plot the quantity β(Fr − Fl) as a function of V , where Fl

is the free energy for the nanobubble on the left and Fr when it is on the right. Since

the probability of a given state i occurring Pi ∝ e−βFi , we therefore have that the ratio

of the probabilities for finding the nanobubble on the two different halves of the system

Pr/Pl = e−β(Fr−Fl), i.e. the exponential of minus the quantity displayed in Fig. 5.11(b)

is the relative probability. Since the left half of the surface is more solvophobic, we

have Pl > Pr, and as the size of the nanobubbles increases, the probability of finding

such a nanobubble on the more solvophobic half of the system becomes much more

likely, with the relative probability, Pl � Pr. Note that the curves in Fig. 5.11 end on

the left at a finite value of the volume V . This is because when the volume of vapour

in the system is less than the end point value, the system can lower the total system

free energy by having a uniform film thickness everywhere, at a value shifted slightly

from the value at the minimum of g(h), rather than by having most of the system with

h at the minimum of g(h) but also retaining a bubble which has a larger interfacial

contribution from curvature.

The macroscopic (capillarity) approximation that we compare our results with con-

sists of setting the height profile of the vapour nanobubble to be an analytic piecewise

function of x. We assume that outside of the nanobubble the film height is uniform: in

the left half of the system we set h(x) = hl, where hl is the value at the minimum of

the binding potential gl(h) and in the right half we set h(x) = hr, where hr is the value

at the minimum of gr(h). For the nanobubble itself, we assume the height profile is the
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Figure 5.11: In panel (a) we display the free energy F as a function of the vapour

nanobubble volume V , for a heterogeneous system with wall attraction βε
(Y )
w = 2.1 on

the right half of the surface and βε
(Y )
w = 1.8 on the left. The labels “right” and “left”

in the key denote on which side of the system the nanobubble is located – c.f. Fig. 5.10.

We compare results calculated from Eq. (1.3.9) with the binding potentials obtained

from DFT, which are labelled “IH+DFT” with results from a simple macroscopic ap-

proximation (5.6.7), labelled “approx.”. In panel (b) we plot the quantity β(Fr − Fl)
as a function of V . The exponential e−β(Fr−Fl) gives the ratio of the probabilities Pr/Pl

of finding the nanobubble on the two sides. Since the left half of the surface is more

solvophobic, we have Pl > Pr.
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arc of a circle h(x) = hcirc(x) = hc +
√
R2 − (x− xc)2, where hc, xc and R are constant

coefficients to be determined that depend on the size and location of the nanobubble. If

we denote the locations of the two nanobubble contact lines to be x = A and x = A+w,

i.e. w is the width of the nanobubble, then xc = A + w/2 and we must have that at

these two points, the height profile is continuous. So, when the nanobubble is on the

left we have h(A) = h(A+w) = hl and when it is on the right, h(A) = h(A+w) = hr.

The second condition that we apply on the circular arc part of the nanobubble profile

is that the slope at both ends should be equal to the tangent of the contact angle,

h′(A) = −h′(A + w) = − tan θ. With these conditions, it is straightforward to write

the coefficients R and hc as functions of A and w. When the nanobubble is on the left

hand side, the volume (area under the profile) is:

V = hl

(
L

2
− w

)
+ hr

L

2
+

∫ A+w

A

hcirc(x)dx, (5.6.5)

with an analogous formula for when it is on the right. This gives us an expression

for V as a function of w. Or, equivalently, we can vary w and still obtain a series of

nanobubble profiles for various values of V .

Using this height profile we can also obtain an approximation for the free energy F .

The surface tension contribution depends on the length of the interface. This is easy

to get for the straight line pieces and for the circular nanobubble section it depends on

the arc length

s =

∫ A+w

A

√
(1 + h′(x)2)dx, (5.6.6)

which is also straightforward to evaluate. We assume that there is only a contribution

to F from the binding potential when the height profile is at the value at the minimum

of g(h). Putting all this together we obtain the following estimate for the total free
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energy of the system when the vapour nanobubble is on the left hand side of the system

F approx.
IH = gl(hl)

(
L

2
− w

)
+ gr(hr)

L

2
+ γlv(s+ L− w), (5.6.7)

and an analogous expression when the nanobubble is on the right. The results plotted

in Figs. 5.11 labelled “approx.” are obtained using Eq. (5.6.7). We see that there is

fairly good agreement in Fig. 5.11(a) between Eq. (5.6.7) and the results from the full

minimisation of Eq. (1.3.9); the difference is less than 1%. However, as Fig. 5.11(b) illus-

trates, even such small errors can make more of a difference when calculating quantities

like (Fr − Fl) and so also the ratio Pr/Pl = e−β(Fr−Fl), demonstrating the importance

of getting details right for this sort of calculation. This is particularly important for

small nanobubbles. For example, when the nanobubble volume V σ2 = 1400, we have

e−β(Fr−Fl) = e−5.9 ≈ 0.0027 via Eq. (5.6.7), but from the full minimisation of Eq. (1.3.9)

we obtain e−β(Fr−Fl) = e−5.4 ≈ 0.0045; i.e. there is a 60% difference between the two

results for the relative probabilities Pr/Pl. Another important detail for these types of

calculations is getting correctly the true overall shape of g(h), since this makes a con-

tribution to F , which is neglected in Eq. (5.6.7), coming from the contact line region

of the nanobubble.

Another source of error in Eq. (5.6.7) worth highlighting is that we have assumed

that the heights of the film away from the nanobubble are the values at the exact minima

of the binding potentials gl and gr. Consequently, any additional vapour volume in the

system is assumed to be in the nanobubble. In reality, as we see from results from

minimising Eq. (1.3.9) and magnifying in the small h region, there is a balance between

having the vapour in the small-h flat layer and having it in the nanobubble. The Laplace

pressure in the nanobubble makes it become a little smaller, transferring some of the

vapour into the flat film and thereby raising the free energy contribution from these
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Figure 5.12: The excess pressure −Π− κ, given by Eq. (5.6.1), for a range of different

nanobubble volumes and for values of the wall attraction strength parameter βε
(Y )
w as

given in the key. See also Fig. 5.8.

portions of the system. There are also further sources of error due to the assumption

that the nanobubble has a circular shape, in particular in the region near the contact

lines where it would be expected to smoothly transition to the film heights, and in the

error approximating the profile’s transition across the wettability gradient as a sharp

step.

In Fig. 5.12 we display (−Π − κ), the excess pressure due to the presence of the

nanobubble, given by Eq. (5.6.1), for a range of different nanobubble volumes and for a
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range of different values of the wall attraction strength parameter βε
(Y )
w . Recall that the

bulk fluid pressure is βσ3p = 0.026, so the figure shows that these excess pressures are

comparable in magnitude. For values of βε
(Y )
w smaller than that at the drying transition

we see that for V → ∞, (−Π− κ) → 0 from below, whilst for βε
(Y )
w greater than that

at the drying transition, then (−Π− κ)→ 0 from above.

5.7 Concluding remarks

In this chapter we have presented results for the binding potential g(h) for films of

vapour intruding between a bulk liquid and flat planar surfaces and used the calculated

g(h) to determine film height profiles for vapour nanobubbles on the surface. The bind-

ing potentials are calculated using a microscopic DFT, applying the fictitious external

potential method developed by Hughes et al. [4, 6], which is based on calculating a series

of constrained fluid density profiles at the wall with varying thickness (adsorption). We

see from our results in e.g. Fig. 5.4(a) that despite the resulting binding potentials being

rather smooth and featureless, details such as the width of the minimum and the form

of the decay in g(h) do depend crucially on the details of the microscopic interactions.

We also see from our estimates of the relative probabilities of finding a nanobubble

on different parts of a heterogenous surface that having a reliable approximation for

g(h) is necessary for the estimates to be accurate. It is clear that to correctly describe

vapour nanobubbles one must have an accurate binding potential. Here, we have used

a microscopic DFT based on FMT to determine g(h), although one could instead use

computer simulations [57, 78, 79, 80]. However, the DFT calculations are computa-

tionally much faster than molecular dynamics simulations. Our DFT calculations take

of order seconds to run, which is much less than the minutes or hours that molecular

dynamics simulations take to run.

93



CHAPTER 5. BINDING POTENTIALS FOR BUBBLES USING DFT

The overall coarse-graining procedure developed here, building on the work in

Refs. [4, 6], allows us to determine multi-scale properties of fluids at interfaces. The ap-

proach allows to go from the microscopic features of the molecular interactions and go

up in length scales to describe mesoscopic aspects such as nanobubbles on surfaces. Our

approach has here been applied to a simple model heterogenous surface, but it could

also be applied in a straight-forward manner to more complex surfaces and structures,

since, for example, the contributions to g(h) from surface curvature are understood

[13, 91].

