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TROPICAL MARKOV DYNAMICS AND CAYLEY CUBIC

K. SPALDING AND A.P. VESELOV

Dedicated to Emma Previato on her 65th birthday

Abstract. We study the tropical version of Markov dynamics on the
Cayley cubic, introduced by V.E. Adler and one of the authors. We show
that this action is semi-conjugated to the standard action of SL2(Z) on a
torus, and thus is ergodic with the Lyapunov exponent and entropy given
by the logarithm of the spectral radius of the corresponding matrix.

1. Introduction

In 1880 A.A. Markov [19] discovered a remarkable relation between the
theory of binary quadratic forms and the following Diophantine equation
known as the Markov equation

x2 + y2 + z2 = 3xyz. (1)

Markov showed that all positive integer solutions can be found from the
obvious one x = y = z = 1 by applying the symmetry

(x, y, z)→ (x, y, 3xy − z) (2)

(which is a corollary of the Vieta formula for the Markov equation considered
as a quadratic with respect to z) and permutations. The corresponding
Markov numbers

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985...

play a very important role in the theory of Diophantine approximations
determining the rank of the “most irrational” numbers (see for detail [7]).
Many other relations were discovered later, including the theory of Frobenius
manifolds and the related Painlevé-VI equation [8], Teichmüller spaces [9]
and various problems in algebraic geometry [10, 22].

The growth of Markov numbers was investigated by Don Zagier [26], who
used the parallel (going back to Cohn [5]) between the Markov tree and the
Euclidean algorithm described by the equation

a+ b = c (3)

with coprime a, b. One can view this parallel as a “tropicalization” (known
also as Maslov’s “dequantization” [18]): if we write

x = e
a
~ , y = e

b
~ , z = e

c
~

1



and let ~→ 0, then we have from the Markov equation that

a+ b = c

assuming that a, b are less than c. Similar ideas were used by Andy Hone
[12], who studied the growth problem in relation with Halburd’s Diophantine
approach to integrability [11].

In our paper [23] we used this relation to study the growth of the Markov
numbers as functions of the paths on the Markov tree, where the Markov
numbers are “naturally growing”, see Fig. 1. One can view this representa-
tion as a version of the Conway topograph [6] for Markov triples.
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Figure 1. Markov and Euclid trees with a path

More precisely, we defined the Lyapunov exponents of the Markov and
Euclid trees Λ(ξ), ξ ∈ RP 1 as

Λ(ξ) = lim sup
n→∞

ln(ln zn(ξ))

n
= lim sup

n→∞

ln cn(ξ)

n
(4)

where zn(ξ), cn(ξ) are the corresponding numbers along the path γξ on the
Markov and Euclid trees respectively (see details in [23]). The function Λ(ξ)
is PGL2(Z)-invariant and has some interesting properties studied in [23].

In the present paper we consider the tropical version of the integrable
case of Markov dynamics on the real surface given by

x2 + y2 + z2 = 3xyz +
4

9

or, equivalently after scaling the variables by 3:

x2 + y2 + z2 = xyz + 4. (5)

From the algebro-geometric point of view the relation (5) determines the
classical surface known as the Cayley cubic. It was studied by Arthur Cayley
in [2] and can be characterised as the cubic surface with 4 (which is maximal
possible) conical singularities. The real version of Cayley cubic is shown in
Fig. 2 prepared using MAPLE.

It has four infinite sheets similar to the Markov surface (1), but in this
case the positive sheet (shown in the top right corner on Fig. 2) can be
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Figure 2. Cayley cubic

parametrized explicitly as

x = 2 cosh a, y = 2 cosh b, z = 2 cosh c (6)

with c = a + b (or in symmetric form a + b + c = 0), which is in a good
agreement with the tropical arguments above. This observation was used by
Zagier [26] to study the growth of Markov numbers and earlier by Mordell
[20] for studying the Diophantine properties of this equation.

However, the Cayley cubic has also the middle part with the trigonometric
parametrization

x = 2 cos a, y = 2 cos b, z = 2 cos c (7)

with a + b + c = 0. It bounds the body called the spectrahedron, which
appears in a range of applications (see [21, 25]). It can be described as the
set of semi-positive symmetric matrices of the form

A =

 1 x/2 y/2
x/2 1 z/2
y/2 z/2 1

 .

Indeed one can check that the condition detA = 0 is equivalent to the Cayley
relation (5). Note that A with entries given by (7) is the Gram matrix
for three unit vectors in R3 with pairwise angles a, b, c, so geometrically
detA = 0 means that these vectors are coplanar and thus one of the angles
is the sum of the others.
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It is natural to ask if there is a “tropical” analogue of the Markov dynamics
on the middle part of the Cayley cubic. Here by the tropical dynamics we
simply mean the dynamics determined by the piecewise linear maps.