In the work presented here we have assumed that it is just the vapour phase inside

the nanobubbles. However, as mentioned in the introduction, perhaps the more experi-

mentally relevant situation is when the nanobubbles also contain dissolved gas (i.e. air)

molecules that have come out from solution in the bulk liquid. In Ref. [81] a theory for

this situation is developed. The authors argue that one should set the binding poten-

tial in Eq. (1.3.9) to be the potential U(h) = w(h) − w(hc) − βµghpg(h), where w(h)

is the “bare” binding potential between the wall and the bulk liquid and the last term

is the contribution from the gas in the nanobubble, that has chemical potential µg and

pressure pg(h), which is assumed to be related to the disjoining pressure and given by

the ideal-gas equation of state. Whilst this approach has the advantage of being rela-

tively simple, one could also include the effects of dissolved gas in the present approach

by treating the system as a binary mixture and then using a DFT for the mixture to

determine the influence of different amounts of the gas at the interface on g(h). Such

a DFT approach would, of course, include the effects of the gas compressibility, which

are believed to be important for such surface nanobubbles.

Finally, we should remark that some of the values of the wall attraction parameter

ε
(Y )
w that we use are rather small, corresponding to very solvophobic surfaces. Consider-

ing simple molecular liquids at interfaces, such values are perhaps somewhat unrealistic,
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being weaker than one would typically expect to find. For example, for water on hy-

drophobic surfaces such wax or Teflon, one does not see contact angles significantly

greater than 130◦ [20]. However, at (patterned) superhydrophobic surfaces much larger

contact angles are possible, so studying the behaviour of the model right up to the

drying transition is relevant to such systems. Also, the model fluid considered here

is also a reasonably good model for certain colloidal suspensions (e.g. colloid-polymer

mixtures [92]) and for such systems even purely repulsive wall potentials are possible,

when e.g. polymers are grafted onto the walls. The work here is highly relevant to such

colloidal systems.
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Chapter 6

Modelling Spreading of a Droplet

In the previous chapter, we applied the method developed in Ref. [6] to calculate the

binding potential for films of vapour at interfaces and to determine important prop-

erties of nanobubbles. In this chapter we present a study of the spreading of liquid

droplets on a solid substrate at very small scales. We focus on the regime where effec-

tive wetting energy (binding potential) and surface tension effects significantly influence

steady and spreading droplets. In particular, we focus on strong packing and layering

effects in the liquid near the substrate due to underlying density oscillations in the fluid

caused by attractive substrate-liquid interactions. We show that such phenomena can

be described by a thin-film (or long-wave or lubrication) model including an oscillatory

Derjaguin (or disjoining/conjoining) pressure, and explore the effects it has on steady

droplet shapes and the spreading dynamics of droplets on both, an adsorption (or pre-

cursor) layer and completely dry substrates. At the molecular scale, commonly used

two-term binding potentials with a single preferred minimum controlling the adsorption

layer height are inadequate to capture the rich behaviour caused by the near-wall lay-

ered molecular packing. The adsorption layer is often sub-monolayer in thickness, i.e.,
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the dynamics along the layer consists of single-particle hopping, leading to a diffusive

dynamics, rather than the collective hydrodynamic motion implicit in standard thin-

film models. We therefore modify the model in such a way that for thicker films the

standard hydrodynamic theory is realised, but for very thin layers a diffusion equation

is recovered.

6.1 Introduction

The spreading of liquid droplets is a fascinating and highly consequential phenomenon

which has received great attention for over a century [3, 93, 94, 21]. When a small

volume of liquid is placed on a solid substrate, it can spread to form a hemispherical drop

with a free surface and three-phase equilibrium contact angle θ. This is referred to as

partial wetting. However, if the liquid molecules are strongly attracted to the substrate

the liquid spreads as much as it can, forming a pancake shaped ultrathin drop. This is

referred to as complete wetting. This wetting behaviour influences phenomena that arise

in everyday life, such as in the sliding of rain drops on windows or plant leaves, paint

coating a wall or tear films in the eye [1]. As well as being a simple day to day process,

static and dynamic wetting behaviour also influences many industrial processes. Critical

applications such as coating, printing and lubrication have motivated many scientists

to understand the evolution of thin liquid films and drops on substrates and to develop

models for their dynamics [95, 21]. All these wetting phenomena are governed by surface

and interfacial interactions that occur over length scales varying from the very small

(Å) molecular distances to a few nm for van der Waals or electrostatic forces to the

mesoscopic (µm) scale for capillary forces. Understanding the interplay of all these

interactions and their influence on the interfacial fluid dynamics and thermodynamics

is at the core of understanding the behaviour and properties of droplets and thin liquid
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Area 1

Area 2
Area 3

Figure 6.1: A sketch of the molecular configurations in a cross section through the

contact line region of a drop of liquid which exhibits strong layering effects. The con-

tact angle is θ ≈ 0. We identify three distinct regions, Areas 1-3, where the adsorption

takes three distinct values due to the fact that when the substrate adsorption is low,

the influence of molecular packing becomes important. The dashed line gives the cor-

responding effective film height. In Area 1, the amount adsorbed on the substrate is

low, so the effective film height h� σ, the diameter of the molecules.

films on a solid substrate.

Here, we develop a thin-film model in the form of a partial differential equation

(PDE) that describes the time evolution of the local amount of liquid on a substrate. It

includes many aspects of the microscopic interactions between the liquid molecules and

the substrate. When the cohesive forces between the molecules that form the liquid

are short ranged compared to the size of the molecules σ, then strong layering at the

substrate is possible, particularly at low temperatures [1, 96, 97, 98, 59, 99, 5, 6]. See

also the molecular dynamics simulation results in Ref. [100].

Consider the contact line region of a drop of such a system, that is close to the
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wetting transition, with θ ≈ 0◦. A sketch of a configuration of the molecules is displayed

in Fig. 6.1. Three distinct regions, Areas 1–3 can be identified, based on the amount

adsorbed. The thickness of the individual layers is approximately equal to the diameter

of the liquid molecules, σ. In Area 1, there are just a few molecules adsorbed on the

substrate, so the film height h� σ, as defined via Eq. (3.6.3). In Areas 2 and 3, the film

height is roughly an integer number of molecular layers, since the strong intermolecular

attractions favour complete layers. In Refs. [5, 6], density functional theory (DFT)

for a simple model system was used to calculate the density distribution of a liquid

at a substrate exhibiting this type of layered structure formation, which is remarkably

similar to the terraced spreading drops observed in the experiments reported in [97]. In

Refs. [5, 6], using the method developed in Ref. [4] the binding (or wetting) potential

g(h) was also calculated as described in the previous chapters here. This binding

potential g(h), together with the interfacial tensions, gives the excess free energy for

having a liquid film of thickness h adsorbed on the substrate (see Eq. (1.3.2)). It

was found that in the types of situations sketched in Fig. 6.1, the binding potential is

oscillatory.

In this chapter we consider the influence of such an oscillatory binding potential on

the shape of steady drops and also on the dynamics of drop spreading. The established

thin film models describe the advective motion1 of the liquid over the substrate, some-

times also incorporating slip [21, 22]. However, normally, such models do not include

the diffusive particle-hopping dynamics that one should expect when the adsorption

is low [23, 24], such as in Area 1 in Fig. 6.1. Thus, we also develop here an aug-

mented thin-film equation that incorporates this effect, with the principal aims of this

work being (a) incorporating well-founded structural disjoining pressures into thin-film

1As mentioned in Chapter 1, we again note by ‘advective’ motion, we refer to classical hydrody-
namic motion of the film—principally using the term to contrast with the diffusive dynamics added in
Sec. 6.4
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modelling, and (b) to propose and probe a model that switches between diffusion and

hydrodynamics.

This chapter is structured as follows: The relevant physical concepts of interfacial

science are introduced in Sec. 6.2. In Sec. 6.3 the mathematical description of steady

and spreading drops is derived and the solution methodology that is used to solve the

model are introduced. An extension to include diffusive effects into the dynamics is

discussed in Sec. 6.4 and results are presented in Secs. 6.5-6.7. Finally, our concluding

remarks for this chapter are made in Sec. 6.8.

6.2 The form of the binding potential

Note that one can also use a molecular dynamics computer simulation based method

for calculating g(h) [101, 102, 78, 103, 104]. For simple Lennard-Jones like fluids it was

shown [4, 5, 6] that the following form gives a good fit to the binding potential over the

whole range:

g(h) =
H(e−p(h) − 1)

12πh2
, (6.2.1)

where p(h) = h2(a0e
−a1h + a2 + a3h+ a4h

2 + a5h
5). Eq. (6.2.1) gives the correct decay

for h→∞, namely that in Eq. (1.3.5), but remains finite in the limit h→ 0. However,

as also shown in Ref. [5], Eq. (6.2.1) is not appropriate for all liquids as it does not

capture any layering effects. It is then shown that for a simple fluid with only short-

range attractive interactions between the molecules (i.e., no van der Waals contribution,

H = 0), the following form gives a good fit to the binding potential data obtained using
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DFT:

g2(h) = e
− h

a0 [a5 + a4 cos(a1h+ a2)] + a6e
−2 h

a0

+a7e
−3 h

a0 + a8e
−4 h

a0 + a9e
−5 h

a0 + a10e
−6 h

a0 . (6.2.2)

a0 is the bulk correlation length in the liquid phase at the interface, and the other

ai’s corresponds to further constants, determined via fits to the DFT data and for the

particular treated case take the following values: a0 = 0.907508, a1 = −7.35183, a2 =

5.90059, a3 = 0, a4 = −0.011038, a5 = −0.000147646, a6 = 0.0449827, a7 = 0.422683,

a8 = −0.7673, a9 = −0.230683 and a10 = 0.559131 [5]. These are all in units where the

particle diameter σ = 1 and the thermal energy kBT = 1, where kB is the Boltzmann

constant and T the temperature of the system. Henceforth, these are the units in which

all lengths and energies are given.

Eq. (6.2.2) has a damped oscillatory decay as h → ∞. The oscillations lead to

the presence of multiple minima in g2(h), which result in the formation of ‘steps’ or

‘terraces’ in the vicinity of the contact line at the droplet edge – examples are displayed

later in Sec. 6.5. Each subsequent minimum in g2(h) corresponds to the addition of a

further layer. In Fig. 6.2 we display a plot of g2(h), appropriately scaled with σ2/(kBT ).

The global minimum is labelled ‘0’, where the film thickness (adsorption) is very small,

and there are almost zero molecules on the substrate, so the system is partially-wetting,

but with small contact angle θ, since g(h0) is only slightly negative. The boxed labels

‘1’, ‘2’, ‘3’, and ‘4’ indicate the local minima corresponding to the respective number

of complete layers of molecules on the substrate. We can see from Fig. 6.2 that in this

system, one layer of molecules is not as favourable as two or more complete layers of

molecules. Note that the oscillatory behaviour in g2(h) is also seen in the corresponding

liquid density profiles in the full DFT calculations [5].
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Figure 6.2: A plot of the binding potential in Eq. (6.2.2), calculated in [5] using DFT.

The global minimum is labelled ‘0’, as this state corresponds to Area 1 in Fig. 6.1,

where the film thickness is almost zero. The local minima at larger h are labelled ‘1, 2,

3, 4’ and represent one, two, three and four layers of molecules, respectively.

Eq. (6.2.2) contains many parameters and is the binding potential for a particular

liquid on a particular substrate at a particular temperature [5]. Here we seek to under-

stand the overall effects of oscillatory binding potentials on liquid drop shapes and the

spreading behaviour. Therefore we truncate the expression in Eq. (6.2.2) to obtain the

following simplified expressions,

g3(h) = a cos(hk + b)e−
h
c + de−

h
2c , (6.2.3)

and

g4(h) = a cos(hk + b)e−
h
c + de−

2h
c , (6.2.4)

where a, b, c, d, k are coefficients that we vary to determine the generic types of
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Figure 6.3: A plot of binding potential g3(h) in Eq. (6.2.3) with a = 0.01, b = π/2,

c = 1, k = 2π, d = 0.02 (solid red line) d = 0 (dotted black line) and d = −0.02 (dashed

blue line).

behaviours that one can observe. We introduce two oscillatory binding potentials where

one has exponential decay (g3(h)) and the other one has oscillatory decay (g4(h)).

These simpler expressions retain the overall character of the expression in Eq. (6.2.2),

but contain fewer parameters. In Figs. 6.3 and 6.4 we display plots of the binding

potentials (6.2.3) and (6.2.4), respectively, with the typical parameter values that we

use in our study, namely a = 0.01, b = π/2, c = 1, k = 2π, and varying the parameter

d, such as d = 0.02 (red) which represents a wetting situation, d = 0 (black) refers

to a partially-wetting case but close to the wetting transition, and d = −0.02 (blue)

partially-wetting.

These two binding potentials g3(h) and g4(h) are somewhat more generic than g2(h),

but at the same time they retain the oscillatory behaviour of g2(h), which gives the

layering. The lowest (positive) local minimum of g3(h) for d = 0.02 is at h = 0.2522
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Figure 6.4: A plot of binding potential g4(h) in Eq. (6.2.4) with a = 0.01, b = π/2,

c = 1, k = 2π, d = 0.02 (solid red line) d = 0 (dotted black line) and d = −0.02 (dashed

blue line).

which is similar to the local minimum of the full expression g2(h) with the parameter

values obtained from the DFT results in Ref. [5], namely h = 0.1081. For relatively large

h, both g3(h) and g4(h) tend to zero but with different limiting behaviours. For g3(h),

the exponential decay dominates whereas for g4(h), the sinusoidal oscillations dominate.

Note that the ultimate asymptotic decay is determined by the form of the decay into

bulk of the liquid density profiles that are in contact with a substrate [105, 106, 5, 6].

Whether the decay is monotonic or damped oscillatory depends on the state point (i.e.

temperature and density) and on which side of the Fisher-Widom (FW) line this state

point is. The FW line is the locus in the phase diagram at which the asymptotic decay

of the radial distribution function crosses over from monotonic to damped-oscillatory

decay [105, 106, 107].
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6.3 Thin film equation

The time evolution of a thin liquid film on a surface can be derived from energetic

considerations. In the approximate systems of Fig. 1.3, the free energy of the system is

FIH[h] =

∫∫ [
g (h) +

γlv
2

(∇h)2
]

dxdy. (6.3.1)

This contains two contributions: (i) the binding potential contribution from the molec-

ular interactions with the substrate and (ii) the energy of the free surface (surface

tension), where ∇ = ( ∂
∂x
, ∂
∂y

) is the 2D gradient operator. The latter is proportional to

the fluid surface area and the approximation
√

1 + (∇h)2 ≈ 1 + 1
2
(∇h)2, appropriate

when the gradients are small, has been made in Eq. (6.3.1). We have also neglected an

irrelevant constant term.

The quantity
δFIH

δh
= −Π− γlv∇2h (6.3.2)

is the negative of the local pressure in the film and so any gradients in this quantity give

the thermodynamic force which drives the flow of liquid over the substrate. There is

therefore a current j = −Q(h)∇ δFIH

δh
, where Q(h) is the mobility coefficient. Combining

this with the continuity equation, we obtain [108, 16]

∂h

∂t
= −∇ · j = ∇ ·

[
Q(h)∇δFIH[h]

δh

]
. (6.3.3)

The mobility coefficient Q(h) depends on the film thickness. Often the expression

Q(h) = h3/(3η) is assumed, where η is the fluid viscosity. This is what emerges from

the long-wave approximation of the Navier-Stokes equations with no-slip boundary
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conditions [63], giving

∂h

∂t
= ∇ ·

(
h3

3η
∇
(
−γlv∇2h− Π (h)

))
. (6.3.4)

Assuming some slip, then Q(h) can acquire additional terms, for example, Navier-slip

[109] results in Q(h) = βh2 + h3/3η [63, 110]. In the next section we discuss further

mobilities Q(h) which describe diffusion effects.

Equilibrium (steady state) drop profiles are those which minimise FIH[h] subject to

the constraint that the volume of the liquid V =
∫∫

hdxdy is fixed, i.e. which minimise

Ω[h] ≡ FIH[h] + λ

∫∫
hdxdy, (6.3.5)

where λ is the Lagrange multiplier associated with the volume constraint. The min-

imising curve satisfies
δΩ

δh
= 0, (6.3.6)

which is equivalent to

−Π− γlv∇2h = λ. (6.3.7)

From this we can identify λ as the pressure difference across the interface due to the

Laplace and disjoining pressures. If we consider a 1D droplet such that h = h(x) and

let u = h, v = u′, we have

u′ = h′, (6.3.8)

v′ =
1

γlv

(
dg

dh
− λ
)
, (6.3.9)

which can be used to plot the phase plane diagram of equilibrium solutions, as shown
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Figure 6.5: A phase plane diagram when the binding potential is g2 in Eq. (6.2.2)

and γlv = 0.51, which shows all possible equilibrium solutions of our thin film equation

as the maximal drop height is varied, with the Lagrange multiplier having the value

λ = 9.8× 10−4.

in Fig. 6.5 (for standard Derjaguin pressures such plots can be found in Refs. [108, 111]

where also the influence of λ is discussed). In this figure closed loops correspond to

periodic solutions – i.e. the solutions that one obtains on finite domains with periodic

boundary conditions. This allows one to determine at a glance the range of equilibrium

profiles that one may expect to obtain from the model. The oscillations in the ‘stream-

lines’ in Fig. 6.5 correspond to steps or terraces in the contact line region of the droplet

solutions. Such droplet profiles are obtained below as stationary solutions of our PDE

model.
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6.4 Incorporating the effects of diffusion into the

mobility

In droplet spreading simulations with the advective mobility, we see that on some

occasions a very thin precursor film can extend ahead of the bulk of the main droplet.

Physically, when this film is very thin, in particular when the film thickness is much

less than the order of a particle diameter σ, such as illustrated in Area 1 in Fig. 6.1,

we would expect the motion to be dominated by diffusion. Currently our model only

describes the advective motion over the substrate – recall that Eq. (6.3.4) is obtained

from a long-wave approximation to Navier-Stokes plus no-slip boundary conditions.