Vsevolod Adler and one of the authors [1, 24] came up with a natu-
ral suggestion, simply replacing the spectrahedron by the regular tetrahe-
dron with the vertices at the singular points, which are (2, 2, 2), (2,−2,−2),
(−2, 2,−2), (−2,−2, 2) (see Fig. 3).

Figure 3. Cayley’s spectrahedron and tetrahedron

The corresponding boundary, which we will denote T , is determined by
the “tropical” Cayley equation

max{−u− v − w,−u+ v + w, u− v + w, u+ v − w} = 2. (8)

Note that this is not an analogue of the Cayley surface in the sense of tropical
algebraic geometry [14], so the terminology might be a bit confusing (see
more in Concluding remarks).

Following [1] consider the corresponding action of the modular group
PSL2(Z) generated by cyclic permutation of u, v, w and the tropical Vi-
eta involution

(u, v, w)→ (u, v,−w + 2f(u, v)) (9)

where f : R2 → R is a piecewise linear function defined by

f(u, v) =


v if u ≥ |v|,
u if v ≥ |u|,
−v if −u ≥ |v|,
−u if −v ≥ |u|.

(10)

The plot of the function f is shown in Fig. 4.
The aim of this paper is to study the properties of this action, which we

will call tropical Cayley-Markov dynamics. Our main result is the following
4
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Figure 4. Function f(x, y)

Theorem 1. The tropical Cayley-Markov action of a hyperbolic element
A ∈ SL2(Z) on T is ergodic, with the Lyapunov exponent and entropy given
by the logarithm of the spectral radius of A. Their average growth along the
path γξ on the planar binary tree is given by the function Λ(ξ).

The proof is by constructing the semi-conjugation of this action with the
standard action of SL2(Z) on a torus, using a natural tropical analogue of
the parametrisation (7).

We should mention that the same idea was used by Cantat and Loray [3, 4]
to compute the topological entropy of the (generalised) Markov dynamics
(see also the important work of Iwasaki and Uehara [15, 16] in this direction).

2. Tropicalization of Markov dynamics and Cayley cubic

Tropicalization (also known as dequantization [18] or ultra-discretization
[13]) can be applied to any dynamical system which can be written in alge-
braic form without a minus sign (subtraction-free), by replacing the opera-
tion of addition and multiplication by

X ⊕ Y = max(X,Y )

and

X ⊗ Y = X + Y

respectively. It is clear that this does not work directly for the Markov
dynamics in the form (2) because of the minus sign.

However one can consider another Vieta version (cf. Hone [12])

(x, y, z)→ (x, y, (x2 + y2)/z), (11)

which can be naturally tropicalized as

(X,Y, Z)→ (X,Y,max(2X, 2Y )− Z). (12)
5



Together with cyclic permutations of X,Y, Z, this generates the action of
the modular group PSL2(Z), which is known to be isomorphic to the free
product Z2 ∗ Z3.

It has an invariant

Φ = max(2X, 2Y, 2Z)− (X + Y + Z),

or, equivalently,

Φ = max(X − Y − Z, Y −X − Z,Z −X − Y ), (13)

which is the tropical version of the integral

F =
x2 + y2 + z2

xyz
,

invariant under the Vieta involution (2).
It is easy to see that the tropical equation Φ = 0 for positive integers

X,Y, Z defines the Euclidean algorithm and, as explained above, describes
the asymptotic growth of the Markov triples in the logarithmic scale.

Let us now turn to the Cayley cubic case

x2 + y2 + z2 = xyz + 4.

Adding 4 to the right hand side of the equation does not change much
the asymptotic behaviour at infinity in the positive octant, and thus the
tropicalization, which is the same as in the Markov case. However, it changes
the shape of the surface near the origin by adding the part bounded by 4
singular points (see Fig. 2 above).

Following [1], replace this part by the surface T of the tetrahedron with
the same vertices. The projection of T to the (u, v)-coordinate plane is a
2-to-1 map to the corresponding square (see Fig. 5).

Figure 5. Projection of tropical Cayley surface T

One can check directly that the piecewise linear involution (9), (10) swaps
the branches of this double cover similarly to the Markov involution (2),
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Figure 6. The level set of tropical Markov dynamics

which was the motivation for introducing the tropical Cayley-Markov dy-
namics in [1].

Proposition 1. The function

Ψ = max{−u+ v + w, u− v + w, u+ v − w,−u− v − w} (14)

is invariant under the tropical Cayley-Markov dynamics (9), (10). The level
set Ψ = c, c > 0 is the surface of the regular tetrahedron with the vertices
(c, c, c), (c,−c,−c), (−c, c,−c), (−c,−c, c).