We now seek to modify the thin-film equation in a simple way such that both,

diffusion and advection occur throughout the droplet, but for where the adsorbed film

is very thin (i.e. less than roughly a monolayer or two), diffusion dominates, but for

where the film thickness is larger, advection dominates. Thus, the two limiting cases

we require are: (i) the diffusion equation

∂h

∂t
= ∇ · (D∇h), when h� σ, (6.4.1)

where D is the diffusion coefficient for particles moving over the surface, and (ii) the

thin-film equation
∂h

∂t
= ∇ ·

[
h3

3η
∇δFIH

δh

]
, when h� σ, (6.4.2)

which is Eq. (6.3.4). Both Eqs. (6.4.1) and (6.4.2) can be obtained as appropriate limits

of the more general Eq. (6.3.3), if the mobility Q(h) is suitably generalised, as we now

show.

To see how a diffusion equation can be obtained, we consider the case when h is close
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to 0. From the Maclaurin series expansion of g(h) we obtain−Π(h) = g′(0)+g′′(0)h+. . .,

which, together with Eq. (6.3.2), gives

δFIH

δh
= g′(0) + g′′(0)h− γlv∇2h+ . . . . (6.4.3)

If we assume

Q(h) = α0 + α1h+ α2h
2 + h3/(3η), (6.4.4)

then in the h → 0 limit we have Q(h) ≈ α0 and so from Eqs. (6.3.3) and (6.4.3) we

obtain
∂h

∂t
≈ α0∇2

(
g′′(0)h− γlv∇2h

)
, (6.4.5)

which in the limit where the first term dominates (for example if scaling into regions

near contact lines), yields Eq. (6.4.1), together with the result that α0 = D/g′′(0).

In the limit when h is large, Eq. (6.4.4) gives Q(h) ≈ h3/(3η), and so the desired

result, Eq. (6.4.2), is recovered. Thus, our final model is

∂h

∂t
=∇ ·

[(
D

g′′(0)
+
h3

3η

)
∇
(
−γlv∇2h− Π (h)

)]
, (6.4.6)

where we have set the coefficients α1 and α2 to zero. If we kept the terms involving

α1 and α2 we would effectively be also investigating the effect of slip at the substrate,

which at these molecular scales is usually seen as a coarse grained method to account for

any number of physical processes that allow for contact line motion [112]. In particular,

as mentioned previously α2 can be associated with the popular Navier-slip model, and

α1 with a nonlinear slip model [110]. Detailed comparisons between slip models in the

thin-film setting can be found elsewhere [113, 114, 115].

We note that other authors have discussed the modelling of diffusion or diffusive
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regimes in thin films [116, 117, 118]. Ref. [116] used a piece-wise mobility for diffusive

and advective regimes in a mesoscopic hydrodynamic approach to droplet motion due

to surface freezing/melting. The authors of Ref. [117] have a discussion on adiabatic

and diffusive films, but they talk about them in a different context than the present

work. In [117] the argument is that when the edge of the film is very thin it becomes

approximately flat so that curvature effects are negligible. In this case the thin film

equation can be written in the same form as the diffusion equation with an (approxi-

mately constant) height-dependent diffusion term being D(h) = −h3/(3η)∂hΠ. Clearly

this is quite different to our proposed implementation where we wish to model a diffu-

sive region of the droplets where height increases from zero or a negligible value h� σ

to h ≈ σ rapidly. Finally, Ref. [118] compares the time evolution of relaxing liquid

ridges employing various different mobility functions, including a diffusive one.

Returning to our governing equation (6.4.6), we now nondimensionalise, by scaling

∇ =
1

σ
∇∗, h = σh∗, t = τt∗, Π =

kBT

σ3
Π∗,

γlv =
kBT

σ2
γ∗lv, FIH = kBTF

∗
IH, (6.4.7)

where we recall that σ is the diameter of particles on the substrate, and ∇∗, h∗, t∗, Π∗

and γ∗lv are the dimensionless quantities, and we have also given a scaling for the total

free energy as its dynamic evolution is investigated in our numerical results presented

below. By taking

τ =
3ησ3

kBT
, ᾱ0 =

3α0η

σ3
=

3Dη

g′′(0)σ3
, (6.4.8)

we obtain
∂h∗

∂t∗
= ∇∗ ·

[(
ᾱ0 + h∗3

)
∇∗
(
−γ∗lv∇∗2h∗ − Π∗

)]
. (6.4.9)
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Subsequently, we drop the ‘*’ for simplicity. This is our new equation which describes

the evolution of the liquid film, incorporating both advection and diffusion.

6.5 Spreading on a non-zero background adsorption

The results presented in this section are obtained for the four binding potentials intro-

duced in section 6.2. The time simulations are initiated at the instant when the droplet

is released onto the substrate and are carried out until the droplet comes to rest, at

the equilibrium steady state (where we monitor the free energy and see it reaches a

constant). The initial condition is assumed to be a drop shape which is modelled with

a Gaussian function of the form

h(x, t = 0) = Ce
−
[

(x−xf /2)

E

]2

+ hb, (6.5.1)

where the parameter hb is the background value of h, i.e. the imposed layer height far

away from the droplet, which can be set to a value 6= h0 if desired. Recall that the height

h0 is the height of the ‘precursor’ film/foot that extends away from the droplet during

its approach to equilibrium. It is the height at which the lowest (positive) minimum

of the binding potential occurs. In particular, h0 corresponds to the global minimum

of g1 (the commonly investigated spreading situation) and g2 (the terraced spreading

situation), but not necessarily the global minimum of g3 or g4 (the generalised versions

of g2), depending on their parameter values.

In Eq. (6.5.1), the parameter C is the amplitude of the initial droplet, i.e. it is the

height of the droplet above the background film at time t = 0. E controls the width of

the initial droplet, and xf is the length of the domain.

This initial condition specifies the height h(x, t = 0) in the z-axis, and it is assumed
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uniform in the y-direction to create a 2D droplet. The spreading of 2D droplets has

been investigated extensively [63, 115] as they give qualitatively the same behaviour

as for 3D axisymmetric droplets, particularly in the important region near the contact

line. Periodic boundary conditions are applied, so that h(x = 0, t) = h(x = xf , t), and

the symmetry of the droplet is preserved in the dynamics due to the symmetric initial

condition of Eq. (6.5.1).

All computations are performed using a method of lines technique, using finite

difference approximations for the spatial derivatives, trapezoidal numerical integration

for computing integrals (for the free energy and for confirming mass conservation), and

the ode15s Matlab variable-step, variable-order (VSVO) solver [90]. A convergence test

was applied, with the conclusion that a small enough grid size should be applied—

typically here dx = 0.2, details are given in the Appendix A.

To be able to compare the spreading dynamics of droplets with the two binding

potentials g1 and g2, given by Eqs. (1.3.7) and (6.2.2) respectively, we first must find

the values of parameters a and b in g1 which make the contact angle and h0 for both

binding potentials the same. Combining Eq. (1.3.3) and Young’s equation (1.2.1),

gives the following relationship between the minimum of the binding potential and the

equilibrium contact angle [3, 58, 119]

θ = cos−1
(

1 +
g(h0)

γlv

)
. (6.5.2)

For g2 in Eq. (6.2.2), with the coefficients given by DFT calculation [5], the minimum

of g2 is −0.0028 at h0 = 0.1081, and the corresponding surface tension (also from the

DFT [5]) is γlv = 0.5101. This value of γlv is kept fixed throughout this section to

enable a fair comparison between other effects such as the form of binding potential.

The effect of surface tension is to smooth out gradients in the liquid-vapour film height
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Figure 6.6: The time sequence of drop profiles for a liquid drop spreading on a substrate,

with: (a) the binding potential g1 given by Eq. (1.3.7) with a = 2.756 × 10−8 and

b = 5.453×10−5, and (b) the binding potential g2 given by Eq. (6.2.2). The parameters

in the initial condition are chosen as hb = 0.1081, C = 60 and E = 10 in both cases.

The diffusive mobility coefficient ᾱ0 = 0. The t = 0 profile is centred at x = 200 and

then spreads until reaches equilibrium.

h, thus a smaller surface tension would enhance the influence of the oscillatory binding

potentials and give sharper terraces at equilibrium. Substituting these values back to

Eq. (6.5.2) gives the equilibrium contact angle θ = 6.006◦. By equating the value and

location of the minimum of g1 in terms of the parameters a and b, with the respective

numeric values for g2, we find a = 2.756 × 10−8 and b = 5.453 × 10−5, which allow a

direct comparison between binding potentials g1 and g2, and the investigation of the

effect of oscillatory binding potentials.

Fig. 6.6(a) shows the time sequence of drop profiles for a liquid drop spreading on a

substrate already covered by an equilibrium background film, with binding potential g1
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given by Eq. (1.3.7), with a = 2.756×10−8 and b = 5.453×10−5. The diffusive mobility

coefficient ᾱ0 = 0. The parameters in the initial condition are chosen as hb = 0.1081,

C = 60 and E = 10. The t = 0 profile is centred at x = 200 and then spreads.

The liquid spreads rapidly from rest until t ≈ 104 under the effect of surface tension

due to the significant difference between effective imposed initial contact angle and

the equilibrium contact angle. The spreading then slows as the droplet equilibrates,

as expected. The curves for times t = 106 and t = 107 are overlapped and virtually

indistinguishable, indicating that equilibrium has been reached.

The results in Fig. 6.6(a) are for the single-well binding potential of g1. Fig. 6.6(b)

shows the equivalent time sequence of drop profiles for the oscillatory binding potential

g2 in Eq. (6.2.2). The spreading dynamics initially follows a very similar trajectory until

approximately t ≈ 105. The height at the centre of the droplet continues to equilibrate

at a similar rate to the case in Fig. 6.6(a) (with g1) but for t & 104 we notice the

emergence of a foot, or terrace, in the droplet near the contact line at a value h ≈ 2

corresponding to the third minimum in the oscillatory binding potential g2 (with label

‘2’ in Fig. 6.2), corresponding to a thickness of two particle layers.

From these comparisons we see that the dynamics is predominately driven by the

relaxation of the contact angle to its equilibrium, and finer details of the binding poten-

tial do not dramatically change the timescales of spreading—especially when monitoring

the equilibration of the maximal droplet height. However, significant differences near

the contact line can occur where oscillations lead to terracing of the droplet. We see a

reduction in wetting length for equilibrium droplets: the right contact line location at

approximately x = 325 and x = 315 in Figs. 6.6(a) and 6.6(b), respectively. A more

detailed comparison of the two equilibrium droplet profiles is given in Fig. 6.7. We see a

marginal difference in maximal height, with more pronounced differences in the contact

line region, with the final drop shape with binding potential g2 having obvious ‘steps’,
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Figure 6.7: A comparison of the final equilibrium droplets with binding potentials g1

and g2, corresponding to Figs. 6.6(a) and6.6(b). The equilibrium contact angle θ, the

surface tension γlv and the initial condition are the same for both cases.

or terraces (for example, at x ≈ 306 and x ≈ 298). This is caused by the oscillations in

the binding potential g2, with each ‘step’ corresponding to one layer of fluid particles

(recall that whilst one layer is a local minimum in g2, it is far less preferable than for

h = h0 or for two or more complete layers of particles).

Fig. 6.8 shows the time evolution of the total free energies given by Eq. (6.3.1),

appropriately nondimensionalised as in Eq. (6.4.7), corresponding to the two spreading

situations in Figs. 6.6- 6.6(b). This shows that the timescales of spreading are unaffected

by the choice of g1 or g2 in the case where coefficients were chosen to fix identical h0

values and equilibrium contact angles. In this particular example then, it appears as

though the formation of the terraces seen in Fig. 6.7 (with g2) does not change the

speed of approach to equilibrium. However, further investigation with a variety of

initial conditions has shown that other events unique to oscillatory binding potentials
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Figure 6.8: The time evolution of the free energy (6.3.1) as a droplet spreads to equi-

librium with binding potentials g1 and g2, corresponding to Figs. 6.6(a) and6.6(b). The

equilibrium contact angle θ, the surface tension γlv and the initial condition are the

same for both cases.

can have significant effects, which we detail later.

Having demonstrated that oscillatory binding potentials are worthy of greater scrutiny

through visualising the difference between the commonly used g1 form to the specific

g2 one taken from a particular DFT calculation, we now analyse the more generic be-

haviour of binding potentials with oscillations, as given by the simplified forms g3 and

g4.

In Fig. 6.9 we display equilibrium drop profiles when the binding potential is g3

in Eq. (6.2.3), for various values of the parameter d, namely d = {0.02, 0,−0.02} (c.f.

Fig. 6.3). The other parameters take the values a = 0.01, b = π
2
, c = 1 and k = 2π.

The parameters in the initial condition are chosen as C = 6, E = 10, xf = 200, and
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Figure 6.9: Equilibrium drop profiles with binding potential g3 in Eq. (6.2.3) as the

parameter d is varied and with a = 0.01, b = π
2
, c = 1, k = 2π.

hb = {0.2522, 0.2282, 0.1921} for d = {0.02, 0,−0.02}, respectively. These give the

lowest (positive) local minimum at a similar value to that of g2, to allow for direct

comparison. As discussed in Sec. 6.2, d = 0.02 is wetting whereas the other two are

partially-wetting (although d = 0 is close to the wetting transition). From Fig. 6.9 we

see the influence of this, as the drops for higher d spread out further, and thus have

lower maximal height. The height spacing of the steps seen in these equilibrium drop

profiles also corresponds to the spacing of the minima in g3.

To explore the dynamics of spreading using g3, in Fig. 6.10 we plot the time evolution

of the normalised free energy difference

∆(t) =
FIH(t)− FIH(t =∞)

FIH(t = 0)− FIH(t =∞)
, (6.5.3)

where the free energy FIH is given by Eq. (6.3.1). One might expect a smooth approach
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Figure 6.10: The normalised free energy difference for droplet spreading under the

influence of binding potential g3, for various values of the parameter d. The expression

of g3 is given by Eq. (6.2.3), with a = 0.01, b = π
2
, c = 1, and k = 2π.

to equilibrium, as observed in Fig. 6.8. Instead, we see a number of stages to the

dynamics, including the usual initial spreading/relaxation from the initial condition;

the formation of terraces; a ‘popping’ event where a rapid reduction of the free energy

results from a sudden jump of the droplet free surface from one minimum of the binding

potential to another; and then finally the usual long-time approach to equilibrium. The

small jump for d = 0.02 happens at t ≈ 104 and there are not any obvious jumps for

d = 0 and d = −0.02.

To understand the dynamics more clearly, in Fig. 6.11 we plot the time sequence of

drop profiles for binding potential g3 with d = 0.02. The time is chosen from where the

‘popping’ event is about to happen till it finishes. The drop starts to form two ‘terraces’

from t = 103, in the corresponding normalised free energy difference curve displayed in

Fig. 6.10 this behaviour is shown as the first inflection point where the normalised free
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Figure 6.11: A time sequence of drop profiles for a liquid drop spreading on a substrate,

with binding potential g3 given by Eq. (6.2.3), with a = 0.01, b = π
2
, c = 1, k = 2π,

d = 0.02. The initial condition is chosen as hb = 0.2522, C = 6, E = 10 and xf = 200.

The corresponding free energy time evolution is displayed as the solid (red) line in

Fig. 6.10.

energy difference ≈ 0.1. As the drop spreads from t = 3 × 103 to t = 5 × 103, the top

part of the drop becomes ‘sharper’ and then it suddenly jumps down to form a flat top

to minimise the free energy. This is an example of a ‘popping’ events that leads to the

sudden decreases observed in Fig. 6.10. After t = 104 the drop keeps spreading and

reaches equilibrium.

Fig. 6.12(a) shows a sequence of equilibrium droplet profiles using binding potential

g3 with fixed d = 0.02 and various values of a. The time evolution of the normalised free

energy differences leading to the formation of these drops is displayed in Fig. 6.12(b)

and the corresponding binding potentials are displayed in Fig. 6.12(c). All of these

drops have the same values of C = 6, E = 10 and xf = 200. Smaller values of a lead to
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Figure 6.12: (a) A sequence of equilibrium droplet profiles with binding potential

g3 and varying a, as given in the legend. We also have d = 0.02, and hb is set as

the lowest positive minimum of the binding potential (for a = 0.01, hb = 0.3, for

a = 0.02, hb = 0.2282, for a ≥ 0.04, hb = 0.1322). (b) A plot of the time evolution of

the normalised free energy differences of the dynamics leading to the formation of the

drops in (a). (c) Shows the corresponding binding potentials.
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broader droplets with flatter tops and fewer steps. This is due to the amplitude of the

oscillations in the binding potential being smaller and the correspondingly higher value

of the lowest positive local minima. As a increases, the system undergoes a wetting

transition, so the most obvious effect on the droplets is the extent of spreading, which

is controlled by the equilibrium contact angle which in turn is determined by the height

of the lowest positive minimum in the binding potential.

Fig. 6.12(b) shows the corresponding normalised free energy differences for spreading

on these binding potentials. As before, steps in this quantity correspond to popping

events or the emergence of terraces. There are overall trends as a is varied, such as

secondary (and higher) terracing events are harder to see in curves for large a. Also,

in general, the spreading to equilibrium occurs more quickly for greater a, as would be

expected from the binding potentials and equilibrium droplet profiles, given that the

distance the droplet has to spread is less. However, there are exceptions to this trend

such as the case with a = 0.04, where the ‘popping’ event takes an unusually long time

to occur. Thus, it is possible for the crossing of the normalised free energy difference

curves for different values of a, where at a particular stage of the dynamics certain

evolutions are slowed by the formation of terraces (e.g. by being ‘pinned’ to particular

heights), whereas at the same time such an event does not occur in an otherwise slower

(larger difference between initial and equilibrium contact angles) spreading situation.

We believe the occurrence of slow dynamics in the system corresponds to parts of the

profile having to pass over saddles in the free energy.