The proof is by direct check. Note the difference of (14) with (13), which
can be rewritten equivalently as

Φ = −min(−X + Y + Z,X − Y + Z,X + Y − Z).

3. Lyapunov exponents and entropy of the tropical
Cayley-Markov dynamics.

Now we would like to study the dynamical properties of the tropical
Cayley-Markov action PSL2(Z) = Z2 ∗ Z3, where the action of Z2 is given
by (9), (10).

It is easy to see that this action preserves the usual Lebesgue measure on
the surface of T.

The numerical calculations [1] showed the ergodic behaviour of the orbits
of tropical Cayley-Markov dynamics at the level set Ψ = c, see Fig. 6.

Now we are ready to prove this and our main Theorem 1. For this we
need some results from our paper [23].
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Let us consider first the Farey tree, where at each vertex we have the
fractions p

r ,
q
s and their Farey mediant p+q

r+s (see Fig. 7). Using the Farey
tree we can identify the infinite paths γ on a binary tree with real numbers
ξ ∈ [0,∞] using the theory of continued fractions. For example, for the

golden ratio ξ = ϕ :=
√
5+1
2 we have the Fibonacci path shown in bold.
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Figure 7. The Farey tree with marked “golden” Fibonacci path.

One can use the Farey tree to describe the monoid SL2(N) consisting of
matrices from SL2(Z) with non-negative entries. Indeed, two neighbouring
fractions p

r ,
q
s can be combined into the matrix

A =

(
p q
r s

)
∈ SL2(N). (15)

It can be shown [23] that the Lyapunov exponents (4) can be equivalently
defined as

Λ(ξ) = lim sup
n→∞

ln ρ(An(ξ))

n
, (16)

where An(ξ) ∈ SL2(N) is attached to the n-th edge along the path γξ and
ρ(A) is the spectral radius of the matrix A, defined as the maximum of the
modulus of its eigenvalues.

Let’s introduce the tropical cosine function cosT x as the period-2 piece-
wise linear even function given on the period by

cosT x = 1− 2|x|, x ∈ [−1, 1]

(see Fig. 8). It is known in Fourier theory as the even triangle wave function.
Define the tropical parametrization of T by the following tropical analogue

of (7):

u = 2 cosT ϕ, v = 2 cosT ψ, w = 2 cosT χ, (17)

where χ = ϕ+ ψ and (φ, ψ) ∈ T 2 = R2/(2Z)2.
The corresponding map determines the 2-to-1 folding of the torus T 2 into

the surface of the tetrahedron T (see Fig. 9).
The key observation now is the following
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Figure 8. Tropical cosine (even triangle wave) function.
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Figure 9. Folding of the torus T 2 to the surface of tetrahedron T

Proposition 2. The parametrisation (17) semi-conjugates the tropical Cayley-
Markov action of A with the standard action of A on the torus T 2.

Indeed, u and v determine φ and ψ by (17) uniquely up to a sign,
which means that the two values of the corresponding coordinate w are
w = 2 cosT (φ±ψ). Thus the tropical Cayley-Markov involution corresponds
to the linear maps (±φ,±ψ,±(φ + ψ)) → (±φ,±ψ,±(φ − ψ)), describing
the action of PSL2(Z) on the so-called lax superbases (see [6]).

Note that the surface of the tetrahedron T is the quotient of the torus T 2

by the central symmetry group Z2, with fixed points corresponding to the
vertices of the tetrahedron, so we have the following commutative diagram
of the group actions

T 2 SL2(Z)−→ T 2

↓ Z2 ↓ Z2

T
PSL2(Z)−→ T.

(18)

Since the action of a hyperbolic element A ∈ SL2(Z) on a torus is known
to be ergodic with the Lyapunov exponent and entropy given by the natural
logarithm of the spectral radius of A (see e.g. [17]), this completes the proof
of Theorem 1.
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4. Concluding remarks

A natural question is how exceptional is the case of Cayley-Markov dy-
namics considered in this paper.

Although replacing the spectrahedron by the regular tetrahedron looks
like a natural tropicalization (in the sense of piecewise linearization), it
cannot be explained by either traditional tropical algebraic geometry [14]
or the dequantisation/ultra-discretization procedure [18, 13].

It would be nice therefore to see more similar examples in order to un-
derstand if there is any new general procedure here.

Although this is not directly related to Emma Previato’s work, we believe
that it is in the spirit of her very broad algebro-geometric view on integrable
systems. One of us (APV) had enjoyed many years of friendship with Emma,
so we are very happy to dedicate this work for her 65th birthday and to wish
her the best on this occasion.
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[3] S. Cantat Bers and Hénon, Painlevé and Schrödinger. Duke Math. Journal 149

(2009), issue 3, 411-457.
[4] S. Cantat and F. Loray Holomorphic dynamics, Painlevé VI equation and character
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