Comparing the normalised free energy difference curves for a = 0.1 and a = 0.3

in Fig. 6.12(b), we see the curves cross and are rather different in shape, indicating

that the different stages of the dynamics occur on different timescales. Interestingly,

however, both take the same overall time to finally equilibrate. The a = 0.3 case

initially decreases much more rapidly, due to the high barrier in the binding potential
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between the minimum at h0 and the next minimum at h1, corresponding to 1 layer of

particles [see Fig. 6.12(c)]. The free energy cost of having h ≈ 1
2
(h0 + h1) is high, so

the system chooses h = h0 or h = h1 as quickly as it can. Following this, there is a

slower relaxation over a longer timescale. In contrast, for a = 0.1 the energy difference

between the first positive local maximum and the neighbouring minimum is much less,

so there is only one timescale visible in the relaxation to equilibrium.

Having investigated the dynamics of spreading for g3, a binding potential with

oscillations but also having monotonic exponential decay at larger h, we now focus

on g4, which has oscillatory decay for h→∞.

Final equilibrium drop profiles with the binding potential g4 for various values of

the parameter d are shown in Fig. 6.13(a). The initial drop profile (6.5.1) has C = 6,

E = 10, xf = 200, and hb = {0.3, 0.2282, 0.1322} which are the corresponding minima

(h0) for d = {0.02, 0,−0.02}. Similar to the drop profiles with binding potential g3,

higher values of d lead to broader droplets and flatter tops, as the system passes through

the wetting transition. However, instead of having two complete layers of particles for

d = 0.02 as shown in Fig. 6.9 for g3, the final equilibrium shape with binding potential

g4 has only one particle layer. This is in agreement with intuitive analysis of the plot

of g4 against h in Fig. 6.4, since the global minimum of g4 with d = 0.02 is at h ≈ 1

and thus one layer of particles is preferred.

To investigate the dynamics of spreading with binding potential g4, in Fig. 6.13(b)

we plot the corresponding normalised free energy difference over time for the same

three values of d. In the two d 6= 0 cases the drop takes a much longer time to reach

equilibrium than the cases in Fig. 6.12 (with g3). Also, there are two obvious ‘popping’

events on the d = 0.02 curve. At the first inflection point (at t ≈ 103), the drop starts

to form terraces and the centre of the drop ‘pins’ to a particular height until the first

jump (‘popping event’) occurs between t = 103 and t = 104, where the normalised
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Figure 6.13: (a) Equilibrium drop profiles with the binding potential g4 in Eq. (6.2.4),

as the parameter d is varied. We take a = 0.01, b = π
2
, c = 1, k = 2π and

d = {0.02, 0,−0.02}. (b) The corresponding normalised free energy difference for the

spreading of the droplets.

energy difference drops down from ≈ 0.26 to ≈ 0.22, during which the top part of the

droplet flattens. A similar process occurs again at t ≈ 7 × 104 because one layer of

particles is slightly more favourable than two or more layers of particles (see Fig. 6.4).

We believe that in this case the dynamics is particularly slow because the difference in

the free energy of the different minima of g4 for d = 0.02 are rather small.

The slow dynamics for the case d = −0.02 in Fig. 6.13(b) is for a different reason.

Looking at the time evolution of the drop profile, the drop initially seems to reach

equilibrium with a background film height equal to h0. However, this leaves the top

of the droplet on a maximum in the binding potential, and so the background film

height raises up slightly to allow the top of the drop to move off the maximum. In the

final equilibrium neither the background film nor the top of droplet are in any binding

potential minima, but nonetheless the state is the best overall equilibrium for the entire
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droplet.

In Fig. 6.14(a) we display a sequence of equilibrium droplet profiles for binding

potential g4 and various values of a. As a is increased the amplitude of the oscillations

in g4 increases and also the the system is further from the wetting transition with

a larger contact angle, since the primary minimum in g4 at h = h0 becomes lower

as a is increased. In Fig. 6.14(b) we display the corresponding time evolution of the

normalised free energy difference and in (c) the binding potential. The overall behaviour

is somewhat similar to that displayed in Fig. 6.12 for binding potential g3. However,

the overall time it takes to equilibrate varies even more in this case, being anywhere

in the range 103 – 106. As before, this is due to the slow dynamics that occurs due to

popping, pinning and other such events as the droplet evolves in a complex free energy

landscape having many long ‘valleys’ and saddle points.

6.6 Spreading versus dewetting towards equilibrium

In view of the apparent complexity in the underlying free energy landscape in which the

spreading droplet evolves, a natural question to arise is: does that landscape exhibit

multiple minima? All the results presented so far correspond to spreading droplets, so

to address this question, we also consider cases where the initial condition consists of

a pancake-like drop that is spread out more than the expected final equilibrium state,

so that the evolution towards equilibrium consists of a dewetting dynamics, with the

contact line of the droplet receding.

In some cases, identical equilibrium profiles are found from both spreading and

dewetting simulations. However, it is also not uncommon for different equilibria to

be realised. In Fig. 6.15 we highlight a case of this latter situation, where the initial
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Figure 6.14: (a) A sequence of equilibrium droplet profiles with binding potential

g4 and varying a, as given in the legend. We also have d = 0.02, and hb is set as

the lowest positive minimum of the binding potential (for a = 0.01, hb = 0.300, for

a = 0.02, hb = 0.2642, for a = {0.04, 0.05}, hb = 0.2402, and for the remaining values

of a, hb = 0.2282). (b) A plot of the time evolution of the normalised free energy

differences of the dynamics leading to the formation of the drops in (a). (c) Shows the

corresponding binding potentials.
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profiles for spreading and dewetting were given as

h(x, t = 0) = 18.00 e
−
[

(x−xf /2)

6

]2

+ hb, (6.6.1)

and

h(x, t = 0) = 1.694 e
−
[

(x−xf /2)

60

]8

+ hb, (6.6.2)

respectively, and where xf = 400, hb = h0 = 0.1081, and the binding potential g2 is

used (we can also obtain the latter case with a larger domain i.e. xf = 600). Specifically,

in Fig. 6.15(a) we present the final equilibrium states of two droplets with the same

volume that have evolved to attain different equilibrium profiles—although as expected

given both simulations are for identical substrates with the same binding potentials,

the effective contact angle made with the background film is seen to be in agreement in

both equilibria. We further note that the drops have dynamically evolved to find the

locally lowest energy configuration for their height profile across the entire domain. As

the effective domain is finite (due to the periodic boundary conditions), this means that

the background height at equilibrium is not exactly h0, the lowest (positive) minimum

value for the imposed binding potential (in this case g2(h)). Indeed, the two cases in

Fig. 6.15(a) have slightly different values for the background film height, corresponding

to different values of λ [defined in Eq. (6.3.7)]. In Fig. 6.15(b) the corresponding

evolutions of the normalised free energy differences are depicted to highlight the very

different approaches to equilibrium for these two situations. We further note that they

have not approached the same free energy equilibrium. In particular the spreading case

has been able to find a lower minimum in the energy landscape, since it has reached

FIH(∞) = 0.046, compared to FIH(∞) = 0.15 for dewetting.

In our simulations, it is noticed that dewetting usually proceeds less rapidly than
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Figure 6.15: (a) The final equilibrium state obtained for the same volume of liquid

on the surface undergoing both spreading and dewetting on a background film h = h0.

The binding potential used is g2, with initial conditions that were evolved to reach these

final equilibria given in (6.6.1) for the spreading situation, and (6.6.2) for dewetting. (b)

shows the corresponding evolutions of the normalised free energy differences, noting that

for spreading FIH(0) = 16.89 and FIH(∞) = 0.046, whereas for dewetting FIH(0) = 0.44

and FIH(∞) = 0.15.

spreading, as has been reported previously for droplet motion simulations [120]. Along-

side the fact that the relative depth of the minima in the binding potentials are mostly

greater for smaller values of film height, we see that popping events are much less com-

mon in dewetting than in spreading and the terraces are formed in a more gradual

evolution.
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Figure 6.16: The free energy over time during droplet spreading with binding potential

g2 for various values of the diffusion coefficient ᾱ0 on: (a) a substrate covered by a film

of thickness hb = h0 = 0.1081 and (b) a totally dry substrate, i.e. hb = 0. The initial

condition in both cases has C = 60, E = 10 and xf = 400.

6.7 Including diffusion

All results presented thus far are for spreading onto a substrate already covered with a

film of thickness h0, essentially like conducting a spreading experiment on an ostensibly

dry substrate but that already has a few particles adsorbed on it. We have modelled

this situation assuming that the droplet evolution proceeds with advection only – i.e.

the case where ᾱ0 = 0 in our governing equation (6.4.9). However, as discussed in Sec.

6.4, when the amount adsorbed on the substrate is a single monolayer or less, we expect

the dynamics to be diffusive. This is even more true when thin films advance onto a

substrate that is completely dry, with no particles at all present on the substrate before

the droplet is introduced. Therefore, we now consider the case ᾱ0 > 0.

We first consider the case where the binding potential is g2. In Figs. 6.16(a) and
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6.16(b) we show cases where the droplet is initiated on a background film of thickness

hb = h0 (as previously) and hb = 0 (a totally dry initial substrate), respectively. We

see two main effects: (i) increasing diffusion (larger ᾱ0) speeds up the evolution in all

cases; (ii) diffusion has a far greater impact when the droplet is spreading on a totally

dry substrate, as in Fig. 6.16(b), compared to when spreading on an already present

‘precursor’. In these plots, a relatively large initial droplet is chosen (with C = 60),

hence most of the droplet has h � σ throughout the evolution. Thus, as anticipated

in the model development discussion in Sec. 6.4, diffusion does not have a dramatic

effect for large drops initially and O(1) times. However, for drops of any size, the latter

stages of the approach to equilibrium ultimately requires a reshaping of the height profile

along terraces (at small multiples of σ) caused by the oscillatory binding potential. In

these latter stages, diffusion then speeds up this reshaping process, and even for large

droplets can decrease the time to reach equilibrium by orders of magnitude (e.g. see

the behaviour of the free energy in Fig. 6.16(b) for FIH(t) . 5).

For much smaller droplets, however, where the average height of the drop is small,

the diffusion is much more influential across the entire evolution, speeding up the equi-

libration. In Figs. 6.17(a) and 6.17(b) we plot the evolution of the free energy for a

particular set of parameters in g3 and g4 for a small initial droplet on a totally dry

substrate (C = 6, hb = 0). In these cases the spreading happens more rapidly when

ᾱ0 > 0. It can be many orders of magnitude faster than the case ᾱ0 = 0. This shows

that (i) including diffusion is essential in situations where the physics dictates that it

has an effect, and that (ii) the order in which parts of the droplets evolve can be re-

versed. For example, consider the extreme cases of ᾱ0 = 0 and ᾱ0 = 100 in Fig. 6.17(b).

For high diffusion the early time dynamics consists of the precursor foot spreading out

rapidly, before a final popping event to reach equilibrium for the larger part of the

droplet centre. In contrast, when there is no diffusion ᾱ0 = 0, the spreading occurs
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Figure 6.17: The free energy over time during droplet spreading on a totally dry sub-

strate for various values of the diffusion coefficient ᾱ0 with: (a) binding potential g3(h)

and (b) binding potential g4(h). The initial condition in both cases is hb = 0, C = 6,

E = 10 and xf = 200.

as usual with the main part of the droplet evolving to very close to the final shape

before the precursor foot eventually is formed in the final approach to equilibrium. In

Fig. 6.18 we plot the time sequence of drop profiles for binding potential g3(h) with

diffusion coefficient ᾱ0 = 1. The corresponding free energy time evolution is displayed

as the dot (black) line in Fig. 6.17(a).

6.8 Concluding remarks

In this chapter we have investigated thin liquid films spreading on a flat solid substrate,

including effects such as surface tension, oscillatory binding potentials, advective flow

dynamics and surface diffusion. Lubrication theory and dimensional analysis have been
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Figure 6.18: A time sequence of drop profiles for a liquid drop spreading on a substrate,

with binding potential g3 given by Eq. (6.2.3), and diffusion coefficient ᾱ0 = 1. The

initial condition is chosen as hb = 0, C = 6, E = 10 and xf = 200. The corresponding

free energy time evolution is displayed as the dot (black) line in Fig. 6.17(a).

used to derive a model governing equation (6.4.6) for the drop height profile. From

this one can also obtain the pressure and velocity profile. Solving numerically using the

Finite Difference Method has allowed us to simulate the thin film droplet spreading.

The oscillatory binding potentials that we have used model the molecular packing

that can occur in certain liquids at interfaces [1, 96, 97, 98, 5, 6, 59, 99]. These occur

in systems that exhibit layering transitions near to the wetting transition. Note that

spreading nanoparticle-laden drops [121] have previously been modelled with thin-film

models incorporating oscillatory disjoining pressures [122, 123, 124]. These dynamical

models describe the time evolution of two coupled fields: the height of the liquid film and

the local concentration of nanoparticles. In Ref. [123] it is shown that the presence of
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nanoparticles can also lead to terraced droplets and steps emerging from the contact line.

In the context of the gradient dynamics form presented here in (6.3.3) it should be noted

that such a form also exists for nanoparticle-laden or surfactant-laden films [125, 126,

127]. Such a model shows that an oscillatory nanoparticle-dependent wetting potential

does not only result in an oscillatory disjoining pressure but also in a correspondingly

amended chemical potential for the particles.

We have shown that having an oscillatory binding potential leads to a rich and

varied droplet spreading dynamics. The time evolution towards equilibrium can often

exhibit several stages. There is the usual spreading and relaxation from the initial

condition, but there is also the formation of terraces and ‘popping’ events where there

is a rapid drop in the free energy due to a jump of the droplet free surface from one

minimum of the binding potential to another. There is also the usual final long-time

approach to equilibrium. We believe this rich behaviour is due to the complexity of

the underlying free energy landscape that exhibits multiple minima, long valleys along

which the dynamics is slow and saddle points. To better understand the underlying

free energy landscape, we expect a systematic phase plane analysis is required – i.e. a

systematic examination how diagrams like that in Fig. 6.5 vary as the parameters in

the system are changed.

Our extended thin-film hydrodynamic model (6.4.6) is also capable of describing the

crossover from advective to diffusive dynamics that must occur when the film thickness

is of order one particle thick or less. Such a crossover must occur [23]. We have

shown that when diffusion is included, the droplet spreading is faster, particularly

for very small droplets and for all droplets in the latter stages of their approach to

equilibrium. Incorporating diffusion can also change the dynamic pathway taken – c.f.

the discussion above around Fig. 6.17(b) and Ref. [118] where the nonlinear dynamics of
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the Plateau-Rayleigh instability2 of a liquid ridge is investigated comparing pathways

occuring for different mobility functions. Note however that incorporating a small

amount of diffusion does not change Tanner’s law [128]. Recall that Tanner’s law states

that over a significant portion of the spreading time of a radially symmetric liquid

drop (puddle), the radius R grows in time as R ∼ tn, with exponent n = 1/10. For

2D spreading drops like those studied here, the law still applies, but with exponent

n = 1/7 [128]. Tanner’s law was derived in situations with relatively small contact

angle and slow spreading, i.e. small capillary number. We have checked that including

moderate diffusion does not change Tanner’s law, however it does change the pre-factor,

so that the overall time for the drop to equilibrate is less with diffusion incorporated.

The extent of the time period that Tanner’s law holds (usually after initial transient

relaxations to a quasistatic shape up until a change to exponential behaviour during

the latter stages of approach to equilibrium) can also be significantly reduced in our

oscillatory binding potential simulations. This happens, as would be expected, when

the majority of the droplet profile lies in the region where terraces form and the greater

range of dynamical features occur, creating the rich evolutions we have explored. A

final note on the relevance of Tanner’s law, however, is that if a very large diffusion

coefficient is imposed then the overriding asymptotic structure of the bulk of the droplet

moving with a h3 mobility would break down, and in this situation we could expect

an entirely different evolution. We leave this diffusion dominated regime for possible

future work.

The work presented here has largely focused on the simplified oscillatory binding

potentials g3(h) and g4(h). Recall that the more complex g2(h) in Eq. (6.2.2) is the

one that was obtained as a fit to the DFT data [5]. Additionally, all of these have the

2The Plateau-Rayleigh instability occurs when a falling stream of liquid breaks up into droplets.
As our work is 2D and this instability occurs in 3D, it is something we might consider in future work.
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Hamaker constant H = 0. There is therefore clearly much more work to do understand-

ing the spreading behaviour when realistic binding potentials are used that are valid

for all values of film thickness. Comparison of different binding potentials could also be

performed for a wider range of fluids, e.g. colloidal fluids, oils, polymeric solutions etc.

Other extensions to the present work that would be fruitful include solving for

the droplet spreading dynamics in 3D, including gravity, e.g. to also consider sliding

droplets, which exhibit extremely rich behaviour [129]. Preliminary results indicate

that it would also be interesting to study what happens when the initial condition is

not symmetric, and also the droplet dynamics in the presence of other droplets.
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Chapter 7

Final Remarks

In this thesis we have modelled both nanoscale droplets and nanobubbles on surfaces.

Using classical density functional theory, we have calculated the density profiles for

varying amounts of fluid adsorbed at the wall and also the resulting effective interfacial

free energy, which gives the binding potential, as a function of the film thickness h.

This is an important quantity and gives the contribution to the excess free energy due

to a film on a surface. The global minimum of the binding potential determines the

wetting behaviour of the fluid on the substrate – i.e. quantities like the contact angle

θ. The commonly used forms of the binding potential, such as that in Eq. (1.3.7) are

really only applicable for large film thickness. However, our method, based on DFT,

which is a statistical mechanical theory, is able to capture information valid over the

whole range of values of h.

The DFT that we used is fairly accurate, because it is based on FMT for Rosenfeld’s

theory for the reference hard-sphere fluid free energy. For the inter-particle attraction

at long ranges, we model it using a Yukawa tail pair potential and treat its contribution

to the free energy via a simple mean field approximation. This model is a generic model
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for simple liquids [38] and so our results are relevant to a wide number of real-world

pure fluid systems.

Significant new results in this thesis were presented in Chapters 5 and 6. The results

in Chapter 5 are for the binding potentials calculated using DFT for a vapour nanobub-

ble on a variety of different forms of external potentials. We demonstrated that having

an accurately calculated binding potential does affect the wetting behaviour. We have

also computed nanobubble profiles on a patterned heterogeneous surface and calculated

the free energy on each surface, which allowed us to find the relative probability of hav-

ing nanobubbles on such surfaces. Then in Chapter 6 we investigated the dynamics

of terraced droplets which were caused by having an oscillatory binding potential with

multiple minima. We have also extended our model such that it can describe both

advective flow and surface diffusion.

These results constitute a multi-scale modelling method that can be applied to any

system involving fluids at interfaces. The method takes as input the molecular interac-

tions of the fluid particles and bridges the scales upwards to generate an approach that

can be used to describe dynamic complex interfacial flows with moderate computational

resources. Although here the approach was used for fairly simple systems consisting

of bubbles and droplets on planar surfaces, it can straightforwardly be generalised to

much more complex situations of industrial relevance.

Thus, in this thesis we have explained, extended and further developed the neces-

sary tools to include nanoscopic physical information into macroscopic fluid models to

understand equilibrium and dynamic wetting behaviours. Obvious interest remains in

the full calculation of these processes in molecular and dynamical density functional

theory (DDFT) simulations for validation and further development, but computations

would require larger resources than with the methods used here. Other interesting

areas of future research include incorporating phase change dynamics (evaporation or
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condensation) and chemical reactions into this modelling approach. It could also be

possible to investigate deformable substrates such as found in living systems or active

fluids. Finally fundamental development of the underlying theory in situations far from

equilibrium will also be needed.
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Appendix A

Convergence Test

As a prerequisite to generating the results presented in Chapter 6, we conducted con-

vergence tests in order to be certain of the accuracy of the solutions of our numerical

analysis. There are some interesting results from this analysis relating to the choice of

spatial grid spacing in the discretisation that readers should be aware of if trying to

reproduce our results.

To test accuracy, we calculate droplet evolutions for a series of different mesh dis-

cretisations, going to increasingly finer meshes (i.e. an increase of the number of points

within the interval) and compare the results with the previous one. If the results are

equal within a small percentage error, the first mesh is good enough. On the other hand,

if the results differ by a large amount, the same process must be repeated for a finer

mesh. A finer mesh generally results in a more accurate solution and lowers the conver-

gence error, indeed once the grid is sufficiently fine, convergence does occur. However

this requires progressively larger memory and takes more time to compute – particularly

for the time evolution given the effective number of ODEs to be solved increases with

the number of grid points. Thus a desirable mesh would combine acceptable accuracy
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Figure A.1: Equilibrium droplet profile with g3 and with xf = 200, d = 0.02, a = 0.3,

hb = 0.2282, discretising with various grid spacings dx to obtain the numerical solution,

where dx =
xf
N

and where N is the total number of grid points. The values used are

N = 100, N = 200, N = 400, N = 667, N = 1000, N = 2000, N = 2500, and

N = 3333. The last four of these are virtually indistinguishable.

with economical cost.

Fig. A.1 shows the sequence of the droplet profiles for g3 with d = 0.02, a = 0.3,

C = 6 and E = 10, with different dx, where dx is the grid spacing dx =
xf
N

, where N

is the number of grid points and is chosen as N = 100, N = 200, N = 400, N = 667,

N = 1000, N = 2000, N = 2500, and N = 3333. There is a greatly elongated terrace of

height h(x) ≈ 1 for the curves with the coarsest three discretisations, which disappears

as dx decreases. Also, the terraces in these curves are more pronounced compared to the

others. Thus in this case, a poor mesh grid results in a very different final equilibrium

droplet shape. There is also sometimes a loss of volume during the time evolution

when the grid spacing is too large, i.e. the algorithm does not accurately capture the
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conservation of mass, which must be satisfied in out non-volatile system.
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Appendix B

Parameter Values for the Binding

Potential Fit Functions

In Table B.1 we give values of the coefficients in the binding potential g(Γ) in Eq. (5.5.3),

obtained by fitting to the results from DFT for a range of different values of the pa-

rameters in the wall potential, for the fluid with λ = σ and βε = 0.5.
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FUNCTIONS

Table B.1: The parameter values a1, a2, ..., a8 and l0 in the binding potential g(Γ)

in Eq. (5.5.3), obtained from fitting to the data calculated using the DFT, for the

various different wall potentials given in Eqs. (5.4.1)–(5.4.4). The attraction and range

parameters ε
(i)
w and λ

(i)
w in these potentials are also given below. The first column refers

to the number of the figure above in which the binding potentials are displayed.

Figure wall type βε
(i)
w λ

(i)
w /σ a1 a2 a3 a4 a5 a6 a7 a8 l0

3 Y 1.817 1 -0.102902 -1.52976 -7.19867 45.6063 -82.5011 64.6922 -18.9215 0 1.13494
5.2 Y 0 1 0.436017 1.56668 -5.80142 10.5037 -10.2276 5.2632 -1.12803 0 0.764648
5.2 Y 0.3 1 0.188742 1.01604 -1.10085 -1.90374 6.14653 -5.55662 1.72492 0 0.834599
5.2 Y 0.6 1 0.0636616 -0.0223561 3.88825 -12.2983 17.6613 -12.1129 3.23861 0 0.898494
5.2 Y 0.9 1 -0.00913047 -1.07813 8.16947 -20.2538 25.6447 -16.2729 4.12271 0 0.914339
5.2 Y 1.2 1 -0.103283 -2.23702 13.5188 -31.1874 37.6513 -23.154 5.74073 0 0.894094
5.2 Y 1.5 1 -0.316933 -3.50244 22.3324 -53.6347 66.6376 -42.0627 10.6847 0 0.832845
5.2 Y 1.8 1 -0.0998242 -1.4847 -6.998 44.2127 -79.8251 62.5049 -18.2605 0 1.13798
5.2 Y 2.1 1 -0.187165 -0.875099 -20.9172 99.1027 -170.089 130.938 -38.0072 0 1.13219

5.3(a) LJ 0 1 0.412147 1.61894 -5.73846 10.0637 -9.48287 4.71324 -0.974014 0 0.775053
5.3(a) LJ 0.1 1 0.374952 0.774098 -3.02401 5.77044 -5.69195 2.90088 -0.607194 0 0.695483
5.3(a) LJ 0.2 1 -0.0259831 0.448125 -2.49345 8.72886 -13.2268 9.67743 -2.72339 0 1.32478
5.3(a) LJ 0.3 1 -0.110418 0.500301 -8.71096 38.0178 -72.4731 72.5622 -37.2913 7.78349 1.08473
5.3(a) LJ 0.4 1 -0.426825 0.267704 -21.7157 122.223 -279.301 326.179 -193.284 46.2408 0.917036
5.4(a) Y 1.82 1 -0.10833 -1.40042 -7.99612 47.6637 -85.1519 66.386 -19.3495 0 1.13885
5.4(a)) LJ 0.4 1 -0.426825 0.267704 -21.7157 122.223 -279.301 326.179 -193.284 46.2408 0.917036
5.4(a) G 2.5 1 -0.202165 -1.65283 -17.9331 135.977 -352.077 448.15 -283.891 71.6529 0.983802
5.4(a) E 1.813 1 -1.09031 -2.16095 30.576 -99.8449 165.53 -151.694 73.1886 -14.5204 0.823677

5.6 E 1 0.1 0.422319 1.45854 -4.35437 3.93238 5.11002 -14.2398 11.6767 -3.39351 0.77295
5.6 E 1 0.3 0.411692 1.11381 -2.86337 0.299185 10.7624 -19.7299 14.683 -4.09718 0.765508
5.6 E 1 0.5 0.274977 0.375024 2.8439 -17.8841 43.0349 -52.6678 32.7557 -8.2269 0.788426
5.6 E 1 0.7 0.0666694 -0.635408 10.4577 -39.9909 78.0552 -84.3057 48.0902 -11.3238 0.855997
5.6 E 1 0.9 -0.0977131 -1.83569 16.2998 -50.1598 83.5545 -79.3539 40.6478 -8.74109 0.943813
5.6 E 1 1.1 -0.683713 0.654502 11.6287 -50.4985 99.458 -105.867 59.1351 -13.6179 0.836162
5.6 E 1 1.3 -0.868291 -0.0780018 10.9717 -29.3915 32.1351 -11.0863 -4.90455 3.32424 0.932054
5.6 E 1 1.5 -1.0713 0.527968 -0.0153676 26.0912 -95.6713 142.44 -98.7294 26.4225 1.01572
5.6 E 1 1.8 -1.43689 3.52772 -29.5133 143.46 -330.821 397.535 -242.33 59.4076 1.12934
5.6 E 1 2.1 -1.86145 8.06742 -64.7503 260.356 -529.595 580.619 -329.22 76.0464 1.23315
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